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Abbreviations 

IL12Rb1: Interleukin 12 receptor beta 1 chain 

MSMD: Mendelian susceptibility to mycobacterial disease 

BCG: Bacille Calmette-Guerin 

EM: Environmental mycobacteria 

TB: Tuberculosis 

IFNGR: Interferon gamma receptor 

STAT1: Signal transducer and activator of transcription 1 

IL12B: Interleukin 12 B 

NEMO: Nuclear factor-kB essential modulator 
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Abstract  

IL-12R 1 deficiency is the most common form of Mendelian susceptibility to mycobacterial 

disease (MSMD). We undertook an international survey of 141 patients from 102 kindreds 

from 30 countries. Among 102 probands, the first infection occurred at a mean age of 2.4 

years. In 77 patients, this infection was caused by bacille Calmette-Guérin (BCG, n = 65), 

environmental mycobacteria (EM, n = 8) or M. tuberculosis (n = 4). Twenty-two of the 

remaining 24 probands initially presented with non-typhoidal, extra-intestinal salmonellosis. 

Twenty of the 28 genetically affected siblings displayed clinical signs (71%); however eight 

remained asymptomatic (29%). Nine of the ten ungenotyped siblings with symptoms died. 

Recurrent BCG infection was diagnosed in 15 cases, recurrent EM in 3 cases, recurrent 

salmonellosis in up to 22 patients. Ninety of the 132 symptomatic patients suffered from 

infections with a single microorganism. Multiple infections were diagnosed in 40 cases, with 

combined mycobacteriosis and salmonellosis in 36 individuals. BCG disease strongly 

protected against subsequent EM disease (p = 8x10-5). Various other infectious diseases 

occurred, albeit each rarely, yet candidiasis was reported in up to 33 of the patients (23%). Up 

to 99 patients (70%) survived, with a mean age at last follow-up visit of 12.7 years +/- 9.8 

years (range 0.5 to 46.4 years). IL-12R 1 deficiency is characterized by childhood-onset 

mycobacteriosis and salmonellosis, rare recurrences of mycobacterial disease, and more 

frequent recurrence of salmonellosis. There is higher clinical penetrance, broader 

susceptibility to infections and less favorable outcome than previously thought. 
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Introduction 

 MSMD (MIM 209950) is a clinical syndrome, probably first described in 1951(45), 

that predisposes otherwise apparently healthy individuals to infections caused by weakly 

virulent mycobacteria, such as BCG and EM (9). Since 1996, MSMD-causing mutations have 

been identified in six genes [reviewed in (3, 25)]. Five of these genes are autosomal and 

encode the two chains of the IFN-  receptor (IFNGR1 and IFNGR2), the signal transducer and 

activator of transcription factor 1 (STAT1), the p40 subunit of IL-12 and IL-23 (IL12B), and 

the 1 chain shared by the IL-12 and IL-23 receptors (IL12RB1), whereas the sixth gene is X-

linked and encodes nuclear factor- B essential modulator (NEMO) (25). These defects impair 

IFN- -mediated immunity. The allelic heterogeneity is such that mutations in these six genes 

define up to 13 different genetic traits, with some genes associated with recessive or dominant 

inheritance, complete or partial defects, and loss of expression or the expression of non 

functional molecules [reviewed in (3, 25)]. Patients with MSMD are also susceptible to the 

more virulent species Mycobacterium tuberculosis, and IL-12R 1 deficiency was the first 

identified Mendelian genetic etiology of pediatric tuberculosis in children with normal 

resistance to BCG and EM (4, 6, 8, 48). These defects also predispose patients to Salmonella 

infections (25, 43). A few other infections have been diagnosed, but mostly in smaller 

numbers of patients, making it difficult to draw firm conclusions about the relationship 

between these infections and the underlying genetic defects [reviewed in (25)].  

 The most common genetic etiology of MSMD is autosomal recessive IL-12R 1 

deficiency, first reported in 1998 (5, 16). NK and T cells from patients with this condition do 

not respond to IL-12 and produce low levels of IFN- . The first large series of patients was 

reported in 2003 and included 41 patients from 29 unrelated families in 17 countries (24). 

This survey described five key clinical features of IL-12R 1 deficiency, differentiating this 

deficiency from other genetic etiologies of MSMD, such as IFN- R1 deficiency (18): 1) 
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infections typically appeared in childhood, with no adult onset of disease; 2)the recurrence of 

mycobacterial disease was exceedingly rare, with BCG disease protecting against subsequent 

EM disease; 3) clinical penetrance was incomplete, with up to 45% of genetically affected 

siblings remaining asymptomatic; 4) patients displayed broad resistance to infectious agents 

other than Mycobacterium and Salmonella and 5) the outcome was favorable in most cases, 

with a mortality rate of only 15%. Individual case reports and small series have since brought 

the number of reported patients with this deficiency to 78 (2, 6-8, 11, 13-15, 19, 20, 22, 23, 

27, 28, 30, 33-37, 40, 42, 46-49, 54-60, 63-67, 69, 70, 72). However, improvements in the 

description of this disorder are required. These improvements will require a decrease in 

ascertainment bias, through description of the clinical phenotype of a larger number of 

patients with diverse genetic backgrounds exposed to different microbial flora, including, in 

particular, genetically affected siblings of index cases. We report here the molecular, cellular, 

and clinical features of a series of 141 patients  (including 63 unpublished patients) with IL-

12R 1 deficiency from 102 kindreds in 30 countries.  
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Patients and methods  

Subjects and kindreds 

Patients (and their families) were recruited into this study through a large, worldwide 

network of collaborations with clinicians and immunologists. These patients presented with a 

history of unusual infections, such as disseminated and/or recurrent disease caused by weakly 

virulent mycobacteria and/or Salmonella, corresponding to the description of MSMD and 

other similar conditions. Patients with severe, disseminated forms of tuberculosis were also 

studied. Our study was conducted in accordance with the Helsinki Declaration, with informed 

consent obtained from each patient or the patient’s family, as requested and approved by the 

institutional review boards of the various institutions involved, including the Necker Medical 

School. 

 

Whole-blood activation 

Whole-blood activation was used as the first-line screening for the possible mutation 

in the IL-12/IFN-  axis. Venous blood samples were collected in tubes containing heparin and 

were transported, at room temperature and by express mail, to our laboratory for analysis. 

