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ABSTRACT  

The induction of 2F5- and 4E10-like antibodies broadly neutralising HIV-1 and targeting the 
membrane external proximal region (MPER) of the transmembrane envelope protein gp41 would 
be a major advancement for the development of a preventive HIV-1 vaccine but successful 
attempts remain rare. Recent studies demonstrated that broadly reactive antibodies develop 
relatively late during infection and after intensive affinity maturation. Therefore, a prolonged 
antigen delivery might be beneficial to induce them. Replicating foamy viruses which are 
characterised by apathogenic but persistent infection could represent suitable carrier viruses for 
this purpose. In order to develop such a system, we modified the accessory foamy virus Bet 
protein to contain the MPER of gp41, or the MPER linked to the stabilising fusion peptide 
proximal region (FPPR) of gp41 and analysed here the antigenic and immunogenic properties of 
such hybrid proteins. The antigens, expressed and purified to homogeneity, were recognised by the 
monoclonal antibodies 2F5 and 4E10 with nanomolar affinities and induced high levels of 
antibodies specific for gp41 after immunisation of rats. The antisera also bound to virus particles 
attached to infected cells and peptide-based epitope mapping showed that they recognised the 2F5 
epitope. Although no HIV-1 neutralising activity was observed, the presented data demonstrate 
that using the foamy virus Bet for HIV-1 epitope delivery is successfully applicable. Together with 
the attractive potential for sustained antigen expression after transfer to replicating virus, these 
results should therefore provide a first basis for the development of chimeric foamy viruses as 
novel HIV-1 vaccine vectors.  
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INTRODUCTION 
 
For HIV-1 vaccine development, induction of broadly neutralising antibodies 
(bnAb) is the most promising approach to prevent infection and to avoid 
integration of the provirus into the genome of the target cell where it may persist 
[1, 2]. The viral envelope proteins composed of the surface and transmembrane 
(TM) subunits are the main target of neutralising antibodies and several potent 
bnAb directed against each subunit have been isolated from infected patients 
(reviewed in [3, 2]). Most of these antibodies show unique properties such as a 
high degree of somatic mutation, prolonged CDR3 loops and polyreactivity and 
occur in about 20% of infected individuals only after about 4 years of infection [4-
7]. The findings suggest that these antibodies may arise from rare B-cell 
stimulation events or after intensive affinity maturation [8, 1, 6], which is only 
partly achieved by repeated antigen administration [9]. Given that various 
attempts to induce bnAb completely failed or resulted in low-titred neutralising 
antibody responses with limited breadth [2] alternative approaches should be 
explored. Replicating viral vectors and attenuated vaccines have been found to be 
the most effective way to prevent infection in the non-human primate model [10-
13] and permit long-term antigen delivery by simultaneously stimulating strong 
cellular immune responses [10]. However, most of the replicating systems 
available to date raise safety concerns that limit/exclude their application in 
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humans [14]. Foamy viruses (FV) are apathogenic viruses of the Spumaviriniae 
subfamily which are characterised through persistent infection, preferential 
integration sites, genetic stability and wide tissue tropism [15-18], favouring their 
application for gene therapy and vaccine purposes [19-22]. Similarly, the feline 
foamy virus (FFV) was used as convenient model for the application in cats [23-
26]. In order to develop a vector system that could be tested in small animals and 
encouraged by previous immunisation studies with an antigen of the feline 
calicivirus [25], a strategy for HIV-1 epitope delivery using the accessory FFV 
Bet protein was evaluated here. Bet is particularly useful as carrier antigen as it is 
highly expressed in infected cells resulting in a strong antibody response in 
infected animals [27-29] and it was reported to be secreted and taken up by 
adjacent cells [30, 31], permitting the presentation of proteasome-unprocessed 
conformational epitopes to immune cells. As HIV-1 antigen, the membrane 
proximal external region (MPER) of the TM protein gp41 of HIV was selected to 
be appended to the FFV Bet protein. This domain is targeted by three bnAb, 2F5, 
Z13 and 4E10, and is therefore of particular interest as vaccine target [32-35]. 
However, MPER-based vaccine development is complicated by the structural 
flexibility of the MPER required to promote membrane fusion and uncertainty 
about the conformation able to induce bnAb [36-41]. Furthermore, the necessity 
for a lipid environment for induction of MPER directed bnAb is still under 
intensive investigation [42, 43]. In structural analyses, the 2F5-bound epitope 
ELDKWA forms a slightly distorted type 1 β-turn compared with an α-helical 
structure when the MPER is analysed alone [37, 44, 39]. Importantly, 2F5 also 
shows a higher affinity to antigens fixing its epitope as a β-turn compared to an α-
helix, indicating that this conformation might resemble the initial B-cell trigger 
[45-48]. In contrast, the bnAb 4E10 recognises the adjacent α-helical core 
sequence NWFN/DIT in the MPER and its affinity is enhanced when the antigens 
support α-helical structures [49-51]. Recent investigations supported an 
interaction of the MPER with the fusion peptide proximal region (FPPR) of gp41 
and also showed that peptides corresponding to the FPPR increased binding of 
2F5 to its epitope [52-55]. This was attributed to a FPPR-induced orientation of 
MPER residues coinciding with an increased level of β-turn/β-sheet conformation 
[56, 57]. In order to use its constraining property, an additional antigen containing 
the FPPR and the MPER was included here. With the objective to evaluate bnAb 
binding to such novel Bet/HIV-1 gp41 hybrids before transfer to replicating FFV 
and to study the epitope specificity of antibodies obtained in response to 
vaccination, recombinant fusion proteins of the FFV Bet protein and the MPER 
and FPPR sequences of gp41 of HIV-1 were produced in this study, characterised 
and the antibody response in immunised rats was studied. 
 

MATERIAL AND METHODS 
 

Expression plasmids 

To clone pQE-Bet and pQE-Bet/HIV-1 constructs, the complete FFV Bet 
sequence (Uniprot ID O93036) with additional four amino acids (AGAA) was 
amplified from the plasmid pBC12-Bet with the primers FFV Bet-fwd (5’-
atggcttcaaaatacccggaagaaggacca-3’) and FFV Bet-rev (5’-tcatctgactctgaagctggt-
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gcagccggctag-3’) containing a NaeI site and introduced into the StuI and BamHI 
linearised prokaryotic expression vector pQE-30-Xa (Qiagen, Hilden, Germany). 
The constructs pQE-BetE1, pQE-BetE2 and pQE-BetE1-E2 were obtained by 
subcloning E1, E2 or E1-E2 sequences (Fig. 1A) with additional N-terminal linker 
amino acids (SGSAGAGAGGG) from two synthetic plasmids (GeneArt, 
Regensburg, Germany) which were introduced into the NaeI/HindIII digested 
pQE-Bet vector. All constructs were verified by sequencing. 
 

Protein purification 

After optimisation in 96 deep well plates [58], proteins were expressed in 
Escherichia coli SCS-1 bacteria (Agilent Technologies, Austin, USA) using 2YT 
medium, 37°C and 1 mM IPTG. For lysis, bacterial pellets were resuspended in 
PBS containing 0.1 mg/ml lysozyme, incubated on ice for 15 min and then 
sonicated for 3 x 20 s. Inclusion bodies were collected by centrifugation (10.000 
g, 20 min) and resuspended in buffer A (100 mM NaH2PO4, 10 mM TrisHCl, 6 M 
GuHCl, 300 mM NaCl, 10 mM imidazole, pH 8.0). After centrifugation 2 h later 
(25.000 g, 20 min, 4°C), the supernatant was loaded onto a HisTrap Ni-NTA 
column (GE Healthcare, Munich, Germany), washed with buffer B (100 mM 
NaH2PO4, 10 mM TrisHCl, 8 M urea, 300 mM NaCl, 10 mM imidazole, pH 8.0) 
and bound proteins released using buffer C (100 mM NaH2PO4, 10 mM TrisHCl, 
8 M urea, 300 mM NaCl, 500 mM imidazole, pH 8.0). Eluted fractions (2 mg/ml) 
were incubated with 20 mM β-mercaptoethanol for at least 3 h and renatured by 
1:20 dilution in refolding buffer (50 mM HEPES, 300 mM NaCl, 100 mM L-
arginine, pH 9.0) for 24 h at room temperature followed by dialysis overnight 
against phosphate buffer (50 mM NaH2PO4, 300 mM NaCl, pH 8.0). Proteins 
were concentrated by another Ni-NTA chromatography step using imidazole-
supplied phosphate buffers. 
 

