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SUMMARY

A multivariate time-series regression model was developed in order to describe the 2005–2008

age-specific time-course of varicella sentinel surveillance data following the introduction of a

varicella childhood vaccination programme in Germany. This ecological approach allows the

assessment of vaccine effectiveness under field conditions by relating vaccine coverage in cohorts

of 24-month-old children to the mean number of cases per reporting unit in the sentinel network.

For the 1–2 years age group, which is directly affected by the vaccination programme, a one-dose

vaccine effectiveness of 83.2% (95% CI 80.2–85.7) was estimated which corresponds to previous

approaches assessing varicella vaccine effectiveness in the field in the USA.

Key words: GP surveillance systems, infectious disease epidemiology, statistics, vaccines,

varicella zoster.

INTRODUCTION

Varicella vaccination programmes have been im-

plemented in several countries during the last decade

[1–4]. Evaluations of the varicella vaccination pro-

gramme in the USA have demonstrated an impressive

effect with respect to varicella-related mortality [1],

hospitalization [2, 3] and incidence [4], despite

limited vaccine efficacy of one dose [5] and even

two doses of varicella vaccine [6, 7]. However, the

epidemiological characteristics for the spread of var-

icella in unvaccinated populations vary considerably

[8] making assessment of the effects of vaccination

programmes on a national level mandatory.

Since varicella is very common in early childhood

[9] assessment of the incidence of temporal trends of

varicella incidence at a national level is not feasible.

Therefore trends are either monitored regarding

incidence in regional samples [1, 8] or in sentinel

surveys [10]. While trends in case ascertainment can

be depicted by these approaches, quantifying vaccine

effects and age-group interdependencies may require a

more sophisticated approach. We therefore attempted

to model the time-course of varicella following the
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introduction of a universal childhood vaccination

programme in Germany in 2004 [10] targeted at

children aged 1–2 years and sought to apply these

analyses to an ecological approach in order to assess

varicella vaccine effectiveness.

Measuring the success of an immunization pro-

gramme under field conditions is a particular chal-

lenge which can be addressed by epidemiological

means. The study of vaccine effectiveness typically

investigates direct effects in individuals using different

vaccination models and study designs [11]. However,

the literature on quantifying population effects of

vaccination is less developed and typically occurs

within the framework of a detailed dynamic model

for disease transmission (see e.g. [12, 13] for such

an approach in the context of varicella vaccination).

However, for data originating from routine monitor-

ing such models are too detailed. The screening

method [14] is one approach operating under such

monitoring conditions, but it requires knowledge

about both the vaccination status of cases and the

proportion of population vaccinated, which are not

always available. Furthermore, the approach does not

specifically address the time-varying aspect of cover-

age following the introduction of a vaccination pro-

gramme. Our selected ecological approach provides a

solution for estimating population-level effects of

vaccination under field conditions by using a coarse

disease transmission model based on time-series

methodology which indirectly takes herd immunity

effects into account. Classical time-series modelling

has already received some attention in analysing vac-

cine effects in populations [15–19]. However, previous

analyses are typically restricted to univariate analyses

with information on vaccination coverage entered

only in binary form. Our approach continues along

these lines and is novel in as much as it considers

coverage percentage as an exogenous time series and,

being a multivariate time-series model, handles pro-

gression in different age strata.

Given the above, our research question can be

formulated as follows: does modelling the time-course

of varicella following the introduction of the varicella

vaccination programme in Germany allow for

quantification of age-specific effects and for an eco-

logical assessment of vaccine effectiveness? Specifi-

cally, we wanted to quantify direct vaccine effects in

the vaccinated 1–2 years age group by using seasonal

and autoregressive terms in the model as proxy for

adjusting for indirect vaccine effects in all regarded age

groups.

