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Abstract

Surface disinfectants are part of broader preventive strategies preventing the transmission of bacteria, fungi and viruses in
medical institutions. To evaluate their virucidal efficacy, these products must be tested with appropriate model viruses with
different physico-chemical properties under conditions representing practical application in hospitals. The aim of this
study was to evaluate a quantitative carrier assay. Furthermore, different putative model viruses like adenovirus type 5 (AdV-
5) and different animal parvoviruses were evaluated with respect to their tenacity and practicability in laboratory handling.
To evaluate the robustness of the method, some of the viruses were tested in parallel in different laboratories in a multi-
center study. Different biocides, which are common active ingredients of surface disinfectants, were used in the test. After
drying on stainless steel discs as the carrier, model viruses were exposed to different concentrations of three alcohols,
peracetic acid (PAA) or glutaraldehyde (GDA), with a fixed exposure time of 5 minutes. Residual virus was determined after
treatment by endpoint titration. All parvoviruses exhibited a similar stability with respect to GDA, while AdV-5 was more
susceptible. For PAA, the porcine parvovirus was more sensitive than the other parvoviruses, and again, AdV-5 presented a
higher susceptibility than the parvoviruses. All parvoviruses were resistant to alcohols, while AdV-5 was only stable when
treated with 2-propanol. The analysis of the results of the multi-center study showed a high reproducibility of this test
system. In conclusion, two viruses with different physico-chemical properties can be recommended as appropriate model
viruses for the evaluation of the virucidal efficacy of surface disinfectants: AdV-5, which has a high clinical impact, and
murine parvovirus (MVM) with the highest practicability among the parvoviruses tested.
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Introduction

Nosocomial virus infections can prove fatal to people who are

particularly vulnerable to infections. This population includes

premature infants, people with chronic or degenerative illnesses,

immuno-compromised patients and the elderly. In these groups,

viral gastroenteritis due to rotaviruses or noroviruses, which are

normally self-limiting infections, represent a harmful risk [1,2,3].

The same applies to respiratory viruses such as influenza,

parainfluenza, enteroviruses or respiratory syncytial virus (RSV),

as was recently demonstrated by a large RSV outbreak in an adult

hematology unit in Heidelberg [4,5,6,7]. In particular, non-

enveloped viruses may persist on surfaces for several days or even

months [8] and can be transferred directly from contaminated

surfaces to susceptible patients [9,10]. Therefore, the disinfection

of surfaces frequently touched by patients and staff such as door

handles, faucets, and railings plays an important role in the

prevention and control of viral outbreaks in healthcare settings.

Considering that non-enveloped viruses such as noroviruses and

enteroviruses are resistant to the majority of chemical disinfec-

tants, only biocides with proven virucidal efficacy can be used.

This can only be achieved by ensuring that disinfectants pass a

virucidal activity test performed in compliance with good

laboratory practice and country-specific standards. In Europe,

EN 14476 describes the standard for determining virucidal

activity, which involves two non-enveloped viruses and a

quantitative suspension assay [11]. This quantitative suspension

test is performed in a test tube. The shortcoming of this assay is

that the virus particles are suspended in a large volume of

disinfectant, which makes inactivation of viruses easier due to the

high amount of contact between the disinfectant and virus

particles.

Therefore, suspension tests do not reflect real conditions. In

practice, viruses are immobilized on objects and/or work surfaces

with a high protein load from body fluids, which may protect

viruses from disinfection. To ensure that surface disinfectants are

able to inactivate microorganisms, they must be tested for their

efficacy under close to real-life conditions. This type of practical

assay has long been standardized for the testing of the bactericidal

activity of chemical disinfectants [12,13,14]. Bactericidal disinfec-

tants are tested stepwise according to European test principles,

beginning with a suspension test (EN phase 2, step 1) and then a
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quantitative non-porous carrier test simulating practical conditions

(EN phase 2, step 2) [14,15]. In contrast to the test for bactericidal

activity, until now, no European standard for virucidal efficacy

testing that simulates practical conditions exists. Such a test should

be based on model viruses that can be dried on carriers. The

choice of model viruses is of great importance when establishing

such a carrier test. The requirements for model viruses are as

follows: high resistance to disinfectants and drying, combined with

simple virus propagation in cell culture. The model viruses that are

already being used in the suspension test and that fulfill these

requirements can be taken into account. In the suspension test,

according to EN 14476 (phase 2/step 1), poliovirus type 1 LSc-2ab

and adenovirus type 5 strain (AdV-5) Adenoid 75 are used as

model viruses. Both viruses are suitable with respect to their

resistance to active ingredients, but polioviruses have some

drawbacks. In general, the use of poliovirus is only temporary,

and in the future, such use will require higher biosafety levels

because of the global polio eradication program, which was

initiated by the World Health Organization (WHO) in 1988 [16].

