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Abstract

Background: In the context of a potential bioterrorist attack sensitive and fast detection of functionally active toxins such as
ricin from complex matrices is necessary to be able to start timely countermeasures. One of the functional detection
methods currently available for ricin is the endpoint cytotoxicity assay, which suffers from a number of technical deficits.

Methodology/Findings: This work describes a novel online cytotoxicity assay for the detection of active ricin and Ricinus
communis agglutinin, that is based on a real-time cell electronic sensing system and impedance measurement.
Characteristic growth parameters of Vero cells were monitored online and used as standardized viability control. Upon
incubation with toxin the cell status and the cytotoxic effect were visualized using a characteristic cell index–time profile.
For ricin, tested in concentrations of 0.06 ng/mL or above, a concentration-dependent decrease of cell index correlating
with cytotoxicity was recorded between 3.5 h and 60 h. For ricin, sensitive detection was determined after 24 h, with an
IC50 of 0.4 ng/mL (for agglutinin, an IC50 of 30 ng/mL was observed). Using functionally blocking antibodies, the specificity
for ricin and agglutinin was shown. For detection from complex matrices, ricin was spiked into several food matrices, and an
IC50 ranging from 5.6 to 200 ng/mL was observed. Additionally, the assay proved to be useful in detecting active ricin in
environmental sample materials, as shown for organic fertilizer containing R. communis material.

Conclusions/Significance: The cell-electrode impedance measurement provides a sensitive online detection method for
biologically active cytotoxins such as ricin. As the cell status is monitored online, the assay can be standardized more
efficiently than previous approaches based on endpoint measurement. More importantly, the real-time cytotoxicity assay
provides a fast and easy tool to detect active ricin in complex sample matrices.
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Introduction

Ricin, one of the most poisonous toxins known, is a glycoprotein

derived from the seeds of the castor plant Ricinus communis. This

cytotoxin is highly toxic both to humans and animals [1,2]. The

plant is cultivated as an ornamental and industrial flower all over

the world. As by-product during castor oil production, ricin is

mass-produced above 1 million tons per year [3]. On the basis of

its availability, toxicity, ease of preparation and the current lack of

medical countermeasures, ricin has gained attention as potential

biological warfare agent and is listed as category B agent of

potential bioterrorism risk by the Centers for Disease Control and

Prevention (CDC, Atlanta, GA, USA; [4,5]).

Functionally active ricin consists of two ,32-kDa subunits, the

A-chain and the B-chain, which are linked by a disulfide bond.

Both chains are needed for toxic action in vivo. The B-chain acts as

a lectin, which binds to terminal galactose residues on the

eukaryotic cell surface and mediates ricin cell entry by endocytosis

[6]. The A-chain is an RNA-specific N-glycosidase that hydrolyt-

ically removes a specific adenine from the 28S ribosomal subunit,

thereby inhibiting the protein biosynthesis and ultimately leading

to cell death [7]. As well as ricin, castor seeds also contain a second

lectin, Ricinus communis agglutinin (abbreviated in the text as

agglutinin), which is highly homologous to ricin, but less toxic [8].

Agglutinin consists of a dimer of two associated ricin-like

molecules, each of which contains A- and B-chains. The homology

at the amino acid level between agglutinin and ricin is around

93% for the A-chains and around 84% for the B-chains [9].

The mortality in ricin poisoning is dependent on the route of

administration. In mice, the median lethal doses (LD50) for

injection, inhalation or ingestion are reported as 2–10 mg ricin/kg

body weight, 3–5 mg/kg or 20 000–30 000 mg/kg, respectively. In

humans, the oral LD50 of 1 000–20 000 mg ricin/kg body weight

is estimated from accidental ingestion of castor beans [10,11]. For

agglutinin, it is approximated from animal studies that the toxicity

is about two orders of magnitude less than that for ricin [12,13].

Similar to other toxins, ricin acts in the absence of the

producing plant and its genetic information. Therefore, it is

necessary to detect the protein itself, not only the plant’s nucleic

acid. Currently, the analysis of ricin is mainly based on

immunological methods [14,15], mass spectrometry analysis

[16,17], or functional in vitro and in vivo assays (for an overview

of the latter see Table S1). In the case of an intentional release of
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ricin into the environment, the discrimination of functionally

active and denatured ricin is important, especially with regard to

emergency operating schedules, forensic analysis and therapy.

This information can only be obtained from functional assays,

which can be principally differentiated into assays detecting the

A-chain activity, the B-chain activity, or both. In vitro assays, like

adenine-release assays or cell-free translation assays based on

rabbit reticulocyte lysate, analyze the enzymatic activity of the A-

subunit [18,19,20,21,22,23,24]. Glycan binding of the ricin B-

subunit is detected by enzyme-linked lectin assays [25]. However,

the detection of the activity of the isolated subchains provides no

information on the activity of the intact 64 kDa ricin molecule.