METHODS

Data sources

A convenience sample of 1176 primary-care phys-

icians, consisting of 57% paediatricians and 43%

general practitioners (GPs) which accounted for

about 15% of all German paediatricians and about

1% of all German GPs in private practice was the

sampling frame for the sentinel network. Sentinel

network physicians of both groups are distributed in

German federal states in the same proportion as the

total number of respective physicians in private prac-

tice. Physicians reported aggregated monthly num-

bers of varicella cases by age group. Clear case

definitions for reporting were provided. A case of

varicella is defined as a person presenting with a

clinical picture compatible with varicella, i.e. the

presence of skin exanthema and concomitant presen-

tation of papules, blisters, pustules, crusts [10]. Zero-

reporting and active reminders were included, but as

physicians participated voluntarily without any in-

centives for their reports, the additional workload for

them needed be kept as low as possible. Hence, vac-

cination status of cases was not recorded and only

aggregated case numbers by age groups were re-

ported. Furthermore, as patients are free to choose

and change their physician and only a sample of

physicians report to the sentinel network, the popu-

lation size under surveillance can not be defined [10].

Vaccine uptake was extrapolated from health in-

surance data in one [Schleswig-Holstein (SH)] of the

16 German federal states. Vaccination billing for

about 90% of all children in Germany is handled by

the Association of Statutory Health Insurance

Physicians (‘Kassenärztliche Vereinigungen’) in the

different German federal states [20]. Children in the

health insurance system were traced from birth to age

24 months upon billing for the well-baby check visits.

Varicella vaccination status by age 24 months was

assessed for consecutive birth cohorts from 2003 to

2006 and this constituted the numerator for assessing

vaccination coverage for the different birth cohorts.

Analyses

Data from all paediatricians and GPs participating in

the sentinel network were used in the analysis. As re-

sponse for the time-series modelling we chose the

monthly ‘mean number of varicella cases per report-

ing unit ’. This quantity accounts for the varying

number of reporting units in the sentinel network,

Assessment of varicella vaccine effectiveness in Germany 1711



whereas the size of the reporting units is considered to

be stable over time. The dynamics of the response

variable over time is described by a two-phase model :

at the first level the mean number of varicella cases at

time t (measured in months) per sentinel reporting

unit was modelled. This was done using a linear pre-

dictor with intercept, linear trend, seasonal terms and

an additional ARMA(p,q) model with p auto-

regressive (AR) and q moving-average (MA) terms.

At the second level the age distribution of the ob-

served cases at time t in the <1, 1–2, 3–4, 5–9 and >9

years age groups was handled by a multinomial

logistic regression model (for further details on the

modelling see the Appendix). For levels 1 and 2,

Akaike’s Information Criterion (AIC) was used to

select from a set of candidate models. A strong cor-

relation between vaccination coverage and time

(measured in months) was expected. Including both

month and vaccination coverage as covariables would

thus lead to strong collinearity and hence lead to

stability problems if they are both included. There-

fore, the following strategy was applied: fit separate

models including either month or coverage as covari-

ate and use AIC to select the better model.

We used R [21] – a free software environment for

statistical computing and graphics – to perform all

statistical computations.

In order to estimate vaccination coverage nation-

ally, coverage estimates for SH were extrapolated

to the whole of Germany as follows. For each of the

16 federal states the SH time-series was shifted in

time such that the time of reimbursement in SH

(August 2005) was moved to the corresponding

month of reimbursement in the federal state. The

resulting 16 time series were then averaged by

weighting with the number of sentinel network units

for the respective federal state in that month.

Vaccine effectiveness is conventionally defined as

the reduction between the risk of unvaccinated and

vaccinated individuals divided by the risk of unvac-

cinated individuals [22], i.e. 1minus the relative risk. In

our model we use a before-and-after approach to esti-

mate vaccine effectiveness under field conditions. We

consider 0% coverage as baseline – representing the

unvaccinated situation – and compare this with 100%

coverage, corresponding to the vaccinated situation.