Furthermore, poliovirus infectivity is significantly decreased after

drying [17].

Therefore, poliovirus should be replaced with an alternative

model virus. For this purpose, animal parvoviruses such as the

bovine parvovirus (BPV) strain Haden, which is used for

chemothermal disinfection in the quantitative suspension test

and a national surface test [11,18,19], can be used because of their

known environmental stability and their practicability for labora-

tory use and because they do not pose any hazard to employees

performing the tests. However, BPV is not ideal because this

single-stranded DNA virus requires primary cells for replication,

meaning that it is difficult to handle in a routine testing laboratory.

In contrast, other animal parvoviruses, such as minute virus of

mice (MVM), porcine parvovirus (PPV), and canine parvovirus

(CPV), are cultivable on continuously growing cells and are

comparable to bovine parvovirus in terms of stability. Thus, they

can be chosen as model viruses for a carrier test.

Objectives
Our study was designed to address two objectives, which are

both important for efficacy testing of surface disinfectants. The

first aim was to establish a virucidal quantitative carrier test that

simulates practical conditions in a similar manner to the long-

established bactericidal carrier test. Viruses were dried on stainless

steel discs and exposed to different biocides, which are common

ingredients of commercial surface disinfectants.

The second aim was to choose and evaluate reliable model

viruses for such a test using AdV-5 and different animal

parvoviruses. MVM strain Crawford, PPV strain NADL-2 and

CPV type 2 were compared with BPV, which is already used to

test chemo-thermal inactivation [11,18]. For murine and porcine

parvoviruses, the investigation was performed as a multi-center

study in order to evaluate the inter-laboratory robustness of this

method.

Materials and Methods

Viruses and cell cultures
Bovine, canine, murine and porcine parvovirus (PV) and AdV-5

were used in the experiments. Test virus suspensions were

prepared by infecting susceptible cells with different multiplicities

of infection (MOI). For BPV (strain Haden, provided by Prof.

Böhm, University of Hohenheim, Stuttgart, Germany), fibroblastic

bovine embryonic lung (BEL) cells were used (established and

propagated by Labor Prof. Enders, MOI 1); for canine PV type 2

(CPV) (kindly provided by Prof. Truyen,University of Leipzig,

Leipzig, Germany), CRFK cells were used (provided by Dr. Riebe

of the Collection of Cell Lines in Veterinary Medicine (CCLV),

Friedrich-Loeffler-Institute, Isle of Riems, Germany, MOI 0.1); for

murine PV (MVM [minute virus of mice], strain Crawford,

ATCC VR-1346), A9 cells were used (European Cell Culture

Collection (EACC No 85011426) provided by Paul-Ehrlich-

Institute, Langen, Germany, MOI 1.0); for porcine PV (PPV;

strain NADL-2, ATCC VR-742), PK13 cells were used (ATCC

CRL 6489 provided by Paul-Ehrlich-Institute, MOI 1); and for

AdV-5 (strain Adenoid 75, ATCC VR-5), A549 cells (ATCC

CCL-185, MOI 0.01) were used.

Isolation and culture of primary bovine embryonic lung
fibroblasts

Bovine embryonic lung cell cultures were prepared from a

5-month-old calf fetus. In brief, the lung was cut into tiny pieces.

The cut tissue was transfered into sterile 100 mL beaker with

sterile stir bar and floated on 700 ml trypsine/EDTA solution

(Biochrome, Berlin, Germany), stirring slowly for 90 min. The

solution containing tissue fragments was transferred to sterile

50 mL tubes and media was added. The 50 mL tubes were spin at

1500 rpm for 10 min. The supernatant was removed and the

pellet washed twice with 10 mL of MEM media with 10% FBS.