ELISA and serum titration 

ELISA plates (Greiner Bio-One, Frickenhausen, Germany) were coated with 100 
ng/well of Bet/HIV-1 antigens, or 200 ng/well of purified gp41 (Uniprot ID 
P04578, amino acids 532-681) expressed in bacteria or synthetic HIV peptides 
(E1: AAGSTMGAASMTLTVQARLLLS-KKKK, E2: KKKKEQELLELDKWA-
SLWNWFNITNWL, GeneCust, Dudelange, Luxembourg) and then blocked for 1 
h at 37°C with 5% BSA in PBS/0.05% Tween (PBS-T). For each serum a tenfold 
dilution in 2.5% BSA with PBS-T was prepared in triplicates and plates were then 
incubated with the samples for 1 h at 37°C. After washing and addition of a 
peroxidase (HRP) coupled anti-rat IgG-HRP antibody (Dako, Hamburg, 
Germany, 1:3000) plates were developed with OPD (o-phenylendiamine 
dichloride) and read at 492 nm. For calculation of endpoint titres, the absorbance 
measured for immune sera at every dilution was plotted against the dilution step 
and data were fitted by a logarithmic regression function. Endpoint titres were 
defined as the highest serum dilution exceeding the mean absorbance of six 
control wells of pre-immune serum plus three standard deviations, corresponding 
to a confidence level of 98 % [59]. Data were statistically evaluated using the 
VassarStats software (http://vassarstats.net) by applying Shapiro-Wilk and F-test 
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analysis for testing normal distribution and equality of variances. For comparisons 
between groups the Kruskal-Wallis one-way analysis of variance and the Welch-t-
test for direct comparison between two groups was used. Differences were 
considered significant, if p-values below 0.05 were obtained. 
 

Surface plasmon resonance (SPR) 

SPR measurements were performed on a Biacore X100 device with anti-human 
IgG-Fc specific antibodies immobilised on CM5 chips (all GE Healthcare, 
Munich, Germany). 2F5 or 4E10 in 50 mM NaH2PO4, 300 mM NaCl, pH 8.0 
were captured at 300-500 response units (RU) on flow cell 2 and three increasing 
concentrations of fusion proteins diluted in 50 mM NaH2PO4, 300 mM NaCl, pH 
8.0 were injected on both flow cells. After regeneration with 10 mM glycine, pH 
2.0, and antibody recapturing, blank resonance was measured by three injections 
of dilution buffer. Sensograms were reference cell subtracted and blank 
normalised values from at least two repeated experiments. Curves were fitted 
using the 1:1 Langmuir algorithm and quality of fitting was checked by assuring 
KD values in the range of measured protein concentrations, plausible Rmax values, 
small 2 values as well as residuals within recommended borders. 
 

Immunisation 

Wistar rats (Charles River, Wilmington, USA) in groups of four were immunised 
three times at intervals of three weeks with 250 μg of each antigen. 1 ml of protein 
emulsified in Freund’s adjuvant were injected either subcutaneously (s.c) at four 
sites of the animal for the first injection or s.c. (4x 200 μl) and intramuscularly (2x 
100 μl) for the second and third injection. Blood was taken by retrobulbar 
bleeding before immunisation (pre-immune sera, PI), two days before boost 
injections and three weeks after the last boost (serum 1, 2 and 3, respectively). All 
manipulations were in accordance with regular animal welfare guidelines and 
approved by the Landesamt für Gesundheit und Soziales, Berlin, Germany.  
 

Epitope mapping 

Epitope mapping was performed with PepStar peptide microarrays (JPT, Berlin, 
Germany) spotted with 15 mer peptides (12 residues overlap) of the extended 
HIV-1 HXB2 FPPR domain (amino acids 512-559) and the extended MPER 
domain (amino acids 644-691) as well as rat IgG as internal control. Sera were 
incubated on the array using a 24 multi-well hybridisation chamber (ArrayIt, 
Sunnyvale, USA) following the protocol recommended by JPT. Bound antibodies 
were detected using a DyLight 649 conjugated AffiniPure goat anti-rat IgG 
antibody (Jackson Immuno Research Labs, West Grove, USA, 1:500) and read at 
635 nm in a GenePix 4000 microarray scanner (Molecular Devices, Sunnyvale, 
USA). Epitopes were defined as central amino acids shared by overlapping 
peptides with signal intensities above a 5000 RLU threshold. 
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Flow cytometry and immunofluorescence 

C8166 cells were infected at a MOI of 0.5 with cell free supernatants obtained 
from pNL-4.3 transfected 293T cells and further cultivated for 48 h or 72 h for 
indirect immunofluorescence or FACS analysis, respectively. Non-infected C8166 
cells were assayed in parallel to assure the specificity of staining and no binding 
was observed (not shown). Cells were pelleted and washed twice with PBS, fixed 
by incubation with 2% paraformaldehyde in PBS for 15 min and then used either 
directly for FACS staining or attached to poly-lysine coated glass slides, dried and 
rehydrated in PBS overnight. Samples were blocked with 10% normal goat serum 
in PBS for 1 h and then antisera or a pre-immune rat serum as control (all 1:100 in 
3% goat serum, PBS) applied for 1 h. Cells were washed with PBS followed by 
incubation with a goat anti-rat IgG-FITC conjugated secondary antibody 
(SantaCruz Biotechnology, Santa Cruz, USA, 1:400), washed again and then 
either analysed in a FACS Calibur flow cytometer (Becton-Dickinson, 
Heidelberg, Germany) or embedded in DAPI containing mounting medium 
(Vectashield, Vector Laboratories, Burlingame, USA) for analysis on a Zeiss 
Axiovert 200 microscope using Cell-F imaging software (Olympus, Hamburg, 
Germany). 
 

Neutralisation assay 

TZM-bl cells (1 x 104 /well) were seeded in a 96 well cell culture plate. The next 
day, antisera were diluted 1:25 with medium and 50 μl of the dilution were 
incubated with 50 μl of 200 infectious units of titrated HIV-1 pNL4.3 for 30 min 
at 37°C and then added to the cells. As controls, non-infected, infected, and cells 
incubated with virus and 2F5 were used. Infection was analysed after 48 h by 
staining the cells with X-Gal solution (5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6, 2 
mM MgCl2, 1 mg/ml X-Gal in PBS) and ELISPOT counting as described 
previously [60]. Neutralisation was defined as 50% reduction of stained cells 
when immune sera and pre-immune sera were compared. 
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RESULTS 
 

Antigen design, production and purification 

 

To add HIV-1 gp41 sequences to the bet sequence of FFV, a Bet expression 
vector was constructed in which the FPPR-derived E1 sequence, the MPER-
derived E2 sequence or both E1 and E2 sequences connected by a loop sequence 
were subsequently introduced to the C-terminus (Fig. 1a, b). Between Bet and the 
corresponding HIV-1 parts, a flexible 15 amino acid glycine-serine-rich linker 
was introduced with the intention that HIV-1 epitopes protrude from the fusion 
partner and are thus more accessible for antibodies and immune cells. The E1-E2 
loop construct used here was derived from the previously described alpha-turn-
alpha peptide [61], which promotes the interaction of the alpha helical parts as a 
coiled coil [62]. Replacing the original alpha helices by HIV-1 FPPR and MPER 
domains except for eight amino acids flanking both termini of the loop, the 
construct was designed to mimic a form of gp41, where MPER and FPPR are in 
close proximity [63]. Additionally, both domains were connected with an amino 
acid spacing that allows interaction of contacting residues as found in the crystal 
structure of gp41 [38]. This construct was optimised and validated by secondary 
structure prediction algorithms and α-helical wheel projections to fit the desired 
criteria (Online Resource 1). Then, all three fusion proteins and Bet alone were 
produced in E. coli, purified by affinity chromatography and refolded by rapid 
dilution with typical yields of 11-18 mg/L expression culture. Characterisation of 
the antigens by SDS-PAGE showed their purity which usually exceeded 90% as 
judged by densitometric scanning of Coomassie stained gels (Fig. 1c).  
 