Therefore, the detection of active ricin requires in vitro or in vivo

assays for both subchains. In vivo assays have the advantage that

whole-organism responses can be monitored but, on the basis of

different species and strain susceptibilities that have been

reported for ricin, animal bioassays seem to be difficult to

standardize and raise ethical concerns [26,27,28]. An alternative

are in vitro immunocapture assays combined with adenine release

measurement [17,29], or cell-based functional assays. Current

cell assays use different endpoint read-outs of cell death via

biochemical, fluorescent or radioactive detection [30,31,32,33].

The detection limits for ricin analysis in cell-based bioassays have

been described as being between 0.01 ng/mL and 0.8 ng/mL

from complex matrices. Cytotoxicity is detected at the end of the

assay after different cell cultivation times (ranging from 4 to 28 h),

in order to obtain a ‘‘snapshot’’ of ricin action. Taking into

account the duration of the assay required to reach high

sensitivity, time-dependent toxicity values might be more

informative than endpoint measurements. Another drawback of

the current cell-based assays is represented by a lack of online and

internal viability control. It is only known at the end of the assay

if the cells adhere, grow and die, according to a standardized

procedure. Therefore cell-based assays usually show a higher

degree of variability than other methods. In terms of reproduc-

ibility of cell-based assays, it is important to standardize all

growth parameters and to include specificity controls (i.e.

functionally blocking antibodies) in order to avoid experimental

artefacts.

In the present study, we describe an online functional ricin

cytotoxicity assay based on a real-time cell electronic sensing (RT-

CES) system. The cell proliferation and toxin-induced cell death of

African green monkey (Vero) cells is monitored online in the RT-

CES system. This system uses an impedance sensor technology to

noninvasively and label-free quantify cell viability, based on cell

number, morphology and adhesion in real-time [34]. The cells are

seeded in E-plates into which microelectrodes are integrated. Low-

voltage application leads to the generation of an electric field,

which is differentially modulated by the cells. The higher the

number of cells attached to the plate surface, the higher the

impedance monitored by the RT-CES system as a read-out for cell

viability.

The aim of this report was to detect and quantify biologically

active ricin in a real-time cytotoxicity assay. The assay duration,

sensitivity and specificity was tested for ricin and agglutinin, as

compared to other types of lectins. This method allowed for the

detection of low concentrations of active ricin in different food

matrices and in organic fertilizer, without significant interfering

matrix effects. The real-time impedance measurement of adher-

ing, proliferating and, ultimately, dying cells turned out to be

highly reproducible, thus opening the door to standardized cell-

based cytotoxicity assays.

Results

Real-time monitoring of Vero cell growth pattern
In order to set up a standardized cell-based cytotoxicity assay,

the culture conditions and assay procedures were thoroughly

optimized. First, the Vero cell growth pattern was dynamically

monitored using the RT-CES system, which detects cellular

impedance as measure of cell number, morphology and adherence

[34]. To this end, we seeded different Vero cell concentrations,

from 390 to 50 000 cells/well, into an E-plate and monitored the

cell proliferation online for up to 60 h. Cell growth was recorded

as cell index (CI), which corresponds to the electrical impedance of

a well measured by the RT-CES system [34]. Depending on the

number of cells seeded within an E-well, the CI of proliferating

Vero cells ranged from 0.5 to 10 (Figure 1). Cells seeded in

concentrations below 3 125 cells/well did not proliferate in the

observation period shown. Vero cells seeded with 12 500 cells/

well or above showed vigorous growth in the first 12 h post-

seeding (Figure 1) and reached a plateau after 42 h hours, up to a

CI of 10 (data not shown). Characteristic cell proliferation

parameters were observed for the optimal cell concentration of

12 500 cells/well, which was chosen for further experiments: The

attachment phase of the cells to the plate was completed after 1 h

(CI increased from 0 to 0.5), the lag-phase lasted from 1 to 2 h (CI

remained at 0.5), the start of proliferation was recorded after 2 h

(CI increased over 5), and after 14 h the proliferation of the cells

decelerated into the confluent phase (CI remained at 7; Figure 1).

Measurement of ricin toxicity in the real-time cell system
We used the optimal cell concentration of 12 500 cells/well to

analyze the toxic effect of serial dilutions of ricin (230 000 to

0.023 ng/mL) or agglutinin (4 600 to 0.046 ng/mL) in cell culture

medium, respectively. Immediately after the seeding of cells into

E-plates, ricin or agglutinin was added to the cells (without prior

attachment of the cells to the plate). Electrical impedance of cells

within an E-well was monitored using the RT-CES system over

24 h, where attachment and proliferation were visualized as a rise

in CI (correlating with rise in impedance) and detachment and cell

death as a drop in CI (correlating with drop in impedance). As

shown in Figures 2A and 2B, all cells showed a characteristic

Figure 1. Dynamic monitoring of Vero cell proliferation. Serial
dilutions of Vero cells were seeded at indicated densities of 50 000 to
390 cells/well in a 96-well E-plate. The attachment phase, lag-phase and
proliferation phase were dynamically monitored every 15 min for 22 h,
as indicated in the text. Data shown are representative of three
independent experiments showing similar results.
doi:10.1371/journal.pone.0035360.g001
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attachment and lag phase of cell growth, independent of toxin

