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Abstract The detection of botulinum neurotoxins (BoNT) is extremely chal-
lenging due to their high toxicity and the multiple BoNT variants. To date, seven
serotypes with more than 30 subtypes have been described, and even more sub-
types are expected to be discovered. The fact that the BoNT molecules are released
as large complexes of different size and composition adds further complexity to the
issue. Currently, in the diagnostics of botulism, the mouse bioassay (MBA) is still
considered as gold standard for the detection of BoNT in complex sample mate-
rials. Over the years, different functional, immunological, and spectrometric assays
or combinations thereof have been developed, supplemented by DNA-based
assays for the detection of the organism. In this review, advantages and limitations
of the current technologies will be discussed, highlighting some of the intricacies
of real sample analysis.
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Abbreviations
ALISSA Assay using a large immuno-sorbent surface area
BoNT Botulinum neurotoxin
ELISA Enzyme-linked immunosorbent assay
ESI Electrospray ionization
FRET Förster resonance energy transfer
GE Genome equivalents
HA Hemagglutinin
HC Heavy chain
LC Light chain
LC Liquid chromatography
LFA Lateral flow assay
mAb Monoclonal antibody
MALDI Matrix-assisted laser desorption/ionization
MBA Mouse bioassay
MPN ASSAY Mouse phrenic nerve hemidiaphragm assay
MS Mass spectrometry
NTNHA Non-toxic nonhemagglutinin
orf Open reading frame
pAb Polyclonal antibody
PCR Polymerase chain reaction
PTC Progenitor toxin complex
SNAP-25 Synaptosome-associated protein of 25 kDa
SNARE Soluble N-ethylmaleimide-sensitive factor attachment protein receptor
TeNT Tetanus neurotoxin
TOF Time-of-flight
VAMP Vesicle-associated membrane protein
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1 Complexity of Botulinum Neurotoxins

Botulism, the disease caused by botulinum neurotoxins (BoNTs), has first been
described in 1822 by Kerner as sausage poisoning (botulus = Latin: sausage). At the
turn of the nineteenth century the causative agent, the anaerobic bacterium Bacillus
botulinus (since 1923 Clostridium botulinum), or more precisely a heat-labile toxin
in the culture supernatant, was identified by van Ermengem during his investigation
of a botulism outbreak 1895 in Ellezelles, Belgium (van Ermengem 1897). The idea
that botulism is caused by a single toxin produced by a single species (Clostridium
botulinum) was shaken already some years later when in 1904 another strain of C.
botulinum was isolated from bean salad in Darmstadt, Germany (Landmann 1904).
Landmann was the first one to notice differences in optimal growth temperature and
culture characteristics between the very first strains isolated. These differences
were confirmed by Leuchs who also showed that the toxin produced by the Ellezelles
strain was of a different serotype than the one produced by the Darmstadt strain
(Leuchs 1910). Unfortunately, both strains were lost, but it seems likely that the
Ellezelle strain belonged to a nonproteolytic strain of serotype B, whereas the
Darmstadt strain was probably a proteolytic strain of serotype A (Meyer and
Gunnison 1929). Today, the species C. botulinum is recognized as being inhomo-
geneous and is divided into four groups (I–IV) with distinct physiological charac-
teristics (growth temperature, spore heat-resistance, salt tolerance etc.). The analysis
of 16S rRNA sequences separates the four groups and places them together with
other nonneurotoxic clostridia (Collins and East 1998; Peck 2009). Apart from C.
botulinum, some strains of C. baratii and C. butyricum harbor the botulinum neu-
rotoxin (bont) gene; thus, botulism can be caused by six distinct neurotoxin-pro-
ducing species: C. botulinum group I–IV, C. baratii, and C. butyricum.

Since the beginning of the twentieth century, it has become clear that not only
the BoNT-producing clostridia represents a heterogeneous family, but also that the
neurotoxin is more divergent than originally anticipated. Some years after the
discovery of BoNT/B and A the serotype C was identified in the 1920s (Bengtson
1922; Seddon 1922; Theiler and Robinson 1927). The group of serotypes was
extended by D, E, F, and finally G between 1935 and 1969 (Gunnison et al. 1936;
Hazen 1937; Møller and Scheibel 1960; Giménez and Cicarelli 1970), (Hill and
Smith 2012). The serotypes show between 32 and 65 % identity at the amino acid
level. It became apparent that certain serotypes can be produced by different C.
botulinum groups and other clostridia species. For instance, serotype F can be
produced by C. botulinum of group I, group II, and C. baratii (Peck 2009). In
particular for serotype C, some of the controversies observed could be resolved by
the identification of the toxins C2 and C3, which add to toxicity of the producing
strains without being neurotoxins but belonging to the ADP-ribosyltransferase
superfamily (Aktories et al. 2011; Just et al. 2011).

Many riddles remained unsolved before the era of modern molecular biology
allowed for a more detailed analysis and interpretation of the bont gene locus. The
comparison of bont sequences revealed a great degree of heterogeneity at the
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nucleotide and amino acid levels (Hill and Smith 2012). This heterogeneity led to
the introduction of different subtypes for a given serotype, which vary up to 36 %
at the amino acid level. Until today, six subtypes of serotype A have been described
(A1–A6), seven subtypes of serotype B (B1–B7), eight subtypes of serotype E (E1–
E8), and seven subtypes of serotype F (F1–F7), and more are still to be expected
(Hill et al. 2007; Lúquez et al. 2009; Umeda et al. 2009; Raphael et al. 2010a;
Macdonald et al. 2011; Kalb et al. 2012a). The differences within the subtypes of a
given serotype are greatest in serotype A (16 %) and serotype F (36 %) as com-
pared to serotype B (7 %) and serotype E (6 %) at the amino acid level. For
serotypes C and D, mosaic toxins named C/D and D/C, respectively, have been
described (Moriishi et al. 1996), shedding some light on cross-inhibition of these
two particular serotypes by certain antisera. No subtypes have been identified yet
for serotype G, which to date has not been linked with natural disease.

The differences observed among the subtypes at the nucleotide and amino acid
levels have major implications for detection methods relying on either protein
epitopes (e.g., enzyme-linked immunosorbent assay [ELISA]-based detection) or
sequence recognition (e.g., polymerase chain reaction [PCR]-based assays).
The issue is made even more complex by the fact that in bacterial supernatants the
neurotoxins are not found as holotoxins, but are associated with a nontoxic non-
hemagglutinin (NTNHA), and additionally—depending on serotype and subtype—
with up to three different hemagglutinins (HA1 of 33 kDa, HA2 of 17 kDa, HA3 of
70 kDa (East and Collins 1994; Fujinaga et al. 1994; Inoue et al. 1996)). The
composition of the progenitor toxin complex (PTC) out of BoNT, NTNHA, and
other accessory proteins depends on the genes located within the neurotoxin gene
cluster and other yet unidentified factors. Two different neurotoxin clusters have
been described. One is named the ha+orfX– cluster and consists of the bicistronically
expressed bont and ntnha genes, and three genes coding for the hem-agglutinins in
reverse orientation, separated by botR, an alternative sigma factor as regulatory
element. Alternatively, a second cluster is known which is called ha–orfX+ cluster in
which the ha genes are replaced by three open reading frames called orfX1, orfX2
and orfX3, and p21 that codes for a positive regulatory protein analogous to botR (Gu
and Jin 2012) of this issue of CTMI. In many cases, the type of neurotoxin cluster is
unique for a given subtype; however, some BoNT/A1-producing strains which occur
mostly in an ha+orfX– cluster can also be found associated with an ha–orfX+ cluster
(Raphael et al. 2008; Lúquez et al. 2009). When present in an ha+orfX– cluster, the
complex consisting of BoNT and NTNHA, also called M-PTC (*300 kDa; 12S),
can associate with hemagglutinins leading to higher molecular weight complexes
(L-PTC, *600 kDa; 16S); the subtype A1 is able to form even larger complexes of
about 900 kDa (LL-PTC; 19S).