Recognition of the produced antigens by 2F5 and 4E10 

To examine their reactivity with 2F5 and 4E10, antigens were first analysed in a 
Western blot assay. 2F5 and to a weaker extent also 4E10 reacted with all 
antigens containing the MPER epitopes but not with the unmodified Bet or the 
Bet-E1 protein (Fig. 1d). Conversely, an epitope-mapped rat antiserum specific 
for the HIV-1 gp41 FPPR (recognising the epitope 541-TLTVQARQL-570) 
reacted with all E1-containing proteins but not with the Bet-E2 antigen (Fig. 1d). 
Since denatured gp41 was generally better recognised by 2F5 and worse by 4E10 
when compared to soluble gp41 [64], binding to non-denatured proteins was 
investigated in parallel (Fig. 2). In the case of 2F5 minor differences in binding to 
the different E2-hybrid antigens were observed, with a reduced binding to the Bet-
E1-E2 protein (Fig. 2). In contrast, 4E10 bound strongly to the Bet-E1-E2 loop 
antigen, but poorly to the Bet-E2 or the combination of the Bet-E1 and Bet-E2 
proteins and as expected not to Bet-E1 (Fig. 2). These results demonstrated that 
all hybrid antigens properly displayed the corresponding HIV-1 domain(s) and 
that the presence of the E1 domain was beneficial for the presentation of the 4E10 
but not the 2F5 epitope. 
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SPR analysis of 2F5 and 4E10 binding to the produced antigens 

To study the binding of 2F5 and 4E10 to the hybrid proteins in more detail, SPR 
experiments were performed (Table 1, Online Resource 2). 2F5 binding to 
antigens containing the MPER alone or in combination with the FPPR domain 
was detectable down to the nanomolar range (KD= 4.8, 5.9 and 19 nM for Bet-E2, 
Bet-E1+Bet-E2 and Bet-E1-E2, respectively) whereas no interaction was 
observed for the Bet-E1 control construct (Table 1, Online Resource 2). As above, 
no increase in binding was measured when a mixture of Bet-E2 and Bet-E1 was 
tested. Also, the affinity of 2F5 to the loop antigen was lower compared to Bet-E2 
due to a twofold slower association and dissociation rate (Table 1). In line with 
the weaker Western blot and ELISA reactivity of 4E10, much higher fusion 
protein concentrations were needed in the SPR studies. Due to the precipitation of 
recombinant Bet/HIV-1 proteins above 1 mg/ml (corresponding to 15-20 μM) no 
suitable concentration ranges to obtain reliable data for the Bet-E2 antigen and the 
combination of Bet-E2 and Bet-E1 could be selected. At the highest concentration 
tested (8 μM), no binding of Bet-E1 and a weak signal (15 RU) for Bet-E2 was 
observed suggesting that the KD values of Bet-E2 were probably in the 
micromolar range (data not shown). However, when Bet-E1-E2 was analysed, 
kinetic constants could be determined, since nanomolar protein concentrations 
yielded stable data (Table 1). The dissociation constant of 223 nM resulted from 
slow target recognition (kon=2.08x103 M−1s−1) and a moderate dissociation rate 
(koff =4.66 x10-4, Table 1). Thus, the SPR data substantiated the ELISA results and 
the beneficial effect of the FPPR residues for enhanced 4E10 antibody binding.  
 

Immunogenicity of fusion proteins 

After validation of their antigenicity, rats were immunised with the fusion 
proteins. All animals showed a strong immune response to the administered 
antigens with antibody titres of 104-106 already after the first immunisation (Fig. 
3, Online Resource 3). The response peaked after the second injection and then 
remained at this level or slightly decreased, with no significant differences 
between the groups (Kruskal-Wallis, p = 0.262, p = 0.243 and p = 0.385 for first, 
second, and third immunisation, respectively). To study the immune response 
against the introduced HIV-derived E1 and E2 domains and to analyse whether 
these antibodies are also able to bind to gp41 of HIV-1, ELISA were performed 
using synthetic E1 and E2 peptides as well as purified recombinant gp41 produced 
in bacteria. All sera recognised the HIV-1 peptides as well as gp41 with titres 
ranging from 102 up to 105 (Fig. 4, Online Resource 4). Notably, the reaction 
against the E1 domain (mean titre 105) was significantly stronger than that against 
the E2 domain (mean titer 103) in groups immunised with Bet-E1 and Bet-E2 
antigen (Welch-t-test p = 0.027, Fig. 4a and b). This was also true for sera from 
animals immunised with a mixture of both hybrid antigens (p = 0.0238) but did 
not reach significance in case of the hybrid E1-E2 loop antigen (p = 0.1565, Fig. 
4c and d). Among all, animals immunised with the Bet-E2 protein alone 
developed the strongest antibody response against the E2 peptide with mean titres 
up to 8 x 103 (p = 0.1274 and 0.0729 for comparisons to groups 366 and 375, 
respectively), followed by animals immunised with the mixture of Bet-E1 plus 
Bet-E2 (p = 0.0809 for group 375, Fig. 4b and b, Online Resource 4). The 
antibody response against recombinant gp41 correlated well with that against each 
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individual domain (Fig. 4a-d) and was confirmed by Western blot analysis 
(Online Resource 5). Taken together, these results demonstrated that all antigens 
used were highly immunogenic and that HIV-1 specific antibodies were induced. 
 

Epitope mapping of the antisera 

By mapping sera using overlapping peptides corresponding to the FPPR and 
MPER, distinct epitopes were identified (Fig. 5). As shown by two representative 
mappings, all rats immunised with the Bet-E1 hybrid antigen developed a strong 
response against the E1 domain with the epitope TLTVQARQL. Administration 
of the Bet-E2 hybrid antigen to rats resulted in antibodies recognising the epitopes 
ELLELDKWA or ELLELDKWASLW overlapping with the 2F5 epitope 
(underlined). Sera from animals immunised with a mixture of the E1 and E2 
hybrid protein showed a predominant response to the E1 epitope TLTVQARQL 
and a rather weak response to the E2 epitope NEQELLELDKWASLW. When 
sera from animals treated with the Bet-E1-E2 loop antigen were investigated, the 
main response was directed against the E1 epitope TLTVQARQL, but the E2 
response was variable, with one serum reacting with NEQELLELDKWA whereas 
no MPER reactivity was observed in case of a second animal (Fig. 5). These 
results were consistent with the prior ELISA titration experiments and confirmed 
the overall lower E2 reactivity observed before. In terms of consistency and 
strength in which 2F5 epitope-specific antibodies were induced, the Bet-E2 
antigen appeared to be superior to all other antigens. 
 

Binding of induced antibodies to infected cells 

Since prior analysis of antibody binding was mainly based on shorter fragments of 
the full length Env, the binding of antisera to native protein as presented on the 
surface of infected cells should be also investigated. Therefore, C8166 cells were 
infected with HIV-1 and binding of antisera from animals with strong antibody 
titres along with a pre-immune rat serum as control were analysed by flow 
cytometry and indirect immunofluorescence (Fig. 6). Neglectable binding was 
observed with the control serum, but sera from immunised animals showed 
profound fluorescence ranging from moderate to strong dependent on the 
immunised antigen (Fig. 6a). Recognition of infected cells by the serum from 
group 364 (Bet E1) was rather weak (28.7%), however, rat sera from groups 365, 
366 and 375 reacted intensely with 65.9, 55.5 and 57.9%, respectively. In indirect 
immunofluorescence analysis, the same sera gave signals with varying 
appearance. Antisera of rats 364, containing only FPPR directed antibodies (Fig. 
4, Fig. 5) caused rather weak and diffuse staining with no clear pattern. In 
contrast, all antisera that contained E2 directed antibodies (rats 365, 366, 375) 
gave spot-like signals distributed on the surface of the cells, most probably 
showing antibodies binding to the produced or infecting virus (Fig. 6b). This 
observation was in line with the finding that the gp41 MPER is most accessible in 
a fusion intermediate state after attachment of gp120 to its cellular receptors [65, 
66]. Thus, at least antisera with MPER specificity seemed to be able to react with 
native Env as mandatory for virus neutralisation. 
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Analysis of neutralising activity 

Although some of the immunised animals developed antibodies binding to 
epitopes overlapping with the 2F5 epitope and bound to virus particles, all sera 
did not prevent HIV-1 infection in a TZM-bl indicator cell line-based 
neutralisation assay when used at dilutions of 1:50 (Online Resource 6). 2F5 was 
effectively inhibiting infection.  
 