concentration. Notably, the duration of the proliferation phase was

dependent on the toxin concentration. The growth curves of Vero

cells treated with a toxin concentration of 0.23 ng/mL ricin or

46 ng/mL agglutinin (or higher), respectively, did not reach

confluence compared to untreated cells (Figures 2A, 2B). Time-to-

inhibition of cell proliferation was dependent on the toxin dose,

with the earliest inhibition visible after 3 to 4 hours, at the highest

concentrations tested. For ricin tested in concentrations of 2.3 ng/

mL or above (or 460 ng/mL agglutinin), a concentration-

dependent decrease of CI was recorded after 3.5 to 10 h, reaching

a CI below 2 after 24 h. Toxin concentrations of 0.23 ng/mL ricin

or 46 ng/mL agglutinin also showed an inhibition of cell growth,

albeit after more than 13 h of incubation time (Figures 2A, 2B).

Based on these data, Figures 2C and D show dose–response curves

at selected time points of the real-time cytotoxicity assay. As

expected, the toxic effect of ricin and agglutinin on Vero cells

increased with toxin concentration and incubation time. In vitro

cytotoxicity, where 50% of the cells were alive (IC50), was detected

at the earliest after 8 h for 880 ng/mL ricin (Table 1). For

agglutinin, the IC50 value at 8 h was higher (2 400 ng/mL). For

ricin, sensitive detection was determined after 24 h, with an IC50

of 0.4 ng/mL. At the same time point, agglutinin showed a

toxicity that was 75 times lower than ricin (IC50 of 30 ng/mL;

Table 1). Upon prolonged incubation for 42 h, the most sensitive

detection of ricin was reached with an IC50 of 0.1 ng/mL (and

6.7 ng/mL for agglutinin). Longer incubation times did not

significantly result in higher sensitivities (Table 1).

Since the real-time cytotoxicity assay allows for monitoring the

cell proliferation in real-time, the assay can be better standardized

than conventional cell-based cytotoxicity tests: even slight changes

in cell culture conditions can be visualized and used to optimize

the test, as shown in Figure S1: parameters like the cell density

prior to seeding cells into E-plates (Fig. S1 A) or the method used

to detach cells from the culture flask (Fig. S1 B) quite strongly

influence the growth characteristics of the cells, similar to seeding

of different cell numbers (Fig. 1).

The precision of the optimized real-time cytotoxicity assay was

evaluated by the measurement of cytotoxicity of serial dilutions of

ricin after 24 h or 42 h, respectively: for within-run precision serial

dilutions of ricin (1 ng/mL to 0.03 ng/mL) were performed in

four replicates and measured on one day yielding within-run CVs

between 13% and 2% after 24 h incubation (Table S2). For

between-run precision serial dilutions of ricin were performed on

four different days and the results were used for calculation of

CVs. At the 24 h time point, the between-run CVs were

determined between 30% and 6% (Table S2).

Comparison of RT-CES and MTT cytotoxicity assay
In order to compare the performance of the online cytotoxicity

assay using the RT-CES system with the classical endpoint cell

viability test, we performed parallel assays using ricin or agglutinin.

Serial dilutions of ricin or agglutinin were incubated with Vero

cells, and cell growth was determined either in real-time format

over 24 h (RT-CES system) or as endpoint measurement after

20 h proliferation using an MTT assay. Both techniques resulted

in sigmoidal dose-dependent response curves (Figure 3). The IC50

for ricin in the RT-CES system and the MTT assay were similar

(0.4 ng/mL and 1.5 ng/mL, respectively). For agglutinin, the

IC50 values were in the same concentration range using both

assay systems (30 ng/ml for RT-CES system, 50 ng/mL for MTT

assay). The duration of the full assay, starting from cell seeding to

sensitive read-out, was 24 h for the RT-CES system and 45 h for

the MTT assay. On a quantitative level, the RT-CES system

reached a similar sensitivity as the MTT assay, but was

significantly faster. At the same time the overall precision of the

RT-CES system was similar to the precision of the MTT assay

(Table S3).

Specificity of the real-time cytotoxicity assay
In order to demonstrate the specificity of the assay, ricin (in

concentrations ranging from 230 000 to 0.023 ng/mL) was

preincubated with chicken anti-ricin polyclonal antibodies (IgY).

The action of the toxin on cells was then monitored online for

23 h. Undisturbed cell proliferation, equivalent to a complete

block of ricin’s functional activity, was observed up to a ricin

concentration of 23 000 ng/mL (Figure 4A). For the highest ricin

concentration tested (230 000 ng/mL), the IgY concentration was

not sufficient to block ricin activity, resulting in cell death.