Using this approach, vaccine effectiveness can be esti-

mated in the unstratified situation as 1 minus the

relative reduction in the expectation of the response,

i.e. 1 – m100% coverage/m0% coverage=1 – exp(b1)
100, where

b1 represents the effect of coverage in the level 1 model

described in the Appendix. Since coverage is only

available for the 1–2 years age group, we obtained

an estimate of vaccine effectiveness for this specific

age group by computing the relative reduction in ex-

pectation for this age group, i.e. 1 – m100% coverage,1–2 yr/

m0% coverage,1–2 yr (see Appendix for details on how

these expectations are obtained by a combination of

level 1 and level 2 models).

RESULTS

Figure 1 shows the monthly vaccination coverage

among the 24-month-old birth cohort in SH. Here,

reimbursement started in August 2005. Also shown in

Figure 1 is our extrapolated national coverage time-

series ; the extrapolated coverage percentage at the

beginning of the sentinel network in April 2005 was
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Fig. 1. Vaccination coverage in the 24-month-old birth cohort in Schleswig-Holstein (SH) and the extrapolated coverage
for Germany.
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11%. The corresponding coverages were 38%, 63%,

78%, respectively, at 1, 2 and 3 years after the sentinel

network started. A rough comparison (not shown)

with differently collected yearly coverage rates for the

24-month-olds from the 2004 and 2005 birth cohorts

in an available subset of ten federal states showed that

our extrapolation provided a fair description of the

coverage of these two cohorts.

The mean number of monthly reporting units in

the sentinel network for the available 42 months of

monitoring was 679 (S.D.=41). Figure 2 shows the

observed monthly time series of mean number of

cases per reporting unit together with the fit of our

level 1 model containing intercept, trend and periodic

function, f(t), consisting of two harmonics with

frequencies of 12 and 6 months, respectively. An

ARMA(2,1) model captured the remaining auto-

correlation of the error terms. This level 1 model was

determined as the best-fitting model according to AIC

in the investigated set of candidate models. The esti-

mated coefficient for the time trend in this model

is x0.023 (95% CI x0.025 to x0.020), i.e. the re-

duction in the mean number of cases per reporting

unit is significant (P<0.001) and corresponds to a

decrease in the mean number of cases per reporting

unit by a factor of exp(x0.023)=0.978 per month or

exp(x0.023r12)=0.762 per year.

Figure 3 shows the model-fitted values combining

level 1 and level 2 models (using month as linear

covariate). Also shown are the estimated time trends,

mt,i, for each of the five age groups (<1, 1–2, 3–4, 5–9,

>9 years) as described in the Appendix.
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Fig. 2. Observed and model-fitted mean number of varicella cases per reporting unit in the sentinel network.
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A decline in all five age groups was observed.

For better interpretation, Table 1 shows the model-

predicted yearly relative reductions for the first three

full years of the sentinel network. As expected, the

highest decline is observed in the 1–2 years age group,

but all other age groups also experienced a decline.

For example, the percentage reduction over 3 years in

the <1 year age group is given by 1x0.77r0.76r
0.76=56%. The corresponding reductions in the

other groups were 69%, 62%, 42% and 30%. Since

no vaccinations were performed in the <1 year age

group, the reduction here may be entirely due to herd

effect.

However, the extrapolated national vaccination

coverage percentage shown in Figure 1 has a Pearson

correlation coefficient with month of 0.97. Using

either month or coverage percentage in the model

shows that the model with the covariate coverage

provides the better fit (AIC of x44.66 vs. x39.73).

When replacing the term b1t with b1(coverage in %) in

the level 1 model, the estimated coefficient of coverage

is x0.013 (95% CI x0.014 to x0.011), which means

that the coverage effect is significant (P<0.001) and

for each percentage point of vaccination coverage in

the 24-month-old cohort the mean number of cases

per reporting unit is reduced by a factor of 0.987.

While this approach describes the overall impact of

the vaccination programme, the assessment of vaccine

effectiveness requires confining the analysis to vacci-

nated age groups only.