Blood was diluted 1:2 in RPMI 1640 medium (Invitrogen). Aliquots of diluted blood were 

dispensed into the wells of a 48-well plate and incubated in four sets of conditions: with 

medium alone, with live BCG (Mycobacterium bovis BCG, Pasteur strain, MOI 20:1), with 

BCG plus IFN-  (5000 IU/ml, Imukin Boehringer Ingelheim), or with BCG plus IL-12p70 (20 

ng/ml, R&D systems), the final volume within each well being 1 ml (22). Supernatants were 

collected after 48 hours and centrifuged at 1000 g for 5 minutes. All supernatants were stored 

at -20°C until analysis.  
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Determination of cytokine levels by ELISA 

IL-12p40, IL-12p70, and IFN-  levels (48-hour culture supernatants) were determined 

by ELISA. We used the capture antibodies, detection antibodies and standards supplied in the 

R&D Systems kits for IL-12p40 and IL-12p70 (Quantikine SP400) and in the Sanquin kit for 

IFN-  (M9333), diluted in HPE dilution buffer (M1940, Sanquin). Milk was used for blocking 

and antibody binding was detected with streptavidin horseradish peroxidase (M2032, 

Sanquin) and TMB microwell peroxidase substrate (50-76-00, KPL). The reaction was 

stopped by adding H2SO4 (1.8 M). Optical density was determined with an MRX microplate 

reader (Thermolab Systems). Quantitative analysis with a non linear, four-parameter logistic 

(4PL) calibration model was carried out with in-house software based on the Microsoft Excel 

application language developed for this purpose (gift from Max Feinberg). Results for each 

cytokine are expressed in pg/ml/106 peripheral blood mononuclear cells [PBMC (22)]. Whole-

blood activation and subsequent ELISA were repeated only in cases when the blood arrived in 

poor condition due to long travel. The results of this assay, when performed with optimal 

conditions, were strictly consistent for the same patient as well as between patients.   

 

 

Cell culture 

Epstein-Barr virus-transformed lymphoblastoid cell lines (EBV-B cell lines) were 

cultured in RPMI 1640 medium (Invitrogen) supplemented with 10% heat-inactivated fetal 

bovine serum (FBS) (Invitrogen). Saimiri herpesvirus-transformed T cells were cultured in a 

1:2 mixture of RPMI 1640 medium/Panserin 401 medium (Pan Biotech) with 10% FBS, 2 

mM L-glutamine (Invitrogen), 10 U/ml IL-2 (Roche), and 100 μg/ml gentamycin. For the 

production of phytohemagglutinin (PHA)-activated T cells, PBMCs were purified by 
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centrifugation on a Ficoll-Hypaque gradient (GE Healthcare), resuspended in RPMI medium 

supplemented with 10% FBS and activated by incubation with 1/700 PHA (Becton 

Dickinson) for 72 to 96 hours. PHA-T-cell blasts were then stimulated by incubation for 48 

hours with IL-2 (50 IU/ml, Proleukin, Chiron) and cultured at a density of 2 x 105 cells/ml in 

Panserin 401 medium (Pan Biotech) with 10% FBS and 2 mM L-glutamine (Invitrogen). All 

cells were incubated at 37°C, under an atmosphere containing 5% CO2. 

 

Transfection 

Saimiri herpesvirus-transformed T cells were transfected with a wild-type pEGFPN1-

IL12RB1 vector or with one of the various missense mutants. We transfected 5 x 106 cells 

with 2 g of DNA, using the Cell Line Nucleofector Kit V (VCA-1003 from Amaxa) and Y-

001. We assessed receptor expression at the cell surface and IL-12 binding 48 hours after 

transfection.  

 

Flow cytometry 

PHA-T-cell blasts or EBV-B cell lines were washed in PBS and dispensed into a 96-

well plate for labeling. The cells were incubated with an anti-IL-12R 1 antibody (1:100 

dilution of the 2.4E6 or 2B10 clone, BD Biosciences) or an equivalent concentration of 

isotype-matched control mAb (MOPC-21 and/or R35-95, BD Biosciences) in 2% FBS in 

PBS, on ice, for 20 minutes. The cells were then washed twice with cold 2% FBS in PBS and 

incubated on ice for 20 minutes with Alexa Fluor 488-conjugated goat anti-mouse or goat 

anti-rat antibody (A-11029 or A-11006 from Invitrogen). Cells were then washed twice with 

2% FBS in PBS and analyzed with a FACScan machine, using Cellquest software (Becton 

Dickinson).  
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Fluorescent IL-12 binding 

IL-12 fluorescence-binding experiments were performed as follows: 5x105 transfected 

cells were incubated in 25 l of phosphate-buffered saline (PBS) with or without 50 ng/ml IL-

12p70 (R&D Systems) for 30 minutes at 4°C, and then with mouse anti-human IL-12p40-p70 

IgG1 (Pharmingen) and, finally, with PE-conjugated goat anti-mouse antibody (Invitrogen). 

Stained cells were analyzed with a FACScan machine, using Cellquest software (Becton 

Dickinson). 

 

Genetic analysis 

Human genomic DNA was isolated from the pellets obtained after the Ficoll-Paque 

Plus gradient purification of PBMC, or from whole blood or cell lines. The cells were lysed in 

extraction buffer (10 mM Tris, pH 7.4, 0.1 M EDTA, 0.5% SDS, and 10 mg/ml proteinase K) 

and incubated overnight at 37°C. The DNA was isolated by phenol/chloroform extraction, 

precipitated in ethanol and resuspended in 10 mM Tris, pH 7.4, 1 mM EDTA. RNA was 

isolated from EBV-B cell lines or PHA-T-cell blasts with Trizol reagent (Invitrogen), 

according to the manufacturer’s instructions. RNA was reverse transcribed by Superscript II 

reverse transcriptase (Invitrogen) with oligo-dT. The first-strand cDNA was stored at -20°C. 

PCR amplification was carried out with the AmpliTaq DNA polymerase (Applied 

Biosystems) and the GeneAmp PCR system 9700 (Applied Biosystems). The primers and 

conditions used for PCR amplification of the coding exons, including the flanking intron 

sequences, or the cDNA of IL12RB1 are available upon request. Amplified PCR products 

were checked by electrophoresis in a 1% agarose gel and were purified by centrifugation 

through Sephadex G-50 Superfine resin (Amersham GE) on multiscreen MAHV-N45 

(Millipore) filter plates. PCR products were sequenced by dideoxynucleotide termination, 

with the BigDye Terminator kit v1.1 (Applied Biosystems) and appropriate primers. 
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Sequencing products were purified by centrifugation through Sephadex G-50 Superfine resin 

and analyzed on an ABI Prism 3100 or 3130xl apparatus (Applied Biosystems). Sequences 

files and chromatograms were analyzed with GENALYS Software from CNG, France (62). 