While the crystal structure of the M-PTC has just been resolved ((Gu et al.
2012); (Gu and Jin 2012) of this issue of CTMI), the exact stoichiometry and
structure of L- and LL-PTC are still under investigation (Inoue et al. 1996;
Hasegawa et al. 2007). When BoNT and NTNHA are expressed within an
ha–orfX+ cluster, only the M-PTC has been purified. Eventually, minor amounts of
OrfX proteins have been identified in association with the M-PTC or have been
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observed in crude toxin preparations (Lin et al. 2010). So far the function of the
OrfX proteins remains unclear.

2 Mode of Action

In terms of function, the seminal work of Burgen, Jahn, Montecucco, and others
made it clear that from the different components of the neurotoxin complex the
exquisite specificity and neurotoxicity is mediated by the 150 kDa BoNT molecule
(Burgen et al. 1949; Jahn and Niemann 1994; Montecucco and Schiavo 1994).
BoNTs act as endopeptidases at the neuromuscular junction, cleaving components
involved in neurotransmitter release, thus leading to neuromuscular paralysis.

Active BoNTs are dichain molecules consisting of a 50 kDa N-terminal light
chain (LC) that is responsible for enzymatic activity and a 100 kDa C-terminal heavy
chain (HC) that is involved in receptor binding and cellular uptake (Rummel 2012;
Bercseny et al. 2012; Fischer 2012; Binz 2012 and Ahnert-Hilger et al. 2012 of this
issue of CTMI). After oral uptake into the body, BoNT molecules are protected from
the harsh conditions in the gastrointestinal tract by NTNHA which shields the toxin
in a pH-dependent manner (Gu et al. 2012). Within the small intestine, BoNT
complexes bind to microvilli mediated by the hemagglutinins (Fujinaga 2006,
2010). The mechanism by which the BoNT complex crosses the epithelial barrier is
still under debate. Two mechanisms have been suggested: receptor-mediated
endocytosis with subsequent transcytosis and ternary HA complex mediated
destruction of the intercellular junctions, followed by paracellular influx (Maksy-
mowych and Simpson 1998, 2004; Fujinaga et al. 2009; Fujinaga 2010), (Fujinaga
et al. 2012). Directly after absorption of the BoNT complex, it dissociates before it
reaches the blood circulation that takes it to its neuronal target cells (Sakaguchi
1982). At the neuromuscular junctions, the BoNT binds to serotype-specific gan-
glioside and glycoprotein receptors on the presynaptic membrane of neurons and is
internalized through endocytosis (Montecucco and Schiavo 1994; Brunger and
Rummel 2009). In a pH-dependent process, the BoNT HC confers translocation of
the BoNT LC into the cytoplasm (Koriazova and Montal 2003). After the disulfide
bond that links LC und HC is reduced, the released LC acts as a zinc-dependent
endopeptidase. It selectively cleaves proteins of the soluble N-ethylmaleimide-
sensitive factor attachment protein receptor (SNARE) complex which normally
mediates the release of acetylcholine from synaptic vesicles (Montecucco and
Schiavo 1994). The SNARE complex is formed by the assembly of the proteins
synaptosome-associated protein (SNAP)-25, syntaxin and vesicle-associated
membrane protein (VAMP)/synaptobrevin. While BoNT/A, C, and E cleave at
different sites of SNAP-25, BoNT/C also targets syntaxin. BoNT/B, D, F, G, and the
closely related tetanus neurotoxin (TeNT) cleave at distinct sites of VAMP
(Montecucco and Schiavo 1994). After cleavage of any of the above-mentioned
SNARE proteins, the formation of the SNARE complex is inhibited, resulting in the
blockage of neurotransmitter release. This leads to the classical paralytic symptoms
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of botulism. The estimated lethal dose of complexed crystalline serotype A for
humans is 1 lg/kg, 10–13, and 1–2 ng/kg for oral, inhalational, and intravenous
exposure, respectively (Arnon et al. 2001).

3 Challenges in BoNT Detection

Generally, there are two different fields in BoNT research which require highly
sensitive detection of BoNT molecules:

(i) Analysis of suspected cases of botulism in humans and animals (the focus of
this review);

(ii) Potency testing of highly purified pharmacological products used for medical
or cosmetic (Pellett 2012 of this issue of CTMI)

The two fields have quite contrary requirements for diagnostic approaches:
In the case of botulism diagnostics, the focus lies on the detection of all

serotypes and subtypes, including known and unknown subtypes. The detection
methods have to be compatible with different clinical, food, and environmental
matrices (see below). It is critical to get a timely response, since therapeutic
measures have to be taken in due time. On the other hand, it is sufficient to get a
rough estimate of the toxin’s functional activity.

In the case of potency testing, however, the correct recognition of the serotype
is second-tier since it is already defined through the industrial production process.
Pharmacological products are composed of highly pure toxins or toxin complexes
plus additives and stabilizing proteins suspended in physiological buffer; therefore,
matrix effects are usually not critical for their detection. With respect to the length
of the whole production process, the time to result is not important for the
detection assay. The main focus, however, is on the highly precise, statistically
valid potency determination of the neurotoxin, which has to reflect all four steps of
the BoNT action: binding to specific surface receptors, internalization into neu-
rons, translocation of the LC into the cytoplasm, and finally proteolytic cleavage of
SNARE proteins.

Botulism occurs in three major forms: (i) Food-borne botulism is caused by
ingestion of food contaminated with BoNT; (ii) Wound botulism occurs after
uptake and growth of C. botulinum in wounds with parallel production of BoNT;
(iii) Infant botulism is caused by colonization of the intestinal tract and toxin
production (Johnson and Montecucco 2008). Depending on the form of botulism,
different sample materials are usually analyzed: in the case of food-borne botulism
serum, feces, and suspected food; in wound botulism wound swabs, pus, tissue,
and serum; and in infant botulism feces, serum, intestinal contents, suspected food,
and environmental samples (Lindström and Korkeala 2006). With respect to
diagnostics of suspicious botulism samples, attention has to be paid to the fact that
the toxin occurs in different forms in different sample matrices. As discussed
above, botulinum toxin is not a single protein but in fact a heterogeneous family of
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neurotoxins, comprising seven serotypes and more than 30 subtypes, thus chal-
lenging modern detection methods. In food matrices and bacterial culture super-
natants, the toxin is usually present in one of its complexed forms. While the
complex is stable at acidic pH, it dissociates spontaneously at physiological pH
and high ionic strength (Sakaguchi 1982; Simpson 2004); this is of relevance for
the analysis of food samples. In serum samples, however, free BoNT is found and
the exact fate of the associated complex proteins is not clear to date. Due to the
high toxicity of BoNT, their detection methods should be (i) highly sensitive down
to the low pg/mL (fM–pM) range; (ii) able to detect all serotypes and subtypes
including both the free neurotoxins and the high-molecular weight complexes; and
(iii) compatible with a range of complex matrices. Additional points of interest are
the simplicity of the assay, the potential for automation, and the robust assay
performance including a high precision and accuracy.