DISCUSSION 
 
In the present study a novel strategy for HIV-1 epitope delivery based on FFV-
Bet/HIV-gp41 fusion proteins containing the epitopes of the bnAb 2F5 and 4E10 
was evaluated. Milligram amounts of these proteins as needed for immunisation 
and antigen characterisation were produced in E. coli, purified to homogeneity 
and renatured to obtain soluble molecules. The antigens specifically reacted with 
2F5, 4E10 and a serum against the E1 domain and were immunogenic in rats 
generating antibodies targeting an epitope overlapping with the 2F5 epitope; 
however, they did not prevent HIV-1 infection in a TZM-bl based neutralisation 
assay. The antigens comprised the HIV-1 MPER-derived E2 domain because the 
corresponding bnAb antibodies are characterised by strong somatic mutations 
which could benefit from prolonged antigen delivery by replicating vectors [67]. 
Additionally, some Bet hybrids contained the FPPR derived E1 domain and the 
E2 domain linked by a loop to stabilise a MPER conformation that increases 2F5 
binding [56, 53, 57, 54]. Introducing the MPER domain alone resulted in high 
affinity recognition by 2F5, with values comparable to or better than previously 
reported for MPER peptides or MPER epitope scaffolds [68, 47, 69]. 
Unexpectedly, the affinity of 2F5 to its epitope decreased to some extent when the 
FPPR residues were present (Table 1). This suggests that the selected positioning 
of the FPPR residues might not allow proper orientation of the 2F5 epitope or 
formation of the affinity enhancing β-turn structure and might result from a 
divergence between the bioinformatic predictions used to design this antigen and 
the actual structure. However, by stepwise optimisation of the FPPR and MPER 
epitope presentation with an extended set of loop antigens, enhanced antigenicity 
of 2F5 was observed in later experiments (Mühle et al, in preparation). In contrast 
to 2F5, the FPPR residues remarkably improved 4E10 binding (Fig. 2, Table 1). 
Crystallisation experiments with 2F5-Fab have shown that the presence of FPPR 
residues not only stabilised the β-turn structure of the 2F5 epitope but also 
induced the formation of α-helices in the adjacent C-terminal residues [56]. Such 
an increase in α-helical content might explain the higher affinity of 4E10 to the 
loop construct used here, since enhanced binding for 4E10 to α-helical peptides 
has been reported [50]. However, the affinity of 4E10 to the loop antigen was still 
weak when compared to 2F5 (223 nM compared to 19 nM, Table 1) or previous 
antigens designed for induction of 4E10-like antibodies [49, 50] and potentially 
explains the 2F5 epitope-dominated response observed (Fig. 5). For improvement, 
the E2 domain may be extended by at least three additional amino acids (YIK) to 
increase the affinity for 4E10 [49, 50]. 
When used as protein immunogen, Bet was found to be an effective carrier 
molecule for the small HIV-1 epitopes, triggering a profound humoral response to 
the introduced inserts (Fig. 4, Online Resource 4). Importantly, antibodies 
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targeting ELDKWA and binding to gp41 and virions were induced, particularly 
with the Bet-E2 antigen which also showed the highest affinity to 2F5 and the 
strongest antibody response against the MPER (Table 1, Fig. 4). Despite the high 
titres of binding antibodies, none of the immune sera were neutralising, indicating 
that high affinity and immunogenicity do not predict the ability of antigens to 
induce antibodies capable to prevent HIV-1 infection as was found also by others 
[68, 47, 70, 48]. It is difficult to judge whether the antigens used here did not 
provide a conformation able to induce neutralising antibodies or whether their 
amount in the antibody population was too low to be detected. To further increase 
MPER-specific responses, certain mutations that have been recently described to 
enhance its immunogenicity could be beneficial [71]. Also, in order to avoid the 
FPPR-dominated responses observed here when the E1 domain was present, 
introduction of a glycosylation site into the FPPR might be considered to 
immunologically silence the E1 reactivity and focus the immune system to the 
MPER region [72]. As the antisera were binding to virus particles (Fig. 6) but 
were not neutralising, one could speculate that the induced antibodies lack certain 
characteristics like (i) lipid binding, which is not promoted by the strategy used 
here, or (ii) prolonged CDRH3 loops, which could arise as a result of somatic 
mutation after extended B-cell stimulation. Whereas the first point will have to be 
tested with other strategies, e.g. by placing the HIV-1 MPER epitope into the TM 
protein of FV, the second question could be addressed by extended antigen 
delivery. This might be achieved in part by extended boosting as shown for a 
recombinant gp120 antigen inducing a limited degree of affinity maturation [9] or 
more efficiently by using replicating FV vectors which permanently express the 
antigen. Thus, after showing the general feasibility of using Bet/HIV-1 fusion 
proteins for induction of HIV-1 MPER specific antibodies, optimised hybrid 
proteins should now be expressed in replication-competent virus and the 
expression of the HIV epitopes monitored in infected eukaryotic cells. These 
replication-competent viruses may first be used in cats in order to analyse whether 
prolonged and systemic delivery of such proteins induce not only antibodies 
binding to epitopes overlapping with the 2F5 epitope, but also antibodies 
neutralising HIV-1. If successful, this would justify transfer to primate FV and 
testing in non-human primates.  
 

ACKNOWLEDGEMENTS 
 

This work was supported by the Volkswagenstiftung. We thank C.-M. Schmidt, 
M. Keller and D. Wirths for excellent technical support and A. Bleiholder for 
critical reading of the manuscript. All authors have approved the final article and 
declare that there is no conflict of interest. 
 
 
REFERENCES 

 
1. Burton DR, Weiss RA. AIDS/HIV. A boost for HIV vaccine design. Science. 
2010;329(5993):770-3. doi:10.1126/science.1194693. 
2. Mascola JR, Montefiori DC. The role of antibodies in HIV vaccines. Annu Rev Immunol. 
2010;28:413-44. doi:10.1146/annurev-immunol-030409-101256. 
3. Burton DR, Stanfield RL, Wilson IA. Antibody vs. HIV in a clash of evolutionary titans. Proc 
Natl Acad Sci U S A. 2005;102(42):14943-8. doi:10.1073/pnas.0505126102. 