Then the pellet was resuspended in 20 mL of DMEM media with

20% FBS and 1% antibiotic/antimycotic and transfered to a T75

tissue culture flask (Greiner Bio-one, Frickenhausen, Germany).

The primary cells were incubated at 37uC, 5%CO2 and checked

every day for fibroblasts and media colour. The trypsine

procedure was repeatedly performed with the remaining lung

tissue. After 7 days, fibroblasts of 3 different harvests exists and

were stored in liquid nitrogen until used.

Virus propagation
After virus inoculation of the cells, the supernatant was replaced

by a suitable cell culture medium: for PPV, Iscove’s Modified

Dulbecco’s Medium (IMEM), Biochrom AG, Germany; for

MVM, PPV and BPV, Dulbecco’s minimum essential medium

(DMEM, Sigma-Aldrich, Germany); for AdV-5, minimum essen-

tial medium (MEM, Biochrom AG, Germany) with 10% (for

MVM), 5% (for PPV) or 1% (for adenovirus) fetal calf serum (FCS,

Sigma-Aldrich, Germany). The cells were incubated at 37uC until

70–95% of the cells exhibited a cytopathic effect (for adenovirus,

approximately 10–12 days; for parvoviruses, 10–14 days). The

cells were frozen and thawed twice, followed by centrifugation at

1600 g for 10 minutes. The supernatant was aliquoted as test virus

suspensions and stored at 280uC.

Biocides
Five biocides were used in this study: glutaraldehyde (GDA)

(2500, 2000, 1000, 500, 125 ppm), peracetic acid (PAA) (1500,

1000, 500, 200, 50 ppm), ethanol (60, 55, 50, 45, 40%, v/v),

1-propanol (60, 50, 40, 30, 20, 10%, v/v) and 2-propanol (60, 50,

40, 30, 20%, v/v).

Dilutions of PAA, GDA and the alcohols (Sigma-Aldrich,

Seelze, Germany) were prepared with hard water (300 ppm

CaCO3, pH 7.0 - in accordance with EN 14476) immediately

before the inactivation experiments [11].

Preparation of virus inoculum
Nine volumes of test virus suspension were mixed with one

volume of 0.3% w/v of bovine serum albumin (BSA, clean

Carrier Test for Virucidal Surface Disinfection
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conditions), resulting in a final BSA concentration of 0.03% in the

virus inoculum.

Disc washing
The cleaning of the stainless steel discs (20 mm diameter, GK

Formblech GmbH, Berlin, Germany) was performed as already

described [20,21]. In brief, prior to use, the discs were placed in a

container with an appropriate quantity of 5% (V/V) Decon 90 for

60 min, in a manner that the discs don’t stick together.

Subsequently, the discs were rinsed with running freshly distilled

water for 10 seconds. The rinsing was repeated with double

distilled water for a further 10 seconds in order to ensure complete

removal of the surfactant. Then, the the discs were diped in a bath

containing 70% (V/V) ethanol for 15 min. At the end, the discs

were removed and rinsed with double distilled water for at least

10 seconds. Sterilization was done by autoclaving.

Preparation of the carriers and test performance
A total of 50 ml of the virus inoculum was deposited on each

pre-treated carrier and dried in a desiccator (700–800 mbar, for

30 min). Then, the discs were transferred into plastic vial holders

(Sarstedt AG & Co. KG, Nümbrecht, Germany) containing 0.5 g

glass beads (0.25–0.50 mm diameter, Carl Roth GmbH, Karls-

ruhe, Germany), covered with 100 ml of the biocide (for the

control carriers t5 min, 100 ml of hard water was applied) and

incubated for 5 minutes. Immediately at the end of the exposure

time, 900 ml of ice-cold culture medium was added to stop the

activity of the biocides. Vials were vortexed for 1 min to recover

the residual viruses, and the eluate was immediately diluted

10-fold for determining viral infectivity. For the recovery rate,

50 ml of the virus inoculum was deposited on each pre-treated

carrier and was analyzed without drying (inocculum control). The

t0 min control was immediately determined after drying. All tests

were carried out at ambient temperatures of 20–22uC with three

replicates (carriers) and a minimum of two independent experi-

ments conducted on different days.