4 Activity-Based Detection Assays

4.1 In Vivo and Ex Vivo Tests

Already in the 1920s, the mouse bioassay (MBA) for toxin detection was proposed: a
BoNT-containing solution (e.g., patient serum, culture supernatant, or food extract)
is injected intraperitoneally into mice and symptoms are observed for several hours
up to 4 days. Characteristically, mice sequentially show ruffled fur, labored but not
rapid breathing, a characteristic wasp-like abdomen with narrowed waist caused by
increased respiratory effort due to paralysis of the diaphragm, weakness of limbs that
progresses to total paralysis, and gasping for breath followed by death as a result of
respiratory failure (Bengtson 1921). Mostly, the symptoms can be distinguished
from symptoms caused by other toxins, e.g., TeNT which causes spastic paralysis.
However, it should be noted that large doses of TeNT have been shown to initially
mimic botulism symptoms (Matsuda et al. 1982). This phenomenon has been
observed in a human patient, too ((König et al. 2007); TeNT and BoNT/B cleave
VAMP at the very same position, but in different anatomic locations: while TeNT is
retrogradely transported to the central nervous system, BoNT acts at the neuro-
muscular junction. One possible explanation for a sequential change from botulism
to tetanus symptoms is that in the presence of high amounts of TeNT not all toxin is
retrogradely transported from the neuromuscular junction to the central nervous
system, thus inducing VAMP-cleavage at the neuromuscular junction similar to
BoNT serotype B; Bercsenyi et al. 2012). Death of mice in the absence of neuro-
logical symptoms is not an acceptable indication of botulism (or tetanus), because it
may be nonspecifically caused by other microorganisms, chemicals present in the test
fluids, or injection trauma (Kautter and Solomon 1977). It is important to perform a
number of specificity controls. Since the BoNT molecules are heat labile, a heat
treatment of the sample material (15 min at 95 �C) should render it nontoxic, thus
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failing to induce any clinical symptoms. Furthermore, a trypsin activation step may
be required for the detection of toxins of weak or nonproteolytic strains. Confir-
mation and neurotoxin typing is performed by mouse-protection tests using poly-
valent or, even better, monovalent neutralizing antibodies: on simultaneous
application of toxin-containing material and the respective neutralizing antibodies,
the mice are rescued and no symptoms occur. To estimate the quantity of BoNT in a
sample, different dilutions are injected into mice and symptoms are followed as
described above. The quantity of toxin in the sample is then estimated by relating the
maximum dilution killing the mice to the known mouse lethal dose: 10 pg for
serotype A (Ferreira 2001).

The MBA is currently the only widely accepted method, the ‘‘gold standard’’,
for confirmation of active BoNT molecules and is included in official methods and
national guidelines (e.g., AOAC Official Method 977.26 or the German Standard
DIN 10102). While the performance of the test is of serious ethical concern, it still
has several advantages over other methods:

(i) It has an exquisite sensitivity of between 10 and 100 pg/mL, depending on the
serotype and subtype analyzed (Ohishi and Sakaguchi 1980; Sugiyama 1980;
Sharma et al. 2006);

(ii) The MBA displays all four steps of BoNT action and the physiological out-
come: binding, uptake, translocation, and target cleavage resulting in inhibi-
tion of neurotransmitter release and muscle paralysis;

(iii) All serotypes and subtypes can be detected in their free and complexed form;
and

(iv) The assay is compatible with the use of complex matrices like serum, feces,
gastric content, wound samples, food samples, and bacterial cultures (after
clarification and pH adjustment).

Apart from the ethical concern, however, the MBA has a number of technical
disadvantages. Depending on the amount of toxin present in the sample, the assay
takes 1–4 days to yield a result, and a precise quantitation of BoNT in a sample
requires many animals. Inter-laboratory comparisons have shown that MBA
results and precise quantitation may be variable depending on the age and strain of
mice and other factors (McLellan et al. 1996; Sesardic et al. 2003). Additionally,
recent work has shown that the potency of, e.g., BoNT/B cannot be directly
transferred from mice to man due to differences in protein receptor amino acid
sequences in both species (Strotmeier et al. 2012).

The ethical concerns of the MBA encouraged the development of different
alternative assays. They are still refined in vivo assays, but nonlethal and with
greatly reduced suffering of animals. These assays measure the local paralysis
induced by BoNT, e.g., flaccid paralysis (Sesardic et al. 1996; Jones et al. 2006),
abdominal ptosis (Takahashi et al. 1990), hind limp paralysis (Sugiyama et al.
1975; Pearce et al. 1994; Aoki 2001), grip strength (Meyer et al. 1979; Torii et al.
2011), and toe-spread reflex (Wilder-Kofie et al. 2011). Other assays use an
electromyographic measurement of the compound action muscle potential to
quantify BoNT activity or anti-BoNT antibodies (Sakamoto et al. 2009; Torii et al.
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2010a, b). Generally, these in vivo assays have not been used frequently for the
detection of BoNT out of complex food, environmental, or clinical samples.
Rather they have been used to quantify BoNT from pharmaceutical-grade toxin
preparations (Huber et al. 2008) or for the detection of antibodies against BoNT
(Sesardic et al. 2004; Jones et al. 2006). However, these assays still require several
days to perform and are in vivo tests with more or less objective readouts.

To avoid suffering of animals, replacement methods for the MBA have been
described. Most widely used is an ex vivo test, the rat or mouse phrenic nerve
hemidiaphragm (MPN) assay (Burgen et al. 1949). In this test, the phrenic nerve
connected with the hemidiaphragm muscle is prepared from sacrificed mice or rats
and transferred to a culture bath. The phrenic nerve is electrically stimulated and
the resulting muscle twitches are measured. Upon addition of BoNT, the time
required to decrease the amplitude to 50 % of the starting value, the paralytic half-
time, is measured as a function of the dose of BoNT applied (Simpson and Tapp
1967; Simpson 1973, 1974; Habermann et al. 1980). Serotyping is performed in a
way similar to the MBA, using monovalent antibodies. Apart from quantitation of
BoNT activity, the hemidiaphragm assay has also been used to detect antibodies
against BoNT (Dressler et al. 2005; Rasetti-Escargueil et al. 2009, 2011). Like the
MBA, the MPN assay has the advantage to measure all four steps of BoNT action
and the physiological endpoint (muscle paralysis). The duration of the assay is
much shorter (\4 h) while its sensitivity is similar to the one of the MBA.
However, less animals are needed and their suffering is greatly reduced; never-
theless, animals are still required. A disadvantage of the method is that it is
sensitive to matrix interference with components of real samples.

As pure in vitro tests, cell culture-based assays have been developed which are
also able to display four steps in BoNT action. These assays are mainly suited to
quantify the activity of purified BoNT preparations (Pellett 2012 of this issue of
CTMI).

4.2 Endopeptidase Assays

In vitro, activity assays focusing on the endopeptidase activity of the LC of BoNT
have been developed and improved since the identification of their substrates.
Basically, endopeptidase assays display the serotype-specific proteolytic cleavage
of SNARE proteins in conjunction with technically different readouts.

One of the most straightforward ways to detect cleavage of SNARE proteins is
by immunoblotting. Very soon after the elucidation of the endopeptidase activity
of BoNT toward SNARE proteins, immuno blots of toxin-treated synaptosomes or
neuronal cells were probed with anti-SNAP-25 or anti-VAMP antibodies to
visualize the substrate cleavage (Poulain et al. 1993; Schiavo et al. 1993). Twenty
years later, this is still a useful technique in the field of basic research, e.g., to
study cellular uptake kinetics (Pier et al. 2011). This type of endopeptidase assay is
particularly useful for deducing BoNT activity by analyzing cell lysates for
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SNARE cleavage, e.g., to show the persistence of BoNT activity ex vivo or to
demonstrate the anterograde axonal transport and transcytosis of catalytically
active BoNT/A (Keller et al. 1999a; Restani et al. 2011).