 

Statistical methods 

Infection-free status, survival and penetrance curves as a function of age were 

estimated by the Kaplan-Meier method and, when necessary, curves were compared by log-

rank tests. Penetrance curves for IL-12R 1 deficiency were obtained from the data for the 

siblings of index cases, through the use of two strategies. The first strategy was based on the 

use of data for siblings with identified IL-12R 1 mutations only (n=28). The second strategy 

was based on the assumption that non genotyped siblings suffering from MSMD-related 

infections were also IL-12R 1-deficient, leading to the inclusion of these siblings in the 

estimation of penetrance (N=10). However, we avoided bias due to the addition of clinically 

affected siblings only, by also including non genotyped healthy siblings as follows: 1) we 

calculated the proportion of genotyped healthy siblings with genetically confirmed IL-12R 1 

deficiency: 0.08 (8/100); 2) we assumed that the same proportion of the 57 non genotyped 

healthy siblings would be IL-12R 1-deficient (i.e. 5 siblings); 3) we randomly selected five 

follow-up periods for the 57 healthy siblings, such that the mean duration of follow-up for 

these five siblings did not differ significantly from the overall mean follow-up period for all 

57 healthy siblings (i.e. 12.78 +/- 13.70 years). All calculations were carried out and curves 

plotted with R software (http://cran.r-project.org/). 
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Results  

Clinical features and mutation analysis in 102 index cases 

Children and young adults with clinical disease caused by BCG or EM, or with 

salmonellosis or tuberculosis and suspected IL-12R 1 deficiency were referred to our 

laboratory. By sequencing the 17 IL12RB1 coding exons and flanking intron regions, we 

identified 102 IL-12R 1-deficient index cases from 30 countries (Table 1; Figure 1 and 2). 

We identified 54 mutant alleles, including nonsense (n = 11), missense (n = 14) and splice (n 

= 10) mutations, small insertions (n = 2), small deletions (n = 9), large deletions (n = 3), 

deletions/insertions (n = 4), and one duplication (Table 1; Figure 4). Missense mutations were 

not found among the polymorphisms reported in the NCBI and Ensembl databases. 

Furthermore, none of the missense mutations were found in 50 healthy control individuals. 

All predicted splice mutations had a major impact on the structure of the IL12RB1 mRNA, 

with no full-length mRNAs detected, as determined by RT-PCR (data not shown). All but two 

of the deletions and insertions resulted in frame shifts (see below) and the 14 missense 

mutations tested compromised protein expression (see below). The index cases were typically 

homozygous (n = 87) or, in rare cases, compound heterozygous (n = 14). The overall clinical 

spectrum of infectious diseases in index cases was as follows: isolated BCG disease was 

present in 43 patients, isolated salmonellosis in 15 patients, isolated EM disease in 6 patients, 

and isolated TB in 2 patients. A combination of BCG disease and salmonellosis was reported 

in 18 cases, BCG and EM disease in only 1 case, BCG disease and TB in 2 cases, and BCG 

and EM disease plus salmonellosis in 3 cases. A combination of salmonellosis and EM 

disease was diagnosed in 7 cases, and salmonellosis and TB in 1 case. One of the four 

remaining probands presented EM disease and TB, the second presented nocardiosis and 

klebsiellosis, the third presented granulomatous disease of unknown origin, and the fourth 
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suffered from salmonellosis and a mycobacterial disease of unknown origin (Figure 3). 

Among the 102 index cases, the first clinical infections typically occurred in childhood (mean 

2.38 years, SD +/-4.86 years, range 2 weeks to 31.72 years). Sixty-seven of the 86 BCG-

vaccinated probands developed BCG disease (78%). 

 

Abolition of cellular responses to IL-12 and IL-23 

 Whole-blood responses to IL-12 were investigated in 65 patients carrying two mutant 

IL12RB1 alleles (47 index cases and 18 relatives; see below). We measured the production of 

IFN-  in whole blood in response to stimulation with BCG alone (partly resulting from BCG-

dependent, endogenous IL-12 production) and in response to BCG plus exogenous 

recombinant IL-12, as previously described (22, 24). All patients tested had an impaired 

response to IL-12 in this assay (Figure 5). The whole-blood phenotype of the patients was, 

therefore, functional IL-12R 1 deficiency. We then assessed IL-12R 1 expression on the 

surface of T-cell blasts and/or EBV-B cell lines, by flow cytometry with two specific 

antibodies recognizing different epitopes on the extracellular domain of IL-12R 1. No IL-

12R 1 molecules were detected on the surface of cells from patients carrying 47 alleles tested, 

except for four patients from two Israeli families (kindreds 10 and 43) carrying the same, 

large, in-frame deletion 700+362_1619-944del as described in a previous study (23). This 

deletion led to the generation of a truncated IL12R 1 protein, which was present at the cell 

surface but was non functional, resulting in complete IL-12R 1 deficiency. The C198R 

mutation has been described elsewhere and is thought to confer residual responsiveness to IL-

12 (42). We have identified another patient with the C198R mutation. However, neither cell 

surface IL-12R 1 expression on the patient’s PHA-T-cell blasts (Supplementary Figure 1) nor 

IFN-  production by these cells in response to IL-12 stimulation was detected (data not 

shown). Four of the remaining six homozygous alleles not tested by flow cytometry abolished 
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IFN-  production in response to the IL-12 stimulation of whole blood. The other two alleles 

were predicted to result in a loss of expression due to the creation of a premature stop codon. 

Finally, we have shown that IL-12R 1-deficient patients do not respond to IL-23 in terms of 

IFN-  production by T-cell blasts (23). Consistent with these data, we have subsequently 

shown that IL-12R 1-deficient patients had a smaller proportion of IL-17-producing T cells 

ex vivo, and that their T-cell blasts did not express IL-17 in response to stimulation with IL-23 

in vitro (14). Overall, the blood cells from the patients tested displayed an impaired response 

to both IL-12 and IL-23 (14), strongly suggesting that these patients had complete IL-12R 1 

deficiency. 

 

Missense mutations responsible for IL-12R 1 deficiency 

Missense mutations were common (14 of the 54 alleles, 26%; 27 of 102 probands, 26 

%). Unlike mutations causing a premature termination of translation, it is difficult to predict 

whether missense and other in-frame mutations (n=2, found in 3 index cases) are intrinsically 

deleterious. They may be in linkage disequilibrium with a causal mutation elsewhere, 

particularly in the broad IL12RB1 regulatory regions not sequenced in the patients. The 14 

IL12RB1 missense mutations found are not polymorphisms, as they were not found in a panel 

of 50 healthy controls studied. Most are clustered in fibronectin domain 2 (FD2, 9 mutations), 

although some are found in FD1 (2 mutations), FD4 (2 mutations) and the transmembrane 

domain (TM, 1 mutation). The four known missense polymorphisms are also found in FD2 

and FD4 (Figure 6A). We predicted the impact of the 18 amino acid substitutions with 

PolyPhen, which classifies the impact as benign, possibly damaging, or probably damaging 

(53). Three of the four polymorphisms were predicted to have a benign impact, with only 

R156H being possibly damaging. By contrast, 12 of the 14 rare mutations were classified as 

probably (n=12) damaging, and two were classified as possibly damaging (n=2) (Figure 6A). 
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ClustalX assessments of the phylogenic conservation of IL12RB1 in several species revealed 

considerable variation in IL12RB1, particularly in FD2 (32). However, 10 of the 14 rare 

mutations affected conserved residues, whereas the residues affected by the four 

polymorphisms were not conserved residues (Figure 6C). We further investigated the function 

of 13 of the 14 rare missense alleles, by transient transfection of an IL-12R 1-deficient 

Saimiri herpesvirus-transformed T cell line. We assessed the cell-surface expression of IL-

12R 1 with two antibodies recognizing different epitopes (24). We also assessed the ability of 

the encoded receptors to bind IL-12 in the same assay, because these missense mutations 

might affect the epitope recognized by the antibodies. Neither the surface expression of IL-

12R 1 nor IL-12 binding was detected for the 13 missense alleles tested (Figure 6B). Cells 

from patients carrying the remaining missense mutation were unresponsive to IL-12 (see 

above). Thus, the rare missense IL12RB1 alleles found in our patients resulted in a loss of 

both expression and function. 