We further analyzed the specificity of the real-time cytotoxicity

assay by comparing the cytotoxic effects of ricin and agglutinin

with other plant lectins (Abrus precatorius abrin [abrin], Dolichos

biflorus agglutinin [DBA] and Triticum vulgaris agglutinin [TVA]) in

the absence or presence of anti-ricin IgY (incubation period of

21 h). Ricin, agglutinin and abrin caused cell death, whereas the

plant lectins DBA and TVA showed no significant toxic effects

(Figure 4B). As expected, anti-ricin IgY were able to specifically

block the functional activity of ricin and agglutinin, but not the

activity of abrin. Only functionally active ricin induced cell death,

since heat-inactivated ricin had no effect on cell proliferation

(Figure 4C).

Detection of ricin activity in complex matrices
In order to detect ricin in the presence of complex food

matrices, we performed a series of experiments to find out how

much food matrix would be tolerated by the cells (data not shown).

In the final protocol the food matrices were diluted 1:14 in

medium and a clarified homogenate was added to the cells. As

shown in Figure 5A, cells treated with 1:14-diluted carrot juice and

milk showed a similar proliferation pattern as untreated cells.

Diluted baby food extract, however, interfered more strongly with

cell proliferation leading to a decelerated growth. To determine

the ability of the real-time cytotoxicity assay to detect ricin from

complex food matrices, serial dilutions of ricin were spiked into

homogenized food extracts (from milk, carrot juice and baby food)

and incubated with the cells for 24 h (Figure 5B) and 42 h

(Figure 5C). Functionally active toxin was detectable from all

complex matrices spiked with ricin after 24 h and 42 h of

incubation. The sigmoidal dose-dependent response curve for ricin

spiked into diluted carrot juice was very similar to the medium

control, while the response curve for ricin spiked into diluted milk

significantly shifted to higher concentrations (Figure 5B and 5C).

Based on these data, the IC50 for ricin spiked into diluted carrot

juice was 0.4 ng/mL (corresponding to 5.6 ng/mL in the

undiluted matrix) and for diluted milk 14.3 ng/mL (corresponding

to 200 ng/mL in the undiluted matrix, respectively; Table S4). For

ricin spiked into the difficult matrix baby food first results could be

visualized as drop in CI within 24 h yielding an IC50 of about

0.4 ng/mL. However, the spreading of the dose-dependent

response curve was marginal. In this case incubation for 42 h

resulted in a reasonable dose-dependent response curve and

delivered an IC50 of 0.1 ng/mL for the diluted matrix

(corresponding to 1.4 ng/mL in the undiluted matrix; Table S4).

As shown in Table S4, for all ricin-spiked food matrices the IC50

obtained after 24 h is about 3–4 times higher than the IC50

obtained after 42 h.

In order to show that the real-time cytotoxicity assay can be

used to screen for active ricin in environmental samples, we tested

Real-Time Cytotoxicity Assay for Ricin
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different lots of organic fertilizer containing Ricinus communis

material (castor meal). During the industrial production of castor

oil, ricin is obtained as a by-product in the castor bean meal and

has to be thoroughly heat-inactivated. However, in the past there

have been reports of dog poisoning, presumably caused by the

accidental ingestion of fertilizer that was insufficiently heat-treated

[2,35]. Having been involved in a similar case of dog poisoning in

Germany, we tested extracts of the suspected Ricinus communis-

containing fertilizer using the real-time cytotoxicity assay. An

example of one fertilizer, Figure 5D, shows that different dilutions

of the fertilizer extract induced cytotoxicity in Vero cells. Using a

1:14 dilution of the buffered fertilizer extract, about 37% of the

Vero cells were alive after 21 h. Preincubation of this dilution with

anti-ricin IgY (+Ab) prevented cell death. Similarly, heat treatment

of the extract for 30 min at 95uC also prevented cytotoxicity, both

results indicate that the toxic effect on the cells is caused by

functionally active ricin contained in the fertilizer extract (for

guidance, different concentrations of purified ricin were tested in

parallel).

Discussion

We report a sensitive and rapid real-time cytotoxicity assay for

the detection and quantification of functionally active ricin and

agglutinin based on impedance sensor technology. This specific

method was applicable for the detection of Ricinus communis

material from complex matrices, e.g. food and organic fertilizer.