In 1996, Shone and colleagues started to use immobilized peptides derived from
SNAP-25 and VAMP which are cleaved by serotypes A and B, respectively. The
newly generated amino acid terminus, the neoepitope, was then recognized spe-
cifically by enzyme-labeled antibodies, thus allowing the quantitation of the
enzymatic activity in conjunction with a BoNT standard curve (Hallis et al. 1996).
Antibody-based detection of the neoepitope was also used by the group of Sesardic
to detect and quantify substrate cleavage by serotypes A, E, and C in purified toxin
solutions (Jones et al. 2008, 2009). In a converse approach, the uncleaved SNARE
substrate was detected by an antibody, which does not recognize the cleaved
products: after coating of the VAMP substrate to microtiter plates, BoNT activity
was correlated with the loss of detectable substrate (Keller et al. 1999b).

Another widely used endopeptidase technology applies the use of Förster res-
onance energy transfer (FRET, (Förster 1948)): here a SNARE peptide harboring
the specific BoNT cleavage site is labeled with a fluorescence donor and a fluo-
rescence acceptor. As long as the fluorescence donor–acceptor pair is located in
close vicinity in the uncleaved substrate molecule, the fluorescence of the excited
donor is absorbed (quenched) by the fluorescence acceptor molecule. Upon sub-
strate cleavage, the two fluorophores are separated, so that the fluorescence of the
donor is no longer quenched and can be measured. This principle was used by
different groups to detect the activity of different BoNT serotypes with sensitivities
between 35 pg/mL and 150 ng/mL depending on serotype, FRET substrate, and
assay time used (Anne et al. 2001; Dong et al. 2004; Rasooly and Do 2008;
Rasooly et al. 2008; Pires-Alves et al. 2009; Poras et al. 2009; Gilmore et al. 2011;
Ruge et al. 2011). The principle has also been implemented into portable devices
with sensitivities in the ng/mL range (Sapsford et al. 2008; Kostov et al. 2009; Sun
et al. 2010; Balsam et al. 2011) and is the basis for commercial substrates like
SNAPtide� (Shine et al. 2002).

However, many of the assays mentioned have not been tested on complex
matrices yet and are indeed aiming at inhibitor or potency testing rather than
detection of BoNT dissolved in complex matrices. As enzymatic assays, endo-
peptidase assays are relatively sensitive toward changes in reaction conditions, and
testing of complex matrices can dramatically affect assay performance (Rasooly
and Do 2008; Rasooly et al. 2008). To reduce matrix interference, an immuno-
affinity enrichment step has been introduced, where the toxin is captured from the
matrix using antibody-coated magnetic microbeads prior to performing the
endopeptidase reaction, resulting in assay sensitivities similar to those of the MBA
(Wictome et al. 1999a, b; Rasooly and Do 2008; Rasooly et al. 2008; Piazza et al.
2011). Immunoaffinity enrichment is advantageous since it separates the toxin
from other proteases which might cleave the SNARE peptide unspecifically,
preventing false-positive results. Of particular concern is the protease trypsin
which is present in the gastrointestinal tract of vertebrates and in feces. Trypsin
cleaves SNAP-25 at exactly the same position as BoNT/C. The problem of
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unspecific cleavage by other proteases is more substantial in endopeptidase assays
recognizing proteolytic cleavage via FRET or other readouts as compared to
assays which detect the precise cleavage product by a neoepitope-specific antibody
or by mass spectrometry (see below). As a control for unspecific cleavage, Tucker
and co-workers used a mutated SNAP-25 that could not be cleaved by serotypes A,
C, and E (Piazza et al. 2011). Nevertheless, immunoaffinity enrichment combined
with an FRET-based endopeptidase assay can be highly sensitive. The group of
Kalkum developed an assay using a large immunosorbent surface area (ALISSA)
for extraction of the toxins, resulting in excellent sensitivities of about 0.5 fg/mL
for the detection of BoNT/A and E; matrices like serum, juice, and milk have been
successfully analyzed (Bagramyan et al. 2008; Bagramyan and Kalkum 2011).
Depending on the antibody used for immunoaffinity enrichment, the endopeptidase
assay detects the LC activity only. Therefore, it can be advantageous to combine
HC-specific antibodies for extraction with neoepitope-specific antibodies for the
cleaved SNAP-25 in a single reaction (Liu et al. 2012).

To include cell binding in the in vitro activity assay, Shone and colleagues
included a ganglioside-binding step in their endopeptidase method. To capture
BoNT, they used synaptosomes, which contain gangliosides, followed by an
endopeptidase assay, resulting in assay sensitivities in the range of the MBA
(Evans et al. 2009).

4.3 Endopeptidase-Mass Spectrometry (Endopep-MS) Assay

Another variation of the endopeptidase format was developed by Barr and col-
leagues who coupled the endopeptidase format with a precise mass spectrometric
detection and identification of the cleavage products, a method known as Endo-
peptidase-Mass Spectrometry (Endopep-MS) (Barr et al. 2005; Boyer et al. 2005).
The detection and identification of the cleavage products can be performed either
by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS or
by liquid chromatography (LC) electrospray ionization (ESI) tandem MS (MS/
MS). After implementing an immunoaffinity enrichment step, the Endopep-MS
approach turned out to be very useful for the detection of BoNT/A, B, E and F
activity out of serum, feces and organ homogenates. This was done either by using
serotype-specific antibodies (Kalb et al. 2005, 2006, 2008; Gaunt et al. 2007; Parks
et al. 2011; Wang et al. 2011) or by using a pan-reactive antibody directed against
a common epitope present in the HN of all four toxins (Kalb et al. 2010). In
addition, BoNT/C, D, and G can also be detected by the Endopep-MS assay
(Moura et al. 2011; Terilli et al. 2011). In the case of BoNT/C and D, the Endopep-
MS method is even more precise in discriminating the two serotypes than the
MBA, since the latter often suffers from a substantial cross-reactivity of antisera
against serotypes C and D used for functional blockade due to the occurrence of
BoNT/CD and DC mosaics (Hedeland et al. 2011).
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Using an internal isotope-labeled standard with identical composition as one of
the product peptides, but a different mass, Endopep-MS is able to precisely quantify
the activity of toxin present in a sample. Depending on the serotype and complexity
of the matrix analyzed, sensitivities between 0.05 and 50 pg/mL can be reached,
similar to or even better than those reached by using the MBA (Boyer et al. 2005;
Kalb et al. 2006, 2010; Moura et al. 2011). In contrast to endopeptidase assays using
FRET or neoepitope recognition, the combination of immunoaffinity enrichment,
endopeptidase reaction, and MS-based detection allows for simultaneous mea-
surement of activity plus unambiguous identification of the corresponding immu-
nocaptured toxin (Kalb et al. 2005, 2006, 2011a; Wang et al. 2011).