To specifically target the reduction in the 1–2 years

age group, for whom the vaccine uptake could be es-

timated and who experience the direct vaccine effects,

we combined the above findings with the level 2 model

where the linear time trend is also replaced with

coverage, i.e. coverage is used as single linear covari-

ate in both level 1 and level 2 models, but the har-

monic functions at both levels remain functions of

time. This allows us to predict the reduction factor

such as m100%,1–2 yr/m0%,1–2 yr for the 1–2 years age

group, i.e. the reduction of a hypothetical 100%

vaccination coverage in the 24-month-old birth co-

hort compared to a coverage baseline of 0%. This

comparison mimics the conventional vaccine effec-

tiveness assessment comparing attack rates in vacci-

nated and unvaccinated individuals. Table 2 gives the

results for coverage percentages between 60% and

100%. This yields a vaccine effectiveness of 83.2%

(95% CI 80.2–85.7) in the 1–2 years age group.

DISCUSSION

Since the implementation of most vaccination pro-

grammes is progressive with gradual increments of

vaccination coverage, the decrease of the targeted

diseases due to direct and indirect vaccine effects will

also be progressive. During the implementation of a

universal varicella childhood vaccination programme

in Germany we demonstrated that modelling of the

time-course of disease allows estimation of the re-

duction for different age groups for comparison of

direct and indirect vaccination effects. With further

inclusion of vaccine uptake, an ecological estimate for

vaccine effectiveness was possible and yielded almost

identical results to other varicella vaccine effectiveness

estimates.

Although year-to-year variation in the incidence of

varicella (measured by GP visits or hospitalizations)

has been reported from various countries and settings,

the predicted and observed decline of varicella cases

in the German sentinel network system, mainly in

the 1–2 years age group, is consistent with an effect

of vaccination rather than a secular trend. Given

the short time-span of the monitoring period it

appears unlikely that the reduction is attributable

to secular changes in factors other than vaccine use

[19]. Other epidemiological investigations and mod-

elling approaches [23–26] also indicate a lack of large

Table 1. Model-predicted relative reduction factors

for each of the five age groups

Ratio

Age group (years)

<1 1–2 3–4 5–9 >9

m13,i/m1,i 0.77 0.68 0.73 0.84 0.89
m25,i/m13,i 0.76 0.68 0.72 0.84 0.89

m37,i/m25,i 0.76 0.67 0.72 0.83 0.88

Table 2. Model-predicted reduction factors for five

hypothetical coverage percentages

Coverage

Predicted reduction factor

mcoverage %,1–2 yr/m0%,1–2 yr 95% CI

60% 0.349 0.317–0.384
70% 0.291 0.260–0.326

80% 0.243 0.214–0.277
90% 0.202 0.175–0.235
100% 0.168 0.143–0.198

CI, Confidence interval.
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multi-year periodicities. However, our approach re-

mains sensitive to unexplained trends in incidence,

whereas ordinary year-to-year fluctuations are taken

into account by the stochastic nature of the model.

Early detection of a herd immunity effect in chil-

dren aged <1 year and the finding of similar vaccine

effectiveness estimates for the ecological compared to

other approaches are important findings with respect

to varicella vaccination programmes.

Impressive herd immunity effects of varicella vac-

cination programmes have previously been shown in

adults, e.g. a reduction of 74% over a 10-year period

with increasing childhood vaccination coverage in the

USA [27]. Even more impressive reductions than in

adults or adolescents have been reported in infants

too young to be immunized themselves [1, 15, 16].

These impressive indirect effects were achieved over a

6-year period with >90% coverage since programme

implementation [28] and over 10 years with vacci-

nation coverage >80% achieved after the fifth year

[29]. Our results show, that even with coverage<80%

first effects of indirect protection might occur.

Scientifically more relevant, however, might be the

suggested ecological approach to estimate vaccine ef-

fectiveness based on time-series methodology. Using

vaccine uptake in the model instead of time to esti-

mate the reduction of reported varicella cases per in-

crement in vaccine uptake appears justified because

the model fit for vaccine uptake was considerably

better than the fit for year of observation. A hypo-

thetical vaccine uptake of 100% would reflect the ef-

fectiveness of the vaccine in vaccinated individuals.