 

Relatives of the index cases 

The 102 probands had a total of 208 siblings, 174 of whom were alive and 34 of whom 

had died (Supplementary Figure 2). Genotyping was carried out for 116 of the 174 living 

siblings. The other 58 siblings were not genotyped. We found that 92 of the genotyped 

siblings were wild-type or heterozygous for the IL12RB1 mutation, whereas another 24 

siblings carried mutations in both alleles. Sixteen of these siblings with mutations in both 

alleles presented unusual infections, whereas the remaining eight were asymptomatic. Fifty-

seven of the 58 non genotyped living siblings had not suffered from diseases caused by 

mycobacteria or Salmonella. The remaining non genotyped sibling presented disseminated 

BCG disease (96.II.2). Thirty of the 34 siblings that had died had not been genotyped. The 

other four dead siblings had carried homozygous mutations in IL12RB1 and had died from 
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BCG (n=3) and EM (n=1) diseases. Nine of the 30 non genotyped dead siblings had died from 

infections caused by mycobacteria or Salmonella (see below). No unusual infections were 

reported for the remaining non genotyped siblings that had died (Supplementary Figure 2). 

We identified two IL12RB1 null alleles in 28 of the 38 siblings affected clinically or 

genetically. Genetic analysis was not possible for one sibling with BCG disease, and the 

molecular defect was considered probable but not documented in nine of the siblings with 

symptoms that had died. These nine siblings died from BCG-osis (n=5, 26.II.1, 58.II.1, 

68.II.3, 68.II.4, 74.II.1), S. enteritidis disease (n=2, 30.II.5, 31.II.6), M. avium disease (n=1, 

4.II.2), and disseminated tuberculosis (n=1, 61.II.1). Eight of the 28 genetically identified 

siblings displayed no known MSMD infectious phenotype at last follow-up. This group of 

siblings lacking MSMD symptoms presented the same cellular phenotype as their clinically 

affected IL-12R 1-deficient siblings. Fifteen of the 20 genetically affected symptomatic 

siblings had been vaccinated with BCG and 11 developed BCG disease, which was the first 

clinical manifestation of MSMD in all of these cases (n=10 BCG alone, and n=1 BCG plus 

Salmonella). In the other four vaccinated patients, salmonellosis was the first clinical 

manifestation in two cases, with EM disease and TB being the first clinical manifestation in 

one individual each. The five remaining genetically affected siblings that had not been 

vaccinated with BCG developed salmonellosis (n=2), EM disease (n=1), disease due to 

Mycobacterium spp. and salmonellosis (n=1), and TB and salmonellosis (n=1) (Figure 7). Age 

at first infection could be evaluated in only 26 of the 30 symptomatic patients, and did not 

differ from that of index cases (mean 2.4 years +/- 4 years, range from 5 days to 18 years). 

The duration of follow-up for these siblings was also similar to that for the index cases (mean 

7.91 years, +/- 6.92 years range 0.51-28 years). The infectious phenotype of these 30 siblings 

was thus similar to that of the 102 index cases, in terms of the nature of the infectious diseases 

suffered and the age at which they occurred. In total, 161 parents of index cases were 
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genotyped. One mother (46.I.2) was found to be homozygous for an IL12RB1 mutation, but 

neither she nor any of the other parents presented any symptoms. In total, at least 141 

individuals from 102 kindreds, including 132 individuals actually carrying two IL12RB1 

mutant alleles and nine related individuals identified on the basis of their clinical presentation, 

probably suffered from autosomal recessive IL-12R 1 deficiency (Figure 1, Table 1). One of 

the major conclusions to be drawn from the analysis of the genetically affected relatives is 

that the clinical penetrance of IL-12R 1 deficiency is incomplete. 

 

Mycobacterial diseases in 132 symptomatic patients 

 Mycobacterial diseases were the most frequent infections, diagnosed in 109 of the 132 

symptomatic patients (83%; Supplementary figure 3). We first analyzed the individuals 

developing case-definition opportunistic infections caused by weakly virulent mycobacteria 

(BCG and EM). We found that 108 of the 132 patients had been vaccinated with BCG and 84 

patients developed BCG disease (localized, n = 17; disseminated, n = 63; not known, n = 4). 

By contrast, only 21 of the 132 patients developed EM disease due to M. avium (n = 10); M. 

avium, M. triplex and M. genavense (n = 1); M. genavense (n = 1); M. avium, M. chelonae and 

M. fortuitum (n=1); M. chelonae (n = 1), M. simiae (n = 1), M. avium-intracellulare (n=1) and 

undefined M. spp. (n= 5). Two of these patients suffered from multiple EM diseases, with one 

patient in particular presenting successive infections with M. avium, M. triplex and M. 

genavense (n = 1). Another patient presented infection with M. chelonae and M. fortuitum, 

followed by an infection with M. avium, (n=1). One patient suffered from both BCG and EM 

disease and three patients presented infections with BCG, EM and Salmonella. Two patients 

suffered from mycobacterial infections caused by unidentified M. spp. and Salmonella 

infection. In total, nine patients presented tuberculosis, with four of these patients developing 

disease due to M. tuberculosis alone, one developing disease due to M. tuberculosis in 
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combination with M. avium, M. chelonae and M. fortuitum, and two patients developing 

disease due to M. tuberculosis and Salmonella. The remaining two cases of tuberculosis 

occurred in combination with BCG disease. Thus, 109 of the 132 symptomatic patients 

presented mycobacterial disease, but two different mycobacterial species were involved in 

only nine of these cases (8%).  Multiple mycobacterial diseases are thus rare, consistent with 

our previous observations (24). Finally, up to 36 of the 42 deaths (among 132 patients) could 

be attributed to mycobacterial disease (BCG = 23, EM = 11, TB = 1, EM+Salmonella = 1; see 

below). We defined recurrence as a subsequent episode of infection with the same 

microorganism after a period free from clinical symptoms and treatment. However, reliable 

systematic data on the complete absence of clinical symptoms and treatment, and 

bacteriological identification of the pathogen responsible for the new clinical episode were 

often lacking. Based on the available data, recurrent BCG infection was diagnosed in 15 cases 

(18% of all patients with BCG disease), and recurrent EM in only three cases (14% of all 

patients with EM infections). 