Determination of the infectivity and statistical analysis
Infectivity was determined by transferring 100 ml of each

dilution into eight wells of a 96-well microtiter plate with

permissive cells. The cell cultures were monitored for cytotoxic

effects for the same incubation time as described for the virus

propagation.

Virus titers were determined using the methods of Spearman

[22] and Kaerber [23] and expressed as log10TCID50/ml,

including standard deviation. The control titer of the different

viruses ranged from 5.66106 to 3.76108 TCID50/ml (in detail: the

titer ranges for AdV-5 were from 0.26107 to 3.76108 TCID50/

ml; for BPV, from 0.26107 to 0.86108; for CPV, from 0.36106 to

0.46106; for MVM, from 5.66105 to 2.56108; and for PPV, from

6.36105 to 8.36106). Titer reduction is presented as the difference

between the virus titer of the water control and the test sample

exposed to the biocide. This difference is given as the log10

reduction factor (log10 RF), including its 95% confidence interval

(CI) [18]. A 4-log10 reduction is required for efficacy (an

inactivation of 99.99%). Biologically relevant log10 RF differences

between viruses or laboratories were defined as $1 step

considering the lower and upper bounds of the 95% CI [24].

Significant differences were calculated from at least 6 parallel

titrations.

Participants
Five German laboratories participated in this study – referred to

as Lab 1, Lab 2, Lab 3, Lab 4, and Lab 5. Participation was open

and free of charge to all laboratories.

Results

The concentrations of the biocides used here were chosen to

allow us to observe kinetics and the transition from non-efficient to

efficient virus inactivation. The participating laboratories tested all

biocide concentrations on 2 test days and performed the test on

triplicate carriers per test day. The difference in the virus titer

before and after drying on the carriers was ,0.5 log10 (Tab. 1).

However, because each laboratory used its own virus stock, the

different titers of the test virus suspension from the different labs

are, to some extent, responsible for any inter-laboratory and inter-

virus log10 RF differences (Tab. 1 and Tab. 2).

For ethanol and 1-propanol, virucidal efficacy was observed

only for AdV-5 (Tab. 1), and all parvoviruses were not sufficiently

inactivated (Tab. 2). At concentrations $55% (v/v) for ethanol

and $30% (v/v) for 1-propanol, the titer reduction for AdV-5 was

at least 4 log10 steps (Tab. 1). Only low inactivation was observed

with 2-propanol.

A $4 log10 inactivation of AdV-5 was also detected for GDA at

concentrations of 125 to 500 ppm (Tab. 1). Furthermore, a

concentration-dependent increase of the virucidal efficacy of GDA

was detectable for all parvoviruses. GDA at 500 ppm was not able

to sufficiently reduce parvovirus titers (Tab. 2). At concentrations

of 2500 ppm, a 4 log10 reduction of only MVM was detected,

although residual virus could still be found (Fig. 1 a). Whereas PPV

showed similar kinetic as BPV (Fig. 2 a). Testing CPV, a 99.99%

reduction was limited by the cytotoxicity and/or the titer of the

virus inoculum used (Tab. 2). Therefore, in some cases, the log10

RFs are marked with ‘‘$’’, indicating that the determination of the

log10 RF was limited due to cytotoxicity.

With respect to PAA, a concentration-dependent log10 RF

increase could be observed for all parvoviruses (Tab. 2). MVM was

as resistant to PAA as BPV (Fig. 1 b), while PPV was more

susceptible to PAA (Fig. 2 b). For AdV-5, an log10 RF $4 was

detected at PAA concentrations #1000 ppm (Tab. 1).

In summary, our data reveal a concentration-dependent

virucidal efficacy for the biocides. All parvoviruses have a similar

level of stability when treated with GDA, while PPV is more

sensitive to PAA than the others. Additionally, AdV-5 exhibited

higher susceptibility when compared to the parvoviruses.

For the five biocides, all log10 RF data were compared with

regard to relevant intra- and inter-laboratory differences of the

tested viruses. No such biologically relevant differences were

observed for MVM and PPV when treated with GDA and PAA.

In one case, the inactivation kinetics of PPV resulted in an inter-

laboratory heterogeneous (non-relevant) discrepancy between two

labs (500 ppm PAA). Furthermore, no intra-laboratory differences

were demonstrated for all tested viruses (Tab. 1 and 2).