Vaccination status at age 24 months was used as an

estimate for the 1–2 years age group, which covers

children aged 12–35 months. We expected that

choosing coverage at the midpoint of the age group

balances between lower and higher coverage rates in

children aged 12–23 and 24–35 months. The reduction

of the reported varicella cases for each 1% increment

in vaccination coverage was used to estimate vaccine

effectiveness from an ecological approach. As the

time-series model contains autoregressive terms, herd

immunity effects are indirectly addressed in the mod-

elling. A decrease in the mean number of cases (and

hence the infection pressure) during previous months

implies a smaller contribution from the past for the

current response.

Estimates of varicella vaccine effectiveness vary

depending on the setting of the assessment [30], sev-

erity of the infection [5], number of vaccine doses [6]

and duration of follow-up [31]. Most of these were

based on outbreak investigations [30, 32], a cohort

study [33] a household contact study [34] or a case-

control study [35]. The median effectiveness has been

estimated at 72% and 71% [30, 32] for all and 96.5%

or 89% [5, 30], respectively, for moderate to severe

infections fromoutbreak investigations.The respective

figures were 83% and 100% in a prospective cohort

study [33], 85% and 97% in a case-control study con-

fined to laboratory-confirmed cases [35] and 79% and

92% in a household contact study for moderate cases

[34]. The German varicella childhood vaccination

programme was initiated with one-dose varicella vac-

cination and only recently switched to a two-dose

schedule in 2009. The observed vaccine effectiveness

of 83.2% in our ecological approach is close to the

estimates from outbreaks in the USA which similarly

included all levels of severity of varicella.

Vaccination uptake was only assessed in one

German federal state; however, vaccination coverage

measured for children at school entry is similar in SH

to that in Germany on average [36]. The challenge in

estimating vaccination coverage from health in-

surance data, which provide complete information on

all vaccines given, is the generation of an appropriate

denominator [20]. The approach to include children

with follow-up information up to age 24 months al-

lows defining of a valid denominator. Almost 90% of

children have completed all well-baby check-up visits

scheduled within the first 2 years of life. If children

without complete well-baby check-up visits were less

completely vaccinated, this would account for an

overestimation of the vaccination coverage by a

maximum of 10%. However, formal assessment of

this figure in SH, found an overestimation of only 1%

[37]. As a sensitivity analysis incorporating uncer-

tainty from well-baby check-ups and the extra-

polation to other federal states we investigated the

following: if using 90% of the coverage rate observed

in Figure 1 as covariate, the resulting estimate for

vaccine effectiveness would be 86.3%. As a conse-

quence, our reported figure of 83.2% is conservative

with respect to potential overestimation of coverage.

Our time-series modelling makes up an easy to im-

plement alternative to assessing vaccine effectiveness.

The similarity of our ecological estimate of varicella

vaccine efficacy compared to other approaches can be

explained by absence of secular trends and consistent

reporting. Lack of large multi-year periodicities is

suggested from other epidemiological investigations

and modelling approaches [29, 34–36]. Furthermore,

there was no specific varicella catch-up vaccination
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programme in Germany. Even though vaccinations

have occurred in the 3–4, 5–9 and >9 years age

groups due to delay between recommended and actual

vaccination age [20], the effects can be considered as

minor. Finally, ascertainment of cases and vacci-

nation coverage was consistent over time due to the

structure of the reporting instruments.