While the MBA is sensitive to all known and unknown BoNT serotypes and
subtypes, in vitro endopeptidase assays have to include specific substrates for the
BoNT serotypes aimed at. Until recently, all subtypes within a given serotype have
been reported to share the same cleavage site on their respective SNARE protein.
However, this principle was recently shaken by the finding that BoNT/F5 cleaves
VAMP-2 at a different site from that of all other BoNT/F subtypes known. The
cleavage site is located four amino acids upstream and has been identified by En-
dopep-MS (Kalb et al. 2012b). Also, not all subtypes of a serotype must recognize a
given substrate equally well, as the detailed comparison of BoNT/F subtypes elu-
cidated (Kalb et al. 2011a). It is also notable that the catalytic activity depends on the
nature of the substrate and on the assay conditions used. For example, it has been
shown that the catalytic activity of the BoNT subtypes A1–A4 tested on an SNAP-
25 peptide was different from their activity on a longer recombinant SNAP-25
fragment. In particular, BoNT/A3, which showed 50 % of BoNT/A1 activity on a
longer recombinant SNAP-25 fragment (aa 141–206), cleaved the peptide substrate
at a much faster rate than subtype A1 (Henkel et al. 2009). Some of the discrepancies
can be explained by the fact that SNAP-25 is not only bound around the active site of
BoNT, but also by so-called a- and b-exosites upstream and downstream of the
active site (Breidenbach and Brunger 2004; Brunger et al. 2008; Henkel et al. 2009).
With respect to assay conditions, it has been shown that certain buffer components
such as NaCl can reduce or even abolish cleavage of SNAP-25 or VAMP (Ferracci
et al. 2011; Jones et al. 2011; Piazza et al. 2011).

In contrast to other in vitro methods, e.g., immunological assays which detect
the presence of the protein, endopeptidase assays detect the functional activity of
BoNT molecules in vitro. This is a clear advantage and is relevant, e.g., in the field
of food safety. Endopeptidase assays inherently amplify the signal intensity by the
catalytic reaction, since one BoNT molecule is able to cleave several substrate
molecules. This results in excellent sensitivities, even beyond the sensitivity of the
MBA. However, like most enzymatic assays, endopeptidase assays are quite
sensitive to interference with matrix components. Therefore, immunoaffinity
enrichment is performed to analyze real samples. Depending on the capture
antibody or reagent used, the assay usually detects the activity of the LC plus the
presence of the HC. Endopep-MS has been proven to be very useful to simulta-
neously measure the activity of BoNT molecules in parallel with an unambiguous
identification of the immunocaptured toxin (Fig. 1). The only disadvantage is that
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this technology requires expensive equipment and a highly specialized technical
expertise, and is therefore less common in clinical routine laboratories.

5 Immunological Assays

5.1 Classical Sandwich ELISA

ELISA-based technologies are by far the in vitro methods most commonly
employed for BoNT detection. This is due to their generally high sensitivity, the
simplicity of the assay which can be easily done in clinical routine laboratories, short
assay times, and a robust assay performance including high precision and accuracy.
After thorough validation, ELISA-based techniques can be applied to detect BoNT
in a range of complex matrices. However, quality and validity of obtained data
strictly depend on the quality and combination of the antibodies used.

In sandwich ELISA-based assays, a capture antibody is immobilized onto a
solid support to capture BoNT. In the classical assay format these are plastic
microtiter plates; other supports like silica microbeads, affinity columns, magnetic

food, feed, 
environmental sample

toxin detection

anaerobic enrichment culturescreening assays

immunological assay
e.g. ELISA

sample preparation

clinical sample

functional assay
(LC activity only)

e.g. endopep assay

detection of pathogen

detection of toxin gene
e.g. PCR, DNA-Array

isolation of toxogenic strain

subtyping and
genetic characterization

confirmation assays

MS assay
e.g. peptide fingerprint,
sequence information

functional assay
(HC + LC activity)

e.g. MBA

Fig. 1 Laboratory diagnostics of botulism. Depending on the type of botulism, clinical, food or
environmental samples are analyzed for BoNT (left) and for the BoNT-producing pathogen
(right), either directly or after anaerobic enrichment culture. A successful strategy combines fast
and easy screening methods with confirmation assays providing information on the activity and/
or identity of the holotoxin. The detection, isolation and genetic characterization of the toxin-
producing strain deliver important additional information in an epidemiological investigation
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microbeads, glass surfaces, and biochips are possible. The bound analyte is usually
detected via a secondary hapten-coupled detector antibody plus an enzyme
conjugate to develop a measurable readout. Different assay variations can be
performed, e.g., using indirect or direct antibody–antigen interactions, using
different haptens (e.g., biotin, digoxigenin), using different read-out systems
(e.g., UV/VIS absorption, fluorescence, and chemiluminescence), and using dif-
ferent signal amplification strategies (e.g. polymeric enzyme conjugates, tyramide
amplification, and immuno-PCR (see below)). In order to quantify BoNT in a real
sample, a pure BoNT standard is analyzed in parallel in defined concentrations.

The use of classical immunoassays dates back to the late 1970s when the first
sandwich ELISA systems for the detection of BoNT/A, B, and E were introduced
(Notermans et al. 1978, 1979; Kozaki et al. 1979). They were soon complemented
by ELISA for the detection of the other serotypes (Lewis et al. 1981; Lee and Yang
1982; Notermans et al. 1982b). Results were routinely obtained within 4–6 h, a
clear advancement in comparison to the MBA. However, when using polyclonal
antibodies (pAb) generated against purified BoNT or BoNT complexes, the ELI-
SAs were clearly less sensitive than the MBA with detection limits usually down
to a few ng/mL (Thomas 1991; Doellgast et al. 1993, 1994; Szílagyi et al. 2000;
Ferreira 2001; Ferreira et al. 2004; Sharma et al. 2006). Later, in a collaborative
effort, sandwich ELISAs based on pAb against BoNT/A, B, E, and F have been
validated and compared to the MBA, resulting in assay sensitivities of 0.1–1 ng/
mL. The method was approved as AOAC Official Method 2002.08 by The Sci-
entific Association Dedicated to Analytical Excellence (Ferreira 2001; Ferreira
et al. 2003). Sharma and colleagues developed an amplified immunoassay based
on digoxigenin-labeled pAb to detect the same serotypes in food matrices with
assay sensitivities of 60–176 pg/mL (Sharma et al. 2006). Even more sensitive and
specific immunoassays have been developed with the accessibility of monoclonal
antibodies (mAb) (Köhler and Milstein 1975): sandwich ELISAs incorporating
mAb resulted in assay sensitivities of around 1–100 pg/mL from culture super-
natants, beverages, and complex food matrices (Shone et al. 1985; Ferreira et al.
1987, 1990; Gibson et al. 1987, 1988; Ekong et al. 1995; Varnum et al. 2006;
Chiao et al. 2008b; Stanker et al. 2008; Volland et al. 2008; Brooks et al. 2010;
Scotcher et al. 2010; Weingart et al. 2010).

5.2 Selected Examples of Different ELISA Formats

Albeit the sensitivity and specificity of BoNT-specific sandwich ELISA systems
have been improved, the detection from complex matrices is still challenging. In
bead-based immunoassays the capture antibody is immobilized onto microbeads,
allowing to separate the toxin from the matrix, a step which is not possible in
conventional plate-bound ELISA formats. Especially, magnetic microbeads have
proved to be useful for extracting BoNT from complex and even colloidal matrices
(Gessler et al. 2006; Pauly et al. 2009; Garber et al. 2010). This immunoaffinity
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enrichment step is not only useful for ELISAs, but is also often used in combination
with other techniques (e.g., endopeptidase assays, mass spectrometry, cp. 12.4.2)
(Bagramyan et al. 2008; Parks et al. 2011; Piazza et al. 2011; Liu et al. 2012).