Discussion

Although surface disinfection with virucidal products is an

important tool in the prevention of nosocomial viral infections,

information on the efficacy of virucidal disinfectants is still missing.

Disinfection research in virology is somewhat neglected, although

prevalence studies and personnel monitoring have shown

contamination hazards [25]. The useful dilutions and contact

time of virucidal surface disinfectants are still based on concen-

trations that will pass either an European suspension test, that is,

Carrier Test for Virucidal Surface Disinfection

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e86128



Table 1. Concentration-dependent virucidal activity of 5 biocides against Ad-5.

adenovirus type 5

biocide Lab 1 Lab 2 Lab 5

log10 TCID50/ml log10 RF ±95%CI log10 TCID50/ml log10 RF ±95%CI log10 TCID50/ml log10 RF±95%CI

control inocculum 8.05 7.26 n.t.

t0 min n.t. 6.61 n.t.

t5 min 8.14 6.42 6.70

GDA (ppm) 125 5.45 2.6960.50 1.57 4.8560.45 2.18 4.5260.50

500 2.36 5.7761.23 1.50 4.9260.44 1.50 5.2060.54

1000 1.86 6.2760.35 1.50 4.9260.44 1.50 5.2060.54

2000 1.86 6.2760.35 2.50 3.9260.44 1.50 5.2060.54

2500 1.80 6.3460.32 2.50 3.9260.44 1.50 5.2060.53

control inocculum n.t. 7.26 n.t.

t0 min n.t. 6.61 n.t.

t5 min 7.63 6.42 7.44

PAA (ppm) 50 7.65 20.0260.38 6.44 20.0260.59 7.17 0.3360.54

200 7.21 0.4160.58 1.84 4.5860.68 4.02 2.9260.52

500 4.82 2.8160.96 1.50 4.9260.44 1.99 5.4560.53

1000 2.50 5.1360.25 1.50 4.9260.44 1.67 5.7760.45

1500 2.52 5.1160.26 1.50 4.9260.44 1.50 5.9460.36

control inocculum n.t. 7.13 n.t.

t0 min n.t. 6.50 n.t.

t5 min 8.18 6.67 7.73

ethanol (v/v) 40% 7.95 0.2360.90 5.98 0.6960.39 3.64 2.5560.52

45% 6.80 1.3860.79 n.t. n.t. n.t. n.t.

50% 6.28 1.9061.39 5.04 1.6360.55 1.50 6.2360.41

55% 3.26 4.9261.11 1.54 5.1360.31 1.50 6.2360.41

60% 2.68 5.5060.55 1.50 5.1760.30 1.50 6.2360.41

control inocculum n.t. 7.38 n.t.

t0 min n.t. 6.77 n.t.

t5 min 8.32 6.65 7.21

1-pro-panol
(v/v)

10% 8.18 0.1560.00 5.69 0.9660.45 6.93 0.2860.54

20% 7.72 0.6060.39 5.52 1.1360.91 1.55 5.6660.41

30% 3.05 5.2760.87 1.54 5.1160.39 1.50 5.7160.40

40% 2.70 5.6360.51 1.67 4.9860.43 1.50 5.7160.40

50% 2.39 5.9460.62 1.61 5.0460.47 1.50 5.7160.40

60% 3.80 4.5260.75 1.90 4.7560.45 1.50 5.7160.40

control inocculum n.t. 7.38 n.t.

t0 min n.t. 6.77 n.t.

t5 min 8.34 6.65 n.t.

2-pro-panol
(v/v)

20% 7.97 0.3760.27 n.t. n.t. n.t. n.t.

30% 7.68 0.6760.50 n.t. n.t. n.t. n.t.

40% 7.43 0.9260.36 6.08 0.5760.39 n.t. n.t.

50% 7.01 1.3360.40 n.t. n.t. n.t. n.t.

60% 7.10 1.2560.92 5.90 0.7560.39 n.t. n.t.

doi:10.1371/journal.pone.0086128.t001
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EN 14476, or a national standard, such as the German DVV/

RKI suspension test [11,18]. In order to improve time/concen-

tration relations of surface disinfectants which reflect dayly needs

in clinical surroundings further more practical testing is necessary.