A limitation of the current modelling is that cover-

age percentage enters the predictor of the log-linear

model in linear form. Predictions about the effect of

hypothetical 100% coverage are sensitive to this as-

sumed parametric form. An alternative could be to

use more flexible functional forms based on semi-

parametric penalized spline approaches [38], but in

our case such modelling did not indicate strong de-

viations from the linear form. Furthermore, the

multinomial phase 2 model implies a fixed variance-

covariance structure of the count data series,

which – similar to binomial time series – might be

subject to overdispersion [39]. An alternative model-

ling approach based on a multivariate AR(1) Poisson

model with population offsets can be found in Herzog

et al. [40]. However, their model does not specifically

address the sentinel network situation found in our

context and is less flexible with respect to the auto-

regressive modelling.

It should be noted that standard epidemic models

suggest that the number of new cases is proportional

to the product of the proportions being infectious

and susceptible. Thus, our use of infection pressure

in the autoregression represents a pragmatic ap-

proximation when no information about the suscep-

tible proportion is available. Theoretically, changes in

the susceptible proportions due to vaccination could

be reflected by a time-varying autoregression par-

ameter. Furthermore, as herd effects are reflected

in the unstratified level 1 model, we implicitly assume

that these effects are homogeneous over all age

groups.

Finally, given the short period of the German vac-

cination programme, our analyses of vaccine effec-

tiveness do not take into account that immunity from

vaccination might wane over time which would con-

found our effectiveness estimate. Re-assessment of

waning immunity might become necessary, once the

programme has been in operation for a longer time.

Altogether, our vaccine effectiveness estimates cor-

respond to immediate effects and thus do not reflect

long-term impact. It is well known that vaccination

effects can be exaggerated during the initial period of

a vaccination programme, e.g. due to ‘honeymoon

effects ’ [41] or boosting from natural varicella cases

which is expected to decline in the future [42]. Hence

our estimates may not be directly comparable with

effectiveness based on individual-level data since they

are subject to transient herd effects. However, the

proposed two-phase multivariate time-series model-

ling represents a novel view on investigating popu-

lation-level vaccine effectiveness for an age-stratified

population indirectly taking current herd effects into

account. With this model, the dynamics using a

monthly time resolution were investigated and quan-

tified. Such modelling is especially helpful in case

of short time-series when starting monitoring im-

munization programmes without available pre-

vaccination data.

APPENDIX

Statistical methodology

Allow nt to be the number of sentinel network re-

porting units at time t ; ct the total number of reported

varicella cases at this time and (ct,<1, ct,1–2, ct,3–4, ct,5–9,

ct,>9)
T a column vector of length 5 containing the

number of cases in each of the five age groups. The

elements of this vector sum to ct. At the first level, our

interest is in modelling the response yt=ct/nt, i.e. a

random variable reflecting the mean number of cases

per reporting unit at time t. To reflect the fact that the

response is non-negative, we transform the response

using the natural logarithm and hence model log(yt).

Now, a time-series model is used to model trend and

seasonality:

log (yt)=b0+b1t+f(t)+et,

where t=1, 2, … , 42 reflects time (in months) and et is

possibly correlated zero mean Gaussian random vari-

ables with variance s2. Because a log-transformation

is used, all effects should be interpreted in multi-

plicative fashion, i.e. exp(b0) corresponds to the base

level and exp(b1) is the factor multiplied on this base

level for each additional month. Furthermore, f(t) is

a periodical function with period 12 months, e.g.

f(1)=f(13). The function f(t) is obtained by combining

several sine and cosine terms with different fre-

quencies. An advantage of the above regression for-

mulation is that additional covariates can be easily be

added to the model.

The expectation of the response can be calculated as

mt=E(yt)= exp b0+b1t+f(t)+1=2s
2

� �
:
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When using, e.g. vaccination coverage instead of time

as linear covariate, vaccine effectiveness is defined as

1 – m100% coverage/m0% coverage=1 – exp(b1)
100.

Since our data are of time-series nature, we ex-

pected the observations yt to be correlated. Even after

modelling trend and seasonality as explained above,

we expected remaining correlation to be present

within the series. If this additional correlation (i.e.

autocorrelation) is not taken into account, the stan-

dard errors obtained from the modelling would be too

optimistic and hence wrong results about significance

will be obtained. To capture this autocorrelation, a

ARMA(p,q) model with p autoregressive (AR) and q

moving-average (MA) terms is fitted to the residuals,

et. This modelling approach is a well-known pro-

cedure from time-series analysis for fitting seasonal

time-series data [43].