Figure 2. Real-time measurement of cytotoxicity and time-dependent standard curves for ricin and agglutinin. Vero cells were seeded
in a 96-well E-plate (12 500 cells/well). Immediately after seeding, cells were exposed to the indicated concentrations of ricin (A, C), agglutinin (B, D),
or medium (control). Cell proliferation was dynamically monitored every 15 min for 24 h. Figures A and B show the time-dependent alteration of the
CI for different ricin or agglutinin concentrations. Figure C and D display the percentage of viable cells plotted against toxin concentrations at
selected time points (conversion of the data from figure [A, B] to [C, D] is described in material and methods). Data shown are representative of five
(A, C) or three (B, D) independent experiments with similar results.
doi:10.1371/journal.pone.0035360.g002

Table 1. IC50 values for ricin and agglutinin at different time
points of the real-time cytotoxicity assay.

time [h] IC50 ricin [ng/mL] IC50 agglutinin [ng/mL]

8 880 2 400

12 3.0 470

16 1.0 100

20 0.5 44

24 0.4 30

30 0.36 26

36 0.17 11

42 0.10 6.7

48 0.08 4.8

54 0.06 4.2

60 0.06 4.1

doi:10.1371/journal.pone.0035360.t001
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Classical functional assays for ricin include animal bioassays,

endpoint cytotoxicity assays, adenine release assays, cell-free

translation assays or enzyme-linked lectin assays (for an overview,

see Table S1). For AB toxins like ricin, it has been shown

previously that neither the isolated A-chain nor the isolated B-

chain are toxic alone [36,37]. Furthermore, there are hints that

under certain denaturating conditions the sugar-binding property

of the B-chain is destroyed, whereas the enzymatic activity of the

A-chain is retained, even in the presence of an intact disulfide

bond between the A- and B-chain [38]. This indicates the necessity

for functional assays that show the presence AND the functional

activity of both subunits. According to this criterion, several of the

assays known are suitable to detect active ricin, e.g. animal

bioassays and cell-based cytotoxicity assays. However, these assays

have certain limitations, because animals are required [26,28,39],

because of long cell cultivation and assay times [33], the need for

transfection to generate fluorescently labeled reporter cells [32], or

the use of radioactive materials [31]. The ricin detection based on

the RT-CES system works label-free, and does not require

radioactivity, enzymatic assays or transfection steps. Depending on

the toxin concentration and the matrix used, active ricin can be

detected between 3.5 to 60 h, which is comparable to previously

described assays and faster than most endpoint cytotoxicity assays.

High sensitivity, however, is reached after 24 h, with an IC50 of

0.4 ng/mL which is in the range of endpoint assays (Table S1).

Compared to endpoint assays, the most important advantage of

the impedance measurement is the online monitoring of cellular

status, which offers the possibility to standardize the assay.

Impedance read-outs in the RT-CES system depend on cell

number, cell size and morphology, as well as adhesion character-

istics of the cell line chosen. Ricin action was recorded online after

cell attachment and lag-phase, and the kinetic control of the

cellular status before and after ricin action revealed continuous

information about growth, morphological changes and cell death.

Therefore, abnormal first growth phases were an indicator of

problems in assay performance. Even slight changes in cell culture

conditions could be visualized and were used to optimize the assay.

The CI values for the attachment and lag-phase were used as

quality parameters to reduce assay variability. Based on this, the

intra-assay variability was routinely below 13% for ricin tested at

1 ng/mL or below and the inter-assay variability was between 6

and 30% (24 h incubation, Table S2).

In recent years, highly sophisticated mass-spectrometry-based

methods for detection and quantification of ricin have been

introduced [29,40,41]. These methods combine an immunoaffi-

nity enrichment of ricin, e.g. via its B-chain, followed by detection

and/or quantification of adenine release by the A-chain. Strictly

speaking, these assays detect the presence of the B-chain (not its

activity), plus the activity of the A-chain. The advantage of these

assays is their high precision – they are able to discriminate and

quantify the highly homologous ricin and agglutinin down to a few

fmol/mL, even in food matrices [40]. This data cannot be

obtained by the cellular assays described or by conventional

immunological assays. Since these technologies require high-end

mass spectrometric equipment and specialised technical expertise,

they might not be useful for broad application in routine

laboratories. The impedance technology described, however, is

easy to use and reduces cell culture work-load to a minimum,

combined with low operative cost and effort. Therefore, this

technology might complement standard routine ricin detection

approaches.

The impedance technology might also be useful for screening of

functionally blocking anti-ricin monoclonal antibodies or small

molecule inhibitors, since multiple samples can be analyzed in

parallel in a 96-well or 384-well format, thereby further improving

endpoint cytotoxicity screening approaches [42,43]. Combined

with automated liquid handling platforms, high-throughput

screening and objective quantitative data analysis is possible

within a minimal amount of time.

On a qualitative basis, the impedance technology allows the

comparison of the toxicity of substances, as shown here for ricin

and agglutinin. At the time points of highest sensitivity (24–48 h),

ricin was 60- to 75-fold more toxic than the closely related

agglutinin, and the data are in accordance with previous data in

the literature [12,13]. For related plant AB toxins, abrin and abrin

agglutinin, it was shown that the reduced toxicity of abrin

agglutinin is associated with amino acid substitutions in a

conserved region of ribosome inactivating proteins, resulting in a

modified three-dimensional structure, which prevents an affine

substrate binding [44]. With respect to ricin and agglutinin, the

difference in toxicity is not understood on a molecular basis.