Therefore, a virucidal quantitative carrier test that simulates

practical conditions was evaluated in this study. The method was

based on the EN 13697 standard for the following reasons [14,20]:

In 1993, experts from the veterinary, food, industrial, domestic

and institutional fields within the framework of CEN/TC 216

developed such a quantitative surface test for bactericidal and

fungicidal products that mimics real conditions [26]. Derived from

this work is the European standard EN 13697 [14], a quantitative

non-porous surface test for the evaluation of the bactericidal and/

or fungicidal activity of chemical disinfectants without mechanical

action (phase 2, step 2). Ring trials during the 1990s demonstrated

that this surface test, when using dried bacteria or fungi on

stainless steel carriers, could result in 10-fold lower reduction

factors than those obtained using suspension tests [13]. This

observations are also supported by studies of Peters and Spicher on

Staphylococcus aureus which showed an increased resistance to

formaldehyde, from 0.8% in the suspension test to 1.2% in the

surface test [27,28]. Based on this observatiuons, it is assumed that

virucidal disinfectants might also show an increased resistance in

the surface test. However, a virucidal surface test is required to

substantiate this notion and for further knowledge.

The next issue of this study was to find suitable candidates for

the test viruses of a surface test.. In Europe, model viruses that

cover a broad spectrum of physico-chemical properties have been

used for testing and verifying the efficacy of disinfectants under

practical conditions. Currently, poliovirus and AdV-5 are used by

the European Standard EN 14476 as model viruses for

quantitative suspension tests [11]. Poliovirus was excluded from

this study because it is relatively sensitive to the drying process,

with a loss of titer of approximately 3 log10 [17]. In addition, due

to the WHO polio eradication program, poliovirus will need to be

substituted with another model virus with similar properties in the

future. The thermoresistant virus BPV is used for the determina-

tion of the virucidal activity of chemothermal disinfection

procedures in both the EN 14476 and the DVV/RKI guideline.

However, BPV is difficult to grow in the laboratory. In contrast,

PPV and MVM are easy to propagate. Therefore, this study

investigated the suitability of AdV-5 and four different animal

parvoviruses (BPV, CPV, MVM, and PPV) as putative model

viruses that can potentially substitute for poliovirus.

One of the basic requirements for a model virus is stability

during a drying process. Our data showed that all of the viruses we

tested fulfill this requirement. The difference between the virus

titer before and after drying on the carriers was #0.5 log10 (data

not shown). This result was to be expected because all animal

parvoviruses are known to be very stable when exposed to

environmental influences such as chemicals or heat [29]. In

contrast, it is known that many enveloped viruses lose significant

infectivity meaning a small difference between virus after drying

and the limit of virus detection [30].

Furthermore, our results demonstrated that in all tests with

BPV, residual viruses were confirmed. Thus, 99.99% inactivation

could not be achieved using the tested conditions. Most of the

tested parvoviruses revealed similar log10 reductions with GDA

(Tab. 2). Only for PPV exposed to PAA was a 4 log10 reduction

achieved. Similar to results were found by Eterpi et al., the

parvoviruses (PPV, MVM) exhibited higher stability than the

adenovirus when exposed to different active substances and

disinfectants [29]. Our experiments showed also that GDA and

PAA were found to be very active against AdV-5 (Tab. 1). A log10
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reductions of $4 of the adenovirus was achieved by $250 ppm

(range 125 to 500) GDA, 500 ppm (range 200 to 1000) PAA.

While 1-propanol (30% v/v) was the most effective alcohol used to

inactivate AdV-5 on the carrier, for ethanol, higher concentrations

($55%) were needed. Treatment with 2-propanol did not result

in a 4 log10 reduction of AdV-5, even at a concentration of 60%

(v/v). Similar ranges for GDA, PAA, and Ethanol were fond in

study carried out by the virucidal task group of CEN/TC 216:

Adv-5 was inactivated in a carrier test by 500 ppm GDA,

#500 ppm PAA, and $60% (v/v) Ethanol (personal communi-

cation, Dr. Graziella Morace, VTG Project Leader of TC 216).