 

 Impact of BCG vaccination on other mycobacterial diseases 

The rarity of multiple mycobacterial diseases (8%) was also consistent with the rarity 

of recurrence (18% for BCG and 14% for EM). This finding may reflect the protective role of 

primary infection against the reactivation of a latent organism or secondary infection. The 

protective effects of primary infections with EM and TB are difficult to assess, but precise 

information about BCG vaccination was available for most patients. We thus determined the 

impact of BCG vaccination and BCG disease on the clinical phenotype of 129 patients. Only 

four of the 84 patients with BCG disease developed EM diseases, with a mean age of EM 

disease onset at 4.5 years, suggesting that BCG vaccination may prevent EM disease. Seven 

of the 24 patients resistant to BCG (vaccinated with BCG but without BCG infection) suffered 
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from EM disease, with late onset of the disease (mean age 10.83 years +/- 12.02 years; range 

5 days to 31.72 years). By contrast, up to 10 of the 21 symptomatic patients (48%) who had 

not been vaccinated with BCG suffered from EM diseases, with an early onset of EM disease 

(mean age 5.08 years +/- 3.48 years range 0.83 to 12.05 years). The difference in incidence of 

EM disease between the three groups of patients (patients with both BCG and EM disease, 

patients resistant to BCG with EM disease and patients not vaccinated with BCG with EM 

disease) was highly significant (p = 8x10-5, Figure 8). This difference in EM disease incidence 

was also significant if patients with BCG disease were compared with patients not inoculated 

with BCG (p = 1.55x10-5). The difference in incidence between patients resistant to BCG and 

non vaccinated patients was also statistically significant (p = 0.045). Finally, the difference in 

EM disease incidence between BCG-vaccinated (with or without BCG disease) and non 

vaccinated patients was highly significant (p = 4.83x10-5). However, this pattern was not 

observed for TB (p = 0.25; Supplementary figure 4). The difference in the onset of 

salmonellosis was barely significant between these three groups (p = 0.03, Supplementary 

figure 5). These data confirm our previous description of a strong protective effect of BCG 

vaccination (24), preventing EM disease in IL-12R 1-deficient patients. This observation can 

probably be extended to account for the rarity of recurrences and multiple mycobacterial 

diseases in patients. Human IL-12R 1 seems to be essential for protective immunity to 

primary infection, but not to secondary infection or reactivation by mycobacteria. 

 

Salmonellosis in the 132 symptomatic patients  

 Salmonellosis occurred in up to 57 of the 132 symptomatic patients (43%) (Figure 3, 

Figure 7 and Supplementary figure 3) and was the only infectious disease in 21 patients 

(16%). The remaining 36 patients with salmonellosis also had TB (n=2), EM disease (n=8), 

BCG disease (n=21), EM and BCG disease (n=3), or mycobacterial disease caused by 
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unidentified M. spp (n=2). Four patients died from salmonellosis (10 %). Various serotypes of 

non-typhoidal Salmonella (S. enteritidis, S. typhimurium, S. dublin, S. hadar, S. typhi O and 

typhi H, S. group B and D, S. portland, S. paratyphi) were isolated from the 57 patients. Two 

patients were diagnosed with typhoid fever (patients 9.II.3 and 77.II.1), caused by S. typhi 

and/or S. paratyphi. Up to 6 of the 57 patients (11%) suffered from salmonellosis caused by 

two or more serotypes (3.II.3, 9.II.3, 30.II.6, 53.II.2, 73.II.2 and 77.II.1). Multiple 

salmonellosis was more frequent than multiple mycobacteriosis (8 % versus 11%, 

respectively), however not all clinical episodes were confirmed bacteriologically. Recurrent 

salmonellosis was diagnosed in 22 patients (39% of all patients with salmonellosis), but the 

Salmonella species responsible for the recurrence was not identified bacteriologically. 

Recurrent Salmonella infection was more frequent than recurrent infection with BCG and EM 

(18% and 14%, respectively), consistent with our previous findings suggesting that IL-12 and 

IL-23 are required to mount an efficient immune response to primary, latent, and secondary 

Salmonella infections (24).  

 

Infections caused by agents other than mycobacteria and Salmonella 

We recently found that 32 (24%) of the 132 symptomatic patients for whom information was 

available presented mucocutaneous disease caused by Candida albicans (Supplementary 

figure 3). The vast majority of patients had recurrent oral thrush, even in the absence of 

antibiotic treatment. The clinical features of candidiasis in IL-12R 1-deficient patients will be 

reported elsewhere (Rodriguez-Gallego C. et al., manuscript in preparation). One patient 

developed recurrent visceral leishmaniasis at the age of five years (71.II.2) (57). Another 

suffered from disseminated paracoccidioidomycosis at the age of 21 years 29.II.1, (47) . Two 

patients had posterior uveitis due to toxoplasmosis (19.II.1 and 29.II.1). One patient suffered 

from disseminated histoplasmosis at the age of five years (54.II.1). Five patients suffered from 



 24/45 

Klebsiella pneumoniae infection (66.II.1, 78.II.2, 79.II.5, 89.II.2 and 98.II.1). One patient 

developed sepsis and meningitis due to Citrobacter freundii at three months of age, 

recovering fully on treatment (35.II.4). Patient 89.II.2 presented with simultaneous Klebsiella 

pneumoniae and Nocardia nova infections in the absence of mycobacterial or Salmonella 

infection (Picard et al., manuscript in preparation). The occurrences of klebsiellosis and 

salmonellosis may be linked, because these two species are phylogenetically related (44). 

Symptoms of vasculitis were reported in three patients. Vasculitis was considered secondary 

to S. enteritidis or mycobacterial infection in two patients (34, 58), but no histological 

examination was available for the third patient, so other causes of vasculitis could not be ruled 

out. IL-12R 1-deficient patients therefore seem to be susceptible to Candida and Klebsiella, 

and to intracellular microbes with pathogenesis and immune control similar to those of 

mycobacteria, such as Nocardia, Paracoccidioidomyces, Histoplasma, and Leishmania. 

Patients with unusually severe disease caused by these and, possibly, other microorganisms 

should be investigated for IL-12R 1 deficiency. This is particularly important for children 

with disseminated disease. 

