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Abstract

Tick-borne encephalitis virus (TBEV) is one of the most important vector-borne viruses in Europe and Asia. Its transmission
mainly occurs by the bite of an infected tick. However, consuming milk products from infected livestock animals caused
TBEV cases. To better understand TBEV transmission via the alimentary route, we studied viral infection of human intestinal
epithelial cells. Caco-2 cells were used to investigate pathological effects of TBEV infection. TBEV-infected Caco-2
monolayers showed morphological changes including cytoskeleton rearrangements and cytoplasmic vacuolization.
Ultrastructural analysis revealed dilatation of the rough endoplasmic reticulum and further enlargement to TBEV containing
caverns. Caco-2 monolayers maintained an intact epithelial barrier with stable transepithelial electrical resistance (TER)
during early stage of infection. Concomitantly, viruses were detected in the basolateral medium, implying a transcytosis
pathway. When Caco-2 cells were pre-treated with inhibitors of cellular pathways of endocytosis TBEV cell entry was
efficiently blocked, suggesting that actin filaments (Cytochalasin) and microtubules (Nocodazole) are important for PI3K-
dependent (LY294002) virus endocytosis. Moreover, experimental fluid uptake assay showed increased intracellular
accumulation of FITC-dextran containing vesicles. Immunofluorescence microscopy revealed co-localization of TBEV with
early endosome antigen-1 (EEA1) as well as with sorting nexin-5 (SNX5), pointing to macropinocytosis as trafficking
mechanism. In the late phase of infection, further evidence was found for translocation of virus via the paracellular pathway.
Five days after infection TER was slightly decreased. Epithelial barrier integrity was impaired due to increased epithelial
apoptosis, leading to passive viral translocation. These findings illuminate pathomechanisms in TBEV infection of human
intestinal epithelial cells and viral transmission via the alimentary route.
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Introduction

Tick-borne encephalitis virus (TBEV) belongs to the genus

flavivirus, family Flaviviridae, mainly distributed in Europe and

Asia. An infection with TBEV mostly causes flu-like symptoms

such as fever, headache, nausea, vomiting and fatigue but can also

result in a variety of neurological diseases including meningoen-

cephalitis. Severity of the clinical outcome is strain-dependent and

case fatality rates are ranging from less than 2% for the European

strains to up to 20%–40% for some strains from Russia and the

Far East [1,2]. Worldwide, more than 10,000 cases are reported

annually [3–5].

TBEV is mainly transmitted by the bite of an infected tick [6].

However, alimentary transmission of the virus by consumption of

raw milk products from infected animals (mainly goats, sheep and

cows) is also described [7,8]. In 1951/52, the first reported milk-

borne TBE outbreak took place in the Roznava district of Slovakia

with at least 660 TBE cases. Since then milk-borne epidemics or

single cases where reported not only from Eastern Europe but also

from Austria and Germany. The number of TBE cases caused by

consuming non-pasteurized milk or dairy products decreased until

the early 1980s but in recent years the number of reports has

increased again [5].

In Hungary, twenty-nine cases with typical TBE symptoms after

consuming raw milk products and four identified TBE cases of

alimentary infections were reported between 2007 and 2011 [7,9].

Similar cases were observed in Austria, where six humans were

infected with TBEV by eating infected goat cheese [10]. These

outbreaks indicate that more attention has to be put on TBEV

infections via the alimentary route.

While the infection route via tick bite has been elucidated in

great detail, little is known about the alimentary route of infection.

First experiments concerning the alimentary route were performed

in the late 1950s and early 1960s in Russia and Austria. It turned

out that experimental infected goats excrete TBEV up to 8 days
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post infection and when orally infected develop a TBEV infection

with the virus detectable in the small intestine [9,11,12].

Furthermore, it has been demonstrated that TBEV even though

it is an enveloped RNA virus, retains its infectivity in gastric juice

and can pass the stomach towards the intestine [13]. Therefore,

Balogh et al. [14] postulated that TBEV probably enters the

organism via small intestinal M cells of the Peyer’s patches which

then transport the viral particles to the intestinal lymphoid tissue,

but experimental evidence is missing. In another study on the tick-

borne encephalitis virus group, Kenyon et al. [15] demonstrated

Kyasanur Forest disease virus antigen in epithelia cells of the gut

mucosa in bonnet macaques.