Variation in the activity range whether of different sources or

passages of viruses and cell lines were also found in the VTG

study. Therefore, reference test for virus inactivation with a

defined product (e.g. GDA and PAA) in parallel with a product

under test for internal control of the test is needed.

All PVs were stable against all tested alcohols (Tab. 2). Stability

against ethanol and 2-propanol has also been demonstrated

previously in tests with two parvoviruses (CPV and Kilham rat

virus), confirming our data [31]. Although in this study, BPV and

CPV demonstrated the highest stability, both viruses are difficult

to handle in the laboratory. In contrast, MVM reaches high viral

Figure 1. Concentration-dependent virucidal efficacy of a) glutaraldehyde and b) peracetic acid against MVM tested in 2 of the 5
laboratories compared to BPV (vertical lines indicate the 95% confidence intervals).
doi:10.1371/journal.pone.0086128.g001
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titers and is relatively uncomplicated to handle in the laboratory.

Our data on MVM reveal that the test accuracy across the

participating laboratories was relatively high, and the inactivation

kinetic was close to that of the established test virus BPV.

Therefore, along with MVM, AdV-5, despite its more fragile

character, seems to be an appropriate model virus, particularly

due to its biological properties and the importance of adenoviruses

in human medicine. Furthermore, due to the clinical impact of

human noroviruses, we recommend the additional use of murine

norovirus (MNV), a surrogate virus for human noroviruses, in

combination with AdV-5 and MVM for future guidelines or

standards that evaluate the virucidal efficacy of surface disinfec-

tants. In the revised version of prEN 14476:2013, MNV is

included as a test virus. In the food and industrial sectors, multiple

studies evaluating norovirus inactivation on surfaces have been

recently performed [21,32,33,34,35]. Some studies were carried

out using MNV on stainless steel carriers [21,35]. Magulski et al.

[21] tested the inactivating properties of several chemical biocides

Figure 2. Concentration-dependent virucidal efficacy of a) glutaraldehyde and b) peracetic acid against PPV tested in 3 of the 5
laboratories compared to BPV (vertical lines indicate the 95% confidence intervals).
doi:10.1371/journal.pone.0086128.g002
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using MNV. MNV demonstrated a similar stability during drying

as AdV-5 and parvoviruses. The virucidal susceptibility of MNV is

similar to those of PPV in our study [21]. Concentrations of

1500 ppm for PAA and 2500 ppm for GDA were needed to

inactivate 99.99% of MNV within 5 min [21]. However, the

activity range of alcohols was nearly the same as for AdV-5 in our

study. Ethanol (50%, v/v) and 1-propanol (30%, v/v) could

inactivate MNV-1 on stainless steel discs by 4 log10 units within

5 min, and 2-propanol was not active. As already mentioned, one

of the aims of our study was to evaluate the reproducibility of the

method used. We could show, that there were no considerable

intra- and inter-laboratory log10 RF differences discerned for the

PVs. The observed log10 RF discrepancies were found at

concentrations with low efficacy and might be caused by a

number of factors (e.g., the manner of the preparation of the test

virus suspension, limitations due to cytotoxic reactions, inactiva-

tion kinetics). Our study has some limitations that are based on the

nature of virus cultivation. For example, if all labs used viruses and

cells from the same origin at an identical passage number and

equal culture media, as well as under other identical conditions,

the results would perhaps differ to a lesser extent. On the other

hand, the performance of our study includes the biological variety

that appears during disinfectant testing. High standardization for

virus cultivation and reproducible measures to minimize cytotox-

icity are necessary for performing this method. Further standard-

ization of this method might be achieved by the introduction of

certain reference biocides with defined reference ranges, such as

GDA, PAA, or ethanol. This and further ring trials will contribute

to improving the comparability of virucidal tests between

laboratories.

Nevertheless, our results present a feasible method that enables

an efficacy assessment that simulates applications in hospital

settings.

Conclusion

Based on our results MVM and AdV-5 can be recommended as

appropriate model viruses for the evaluation of virucidal efficacy of

surface disinfectants. These viruses, together with MNV as a

surrogate of human norovirus, are well-suited model viruses for

test guidelines that simulate practical conditions for surface

disinfectants using stainless steel carriers as the surface. In

addition, all viruses can be cultivated to high titers and

demonstrate high stability during the drying process.
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