12 

4. Doria-Rose NA, Klein RM, Manion MM, O'Dell S, Phogat A, Chakrabarti B et al. Frequency 
and phenotype of human immunodeficiency virus envelope-specific B cells from patients with 
broadly cross-neutralizing antibodies. J Virol. 2009;83(1):188-99. doi:10.1128/JVI.01583-08. 
5. Gray ES, Madiga MC, Hermanus T, Moore PL, Wibmer CK, Tumba NL et al. The 
neutralization breadth of HIV-1 develops incrementally over four years and is associated with 
CD4+ T cell decline and high viral load during acute infection. J Virol. 2011;85(10):4828-40. 
doi:10.1128/JVI.00198-11. 
6. Haynes BF, Kelsoe G, Harrison SC, Kepler TB. B-cell-lineage immunogen design in vaccine 
development with HIV-1 as a case study. Nat Biotechnol. 2012;30(5):423-33. 
doi:10.1038/nbt.2197. 
7. McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF. The immune response 
during acute HIV-1 infection: clues for vaccine development. Nat Rev Immunol. 2010;10(1):11-
23. doi:10.1038/nri2674. 
8. Burton DR, Desrosiers RC, Doms RW, Koff WC, Kwong PD, Moore JP et al. HIV vaccine 
design and the neutralizing antibody problem. Nat Immunol. 2004;5(3):233-6. 
doi:10.1038/ni0304-233. 
9. Moody MA, Yates NL, Amos JD, Drinker MS, Eudailey JA, Gurley TC et al. HIV-1 gp120 
Vaccine Induces Affinity Maturation in both New and Persistent Antibody Clonal Lineages. J 
Virol. 2012;86(14):7496-507. doi:10.1128/JVI.00426-12. 
10. Hansen SG, Ford JC, Lewis MS, Ventura AB, Hughes CM, Coyne-Johnson L et al. Profound 
early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature. 
2011;473(7348):523-7. doi:10.1038/nature10003. 
11. Hansen SG, Vieville C, Whizin N, Coyne-Johnson L, Siess DC, Drummond DD et al. Effector 
memory T cell responses are associated with protection of rhesus monkeys from mucosal simian 
immunodeficiency virus challenge. Nat Med. 2009;15(3):293-9. doi:10.1038/nm.1935. 
12. Johnson RP, Desrosiers RC. Protective immunity induced by live attenuated simian 
immunodeficiency virus. Curr Opin Immunol. 1998;10(4):436-43.  
13. Koff WC, Johnson PR, Watkins DI, Burton DR, Lifson JD, Hasenkrug KJ et al. HIV vaccine 
design: insights from live attenuated SIV vaccines. Nat Immunol. 2006;7(1):19-23. 
doi:10.1038/ni1296. 
14. Picker LJ, Hansen SG, Lifson JD. New paradigms for HIV/AIDS vaccine development. 
Annual review of medicine. 2012;63:95-111. doi:10.1146/annurev-med-042010-085643. 
15. Lindemann D, Rethwilm A. Foamy virus biology and its application for vector development. 
Viruses. 2011;3(5):561-85. doi:10.3390/v3050561. 
16. Linial ML. Foamy viruses are unconventional retroviruses. J Virol. 1999;73(3):1747-55.  
17. Rethwilm A. The replication strategy of foamy viruses. Curr Top Microbiol Immunol. 
2003;277:1-26.  
18. Trobridge GD, Miller DG, Jacobs MA, Allen JM, Kiem HP, Kaul R et al. Foamy virus vector 
integration sites in normal human cells. Proc Natl Acad Sci U S A. 2006;103(5):1498-503. 
doi:10.1073/pnas.0510046103. 
19. Bauer TR, Jr., Olson EM, Huo Y, Tuschong LM, Allen JM, Li Y et al. Treatment of canine 
leukocyte adhesion deficiency by foamy virus vectors expressing CD18 from a PGK promoter. 
Gene Ther. 2011;18(6):553-9. doi:10.1038/gt.2010.169. 
20. Erlwein O, McClure MO. Progress and prospects: foamy virus vectors enter a new age. Gene 
Ther. 2010;17(12):1423-9. doi:10.1038/gt.2010.95. 
21. Taylor JA, Vojtech L, Bahner I, Kohn DB, Laer DV, Russell DW et al. Foamy virus vectors 
expressing anti-HIV transgenes efficiently block HIV-1 replication. Mol Ther. 2008;16(1):46-51. 
doi:10.1038/sj.mt.6300335. 
22. Trobridge GD. Foamy virus vectors for gene transfer. Expert Opin Biol Ther. 
2009;9(11):1427-36. doi:10.1517/14712590903246388. 
23. Bastone P, Romen F, Liu W, Wirtz R, Koch U, Josephson N et al. Construction and 
characterization of efficient, stable and safe replication-deficient foamy virus vectors. Gene Ther. 
2007;14(7):613-20. doi:3302890 [pii] 
10.1038/sj.gt.3302890. 
24. Schwantes A, Ortlepp I, Löchelt M. Construction and functional characterization of feline 
foamy virus-based retroviral vectors. Virology. 2002;301(1):53-63. doi:S0042682202915436 [pii]. 
25. Schwantes A, Truyen U, Weikel J, Weiss C, Löchelt M. Application of chimeric feline foamy 
virus-based retroviral vectors for the induction of antiviral immunity in cats. J Virol. 
2003;77(14):7830-42.  
26. Zemba M, Alke A, Bodem J, Winkler IG, Flower RL, Pfrepper K et al. Construction of 
infectious feline foamy virus genomes: cat antisera do not cross-neutralize feline foamy virus 



13 

chimera with serotype-specific Env sequences. Virology. 2000;266(1):150-6. 
doi:10.1006/viro.1999.0037 
S0042682299900375 [pii]. 
27. Alke A, Schwantes A, Zemba M, Flügel RM, Löchelt M. Characterization of the humoral 
immune response and virus replication in cats experimentally infected with feline foamy virus. 
Virology. 2000;275(1):170-6. doi:10.1006/viro.2000.0537 
S0042-6822(00)90537-3 [pii]. 
28. Bleiholder A, Mühle M, Hechler T, Bevins S, vandeWoude S, Denner J et al. Pattern of 
seroreactivity against feline foamy virus proteins in domestic cats from Germany. Vet Immunol 
Immunopathol. 2011;143(3-4):292-300. doi:10.1016/j.vetimm.2011.06.007. 
29. Romen F, Pawlita M, Sehr P, Bachmann S, Schroder J, Lutz H et al. Antibodies against Gag 
are diagnostic markers for feline foamy virus infections while Env and Bet reactivity is 
undetectable in a substantial fraction of infected cats. Virology. 2006;345(2):502-8. 
doi:10.1016/j.virol.2005.10.022. 
30. Giron ML, de The H, Saib A. An evolutionarily conserved splice generates a secreted env-Bet 
fusion protein during human foamy virus infection. J Virol. 1998;72(6):4906-10.  
31. Lecellier CH, Vermeulen W, Bachelerie F, Giron ML, Saib A. Intra- and intercellular 
trafficking of the foamy virus auxiliary bet protein. J Virol. 2002;76(7):3388-94.  
32. Montero M, van Houten NE, Wang X, Scott JK. The membrane-proximal external region of 
the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and 
target for vaccine design. Microbiol Mol Biol Rev. 2008;72(1):54-84, table of contents. 
doi:10.1128/MMBR.00020-07. 
33. Muster T, Steindl F, Purtscher M, Trkola A, Klima A, Himmler G et al. A conserved 
neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol. 1993;67(11):6642-
7.  
34. Salzwedel K, West JT, Hunter E. A conserved tryptophan-rich motif in the membrane-
proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for 
Env-mediated fusion and virus infectivity. J Virol. 1999;73(3):2469-80.  
35. Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, Binley JM et al. Broadly 
neutralizing antibodies targeted to the membrane-proximal external region of human 
immunodeficiency virus type 1 glycoprotein gp41. J Virol. 2001;75(22):10892-905. 
doi:10.1128/JVI.75.22.10892-10905.2001. 
36. Biron Z, Khare S, Samson AO, Hayek Y, Naider F, Anglister J. A monomeric 3(10)-helix is 
formed in water by a 13-residue peptide representing the neutralizing determinant of HIV-1 on 
gp41. Biochemistry. 2002;41(42):12687-96.  
37. Bryson S, Julien JP, Isenman DE, Kunert R, Katinger H, Pai EF. Crystal structure of the 
complex between the F(ab)' fragment of the cross-neutralizing anti-HIV-1 antibody 2F5 and the 
F(ab) fragment of its anti-idiotypic antibody 3H6. J Mol Biol. 2008;382(4):910-9. 
doi:10.1016/j.jmb.2008.07.057. 
38. Buzon V, Natrajan G, Schibli D, Campelo F, Kozlov MM, Weissenhorn W. Crystal structure 
of HIV-1 gp41 including both fusion peptide and membrane proximal external regions. PLoS 
Pathog. 2010;6(5):e1000880. doi:10.1371/journal.ppat.1000880. 
39. Ofek G, Tang M, Sambor A, Katinger H, Mascola JR, Wyatt R et al. Structure and mechanistic 
analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 
epitope. J Virol. 2004;78(19):10724-37. doi:10.1128/JVI.78.19.10724-10737.2004. 
40. Schibli DJ, Montelaro RC, Vogel HJ. The membrane-proximal tryptophan-rich region of the 
HIV glycoprotein, gp41, forms a well-defined helix in dodecylphosphocholine micelles. 
Biochemistry. 2001;40(32):9570-8.  
41. Sun ZY, Oh KJ, Kim M, Yu J, Brusic V, Song L et al. HIV-1 broadly neutralizing antibody 
extracts its epitope from a kinked gp41 ectodomain region on the viral membrane. Immunity. 
2008;28(1):52-63. doi:10.1016/j.immuni.2007.11.018. 
42. Alam SM, Morelli M, Dennison SM, Liao HX, Zhang R, Xia SM et al. Role of HIV membrane 
in neutralization by two broadly neutralizing antibodies. Proc Natl Acad Sci U S A. 
2009;106(48):20234-9. doi:10.1073/pnas.0908713106. 
43. Scherer EM, Leaman DP, Zwick MB, McMichael AJ, Burton DR. Aromatic residues at the 
edge of the antibody combining site facilitate viral glycoprotein recognition through membrane 
interactions. Proc Natl Acad Sci U S A. 2010;107(4):1529-34. doi:10.1073/pnas.0909680107. 
44. Julien JP, Bryson S, Nieva JL, Pai EF. Structural details of HIV-1 recognition by the broadly 
neutralizing monoclonal antibody 2F5: epitope conformation, antigen-recognition loop mobility, 
and anion-binding site. J Mol Biol. 2008;384(2):377-92. doi:10.1016/j.jmb.2008.09.024. 