Other viruses, which enter their host by the alimentary route,

replicate in epithelial enterocytes (coronaviruses, rotaviruses and

norovirus) or can cross the mucosal barrier (poliovirus) [16,17].

Recently, cellular entry by macropinocytosis has been described

for various viruses such as influenza A, respiratory syncytial virus,

or vaccinia virus [18–20]. Moreover, echovirus 1 is internalizing

into Caco-2 cell by this mechanism, which displays many features

characteristic for macropinocytosis [21]. Thus, we hypothesized

that TBEV might also use macropinocytosis to enter intestinal

epithelia cells. In our study, we used Caco-2 cells as a model of

human intestinal epithelium, in order to analyze, whether or not

TBEV can replicate in the human intestinal cells and also to unveil

the cellular uptake mechanism.

Materials and Methods

Cell culture and viruses
Caco-2 cells (ATCC HTB-37) were grown at 37uC with 5%

CO2 in ambient air and maintained in minimal essential medium

(MEM) with 10% fetal bovine serum, 1% L-glutamine, and 1%

mixture of penicillin and streptomycin. Vero E6 cells (ATCC

CRL-1586) and A549 (ATTC CCL-185) cells were cultured at

37uC with 5% CO2 in ambient air in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% fetal bovine serum, 1%

L-glutamine, 1% penicillin and 1% streptomycin. Three different

TBEV strains K23, Aina and Sofjin were propagated in Vero E6

cells as published previously [22]. Viral titration was performed in

A549 cells using plaque assay as described below. TBEV strain

K23 was selected as a prototype for all three TBEV strains and

used with a multiplicity of infection (MOI) of 1 for infection

experiments unless otherwise indicated.

Viral infection and inhibitor assays
For infection studies, Caco-2 cells were cultured in a 24 well

plate and inoculated with one of the three TBEV strains (MOI of

0.1). After 1 h incubation at 37uC, unbound virus was washed off

by PBS and the plate was returned to the incubator at 37uC.

Cellular viral RNA was collected and viral titers in the

supernatants were determined at different time points by means

of quantitative real-time RT-PCR (RT-qPCR) and plaque assay as

described below.

For viral inhibition assays, the pharmacological inhibitors

cytochalasin D (Cyt D), nocodazole (Noc) and LY294002 (LY)

were diluted in DMSO and working concentrations were as

follows: Cyt D at 2 mM, Noc at 10 mg/ml and LY at 10 mM. For

blockage of the cytoskeleton Cyt D was used as actin depolymer-

ization agent [23] and Noc was used as a specific inhibitor of

microtubules [24]. LY was used as inhibitor of Phosphatidylino-

sitol-4,5-bisphosphate 3-kinase (PI3K) activation [25]. DMSO

treatment (0.1% DMSO in medium) without any inhibitor was

used as control. 5-(N-Ethyl-N-isopropyl)-amiloride (EIPA) was

diluted in DMSO and concentrations used for the experiments

were 0 mM, 25 mM and 50 mM, respectively. All products were

purchased from Sigma-Aldrich (St. Louis, MO, USA). To analyze

the effects of the inhibitors on TBEV entry, Caco-2 cells were pre-

treated with the different inhibitors for 30 min. The cells were

infected with TBEV strain K23 either in the presence or absence

of the appropriate inhibitor at 37uC. After 1 h incubation the cells

were washed 3 times with PBS to remove unbound viruses. To

analyze virus entry, the cells were harvested for extracting total

RNA followed by translation into cDNA. Thus, viral RNA was

detected by RT-qPCR as described below.

Light microscopy
Caco-2 cells were grown on coverslips in 24 well plates. Cells

were infected with K23 virus and fixed at 24 h, 48 h or 72 h post

infection. All samples were photographed under the light

microscope (Keyence Corp, Japan).

Immunofluorescence staining (IF)
Cells were fixed with 3.7% formaldehyde for 1 h and

permeabilized with Triton-X 100 buffer (0.1% Triton-X 100 in

PBS) for 10 min. After washing, samples were blocked with

blocking buffer (1% bovine serum albumin (BSA) in PBS).

For detecting the envelope protein of the TBEV (E protein),

samples were incubated with anti-TBEV E antibody MAB 1367

(1:1,000) [26] and then stained with FITC-labeled anti-mouse

(1:500, Caltag Laboratories, Hamburg, Germany) or Alexa 594-

labeled anti-mouse antibody (1:200) (Invitrogen) as the secondary

antibody. Cell nuclei were stained with 49,6-diamidino-2-pheny-

lindole (DAPI). Cells were observed and imaged using a

fluorescence microscope (Keyence Corp, Japan).