In this context, flow cytometry has been shown to be a useful technique to
detect and to quantify bead-bound BoNT molecules through a fluorescent readout
(Anderson and Taitt 2008; Ozanich et al. 2009; Warner et al. 2009). A further
development is suspension array technologies (e.g., the Luminex� xMAP tech-
nology). Fluorescent suspension arrays use either polystyrene or magnetic
microspheres which are embedded with precise ratios of either two or three dif-
ferent fluorescent dyes, thus yielding arrays of 100 or 500 bead sets, respectively.
The different bead sets are spectrally unique and are individually addressed by the
measurement instrument. When immobilizing different antibodies to different bead
sets, simultaneous and miniaturized immunoassays can be performed out of a
single sample, thus reducing materials as well as cost and effort. Pauly and col-
leagues used color coded, magnetic Luminex beads to set up a pentaplex immu-
noassay for different biological toxins, among them BoNT/A and B. The detection
limits were 21 and 73 pg/mL, respectively, out of 50 lL sample volume and could
be further improved by magnetic immunoaffinity enrichment. Additionally, this
method worked well to detect the toxins from different food matrices (Pauly et al.
2009). A similar approach was followed by Garber and colleagues for the detec-
tion of BoNT/A and five additional toxins with sensitivities of 1 ng/mL in spiked
food samples (Garber et al. 2010). They took advantage of the multiplex approach
by using different antibody pairs for each toxin, some recognizing different epi-
topes or displaying different binding kinetics, and implemented up to eight control
assays. By doing so, they were able to reduce the likelihood of false-positive and
false-negative results when testing toxins in complex matrices. In practice, fluo-
rescent suspension arrays with up to 20–30 analytes in parallel are possible using a
sandwich-ELISA principle.

Electrochemiluminescence-based immunoassays are usually performed on
magnetic beads, too. They use a secondary reporter antibody, which is covalently
coupled to a ruthenium (II) tris (bipyridyl) complex that becomes luminescent in
the presence of an electric potential. The method has been used to detect BoNT/A,
B, E, and F from clinical samples and food matrices with sensitivities of 50 pg/mL
to 5 ng/mL, depending on the assay conditions used (Guglielmo-Viret et al. 2005;
Rivera et al. 2006; Phillips and Abbott 2008). An advantage of this technique is its
high signal-to-noise ratio due to the absence of optical background signals.
However, the sensitivity boost compared to other ELISA readouts is limited and
the technology is quite expensive, thus a widespread application is less likely.

Immuno-PCR is a further modified ELISA format using DNA-labeled detection
antibodies (Wu et al. 2001; Chao et al. 2004; Adler et al. 2008; Rajkovic et al.
2012). Upon binding of the detection antibody to its target molecule, the oligo-
nucleotide tag is amplified by PCR, resulting in assay sensitivities of 1 pg/mL for
BoNT/A in buffer (Chao et al. 2004). In a different approach, Mason and col-
leagues described an ultrasensitive immunoassay based on liposomes with
encapsulated DNA reporters and gangliosides embedded in the lipid bilayer as
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detection reagent (Mason et al. 2006). After binding of a BoNT to a specific
immobilized capture antibody and subsequent binding of the ganglioside to the
toxin, the liposomes were ruptured to release the reporter DNA for amplification
by real-time-PCR. The assay combined the detection of the toxin with detection of
ganglioside binding as part of the functional HC activity. Thereby the assay
reached a sensitivity so far unmatched of 0.02 fg/mL for BoNT/A in water (Mason
et al. 2006). However, this method has not been tested on complex matrices yet, so
its wider applicability will have to be worked out in the future.

While the above-mentioned examples showed that current ELISA-based tech-
nologies can technically reach the sensitivity of the MBA and beyond, the main
problem when analyzing unknown samples is still to discriminate true-positive from
false-positive signals and to exclude false-negative results. It is per se difficult to
anticipate the degree of cross-reactivity between the antibodies used and the matrix
components in an unknown sample. Therefore, a thorough validation of the ELISA is
necessary that includes determination of recovery rates from the most important
matrices. Generally, ELISA systems based on pAb show a higher tendency for cross-
reactivity compared to ELISAs using mAb. Especially, if the pAb has been gener-
ated against BoNT complexes or bacterial supernatants rather than the pure holo-
toxins, high titers against accessory proteins or unrelated proteins have been
observed which can result in substantial cross-reactivity (Sakaguchi et al. 1974;
Sugiyama et al. 1974; Betley and Sugiyama 1979; Notermans et al. 1982b; Sakag-
uchi 1982; Dezfulian et al. 1984; Kumar et al. 1994; Ferreira 2001). It has also been
noticed that culture supernatants of C. botulinum shared antigens found in super-
natants of other clostridia (Poxton 1984; Poxton and Byrne 1984) and gave rise to
cross-reactivity with nontoxogenic clostridia (Lewis et al. 1981; Thomas 1991).

Certain matrices have been recognized as being difficult to analyze for the
presence of BoNT. Especially, fecal specimens were shown to be problematic
(Dezfulian et al. 1984; Viscidi et al. 1984). By diluting infant botulism stool samples
in 40 % fetal bovine serum, Dezfulian and colleagues were able to decrease inter-
ference with fecal specimens and obtained a good correlation between MBA and
their ELISA format (Dezfulian et al. 1984). Certain food matrices are rich in avidin
(e.g., egg white); therefore, they might cause problems when employing ELISA
formats using biotinylated detection antibodies. In this case, detection via digoxi-
genin/anti-digoxigenin amplification offers an alternative with low background
signals due to the absence of endogenous digoxigenin in all prokaryotic and
eukaryotic cells (except for Digitalis purpurea (Dorner et al. 2003)).

MAb are generally more specific and less sensitive to cross-reactivity than pAb,
but their supreme specificity can be a pitfall in the light of the different subtypes of
BoNT serotypes described. Optimally, ELISAs based on mAb have to be tested
against all the different subtypes of a given serotype. Indeed, a variation or lack in
recognition of a certain subtype has been observed for some mAb and mAb-based
ELISAs (Gibson et al. 1987, 1988; Smith et al. 2005; Kalb et al. 2009, 2011b;
Brunt et al. 2010).

Failure of a mAb to recognize individual subtypes of a serotype has implica-
tions for all of those assays in which this mAb is used, e.g., for immunoaffinity
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enrichment strategies. This problem is usually less pronounced with pAb recog-
nizing numerous epitopes on a target protein, but also pAb have been shown to
neutralize BoNT subtypes differently (Kozaki et al. 1977) or in extreme fail to
recognize a certain subtype: Brunt and colleagues showed that a particular pAb
directed against BoNT/F1 failed to recognize culture supernatants of a nonprote-
olytic F strain (Brunt et al. 2010). Notably, the highest divergence among the
subtypes is found in BoNT/F (36 %) (Raphael et al. 2010a).

With respect to the detection of active versus inactive BoNT, it should be noted
that only very few ELISA formats based on mAb have been shown to be able to
discriminate the active toxin from its denatured form (Weingart et al. 2010). This
might be relevant in thermal inactivation studies when comparing ELISA results
with activity-based results.

In the light of the different sources of error connected with ELISA-based
technologies, it is recommended to use this method for screening purposes to
detect BoNT in complex matrices. Results should be confirmed by MBA or by
other independent technologies having a high confirmatory power like mass
spectrometry (Fig. 1; (Ferreira 2001; Ferreira et al. 2003)). Additionally, the
detection, isolation, and characterization of the toxin-producing organism delivers
important information.