Since the ricin-producing plant R. communis is used on an

industrial scale for the production of castor oil, there is concern

that as a by-product, ricin could be used to deliberately

contaminate the food supply chain. Furthermore, the castor meal

itself is used as a cheap additive in organic fertilizers, since it is a

rich source of nitrate. Therefore, it was important to show the

applicability of the impedance technology on food matrices and

fertilizer samples. Ricin was detected in concentrations between

5.6 ng/mL in carrot juice or baby food and 200 ng/mL in milk. It

is known that the functional activity of ricin is inhibited by various

sugars, e.g. lactose and galactose [45]. The predominant

carbohydrate in milk is lactose, which interacts with the ricin B-

subunit and therefore interferes with ricin detection in functional

assays. Generally, the real-time cytotoxicity assay described here

showed only minor interference with matrix compounds from the

food tested. The assay was also applicable for the detection of ricin

from fertilizer samples and actually turned out to be useful for

forensic analysis. Having been involved in a case of dog poisoning

Figure 3. Comparison of ricin and agglutinin cytotoxicity in RT-
CES system and MTT assay. Vero cells (12 500 cell/well RT-CES
system, 10 000 cells/well MTT assay) were seeded in a 96-well E-plate
(RT-CES system) or 96-well cell culture plate (MTT assay), respectively. In
the RT-CES system (filled symbols), serial dilutions of ricin (grey) and
agglutinin (black) were incubated immediately after cell seeding, and
cell proliferation was monitored online for 24 h. For the MTT assay
(open symbols), cells were cultivated for 18 h and incubated afterwards
with ricin or agglutinin. After 2 h cells were washed and cultured for a
further 20 h, before the MTT reagent was used to determine cell
viability. Data shown are representative of two independent experi-
ments showing similar results.
doi:10.1371/journal.pone.0035360.g003

Real-Time Cytotoxicity Assay for Ricin
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in Germany in 2010, we were able to show that the deceased

animal had taken up fertilizer containing significant amounts of

active ricin which was obviously not correctly heat-inactivated

during the production process [46]. Similar cases have been

documented worldwide [2,35,47].

In conclusion, the impedance sensor technology presented offers

a fast and label-free real-time monitoring of the functional activity

of the ricin holo-toxin, using cell death as read-out as a

consequence of both the sugar-binding and the enzymatic activity

of the molecule. Combined with ELISA and precise mass-

spectrometry assays, it will be useful to complement the

information obtained from analyzing real sample materials. The

method is easy to use in routine laboratories, requires minimum

hands-on time and can be automated for high-throughput

screening for anti-ricin inhibitory substances.

Materials and Methods

Material
Ricin (purity 98%) was purified along with agglutinin (purity

96%) either from seeds of Ricinus communis carmencita or from an

unknown cultivar according to standard procedures [48]. Abrin

was purchased from Toxin Technology (Sarasota, FL, USA).

Dolichos biflorus agglutinin (DBA) and Triticum vulgaris agglutinin

(TVA) were obtained from Sigma-Aldrich (Munich, Germany).

Milk (UHT-milk, 3.5% fat, pH 7, brand: Tip, Metro, Düsseldorf,

Germany), carrot juice (with lemon juice and ascorbic acid, pH 5,

brand: Drink, Kaiser’s Tengelmann, Viersen, Germany) and baby

food (blueberry and apple dessert, pH 3, brand: Hipp, Pfaffenho-

fen, Germany) were purchased from a local retail store. Anti-ricin-

specific polyclonal chicken IgY has been described elsewhere [49].

Figure 4. Specificity of the cytotoxicity test. Vero cells (12 500 cells/well) were seeded in a 96-well E-plate. (A) Serial dilutions of ricin were
preincubated with polyclonal anti-ricin IgY for 1.5 h at 37uC, and then added to the cells. Cell proliferation was dynamically monitored every 15 min
for 23 h. Data shown are representative of five independent experiments showing similar results. (B) Vero cells were exposed to 10 mg/mL ricin,
agglutinin, abrin, DBA or TVA, respectively (white columns). In order to show the specificity of the assay, the different lectins were preincubated with
anti-ricin IgY as above (black columns). The viability of the cells after 21 h is depicted as percentage of the viability of untreated control cells (100%).
Data shown are exemplary data out of two independent experiments showing similar results. (C) Ricin (20 000 ng/mL) was heated in PBS for 30 min
at 95uC (denatured, white circles), or was left untreated (native, black circles) and then added to the cells. Cell proliferation was dynamically
monitored every 15 min for 23 h. In parallel, cell growth was monitored in medium only (negative control, black diamond). Data shown are
representative of two independent experiments showing similar results.
doi:10.1371/journal.pone.0035360.g004
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Cell culture conditions
African green monkey (Vero) cells were acquired from the

American Type Culture Collection (ATCC, Manassas, VA, USA).

Cells grown to 50–80% confluent monolayers (,25 000 cells/

cm2), at passages 153 to 163, were used for the experiments.