14 

45. Coeffier E, Clement JM, Cussac V, Khodaei-Boorane N, Jehanno M, Rojas M et al. 
Antigenicity and immunogenicity of the HIV-1 gp41 epitope ELDKWA inserted into permissive 
sites of the MalE protein. Vaccine. 2000;19(7-8):684-93.  
46. Ho J, MacDonald KS, Barber BH. Construction of recombinant targeting immunogens 
incorporating an HIV-1 neutralizing epitope into sites of differing conformational constraint. 
Vaccine. 2002;20(7-8):1169-80.  
47. Ho J, Uger RA, Zwick MB, Luscher MA, Barber BH, MacDonald KS. Conformational 
constraints imposed on a pan-neutralizing HIV-1 antibody epitope result in increased antigenicity 
but not neutralizing response. Vaccine. 2005;23(13):1559-73. doi:10.1016/j.vaccine.2004.09.037. 
48. McGaughey GB, Citron M, Danzeisen RC, Freidinger RM, Garsky VM, Hurni WM et al. 
HIV-1 vaccine development: constrained peptide immunogens show improved binding to the anti-
HIV-1 gp41 MAb. Biochemistry. 2003;42(11):3214-23. doi:10.1021/bi026952u. 
49. Brunel FM, Zwick MB, Cardoso RM, Nelson JD, Wilson IA, Burton DR et al. Structure-
function analysis of the epitope for 4E10, a broadly neutralizing human immunodeficiency virus 
type 1 antibody. J Virol. 2006;80(4):1680-7. doi:10.1128/JVI.80.4.1680-1687.2006. 
50. Cardoso RM, Brunel FM, Ferguson S, Zwick M, Burton DR, Dawson PE et al. Structural basis 
of enhanced binding of extended and helically constrained peptide epitopes of the broadly 
neutralizing HIV-1 antibody 4E10. J Mol Biol. 2007;365(5):1533-44. 
doi:10.1016/j.jmb.2006.10.088. 
51. Cardoso RM, Zwick MB, Stanfield RL, Kunert R, Binley JM, Katinger H et al. Broadly 
neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved 
fusion-associated motif in gp41. Immunity. 2005;22(2):163-73. 
doi:10.1016/j.immuni.2004.12.011. 
52. Bellamy-McIntyre AK, Lay CS, Baar S, Maerz AL, Talbo GH, Drummer HE et al. Functional 
links between the fusion peptide-proximal polar segment and membrane-proximal region of 
human immunodeficiency virus gp41 in distinct phases of membrane fusion. J Biol Chem. 
2007;282(32):23104-16. doi:10.1074/jbc.M703485200. 
53. Fiebig U, Schmolke M, Eschricht M, Kurth R, Denner J. Mode of interaction between the 
HIV-1-neutralizing monoclonal antibody 2F5 and its epitope. AIDS. 2009;23(8):887-95. 
doi:10.1097/QAD.0b013e3283292153. 
54. Lorizate M, Gomara MJ, de la Torre BG, Andreu D, Nieva JL. Membrane-transferring 
sequences of the HIV-1 Gp41 ectodomain assemble into an immunogenic complex. J Mol Biol. 
2006;360(1):45-55. doi:10.1016/j.jmb.2006.04.056. 
55. Noah E, Biron Z, Naider F, Arshava B, Anglister J. The membrane proximal external region of 
the HIV-1 envelope glycoprotein gp41 contributes to the stabilization of the six-helix bundle 
formed with a matching N' peptide. Biochemistry. 2008;47(26):6782-92. doi:10.1021/bi7023139. 
56. de la Arada I, Julien JP, de la Torre BG, Huarte N, Andreu D, Pai EF et al. Structural 
constraints imposed by the conserved fusion peptide on the HIV-1 gp41 epitope recognized by the 
broadly neutralizing antibody 2F5. J Phys Chem B. 2009;113(41):13626-37. 
doi:10.1021/jp905965h. 
57. Lorizate M, de la Arada I, Huarte N, Sanchez-Martinez S, de la Torre BG, Andreu D et al. 
Structural analysis and assembly of the HIV-1 Gp41 amino-terminal fusion peptide and the 
pretransmembrane amphipathic-at-interface sequence. Biochemistry. 2006;45(48):14337-46. 
doi:10.1021/bi0612521. 
58. Mühle M, Löchelt M, Denner J. Optimisation of expression and purification of the feline and 
primate foamy virus transmembrane envelope proteins using a 96 deep well screen. Protein Expr 
Purif. 2012;81(1):96-105. doi:10.1016/j.pep.2011.09.006. 
59. Frey A, Di Canzio J, Zurakowski D. A statistically defined endpoint titer determination 
method for immunoassays. J Immunol Methods. 1998;221(1-2):35-41. doi:S0022-1759(98)00170-
7 [pii]. 
60. Mühle M, Bleiholder A, Kolb S, Hübner J, Löchelt M, Denner J. Immunological properties of 
the transmembrane envelope protein of the feline foamy virus and its use for serological screening. 
Virology. 2011;412(2):333-40. doi:10.1016/j.virol.2011.01.023. 
61. Fezoui Y, Weaver DL, Osterhout JJ. De novo design and structural characterization of an 
alpha-helical hairpin peptide: a model system for the study of protein folding intermediates. Proc 
Natl Acad Sci U S A. 1994;91(9):3675-9.  
62. Fezoui Y, Connolly PJ, Osterhout JJ. Solution structure of alpha t alpha, a helical hairpin 
peptide of de novo design. Protein Sci. 1997;6(9):1869-77. doi:10.1002/pro.5560060907. 
63. Gallo SA, Finnegan CM, Viard M, Raviv Y, Dimitrov A, Rawat SS et al. The HIV Env-
mediated fusion reaction. Biochim Biophys Acta. 2003;1614(1):36-50.  
64. Zwick MB, Jensen R, Church S, Wang M, Stiegler G, Kunert R et al. Anti-human 
immunodeficiency virus type 1 (HIV-1) antibodies 2F5 and 4E10 require surprisingly few crucial 