5.3 Rapid Detection Tools Based on ELISA Formats

In a clinical case of botulism, first ELISA results can be obtained within several
hours. Together with the characteristic clinical picture of acute botulism, this is
timely enough in most cases to start medical treatment. However, in certain situa-
tions it is desirable to obtain results within 1 h, e.g., in a suspected case of intentional
food poisoning in a bioterrorism scenario. Due to the fact that BoNTs are ranked
among the category A agents of highest priority in the field of bioterrorism by the
Centers for Disease Control and Prevention (Atlanta, USA), a number of on-site
detection technologies have been developed over the last decade.

Among them, lateral flow assays (LFA) have been developed for commercial
use, best known from pregnancy test kits (Posthuma-Trumpie et al. 2009). LFAs
are hand-held devices based on immunochromatography on paper strips such as
nitrocellulose. The sample is applied to one end of the strip and migrates by
capillary action to the opposite end of the strip. While migrating along the strip the
sample molecules first bind to an immobilized detection antibody conjugated to
gold nanoparticles or dyes. The antibody–antigen complex further continues to
migrate along the strip and is captured in the detection zone by a capture antibody,
resulting in a visible change of color. Several LFAs for the detection of different
BoNT serotypes have been developed with detection limits usually between 0.3
and 250 ng/mL (Chiao et al. 2004, 2008a; Klewitz et al. 2006; Attrée et al. 2007;
Han et al. 2007). Sharma and co-workers evaluated two commercial products on
spiked food samples and found detection limits of above 20 ng/mL for BoNT
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complexes of serotypes A, B, and E (Sharma et al. 2005). Others reported that
some commercial tests were unable to recognize the purified holotoxin but
detected the toxin complexes only (Gessler et al. 2007).

Although the sensitivity of LFA is clearly lower than laboratory-based ELISA
technologies, they offer several advantages: they are inexpensive, easy to use
without any sophisticated equipment, and have a rapid read-out time (usually
20 min). This makes them a good tool for field use by untrained personnel. It is often
argued that in a case of a bioterrorism incident high levels of toxin are likely to be
found; hence LFAs with their limited sensitivity might nevertheless be useful.

As an alternative, column-based immunochromatography tests requiring only
few handling steps have been developed (ABICAP� technology). In this tech-
nique, the capture antibody is immobilized on a 3-dimensional immunofiltration
column made of sintered material providing a large inner surface. For a colori-
metric readout the technology uses the increased sensitivity of polymeric enzyme
conjugates covalently attached to a streptavidin conjugate. Using this rather
straightforward technology, BoNT/C and D have been detected from culture
supernatants within 40 min with sensitivities close to that of the MBA (Gessler
et al. 2005). Peck and colleagues recently expanded the method to detect BoNT/B,
E, and F (Brunt et al. 2010). BoNT/A has been detected from different clinical
samples, food, or powder materials with a detection limit in the low pg/mL-range,
similar to that of the MBA (Attrée et al. 2007).

Apart from these technically simple devices, a number of sophisticated biosensor
technologies based on different principles have been established. Most of them
detect BoNT in the ng/mL-range (Ogert et al. 1992; Shriver-Lake et al. 1993; Kumar
et al. 1994; O’Brien et al. 2000; Varnum et al. 2006; Grate et al. 2009; Ren and
Pearton 2012). Only few of them have been tested with complex matrices like food,
clinical, or environmental samples (Ganapathy et al. 2008; Weingart et al. 2012).

6 BoNT Detection by Mass Spectrometry

Mass spectrometry (MS) is a powerful tool to detect and to unambiguously
identify analytes.

The principle is that charged ions are generated by an ion source, separated on
the basis of their mass-to-charge (m/z) ratio, and finally recorded on a detector
(Boyer et al. 2011). Different types of ionization methods are commonly used for
biological substances, e.g., MALDI and electrospray ionization (ESI). In tandem
(MS/MS) mass spectrometry, multiple cycles of MS analysis are performed,
usually in conjunction with a fragmentation or dissociation process. This allows
for protein sequencing of the analyte.

Per se the molecular mass of a protein is not a unique characteristic; therefore,
large proteins are usually enzymatically fragmented by proteases (e.g., trypsin,
chymotrypsin), delivering a characteristic peptide fingerprint. By searching in
protein databases, the peptide fragments are then assigned to an individual protein.
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The first characterization of BoNT serotypes A–F by enzymatic digest followed
by MALDI-TOF MS and ESI–MS/MS has been described by van Baar and col-
leagues (van Baar et al. 2002, 2004). The approach was extended to detect all
BoNT serotypes together with their nontoxic accessory proteins from the high
molecular weight complexes with nano-Liquid Chromatography (LC)-ESI–MS/
MS (Hines et al. 2005). For this approach, lg-amounts of pure BoNT or BoNT
complex were necessary.

Compared to other in vitro methods described so far, the significance of data
obtained is higher for MS-based methods, since they allow for unambiguous iden-
tification of the toxins by a unique peptide fingerprint pattern or a protein sequence.
However, MS methods are usually not as sensitive as other in vitro methods and
require pre-enrichment or purification steps to be compliant with complex matrices.

To this end, Klaubert and colleagues presented a method to detect and identify
complexes of BoNT/A, B, E, and F out of bacterial culture supernatants (Klaubert
et al. 2009): starting with a culture volume of 1 mL, they used a peptic sample pre-
treatment strategy combined with 2D-nano-LC–ESI–MS/MS to identify the toxins;
around 30 fmol toxin could be detected.

In a different approach, a multiplex immunoaffinity enrichment strategy for
BoNT/A and B, their respective complexes, and other biological toxins has been
used, followed by tryptic digest and MALDI-TOF MS-based detection of char-
acteristic peptide fingerprints (Kull et al. 2010). The approach turned out to be
successful at detecting the toxins out of beverages with a detection limit of 300–
500 fmol. Starting from an anaerobic enrichment culture of a suspected specimen
in a real case of botulism, the multiplex approach correctly identified the BoNT
serotype and subtype involved.

An interesting proteomics approach was recently published by Barr and co-
workers: in order to identify new BoNT subtypes, they created an amino acid
substitution database in which every position of the BoNT protein sequence was
substituted against all other possible amino acids. The database allowed for the
precise identification of multiple BoNT/B subtypes including the novel subtype
BoNT/B7 with no DNA required (Kalb et al. 2012a).

As described above, Endopep-MS has been proven to be very useful for
simultaneously measuring the activity of BoNT molecules in parallel to an
unambiguous identification of the immunocaptured toxin. The method has been
successfully applied to a number of clinical and food matrices (Kalb et al. 2005,
2006, 2011a; Hedeland et al. 2011; Parks et al. 2011; Wang et al. 2011).

7 DNA-Based Detection of BoNT-Producing Bacteria

In parallel to methods aiming at detection of the neurotoxins, most laboratories
engaged in botulism diagnostics use technically independent DNA-based methods
to screen suspect samples for BoNT-producing organisms and to perform an
epidemiological investigation.
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By far, the most commonly employed methods are PCR-based techniques
(Mullis et al. 1986; Saiki et al. 1988), many of which aim at detecting bont genes
by conventional or quantitative amplification reactions (Szabo et al. 1992, 1993;
Franciosa et al. 1994, 1996; Fach et al. 1995, 2009; Takeshi et al. 1996; Aranda
et al. 1997; Braconnier et al. 2001; Kimura et al. 2001; Craven et al. 2002; Popoff
and Walker 2003; Akbulut et al. 2004; Takeda et al. 2005; Yoon et al. 2005;
Lindström and Korkeala 2006; Artin et al. 2007; Fenicia et al. 2007; Heffron and
Poxton 2007; Prévot et al. 2007; Sánchez-Hernández et al. 2008; Sakuma et al.
2009; Hill et al. 2010; Lindberg et al. 2010; Takahashi et al. 2010). Since con-
ventional PCR is difficult to quantify and requires a post-PCR step to visualize and
to verify the PCR product, many modern approaches use quantitative PCR (qPCR)
formats. Inclusion of a fluorogenic probe in qPCR assays was shown to increase
specificity and to allow simultaneous detection of a number of genes via differently
labeled probes. Using qPCR, 10–100 genome equivalents (GE) can be readily
detected in about 2 h. Including DNA purification and dilution steps, this has led to
detection limits of 103–105 GE/mL (Fach et al. 2009; Kirchner et al. 2010).