Before each assay, Vero cells were trypsinized with Trypsin/

EDTA solution (0.2%/0.02% (w/v)) in PBS, centrifuged and

resuspended in the appropriate medium volume and counted

using a hemacytometer. Cells were cultured in Dulbecco’s

Modified Eagle Medium (DMEM, Biochrom, Berlin, Germany)

containing 10% fetal bovine serum (Invitrogen, Karlsruhe,

Germany), L-glutamine (2 mM, Biochrom, Berlin, Germany),

100 IU/mL penicillin and 100 mg/mL streptomycin (PAA

Laboratories, Pasching, Austria). Cells were incubated at 37uC
in a humidified 5% CO2 atmosphere.

Cell proliferation test
For real-time monitoring of Vero cell proliferation, the baseline

impedance of each sensor well in a 96-well E-plate (Roche

Diagnostics, Mannheim, Germany) was measured by addition of

105 ml cell culture medium. Vero cells were adjusted to the

appropriate concentrations (serial dilutions from 666 666 to 5 208

cells/mL) in cell culture medium, and the baseline medium in the

E-plate well was substituted by 105 ml of cell suspension. Empty

wells were filled with 105 ml PBS to avoid desiccation. Edge wells

were not used in order to reduce variability resulting from edge

Figure 5. Detection of functionally active ricin in complex matrices. (A) Vero cells (12 500 cells/well) were treated immediately after seeding
into E-plates with 1:14-diluted food extracts from milk (dotted grey line), carrot juice (dotted black line), baby food (grey line) or medium (black line).
Characteristic growth phases of the cells were dynamically monitored every 15 min for 43 h. (B) Vero cells were exposed to ricin spiked into milk,
carrot juice, baby food or medium, respectively. The indicated toxin concentrations are post-dilution concentrations. The viability of the cells is
depicted as percentage of viable cells plotted against toxin concentrations in the different food matrices, measured after 24 h. (C) Vero cells were
treated as described in (B). The viability of the cells is depicted as percentage of viable cells plotted against toxin concentrations in the different food
matrices, measured after 42 h. (D) Vero cells were incubated with different dilutions of Ricinus communis-containing fertilizer extract (1:3.5, black; 1:14
dark grey; 1:56 light grey; 1:224, hatched) either without treatment (native), preincubated with 6 mg polyclonal anti-ricin IgY for 1.5 h at 37uC (+Ab) or
heated for 30 min at 95uC (heated). For guidance, Vero cells were treated in parallel with different concentrations of purified ricin (white bars, 230 ng/
mL, 2.3 ng/mL, 0.23 ng/mL). The viability of the cells after 21 h is depicted as percentage of the viability of the untreated control cells (100%). Data
shown are exemplary data out of two independent experiments showing similar results.
doi:10.1371/journal.pone.0035360.g005
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effects [50]. The CI was automatically determined every 15 min

by the RT-CES system (Roche Diagnostics, Mannheim, Ger-

many), over a period up to 90 h. CI as a quantitative measure of

the status of the cells in an electrode-containing well is calculated

by the software according to [34]:

CI~ max
i~1,...,N

Rcell(fi)

Rb(fi)
{1

� �

Where Rcell stands for resistance of the electrode with attached

cells, Rb stands for resistance of the electrode without attached cells

and N is the number of the frequency points at which the

impedance is measured.

RT-CES cytotoxicity assay
After baseline measurement of the E-plate, a Vero cell

suspension containing 12 500 cells/well in a volume of 75 ml

was seeded into the E-plates. Immediately after the seeding of cells

into the wells (i.e. without prior attachment of the cells onto the

plate), ricin (either native or denatured), agglutinin, complex

matrices, extracts of R. communis-containing fertilizer or other plant

lectins at given concentrations were added onto the cells in a

volume of 30 ml. Each sample was measured at least in duplicate.

The CI was automatically determined every 15 min by the RT-

CES system (Roche Diagnostics, Mannheim, Germany), over a

period of up to 24–42 h. During the incubation, only live cells

attached onto the plate and showed a vigorous proliferation

(equivalent to an increase in impedance and CI). Depending on

the toxin concentration present on the cells, the proliferation was

terminated after different time points, followed by detachment and

cell death (equivalent to a drop of impedance and CI). To

specifically block ricin and agglutinin cytotoxicity, the test

compounds were preincubated with 880 mg anti-ricin IgY for

1.5 h at 37uC on a shaker.

MTT cytotoxicity assay
To determine ricin and agglutinin cytotoxicity in a colorimetric

endpoint assay, an MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphe-

nyltetrazolium bromide) assay was performed as described

previously [14,51]. Briefly, Vero cells (10 000 cells/well) were

cultured in a 96-well plate for 18 h. Cells were treated with toxin

dilutions for 2 h, washed and further incubated for 20 h in

medium. The endpoint viability of the Vero cells was quantified

using the CellTiter96 Non-Radioactive Cell Proliferation Assay

(Promega, Madison, WI, USA).