 

Age at onset of infections in the 129 symptomatic patients 

 We then focused our analysis on the 126 symptomatic patients for whom relevant 

information was available: 100 index cases and 26 siblings. The age at onset of the first 

infection was typically in early childhood. The mean age at onset of first infection was 2.4 

years (range: 1 week to 31.7 years, SD 4.9 years; Figure 9). In most cases, the first infection 

was due to live BCG (regional BCG-itis or disseminated BCG-osis). It occurred at ages 

between 2 weeks and 7.1 years, with a mean of 0.6 years +/- 0.9 years (from 1 week to 3.2 

years after vaccination, with a mean at 0.4 years after vaccination +/- 0.4 years). In 75 cases 

(96%), BCG disease occurred within a year of vaccination. Salmonellosis (range: 3 months to 
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12.5 years, mean: 4 years, SD: 3 years) and EM disease (range: 1 week to 31.7 years, mean: 

6.9 years, SD: 7.7 years) occurred at a similar age. TB occurred later, at ages of 2.5 to 31 

years, with a mean age at TB onset of 11 years +/- 8.9 years. The earlier onset of BCG, EM 

and Salmonella disease than of TB may be accounted for by earlier exposure to these 

microorganisms. 

 

Survival analysis of IL-12R 1-deficient patients 

The mortality rate among symptomatic patients was 32% (42 of the 132 symptomatic 

patients) (Table 1), which is somewhat higher than the value previously reported for a series 

of 41 patients (15%) (24). Global mortality, including asymptomatic patients, was 30 (24). 

The date of birth and date of death were known for 40 of the 42 patients that died. The mean 

age at death was 7.5 years in the 40 patients that died (range: 1.2-37.7 years and SD: 8.1 

years). The cause of death was BCG-osis (n = 23, 27% of patients with BCG disease) in most 

of the patients that died, with smaller numbers of patients dying from EM disease (n = 11, up 

to 52% of patients with EM disease), TB (n = 1, 11% of patients with TB), or salmonellosis (n 

= 4, only 7% of patients with salmonellosis). One patient died from concurrent M. avium and 

Salmonella infections (patient 39.II.2) and another patient died from a severe electrolyte 

disorder following diarrhea. However, it is unknown whether this diarrhea was related to 

salmonellosis in this patient. One patient died from esophageal carcinoma (patient 30.II.6) 

(Rodriguez-Gallego C. et al., manuscript in preparation). Clinical outcome depends largely on 

the infectious agent concerned, with mortality ranging from 7% (Salmonella) to 52% (EM) 

(Figure 10). However, there is an ascertainment bias, as discussed above, with fewer 

asymptomatic siblings investigated than in the previous study. The clinical outcome of this 

defect is directly related to the therapeutic approach used. IL-12R 1-deficient individuals 

were commonly treated with prolonged courses of antibiotics and exogenous IFN- . More 
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rarely, they underwent surgical resection of the affected areas (abdominal in particular) and, in 

very rare cases, hematopoietic stem cell transplantation (HSCT) was carried out. However, 

there are no comprehensive data available to evaluate the impact of treatment options at the 

moment. We are currently collecting data about both the treatment and preventive 

management of these patients. 

 

Incomplete clinical penetrance 

 Eight of the 28 known genetically affected siblings were free of MSMD-related or 

other unusual infections at their last follow-up visit. We first estimated clinical penetrance by 

focusing on these 20 symptomatic (follow-up from 1.3 to 28 years, mean = 9.2 years, SD = 

7.8 years) and eight asymptomatic (follow-up from 0.7 to 21.5 years, mean = 12.7 years, SD = 

8.4 years) genetically affected siblings. The overall penetrance of infections was found to 

increase rapidly to 0.63 (95% confidence interval (CI): 0.39-0.77) at the age of five years, 

increasing slowly thereafter to reach 0.79 (0.51-0.91) by the age of 20 years (Figure 11). 

Eleven (65%) of the 17 BCG-vaccinated siblings developed BCG-osis. EM disease, 

salmonellosis and tuberculosis disease occurred in 2 (7%), 10 (36%), and 2 (7%) genetically 

affected siblings, respectively. These proportions are higher than reported in the previous 

series (24). However, 58 (33%) of the 174 living siblings had not been genotyped, whereas 

only 9% of the living siblings had not been genotyped in the smaller series studied in 2003 

(24). We therefore also estimated clinical penetrance by including 15 non genotyped 

symptomatic and healthy siblings (see Patients and Methods). This second curve provided 

estimates of penetrance very similar to those for the first curve generated from data for 

genotyped siblings only. We cannot rule out the possibility of an ascertainment bias, with 

genetically affected asymptomatic relatives being underdiagnosed, but both estimation 
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strategies indicate that IL-12R 1 deficiency may have a higher penetrance than initially 

thought.  
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Discussion 

 We describe here 141 patients with IL-12R 1 deficiency. The patients originate from 

30 countries in the Americas, Europe, Africa and Asia and comprise individuals from various 

ethnic groups Africans, Amerindians, Arabs, Chinese, Europeans, Indians, Iranians, 

Japanese, Jews, and Turks, (41) . Consistent with the considerable geographic and ethnic 

heterogeneity of the patients, we also observed substantial genetic heterogeneity, with up to 

54 mutant alleles in 102 kindreds. In all but two kindreds (23, 59), the patients suffered from 

IL-12R 1 deficiency with no expression of the receptor on the cell surface. The cells of all 

patients have an impaired response to IL-12 and IL-23, resulting in the impaired production of 

IFN-  and IL-17.  A diagnosis of partial, as opposed to complete, IL-12R 1 deficiency was 

proposed in a child homozygous for the C198R mutation (42). However, we detected no IL-

12R 1 expression at the surface of the patient’s PHA-T-cell blasts, and no IFN-  was 

produced upon IL-12 stimulation. Similarly, an IL-12R 1-independent T-cell response to IL-

12 has been proposed as a general compensatory mechanism (66), but this hypothesis was not 

confirmed in our assays [(8, 23, 24, 48, 60, 65) and this report]. In all patients tested, 

including patients with IL-12R 1 expression on the cell surface, no cellular response to IL-12 

was detected in our whole-blood assay(22). Despite the varying clinical presentation as well 

as substantial genetic heterogeneity, the cellular defect was complete. In any event, the large 

number of kindreds from different ethnic groups, bearing different mutant alleles, identified in 

this study strongly suggests that IL-12R 1 deficiency will be diagnosed in many other 

families worldwide, particularly as awareness of the clinical features of MSMD and IL-12R 1 

deficiency increases. Furthermore, many of these patients come from countries with high 

prevalence of consanguinity, as well as with the national coverage of BCG vaccination during 

the first days of life. The latter increases the probability for this autosomal recessive defect to 
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occur, whereas the former accounts for the high prevalence of BCG infection in such patients. 

Low consanguinity and more restricted BCG vaccination policy may explain why, there were 

no North American and Australian patients diagnosed. It is difficult to speculate on whether 

the lack of patients diagnosed in Africa is attributed to the under-reporting, early death from 

infectious disease, or some other yet unrecognized factor. This study should help to increase 

awareness of these conditions, thereby improving the diagnosis, and clinical management of 

these patients worldwide, as well as incite the critical reappraisal of risks and benefits of the 

BCG vaccination in a global context.   