For analyzing the actin filament re-arrangement induced by

TBEV infection, Caco-2 cells were stained with fluorescent

phalloidin (Acti-stain 488 phalloidin, Cytoskeleton Inc., Denver,

USA) at 24 h post infection. For detecting co-localization of

TBEV E protein with the endosomal marker proteins EEA1 or

SNX5 in infected Caco-2 cells, cells were stained with the anti-

TBEV E protein antibody MAB 1367 (1:500) and with Alexa 594-

labeled anti-mouse antibody (1:200) (Invitrogen) as the secondary

antibody. EEA1 or SNX5 were stained with anti EEA1 (BD

Bioscience, CA, USA) or SNX5 antibody (Santa Cruz Biotech-

nology, CA, USA) and FITC-labeled anti-rabbit antibody as the

secondary antibody (1:500, Caltag Laboratories). Nuclei were

stained with DAPI and samples were visualized by confocal laser-

scanning microscopy (Zeiss LSM510, Jena, Germany).

Ultrathin section transmission electron microscopy
For ultrathin section transmission electron microscopy, TBEV-

infected Caco-2 cells were processed as descried previously [27].

Sections of epon-embedded samples were post-stained with uranyl

acetate followed by lead citrate. Samples were observed using a

Jeol transmission electron microscope (JEM-2100) operated at

200 kV. Photographs were taken with a CCD camera at a

resolution of 2k62k pixel (Veleta, Olympus Soft Imaging

Solutions).

Plaque assay
A549 cells were seeded in a 24 well plate and were maintained

at 37uC with 5% CO2 overnight. 10-fold serial dilutions of the

three viral suspensions were added to different wells. After 1 h

incubation each well was filled with 500 ml carboxymethylcellulose

(CMC) overlay medium (1.6% CMC in DMEM). The plates were

continually maintained in the CO2 incubator at 37uC. After 4

days, each well was fixed in 3.7% formaldehyde for 1 h, and then
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the cells were stained with Naphthalene Black (1 g of naphthol

blue black, 13.6 g of sodium acetate, 60 ml of glacial acetic acid

and up to 1000 ml with bi-destillated H2O). Plaques were counted

and expressed as plaque-forming units/ml (PFU/ml). The viral

titers were calculated by the equation:

PFU=ml~
plaques:reciprocal dilution

reciprocal volume of the virus solution (ml)

RNA isolation and RT-qPCR
Total RNA from Caco-2 cells was prepared according to

Manufacturer’s instructions using the Qiagen RNeasy mini kit

(Qiagen, Hilden, Germany). For cDNA synthesis, the same

amount of RNA was added in a final reaction volume of 20 ml

using the Superscript II kit (Invitrogen, Karlsruhe, Germany). The

mixture was pre-treated for 10 min at 65uC and cooled down on

ice for 5 min. Then the reverse transcription reaction was

performed on a thermoblock cycler for 60 min at 37uC and

10 min at 93uC. 2 ml cDNA was detected by quantitative RT-

PCR as described previously [22]. For TBEV quantification the

viral NS1 gene was detected.

Transport assay of TBEV in Caco-2 monolayers
Caco-2 cells were seeded in permeable PCF-filter cell culture

inserts with an area of 0.33 cm2 and with a pore size of 0.4 mm

(Millipore, Darmstadt, Germany) and were grown for three weeks.

Media was replaced every 2 days. Experiments were performed

with cells showing a transepithelial electrical resistance (TER)

above 300 V?cm2. After treatment of Caco-2 monolayers with the

TBEV (MOI of 1) for 1 h, fresh culture medium was replaced and

TER of each transwell was determined every 24 h using an

epithelial volt ohmmeter with a pair of chopstick electrodes

(EVOM, World Precision Instruments, FL, USA). Untreated

monolayers were used as negative controls. In the course of virus

infection, the same aliquots of medium were collected from the

lower chambers at different time points as indicated. TBEV in the

medium were detected using the RT-qPCR method as described

above.