Heat inactivation of ricin and analysis of R. communis-
containing fertilizer

Ricin was diluted in PBS to a concentration of 20 000 ng/ml.

In order to guarantee optimal heat transfer, 100 ml solution were

incubated in a thin-wall PCR tube for 30 min at 95uC in a PCR

cycler, cooled on ice and then used for the experiments, as

described for our recent experiments on the stability of botulinum

neurotoxins [52].

Ricinus communis-containing fertilizer was ground with a coffee

grinder. 2 g of ground fertilizer were mixed with 20 ml of PBS and

rotated for 2 h at room temperature followed by centrifugation.

The supernatant was filtered through a 70 mm sieve and stored at

4uC. For heat inactivation of the R. communis-containing fertilizer,

100 ml of the extract was heated for 30 min at 95uC, as indicated

above.

Analysis of complex food samples
Serial dilutions of ricin were spiked into milk, carrot juice or

baby food. Spiked and unspiked food samples were diluted 1:4 (v/

v) in cell culture medium, centrifuged and filtered through a

0.45 mm filter.

Data analysis
All calculations and figures were obtained using GraphPad

Prism software 5.01 (GraphPad, San Diego, CA, USA). The curve

fitting of the standard curves was a nonlinear regression:

log(inhibitor) vs. response-variable slope (four parameters). Cell

viability was either depicted as CI value of the RT-CES system

over time, or converted into percent (%) of the control cells alive

over toxin concentration. To this end, the CI value of nontreated

cells at several time points was set to 100%, and for a given time

point the ratio of CI values of toxin-treated cells to nontreated cells

was calculated. In vitro cytotoxicity at 50% (IC50) was defined as

the toxin concentrations required to reduce cell viability by 50%

compared to untreated control cells at various time points. Within-

and between-run precision was evaluated by the measurement of

cytotoxicity of serial dilutions of ricin after 24 h or 42 h,

respectively: for within-run precision serial dilutions of ricin

(1 ng/mL to 0.03 ng/mL) were performed in four replicates and

measured on one day; for between-run precision serial dilutions of

ricin were performed on four different days and the results were

used for calculation. The coefficient of variation (CV) equals the

standard deviation of the concentration-dependent CI values

divided by the mean of the CI values.

Supporting Information

Figure S1 Dynamic monitoring of Vero cell prolifera-
tion depending on different cell culture conditions. (A) To

illustrate the different growth characteristics of Vero cells

depending on culture conditions prior to the cytotoxicity assay,

the cells were grown in different densities in culture flasks at

10 000 cells/cm2 (dashed line), 25 000 cells/cm2 (black line) and

100 000 cells/cm2 (dotted line). Then Vero cells were trypsinized

and seeded in a 96-well E-plate at 12 500 cells/well. Cell

proliferation was dynamically monitored every 15 min for 22 h.

(B) Vero cells were grown at a density of 25 000 cells/cm2 in

culture flasks before the cytotoxicity assay and removed by

trypsinization with either Trypsin (0.2%) containing EDTA

(0.02%, black line) or EDTA (0.07%, dotted line). Then the cells

were seeded in a 96-well E-plate at 12 500 cells/well and

proliferation was dynamically monitored every 15 min for 22 h.

(TIF)

Table S1 Comparison of real-time ricin cytotoxicity
assay with other functional ricin detection methods. The

table depicts information on different functional assays for ricin

detection highlightening their detection principle, measurement

parameters, assay time, specificity and the application to detect

ricin from complex matrices.

(PDF)

Table S2 Within-run and between-run precision for
ricin detection using the novel real-time cytotoxicity
assay. The precision of the optimized real-time cytotoxicity assay

was evaluated by the determination of the coefficient of variation

(CV) analyzing the cytotoxicity data obtained by measuring serial

dilutions of ricin on Vero cells after 24 h or 42 h, respectively: For

within-run precision serial dilutions of ricin (1 ng/mL to 0.03 ng/

mL) were performed in four replicates and measured on one day;

for between-run precision serial dilutions of ricin were performed
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on four different days. The CV near the IC50 value is highlighted

in grey.

(PDF)

Table S3 Within-run and between-run precision for
ricin detection using the conventional endpoint cytotox-
icity assay (MTT assay). The precision of the MTT assay was

evaluated by the determination of the coefficient of variation (CV)

analyzing the cytotoxicity data obtained by measuring serial

dilutions of ricin on Vero cells after 45 h: For within-run precision

serial dilutions of ricin (100 ng/mL to 0.4 ng/mL) were performed

in four replicates and measured on one day; for between-run

precision serial dilutions of ricin were performed on four different

days. The CV near the IC50 value is highlighted in grey.

(PDF)

Table S4 IC50 values for ricin spiked into different food
matrices. Vero cells were exposed to ricin spiked into milk,

carrot juice, baby food or medium, respectively. The IC50 values

of serial dilutions of ricin in the complex matrices (see Figure 5)

after 24 h and 42 h are shown.

(PDF)
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