Estimation of the model parameters b0, b1, s
2, the

parameters of f(t) and the coefficients in the seasonal

ARMA model given known values of p,q was per-

formed by standard likelihood methods. The appro-

priate parameters p,q of the ARMA(p,q) time-series

model were selected according to AIC in all nine

models with p,q being either 0, 1 or 2. We also in-

vestigated seasonal ARMA(p,q) models, but as the

seasonality is modelled explicitly using f(t), no such

additional complexity improved the AIC.

The age-specific dynamics in the mean number of

cases per reporting unit is modelled by a two-stage

approach. First, the above presented seasonal ARMA

model captures the development in the mean number

of visits per reporting unit over all age groups.

Second, the vector of proportions (pt,<1, pt,1–2, pt,3–4,

pt,5–9, pt,>9)
T in age groups at a specific time-point

is modelled by multinomial logistic regression using

category-specific intercept, trend and period function

(see e.g. [39]). Altogether,

Level 1:

yt=
ct
nt
= exp (b0+b1t+f(t)+et),

et � ARMA(p, q;s2),

Level 2:

(ct,<1, ct, 1x2, ct, 3x4, ct, 5x9, ct,>9)
T

� Multinom(ct, (pt,<1, pt, 1x2, pt, 3x4, pt, 5x9, pt,>9)
T):

When estimating parameters at level 2 we used the

actual observed ct and not the level 1 predicted ct –

this makes it possible to fit the two models indepen-

dently from each other. However, for the later pre-

dictions we combined level 1 and level 2 models

using the multiplication ytr(pt,<1, pt,1–2, pt,3–4, pt,5–9,

pt,>9)
T, where yt is now the predicted value from level

1 and the vector of probabilities is the prediction from

level 2. With this combination a time-series model for

the mean number of cases per sentinel unit in each age

group is obtained. We now calculate

mt, i=E(yt, i)

=
exp c0, i+b0+(c1, i+b1) � t+f(t)+fi(t)+ 1

2 s
2

� �

P

j2{<1, 1x2, 3x4, 5x9,>9}
exp(c0, j+c1, jt+fj(t))

,

for i=<1, 1–2, 3–4, 5–9, >9, with the b values and

the c values being the intercept and trend parameters

in the level 1 and level 2 models, respectively, f(t) and

fi(t) being the harmonic functions, and s2 being the

variance of the level 1 model error term. Note that for

the reference age group (e.g. 1–2 years), the restric-

tions c0,1–2=c1,1–2=0 and f1–2(t)=0 for all t applies,

i.e. no parameters need to be estimated for this group.

A big advantage of our proposed multivariate two-

phase model, compared to modelling the mean num-

ber of varicella cases separately for each age group, is

that it takes into account, that the number of cases

summed over the age groups equals the observed

total number of cases. However, when considering

the dynamics within a single age group in our model,

the interpretation of the model parameters is not

straightforward. Instead, we report ratios such as

m13,i/m1,i giving the relative reduction within the first

year of the sentinel network for a specific age

group. Confidence intervals for these reduction

factors can be obtained by parametric bootstrap

exploiting the asymptotic normality of both the b

values and the c values in the computation of the re-

spective mt,i values. When using vaccination coverage

as linear covariate instead of time, the relative re-

duction m100% coverage,i/m0% coverage,i denotes the rela-

tive reduction in the expectation of the response in age

group i – by comparing the 0% coverage with the

100% coverage situation. Again, this can be used to

define vaccine effectiveness. In case the harmonic

functions of time remain in the predictors of the

level 1 and level 2 models, one would typically fix

time to some arbitrary value, e.g. t=0, for the

comparison.
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