15 

residues in the membrane-proximal external region of glycoprotein gp41 to neutralize HIV-1. J 
Virol. 2005;79(2):1252-61. doi:10.1128/JVI.79.2.1252-1261.2005. 
65. Frey G, Chen J, Rits-Volloch S, Freeman MM, Zolla-Pazner S, Chen B. Distinct 
conformational states of HIV-1 gp41 are recognized by neutralizing and non-neutralizing 
antibodies. Nature structural & molecular biology. 2010;17(12):1486-91. doi:10.1038/nsmb.1950. 
66. Frey G, Peng H, Rits-Volloch S, Morelli M, Cheng Y, Chen B. A fusion-intermediate state of 
HIV-1 gp41 targeted by broadly neutralizing antibodies. Proc Natl Acad Sci U S A. 
2008;105(10):3739-44. doi:10.1073/pnas.0800255105. 
67. Zhu Z, Qin HR, Chen W, Zhao Q, Shen X, Schutte R et al. Cross-reactive HIV-1-neutralizing 
human monoclonal antibodies identified from a patient with 2F5-like antibodies. J Virol. 
2011;85(21):11401-8. doi:10.1128/JVI.05312-11. 
68. Guenaga J, Dosenovic P, Ofek G, Baker D, Schief WR, Kwong PD et al. Heterologous 
epitope-scaffold prime:boosting immuno-focuses B cell responses to the HIV-1 gp41 2F5 
neutralization determinant. PLoS One. 2011;6(1):e16074. doi:10.1371/journal.pone.0016074. 
69. Ofek G, Guenaga FJ, Schief WR, Skinner J, Baker D, Wyatt R et al. Elicitation of structure-
specific antibodies by epitope scaffolds. Proc Natl Acad Sci U S A. 2010;107(42):17880-7. 
doi:10.1073/pnas.1004728107. 
70. McGaughey GB, Barbato G, Bianchi E, Freidinger RM, Garsky VM, Hurni WM et al. 
Progress towards the development of a HIV-1 gp41-directed vaccine. Curr HIV Res. 
2004;2(2):193-204.  
71. Wang J, Tong P, Lu L, Zhou L, Xu L, Jiang S et al. HIV-1 gp41 core with exposed membrane-
proximal external region inducing broad HIV-1 neutralizing antibodies. PLoS One. 
2011;6(3):e18233. doi:10.1371/journal.pone.0018233. 
72. Garrity RR, Rimmelzwaan G, Minassian A, Tsai WP, Lin G, de Jong JJ et al. Refocusing 
neutralizing antibody response by targeted dampening of an immunodominant epitope. J Immunol. 
1997;159(1):279-89.  
 
 
 

FIGURE LEGENDS 
 

Fig. 1 Schematic presentation of gp41 of HIV-1 (a) and of FFV Bet and the FFV Bet/HIV-1 fusion 
proteins used for immunisation (b). FP – fusion peptide, FPPR – fusion peptide proximal region, 
NHR/CHR – N-terminal and C-terminal helical region, MPER – membrane proximal external 
region, MSD – membrane spanning domain, C-C – cysteine loop, TM – transmembrane envelope 
protein, His – Histidine tag, Factor Xa – Factor Xa protease cleavage site, Bet – full length FFV 
Bet sequence, Linker – 4 (FFV Bet) or 15 (all other constructs) amino acid spacer. E1 - HIV-1 
FPPR-derived domain, E2 - HIV-1 MPER-derived domain, E1-E2, HIV-1 E1 and E2 domains 
connected by a flexible loop sequence. The theoretical molecular mass of all antigens is indicated. 
Lines below the E2 sequence of gp41 of HIV-1 mark the location of the neutralising epitopes of 
2F5 and 4E10. (c) Purity of the produced antigens. 2 μg of recombinant proteins were loaded for 
SDS-PAGE and stained by Coomassie blue. The molecular mass of the marker are indicated. (d) 
Recognition of the produced antigens by the monoclonal antibodies 2F5 and 4E10 and a FPPR 
specific antiserum. 150 ng of recombinant proteins were transferred onto a PVDF membrane and 
tested with the antibodies 2F5 (0.4 μg/ml), 4E10 (1.2 μg/ml) and an E1 specific rat serum (1:800) 
to confirm the presence of the corresponding HIV-1 domains 
 

Fig. 2 Recognition of the produced antigens by the monoclonal antibodies 2F5 and 4E10 under 
non-denaturing conditions in an ELISA. 100 ng of indicated Bet/HIV-1 antigens in phosphate 
buffer were coated and incubated with 2F5 (11.3 μg/μl) or 4E10 (11.9 μg/μl) serially diluted as 
indicated, followed by detection with an HRP anti-human IgG antibody and developed with OPD. 
Whereas only minor differences of 2F5 binding were detected, threefold increased binding of 
4E10 to the FPPR stabilised Bet-E1-E2 protein was found 
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Fig. 3 Titers of the immune sera after immunisation with Bet fusion proteins as determined by 
endpoint dilutions. (a) Sera from rat group 364 immunised with Bet-E1, (b) from group 365 
immunised with Bet-E2, (c-d) from group 366 immunised with both Bet/HIV-1 hybrid antigens (e) 
and from group 375 immunised with Bet-E1-E2. PI = pre-immune serum, 1, 2, 3 = serum of the 
first, second and third bleeding, respectively 
 

Fig. 4 Reactivity of sera from animals immunised with the hybrid proteins against gp41 and 
synthetic E1 and E2 peptides as measured in an ELISA. Sera were serially diluted in a range of 102 
to 107. The endpoint titers of (a) sera from rat group 364, (b) sera from rat group 365, (c, d) sera 
from rat groups 366 and 375, all titrated against the E1 and/or E2 peptides as well as recombinant 
gp41, are given. The administered antigen is indicated in brackets 

 

Fig. 5 Epitope mapping of the sera from immunised animals. Microarrays spotted with 
overlapping 15 mer peptides of the prolonged HIV-1 FPPR and MPER domains were incubated 
with antisera and bound antibodies detected by a fluorescent secondary anti-rat antibody. Results 
are plotted as relative light units (RLU) against the individual FPPR and MPER peptides. The 
group number, the administered antigen and the recognised epitopes as defined as central amino 
acids shared by overlapping peptides exceeding a 5000 RLU intensity threshold (grey line) are 
indicated. As internal control anti rat IgG spotted on the slides were measured in parallel 

 

Fig. 6 Binding of induced antisera to HIV-1 pNL-4.3 infected C8166 cells. (a) Analysis of 
antibody binding by flow cytometry 72 h after infection. Cells were probed with pre-immune rat 
serum (PI) or antisera from a representative animal from the rat group immunised with the antigen 
indicated above. (b) Indirect immunofluorescence of C8166 cells 48 h after of infection. Fixed 
cells were transferred to slides where they were incubated with the same sera as in (a). Rat IgGs 
were detected by an Alexa-Fluor 488 antibody and analysed at a magnification of 20x (upper 
panel) or 60x (lower panel). No reactivity was observed for the control (Ctrl), but antisera showed 
either diffuse staining when containing FPPR-targeting antibodies (rats 364) or distinct spots 
predominantly on the cell surface in antisera where MPER directed antibodies were present (rats 
365,366,375) 
 

Online Resource 1 Design and bioinformatic characterisation of the E1-E2 antigen.  (a) Amino 
acid sequence of E1-E2 and individual domains. The fusion peptide proximal region (FPPR), the 
membrane proximal external region (MPER), the alpha helical flanking regions (α) and the β-turn 
loop element (L) are shown. (b) Chou-Fasman secondary structure predictions for the E1-E2 
antigen, plotting the probability score to form alpha helices (left diagram) or beta-turns (right 
diagram) against individual amino acids. Note the distinct structural break at amino acids 30-34, 
representing the loop element. Graphs were obtained with the ProtScale software provided on the 
expasy proteomics server (http://web.expasy.org/protscale). (c) Model of E1-E2 interaction and 
positioning of FPPR and MPER contacting amino acids. The 15 amino acid linker and the Bet 
fusion partner are schematically shown (d) Alpha helical wheel projections of both domains with 
the positioning of critical residues as in (b) indicated by circles. Projections were made with the 
help of the Wheel program provided by Don Armstrong (http://trimer.tamu.edu/cgi-
bin/wheel/wheel.pl) 
 