FITC-Dextran fluid uptake assay
Caco-2 cells were seeded on glass coverslips in a 24 well plate

until getting confluent and infected with TBEV for 4 h. Then

Caco-2 cells were incubated with FITC-dextran (Molecular

Weight 70 000 Da, Sigma-Aldrich) at a final concentration of

0.5 mg/ml in the absence or presence of TBEV. After 30 min cells

were washed 3 times with PBS and subsequently fixed. Simulta-

neous acquisition of FITC fluorescence emission and transmitted

light from all samples was done by confocal laser-scanning

microscopy. Vesicle count was done by ImageJ particle analysis

tool with fluorescence intensity threshold of Caco-2 monolayers

where no Fdx was added.

Cell viability
MTT assay was used to analyze cell viability. Caco-2 cells were

cultured into a 96 well culture plate for 2 days. After removal of

the cell culture medium, cells were infected with TBEV (MOI of

1). Virus free cells were used as control. At 48 h or 120 h post

infection, medium was replaced with 20 ml of 3-(4,5-Dimethylthia-

zol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) (5 mg/ml)

solution and cells were further incubated at 37uC for 4 h. Then

the MTT solution was removed and 200 ml of DMSO was added

and gently swirled. After formazan crystals were dissolved, the

colorimetric reaction was measured at 570 nm using a spectro-

photometer (Tecan Group Ltd., Maennedorf, Switzerland).

Epithelial apoptosis
TUNEL assay (deoxynucleotidyl transferase-mediated deoxyur-

idine triphosphate nick-end labeling, Roche Diagnostics, Mann-

heim, Germany) was used to analyze apoptosis induction by

TBEV infection. Coverslips with infected Caco-2 cells were fixed

with 3.7% formaldehyde at 48 h or 120 h post infection. After

washing with PBS, the samples were permeabilized using TritonX

buffer (0.1% Triton-X100 in PBS) for 10 min and washed with

PBS 3 times. The TUNEL assay was performed following the

manufacturer’s recommendations. Cell nuclei were counterstained

with DAPI. All samples were examined under fluorescence

microscope (Keyence Corp.) in low-power fields.

Statistical analysis
All results are shown as mean 6 standard error of the mean

(SEM). Statistical analyses were performed using Prism5 software

(GraphPad, San Diego, Canada). Differences between treatment

and control groups were evaluated using the Student’s t-test. A P-

value of ,0.05 was considered statistically significant.

Results

TBEV replication in human intestinal Caco-2 cells
Caco-2 cells were challenged with TBEV strain K23, Sojin, or

Aina at a multiplicity of infection (MOI) of 0.1. Intracellular viral

RNA was analyzed by RT-qPCR. Viral copy numbers of the three

strains increased at the first day of infection, peaked at day 2 post

infection (p.i.) and persisted in high amounts in the cells up to day

5 p.i. (Figure 1A). The amount of released TBEV particles in cell

culture supernatant was highest on day 2 p.i. for all 3 TBEV

strains (Figure 1B). The virus titer in the apical cell supernatant

increased by 3 log numbers between day 1 and 2. We further

monitored TBEV infection in Caco-2 cells with TBEV strain K23

by immunofluorescence microscopy. As shown in Figure 1C

nearly 100% of the cells were found TBEV-positive at 48 h p.i.,

while only few cells were positive at 24 h p.i. This rapid virus

spread between cells confirmed that TBEV replication is efficient

in human intestinal Caco-2 monolayers and that the cells in

general are susceptible to TBEV infection. Beside the apical

infection of confluent Caco-2 monolayers we detected an efficient

replication also of subconfluent Caco-2 cells (data not shown).

Vacuolization by TBEV infection in Caco-2 cells
In the course of TBEV infection in Caco-2 cells strong

vacuolization was found, whereas morphological changes such as

aggregation and shrinkage of cells or detachment of the monolayer

were not observed at 48 h p.i. (Figure 2). TBEV-induced

vacuolization in infected Caco-2 cells was detected by immuno-

fluorescence microscopy using anti-TBEV E monoclonal antibody

at 24 h, 48 h, and 72 h p.i. (Figure 2).

Ultrastructural analysis of TBEV-infected Caco-2 cells
We analyzed the ultrastructural changes induced by TBEV

infection in Caco-2 cells using ultrathin section transmission

electron microscopy. A dilatation of the rough endoplasmic

reticulum (rER) and presence of virus particles in rER cisternae

were the first ultrastructural signatures of virus replication. At later

stages large membrane-bound caverns in the cytoplasm contain

most of the observed virions. The cavern membrane was coated

with ribosomes indicating that it derived from the rER (Figure 3).