Since in botulism diagnosis more than one serotype is of concern, multiplex
reactions covering several serotypes simultaneously have been reported in recent
years. In particular, assays able to detect bont/a, /b, /e, and /f, which are known to be
pathogenic to humans, in a single reaction have been developed (Lindström et al.
2001; Shin et al. 2007; Kirchner et al. 2010; Satterfield et al. 2010; Fach et al. 2011).
Assays covering bont/c, /d, and their mosaic forms have been developed to meet the
needs of veterinary medicine (Anniballi et al. 2012; Woudstra et al. 2012).

From a diagnostic point of view, assays including an internal amplification
control allow for a more accurate evaluation of results, which is mandatory under
certain quality control schemes, and procedures have thus been implemented
accordingly (Braconnier et al. 2001; Akbulut et al. 2004; Messelhäusser et al.
2007; De Medici et al. 2009; Kirchner et al. 2010; Fach et al. 2011; Fenicia et al.
2011; Anniballi et al. 2012).

The differences observed among the subtypes at the genetic level have, of
course, major implications on PCR-based assays. It has been noted that some PCR
assays fail to detect certain subtypes due to sequence variations (De Medici et al.
2009). Thus, whenever new subtypes are reported it is important to re-analyze the
capacity of the assay used, and, if necessary, to amend primer and probe
sequences. Conversely, differences between subtypes have also been used to
specifically differentiate them (Umeda et al. 2009, 2010).

In addition to assays focusing on the detection of the bont genes, PCR
approaches have been described that amplify the ntnha gene located directly
upstream of bont within the toxin gene cluster (Raphael and Andreadis 2007; Hill
et al. 2010). The ntnha gene is present in all bont-containing gene clusters but is
less divergent than the bont itself (Peck 2009). Thus, it has been used as a valuable
surrogate marker for bont-positive clostridia (Raphael and Andreadis 2007; Hill
et al. 2010).
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With respect to botulism cases, a caveat is that the detection of bont (i) cannot
account for the amount of toxin produced; and (ii) does not necessarily discrim-
inate between intact and silent genes (Franciosa et al. 1994).

As an alternative to a deeper analysis of the genome of toxin-producing clos-
tridia, DNA-microarrays have been used to differentiate serotypes (Gauthier et al.
2005) and to reveal information on the different neurotoxin clusters (Raphael et al.
2008, 2010b). These and other methods described (e.g. amplified fragment length
polymorphism, pulsed-field gel electrophoresis, multilocus sequence typing, and
whole-genome sequencing) are valuable for characterizing the genome of BoNT-
producing clostridia and help to complement epidemiological investigations, but—
except for whole genome approaches—do not necessarily deduce the BoNT sero-
or subtype (Lindström and Korkeala 2006).

8 Laboratory Diagnostics of Botulism: Conclusion
and Perspectives

As botulism is a potentially life-threatening illness, a rapid diagnosis is important
to start medical treatment in due time. In this context, reliable laboratory diag-
nostics is essential to support and to confirm the suspected diagnosis. Starting from
clinical samples (serum, feces) and, if appropriate, also food, feed, or environ-
mental samples, the detection of the toxin itself remains the standard method.
Supporting information is obtained from the detection of the toxin-producing
pathogen, either directly out of the sample material or after anaerobic enrichment
culture. Both pathways together provide important and technically independent
pieces of information in an epidemiological investigation (Fig. 1).

While the MBA is still seen as the ‘‘gold standard’’ in BoNT detection, numerous
in vitro methods have been established based on different functional, immunolog-
ical, and spectrometric principles or combinations thereof. Technically challenging
is the fact that BoNT is not a single molecule but occurs in different serotypes and
subtypes. Ideally, a BoNT detection method is able to detect them all, providing a
similar or better sensitivity than the MBA. Furthermore, it should be fast and easy to
perform with a high precision and accuracy. Finally, an ideal BoNT detection
method should be compatible with the analysis of complex matrices.

Immunological techniques offer the advantage of being highly sensitive and
specific, and are easy to perform in routine laboratories. A number of assay for-
mats have been tested with complex matrices and reached sensitivities close to the
MBA and beyond, also in a multiplex format (Table 1). However, the main dif-
ficulty remains the discrimination of true-positive from false-positive signals and
the exclusion of false-negative results when analyzing unknown samples. Thor-
ough validation of an ELISA for BoNT detection in different matrices is indis-
pensable, because the extent of cross-reactivity between the antibodies used and
the matrix components in an unknown sample is difficult to predict. Also when
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using validated ELISA, it is still recommended to confirm results by either
functional or mass spectrometric methods with a high confirmative power.

Compared to immunological methods detecting the presence of BoNT, func-
tional in vitro assays like endopeptidase assays or the MBA offer the advantage of
detecting the activity of BoNT. Endopeptidase assays focus on the activity of the
BoNT LC only, but can include the presence of the HC depending on the antibodies
employed for immunocapture. Since endopeptidase assays inherently amplify the
signal intensity by the catalytic reaction, they reach very good sensitivities even
beyond the MBA (Table 1). However, as enzymatic assays they can be quite sen-
sitive to interference with matrix components, in particular other proteases. Hence,
results obtained should be confirmed by MBA or by MS-based methods.

Generally, MS-based methods have the advantage to deliver unambiguous
results, although they are still somewhat less sensitive and more time consuming
than other methods. However, in combination with immunoaffinity enrichment,
Endopep-MS and the parallel identification of the immunocaptured BoNT by
peptide fingerprint or protein sequencing has proven to be very sensitive and
enabled analysis of BoNT in clinical and food matrices (Table 1). In summary, a
suitable combination of modern BoNT detection methods based on different
technical approaches—functional, immunological, or spectrometric—is necessary
and able to deliver confirmed results in a reasonable amount of time.

Tremendous progress has been made in the development of in vitro BoNT
detection assays. However, more needs to be done. Highly specific and affine
BoNT antibodies as central tools for enrichment strategies are not easily available,
and only few of them have been commercialized. Along the same line, there is a
lack of commercially available in vitro tests (e.g., ELISA, endopeptidase assays)
which have been thoroughly validated on a broad range of complex matrices.
Another problem is that currently there is no certified BoNT reference material
available which can be used to compare different analytical approaches in expert
laboratories. In the future, it will be important to strengthen quality assurance for
the detection of BoNT and BoNT-producing clostridia by organizing regular
proficiency tests.

On a technical level, it is anticipated that in vitro BoNT detection methods will
be further multiplexed and miniaturized to detect and to differentiate the growing
number of BoNT subtypes. Array-based platforms for protein detection and
genetic characterization will become more important and replace singleplex
detection methods. With the rising sequencing capabilities and the associated drop
in cost it is expected that whole-genome sequencing will more and more replace
classical genetic typing methods currently in use to characterize strains. At the
same time, the gain of knowledge will allow a deeper understanding of physio-
logical processes within BoNT-producing clostridia.
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