Online Resource 2 Surface plasmon resonance experiments with the antigens used for 
immunisation and the antibodies 2F5 and 4E10. The signal intensity in response units (RU), the 
protein concentrations (in nM), protein and buffer injection points (black and grey arrows) and 
calculated KD values are indicated for interactions measured with captured 2F5 antibody and Bet-
E1, Bet-E2, Bet-E1+ Bet-E2 and Bet-E1-E2 or for interaction measured with captured 4E10 
antibody and the Bet-E1-E2 antigen. Response curves are shown as grey lines, fitted curves are in 
black. Note that response peaks between individual injections (arrows) correspond to bulk 
contributions as a result of differences in the buffer composition 
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Online Resource 3 Western blot analysis of antisera of the final bleeding using purified 
recombinant gp41 as antigen (200 ng gp41/lane). Antisera (1:1000) were incubated on the 
membrane using a slot blot chamber and an anti-rat HRP-labelled secondary antibody for 
detection. The number of the animals is indicated. 2F5 was used as positive control (113 ng/ml) 
 

Online Resource 4 Neutralisation assays based on TZM-bl cells and titrated HIV-pNL-4.3. Virus 
was incubated for 30 min at 37°C with either 2F5 (25, 12.5, 6.25 and 3.12 μg/ml, positive control), 
pre-immune sera (PI) or immune sera (1:50) of the indicated animal group (364-375), animal 
number (#1-4) and bleeding and then added to TZM-bl cells plated one day in advance. 48 h after 
assay setup, cells were stained for infection with X-gal and colonies counted using an ELISPOT-
reader. Neutralisation was defined as 50% reduction of stained cells when immune sera and pre-
immune sera were compared. Whereas 2F5 was effectively neutralising, none of the immune sera 
achieved reduction of viral infection by more than 50% 
 

Online Resource 5 Endpoint titres of antisera titrated against antigens used for immunisation 

 

Online Resource 6 Endpoint titres of antisera titrated against HIV-1 domains and recombinant 
gp41 
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Mühle et al., Figure 3 
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1 

Table 1 Kinetic constants determined by SPR measurements.   
 
Analyt Ligand kon [1/M*s] koff [1/s] KD [M]   
Bet-E1 2F5 -a - - 
Bet-E2 2F5 2,01 x104 8,60 x10-5 4,28 x10-9  
Bet-E1+Bet-E2 2F5 1,93 x104 1,14 x10-4 5,91 x10-9  
Bet-E1-E2 2F5 1,07 x104 2,07 x10-4 1,93 x10-8  
 

Bet-E1 4E10 - - -  
Bet-E2 4E10 n.d.b n.d. n.d.  
Bet-E1+Bet-E2 4E10 n.d. n.d. n.d.  
Bet-E1-E2 4E10 2,08 x103 4,66 x10-4  2,24 x10-7  

a no interaction observed 
b not determinable due to protein concentration limitations 

 



Online Resource 1 

L 
E1-E2 AAGSTMGAASVTLTVQARQLLSELQALEARGTDSNAELDAMEQEKNEQELLELDKWASLWNWFNITNWLW 

FPPR MPER   
a 

b 

Q
E

K
N

E
Q

E
L

L
E

L
D

K
W

A
S

L
W

N
W

F
N

I
T

N
W

L
W

A
A

G
S

T
M

G
A

A
S

V
T

L
T

V
Q

A
R

Q
L

L
S

E
L

Q
A

L
E

A
R

N
A

E
L

D
A

M
E

linker 

c d 

Immunisation with foamy virus Bet fusion proteins as novel 
strategy for HIV-1 epitope delivery. Immunologic Research,  
 

M. Mühle, K. Hoffmann, M. Löchelt, J. Denner 

correspondence to: 
DennerJ@rki.de, Robert Koch Institute, Center for HIV and Retrovirology, Berlin, Nordufer 20, 13553 Germany 

Design and bioinformatic characterisation of the E1-E2 antigen.  (a) Amino acid sequence of E1-E2 and 
individual domains. The fusion peptide proximal region (FPPR), the membrane proximal external region (MPER), 
the alpha helical flanking regions ( ) and the -turn loop element (L) are shown. (b) Chou-Fasman secondary 
structure predictions for the E1-E2 antigen, plotting the probability score to form alpha helices (left diagram) or 
beta-turns (right diagram) against individual amino acids. Note the distinct structural break at amino acids 30-
34, representing the loop element. Graphs were obtained with the ProtScale software provided on the expasy 
proteomics server (http://web.expasy.org/protscale). (c) Model of E1-E2 interaction and positioning of FPPR 
and MPER contacting amino acids. The 15 amino acid linker and the Bet fusion partner are schematically shown 
(d) Alpha helical wheel projections of both domains with the positioning of critical residues as in (b) indicated by 
circles. Projections were made with the help of the Wheel program provided by Don Armstrong 
(http://trimer.tamu.edu/cgi-bin/wheel/wheel.pl) 
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with the antigens used for immunisation 
and the antibodies 2F5 and 4E10. The 
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arrows) and calculated KD values are 
indicated for interactions measured with 
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fitted curves are in black. Note that 
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Immunisation with foamy virus Bet fusion proteins as novel strategy for HIV-1 epitope delivery. 
Immunologic Research, M. Mühle, K. Hoffmann, M. Löchelt, J. Denner

Online Resource 3 Endpoint titres of antisera titrated against antigens used for immunisation

Rat No. Tested antigen 1st bleeding 2nd bleeding 3rd bleeding

364-1 Bet E1 1.77 x 106 n.a. n.a.

364-2 9.32 x 105 1.81 x 106 1.64 x 106

364-3 1.03 x 105 3.41 x 106 3,19 x 106

364-5 9.45 x 105 3.08 x 106 2.09 x 106

Mean 1.17 x 106 2.76 x 106 2.31 x 106

365-1 Bet E2 4.43 x 106 6.08 x 106 1.96 x 106

365-2 8.85 x 105 9.77 x 106 1.78 x 106

365-3 7.14 x 106 1.77 x 107 1.06 x 107

365-4 2.88 x 106 5.65 x 106 6.10 x 106

Mean 3.83 x 106 9.81 x 106 5.10 x 106

366-1 Bet E1 1.32 x 106 3.20 x 106 2.30 x 106

366-2 1.17 x 106 4.96 x 106 3.83 x 106

366-3 8.89 x 103 2.64 x 104 2.51 x 104

366-4 5.35 x 105 1.35 x 106 7.28 x 104

Mean 7.61 x 105 2.38 x 106 1.56 x 106

366-1 Bet E2 8.73 x 106 2.90 x 107 3.25 x 107

366-2 1.10 x 107 3.81 x 107 1.86 x 107

366-3 1.13 x 104 3.78 x 104 3.80 x 104

366-4 1.18 x 107 3.62 x 107 2.01 x 107

Mean 7.89 x 106 2.58 x 107 1.78 x 107

375-1 Bet E1-E2 4.30 x 106 3.49 x 107 1.84 x 107

375-2 2.32 x 104 1.06 x 106 n.a.

375-3 1.32 x 106 1.01 x 107 4.07 x 106

375-4 5.98 x 104 8.34 x 105 6.84 x 105

Mean 1.43 x 106 1.17 x 107 7.72 x 106

n. a. – serum not available

correspondence to: DennerJ@rki.de,
Robert Koch Institute, Center for HIV and Retrovirology, Berlin, Nordufer 20, 13553 Germany
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Western blot analysis of antisera of the final bleeding using purified recombinant gp41 as 
antigen (200 ng gp41/lane). Antisera (1:1000) were incubated on the membrane using a slot blot 
chamber and an anti-rat HRP-labelled secondary antibody for detection. The number of the 
animals is indicated. 2F5 was used as positive control (113 ng/ml) 
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Neutralisation assays based on TZM-bl cells and titrated HIV-pNL-4.3. Virus was incubated for 
30 min at 37°C with either 2F5 (25, 12.5, 6.25 and 3.12  positive control), pre-immune 
sera (PI) or immune sera (1:50) of the indicated animal group (364-375), animal number (#1-4) 
and bleeding and then added to TZM-bl cells plated one day in advance. 48 h after assay setup, 
cells were stained for infection with X-gal and colonies counted using an ELISPOT-reader. 
Neutralisation was defined as 50% reduction of stained cells when immune sera and pre-
immune sera were compared. Whereas 2F5 was effectively neutralising, none of the immune 
sera achieved reduction of viral infection by more than 50% 
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