TBEV Translocation across the Epithelial Barrier
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Cytoskeletal changes and inhibition of virus entry
Initial cytoskeletal changes were observed 24 h p.i. The actin

cytoskeleton showed a general re-arrangement and more con-

densed microfilaments were observed than in non-infected

controls (Figure 4A). To test the response of the cytoskeleton to

virus entry, we conducted inhibition experiments with inhibitors of

cytoskeletal actin (cytochalasin D), microtubules (nocodazole) or

autophagy/endocytosis via PI3-Kinase (LY294002). All inhibitors

induced a reduction in intracellular virus entry (Figure 4B). Since

Figure 1. Caco-2 cells are susceptible to TBEV infection. Human
cells infected with TBEV strains K23, Sofjin, and Ania at an MOI of 0.1.
Viral supernatant and intracellular viral RNA were harvested at 24 h,
48 h, 72 h, 96 h and 120 h p.i. (A) Intracellular TBEV RNA copy numbers,
measured by RT-qPCR. (B) Viral titers in the supernatant determined by
plaque assay, n = 3; *P,0.05, **P,0.01 to initial virus titer in Student’s t
test. (C) Immunofluorescence assay of TBEV-infected Caco-2 cell
monolayers. Caco-2 cells infected with TBEV K23 strain were fixed at
different time points and subjected to immunofluorescence assay. TBEV
E (green), nuclei (blue, DAPI = 49-6-diamidino-2-phenylindole dihydro-
chloride). One representative image of a triplicate is shown.
doi:10.1371/journal.pone.0096957.g001

Figure 2. Vacuolization induced by TBEV infection. Caco-2 cells
were infected with TBEV K23 virus. Cellular morphological changes and
vacuolization were monitored by light microscopy. Caco-2 cells were
infected with TBEV strain K23 and fixed at 24 h, 48 h and 72 h. Cells
were observed with the 406 objective (4006 total magnification).
Details of cytoplasmic vacuolization are visualized by immunofluores-
cence (IF) microscopy. 3 representative vacuoles are indicated by white
asterisks in each sub-image. Samples were incubated with anti-TBEV E
antibody and then stained with secondary anti-mouse antibody
conjugated to FITC (green). Nuclei were stained with DAPI (blue).
doi:10.1371/journal.pone.0096957.g002
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actin is required for the formation of plasma membrane ruffles in

macropinosome formation as well as for trafficking of macropino-

somes into the cell [28], we hypothesized that TBEV entry is

mediated by a macropinocytosis-like mechanism.

TBEV entry into Caco-2 cells shows characteristics of
macropinocytosis

The use of amiloride (data not shown) and its more potent

derivative EIPA (5-(N-Ethyl-N-isopropyl)-amiloride) block the

epithelial sodium channel (ENaC) as well as dose-dependently

several other Na+/H+ antiporters. EIPA has often been used as a

hallmark inhibitor that specifically inhibits endocytosis via the

macropinocytic pathway [29]. As shown in Figure 5A, TBEV

entry into Caco-2 cells is inhibited by EIPA treatment in a dose-

dependent manner. One characteristic of macropinocytosis is the

nonselective uptake of large amounts of extracellular solutes [28].

To further investigate the involvement of macropinocytosis in

TBEV entry, the uptake of soluble FITC-labeled dextran (Fdx)

into Caco-2 cells was monitored. Fdx has often been applied as a

morphological marker for macropinosomes and is used in fluid

uptake assays. We found that TBEV infection slightly increased

the uptake of Fdx into Caco-2 cells from 166679 vesicles and a

total particle area of 562 mm2 in mock control versus 11386101

vesicles with a total particle area of 6064 mm2 (p,0.01 and P,

0.001 respectively; n = 3) in a high-power field of 135 mm2 in

TBEV infected cells (Figure 5B). The average particle size of

0.0460.01 mm2 in control was not different from Fdx vesicles in

TBEV-infected Caco-2 monolayers with 0.0660.01 mm2 particle

size (n = 3, n.s.). In addition, Early Endosome Antigen-1 (EEA1)

was shown to be a marker of newly formed macropinosomes and

mediated virus entry in cultured cells [30,31]. The protein sorting

nexin-5 (SNX5) mediates macropinosome formation and is

involved in its maturation [32]. For this reason we analyzed co-

localization of TBEV with endogenous EEA1 or SNX5 in Caco-2

cells. Figure 5D and E show a co-localization of TBEV E protein

24h p.i. with EEA1 or SNX5, respectively (See also Z-stack Figure

S3 and S4 as well as Video S1 and S2). Taken together, these

findings indicate macropinocytosis as a mode of TBEV entry and

internalization.