 The uniform cellular phenotype is associated with a highly heterogeneous clinical 

phenotype, ranging from early death in infancy to an asymptomatic course until adulthood. 

The information provided by this article is invaluable, because it reflects the natural course of 

this condition in 141 patients originating from highly diverse ethnic backgrounds (41) and 

exposed to highly diverse microbial flora (26). Mycobacterial infections predominated in 

these patients, affecting 83% of symptomatic patients and 77% of all patients. The high 

proportion of mycobacterial diseases, and of infections due to BCG and EM disease in 

particular, may reflect an ascertainment bias, as most of the subjects studied for defects in the 

IL-12R 1 chain are patients with MSMD. However, similar proportions were obtained for 

affected relatives of probands (80% of symptomatic relatives). We also report four cases in 

which tuberculosis was the sole clinical manifestation (6, 8, 48). The IL12RB1 gene may be 

considered to be the first Mendelian gene for susceptibility to TB to have been discovered (4). 

The prevalence of TB in IL-12R 1-deficient patients is lower than that of disease due to BCG 

or EM infection in these patients, probably because patients are less frequently exposed to M. 

tuberculosis than to BCG vaccines (85% vaccination coverage worldwide) and the almost 

ubiquitous EM. It is less likely to be due to an initial mycobacterial infection protecting 

against TB. Indeed, two patients presented with BCG-osis and TB. In IL-12R 1-deficient 
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patients, BCG seems to confer greater protection against EM disease than against TB, despite 

the close phylogenetic relationship between BCG and M. tuberculosis, presumably because 

M. tuberculosis is more virulent than EM. In any event, children with severe forms of TB 

should be tested for IL-12R 1 deficiency. 

 Salmonellosis is the second most common infection in these patients, affecting 43% of 

symptomatic IL-12R 1-deficient patients. It was the only infection in 37% of salmonellosis 

cases (21/57) and in 15% of all 141 patients. The remaining patients suffered from both 

mycobacteriosis and salmonellosis. Our study highlights the need to consider IL-12R 1 

deficiency in patients with a pure phenotype of salmonellosis particularly in cases of extra-

intestinal non-typhoidal salmonellosis (typhoid fever was diagnosed in only two patients). We 

suspect that more of the patients may have suffered from Salmonella infection, but the 

complex, “noisy” clinical setting of concomitant mycobacterial infection and the use of broad-

spectrum antibiotics for treatment may have led to underdiagnosis. Furthermore, 

salmonellosis was not accompanied by an overt inflammatory syndrome in some patients. 

Infections other than those caused by mycobacteria and salmonella are also increasingly being 

diagnosed in these patients. Klebsiellosis has been diagnosed in five IL-12R 1 patients, 

Klebsiella being closely phylogenetically related to Salmonella (44). Toxoplasmosis was 

diagnosed in two patients, and histoplasmosis, paracoccidioidomycosis, leishmaniasis, and 

nocardiosis were each diagnosed in one patient. These organisms are intra-macrophagic 

pathogens, consistent with a possible role of IL-12R 1 deficiency in the pathogenesis of these 

infections. Moreover, one child with nocardiosis has been reported to suffer from IL-12p40 

deficiency (51) and a patient with IFN- R1 deficiency and histoplasmosis has been reported 

(73). These findings tend to implicate IL-12R 1 deficiency in these infections, but the 

diagnosis of a larger number of cases is required to confirm this hypothesis. More 

surprisingly, mild forms of chronic mucocutaneous candidiasis have been diagnosed in up to 
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33 patients (23%, Rodrigues-Gallego C. et al., manuscript in preparation). Over the last few 

years, IL-12R 1 has been implicated in the human IL-23-IL-17 axis (1, 10, 21, 68), as 

initially described in mice [reviewed in (17, 61)]. Mice with impaired IL-17 immunity are 

susceptible to Candida (12, 31, 38). It has been demonstrated that patients with IL-12R 1 

deficiency display impairment of the development of IL-17-producing T cells, although this 

impairment is less pronounced than that in STAT3-deficient patients (14). The high 

proportion of patients with candidiasis may therefore reflect changes in the IL-23-IL-17 axis. 

The impairment of IL-23-IL-17 immunity may also account for the higher frequency of 

salmonellosis in IL-12p40- and IL-12R 1-deficient (43%) patients than in IFN-  receptor-

deficient patients [(7%, (43)], and the small number of cases of klebsiellosis reported here 

[Pedraza S. et al., in preparation]. Indeed, in mice and primates, the IL-23-IL-17 circuit is 

important for immunity to Salmonella and Klebsiella (29, 52, 71). In any event, the infectious 

phenotype of IL-12R 1-deficient patients appears to be broader than initially thought.  

 We confirm that the penetrance of MSMD in IL-12R 1 deficiency is not complete for 

either BCG or EM disease. The penetrance of susceptibility to salmonellosis also seems to be 

incomplete, although it is difficult to determine which patients have been exposed to 

Salmonella. This problem also makes it difficult to assess the penetrance of susceptibility to 

tuberculosis, as it is likely that only a small fraction of patients have been exposed to M. 

tuberculosis. The larger number of patients in this study than in our 2003 survey (141 versus 

41) resulted in a higher penetrance of MSMD (including salmonellosis) in this study (72%) 

than in the previous study (45%) at the age of 20 years. If we include TB, global penetrance 

reaches 79% at this age. However, this revised penetrance value is probably overestimated, 

because the proportion of asymptomatic siblings tested was much lower than in the 2003 

study. Penetrance may also vary between countries, as a function of BCG vaccination policy, 

tuberculosis burden and the likelihood of being exposed to Salmonella. The virulence and 
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abundance of EM may also vary with geographic region. Thus, even healthy siblings of 

probands and their more distant relatives in consanguineous kindreds should be investigated. 

We also confirm that IL-12R 1 deficiency mostly begins in childhood. Only three of the 141 

patients had a clinical onset after the age of 13 years. Our findings also reveal that the 

prognosis of IL-12R 1 deficiency is not as good as initially thought. Consistent with the 

higher penetrance, the outcome is much poorer than observed in 2003 in a study of fewer 

patients. The overall mortality rate for IL-12R 1-deficient patients was estimated at 32%, 

versus only 15% in 2003. There does not seem to be a correlation between mortality rate and 

country of origin, but the type of infection has a detectable impact, EM disease being 

associated with a poorer prognosis. Only six deaths were recorded in patients over the age of 

13 years. However, the revised mortality rates obtained in this study may reflect the 

underdiagnosis of asymptomatic siblings. IL-12R 1 deficiency is often, but not always, 

symptomatic. It typically begins in childhood and is lethal in up to a third of patients, 

particularly in patients with EM disease, and its prognosis seems to improve with age. Both 

curative and preventive treatment of IL-12R 1 deficiency, based on prolonged courses of 

antibiotics, exogenous IFN-  treatment, and, in rare cases, surgical resection of affected areas, 

may influence clinical outcome in these patients. However, we were unable to explore the 

effects of treatment on clinical outcome because the information available was too limited. 

We are currently collecting data on the treatments administered to our patients. The 

description of IL-12R 1 deficiency, like that of IL-12p40 deficiency, is essential, not only to 

improve patient care, but also to improve the quality and safety of monitoring for potential 

adverse effects, including infectious diseases in particular, in other patients treated with 

antibodies blocking IL-12p40 or IL-12R 1, both of which are currently used to treat various 

clinical conditions (39, 50). 
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Legends to table and figures 

Table 1: Genetic and clinical features of patients with IL-12R 1 deficiency 

Figure 1: Pedigrees of 102 families with IL-12R 1 deficiency. Each kindred is designated 

by an integer (1–102), each generation is designated by a roman numeral (I–II), and each 

individual by an Arabic numeral (each individual studied is identified by these three numbers, 

organized from left to right). The double lines connecting the parents, and in one case parent 

and offspring indicate presumed consanguinity. Symbols are divided into two by a horizontal 

line. The upper part of the symbol indicates mycobacterial infection status (in black, patients 

with BCG disease or atypical mycobacteriosis; in gray, patients with TB); the lower part of 

the symbol indicates salmonellosis status, black indicating that the patient has had 

salmonellosis. The probands are indicated by an arrow. Proband 88.II.1 suffered from 

granulomatous disease of unknown origin; proband 89.II.2 presented with nocardiosis and 

klebsiellosis. Individuals whose genetic status could not be evaluated are indicated by the 

symbol “E?”. Asymptomatic individuals carrying two mutant IL12RB1 alleles are represented 

by a vertical line. Kindreds 11 and 63 were related, as were kindreds 12, 13, 36 and 80, 

kindreds 25 and 30, and kindreds 48 and 51.  

 

Figure 2: Origin of the kindreds. Geographical origin of the 141 patients with complete IL-

12R 1 deficiency. These patients originated from 30 countries (Argentina, Belgium, Bosnia 

Herzegovina, Brazil, Cameroon, Chile, China, Cyprus, France (mainland and French West 

Indies), Germany, India, Iran, Israel, Japan, Morocco, Mexico, Netherlands, Pakistan, Poland, 

Qatar, Saudi Arabia, Slovakia, Spain (mainland and Canaries), Sri Lanka, Taiwan, Tunisia, 

Turkey, United Kingdom, Ukraine and Venezuela). The numbers indicate the number of 

patients originating from a given country.   
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Figure 3: Distribution of clinical phenotypes for IL-12R 1-deficient index cases. Each 

patient is classified as a function of mycobacterial infection status (in red, BCG for BCG 

disease, EM for EM disease, Mtb for TB) and salmonella infection status (in blue, Salmonella 

for Salmonella disease). Patients with both mycobacterial infection and salmonellosis are 

shown in purple. TB is represented as a dotted circle in each group. Infection with 

unidentified mycobacterial species is presented as a hatched circle.  

 

Figure 4: Mutated alleles of IL12RB1 genes. Schematic representation of the coding region 

of the IL-12R 1 chain containing 17 coding exons encoding a 662-amino acid protein with a 

peptide leader sequence (exon1, L), extracellular domain (exons 2 to 13, EC), transmembrane 

domain (exon 14, TM) and an intracellular cytoplasmic domain (exons 15 to 17, IC). 

Missense mutations are shown in purple, nonsense mutations are shown in red, and complex 

mutations are shown in brown. Splicing mutations are shown in blue, large deletions are 

shown in green, insertions are shown in orange, and duplication in magenta. * The 

700+362_1619-944del mutation is the only mutation resulting in protein expression at the cell 

surface.  

 

Figure 5: Impaired cellular response to interleukin-12. Production of IFN-  by whole 

blood cells from 38 healthy “local” positive controls (fresh blood), from 49 healthy “travel” 

positive controls and from 65 patients, either unstimulated (-) or stimulated with BCG alone 

or with BCG plus recombinant IL-12p70. The horizontal bars indicate the median. Individual 

responses are not indicated due to the large number of patients studied. 

 

Figure 6: Missense mutations affecting IL-12R 1. (A) Localization of polymorphism (n=4, 

blue star) and missense mutations (n=14, red stars) in the IL-12R 1 gene. (B) Table of the 
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impact of these mutations as assessed with PolyPhen, and the phenotype (expression of IL-

12R 1, binding of IL-12) of Saimiri herpesvirus-transformed T cells transfected with the 

various constructs. (C) Table of predicted conservation of residues in various species, based 

on ClustalX alignment. 

 

Figure 7: Distribution of the clinical phenotypes of IL-12R 1-deficient siblings. Each 

patient is classified as a function of their status for mycobacterial (in red, BCG for BCG 

disease, EM for EM disease, Mtb for TB) and Salmonella (in blue, Salmonella for Salmonella 

disease) infections. Patients with both mycobacterial infection and salmonellosis are shown in 

purple. TB is represented as a dotted circle in each group. Infection with unidentified 

mycobacterial species is presented as a hatched circle.  

 

Figure 8: Onset of EM disease in symptomatic patients.  

 

Figure 9: First onset of infection.  

 

Figure 10: Survival.     

 

Figure 11: Penetrance of infection. 
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Legends to supplementary figures 

Supplementary figure 1: Flow cytometry staining for IL12R 1 molecules expressed 

on the surface of PHA-T-cell blasts from a healthy control (WT/WT) and a patient carrying 

the homozygous C198R mutation. In the right column, the 2.4E6 antibody specific for IL-

12R 1 was used. In the left column, the 2B10 antibody specific for IL-12R 1 was used. 

Specific antibiodies are indicated by a solid, non colored line, isotype control antibodies are 

shown in red and blue, respectively.  

 

Supplementary figure 2: Description of the all siblings of IL-12R 1-deficient index 

cases, according to vital status, genotyping status and the presence or absence of clinical 

symptoms of MSMD.  

 

Supplementary figure 3: Distribution of clinical phenotypes of all IL-12R 1-deficient 

patients (n=141). (A) Overall distribution of clinical phenotypes. (B) Proportion of multiple 

infections due to one or more different families of infectious agents. (C) Distribution of 

mycobacterial and Salmonella diseases. (D) Distribution of salmonellosis. (E) Distribution of 

mycobacterial diseases. (F) Distribution of environmental mycobacterial diseases. (G) 

Distribution of candidiasis. (H) Distribution of non vaccinated individuals resistant to BCG, 

and BCG diseases. 

 

Supplementary figure 4:  Onset of TB disease in symptomatic patients  

 

Supplementary figure 5: Onset of salmonellosis in symptomatic patients  
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