Translocation of TBEV via the paracellular pathway in the
late phase of infection

During the transmission of TBEV by the oral route, virus may

be released into the circulation after crossing the intestinal

epithelium. To test this hypothesis, viruses were added to polarized

Caco-2 cell monolayers that were grown on permeable filter

Figure 3. Ultrastructural analysis of TBEV-infected Caco-2 cells by ultrathin section transmission electron microscopy. All
photographs were taken at 12 h p.i. where most of the virions could be observed. Representative virus particles are indicated by diagonal arrows.
Caverns of the dilated rough endoplasmic reticulum (rER) containing TBEV are indicated by asterisks and ribosomes of the rER are indicated by small
vertical arrows. (A) bar = 1 mm, (B) bar = 500 nm, (C) bar = 500 nm, (D) bar = 200 nm.
doi:10.1371/journal.pone.0096957.g003
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supports for 3 weeks. Virus incubation was performed for 1 h.

Virus release into the basal medium was determined by measuring

viral RNA copies over 5 days. As shown in Figure 6A, the amount

of TBEV RNA copies in basal medium persistently increased in

the course of infection, although TBEV was not detectable in the

basal medium at 0 h post infection. Simultaneously, TER was

recorded, in order to determine, whether or not TBEV affects

epithelial barrier function. Figure 6B shows that TER remained

stable for 72 h and decreased 4 days after infection.

To exclude that lesions due to TBEV-induced cell death caused

the translocation of the virus into the basal medium, cell viability

was monitored by MTT assay. No change in cell viability was

observed in the early phase of infection (until 2 days p.i.).

However, 5 days p.i. cell viability decreased (Figure 6C).

To corroborate these findings, TUNEL assays were performed

to assess the apoptosis ratio in TBEV infected Caco-2 cells (Figure

S1). 2 days p.i. the percentage of apoptotic cells was close to 0 and

not different from untreated controls, but 5 days p.i. around 5%

apoptotic cells were found (Figure 6D). These results suggest that

TBEV significantly accelerated apoptosis in Caco-2 cells in the late

phase of infection. Thus, in the early phase of infection (up to 2

days p.i.) no evidence for apoptosis induction was obtained and

TER of the Caco-2 monolayers remained unaffected indicating an

intact epithelial barrier. Therefore, virus translocation in the early

phase of infection points to virus transcytosis. Whereas the decline

in the integrity of the monolayer after 4 days p.i., as measured by a

reduction in TER (Figure 6B) and an increase in apoptosis ratio

(Figure 6D) as well as cytoskeletal (Figure 4A) and subsequent tight

junction changes (Figure S2, Video S3), suggests an additional

route of virus translocation via the paracellular pathway.

Discussion

Tick borne encephalitis virus is mainly transmitted by infected

ticks. After a bite of an infected tick, the virus invades the human

central nervous system. A variety of studies on the neural

pathogenesis of TBEV in vivo and in vitro were shown [33–35].

Recently, some TBE cases were caused by consuming raw milk

from infected animals [7,9]. However, the details of TBEV

transmission by the alimentary route are not well known.

Therefore, we used Caco-2 cells as an in vitro model to display

the interaction between TBEV and human intestinal epithelial

cells.

We found that TBEV infected and replicated efficiently in

human intestinal epithelial cells. The Caco-2 cell model, if grown

for 3 weeks, is a suitable infection model for the small intestine,

because it develops small intestine-like properties e.g. low

transepithelial electrical resistances or expression of SGLT-1 sugar

transporters [36,37]. In our experiments TBEV replicates rapidly

and after 2 days p.i. nearly all cells were infected although

infectious dose was relatively low (MOI 0.1). In the early phase of

infection up to 48 h the cell monolayers’ integrity remained stable

as indicated by an unchanged TER, no induction of epithelial

apoptosis and no obvious tight junction changes in IF stainings

(data not shown). This is in contrast to other viruses causing

gastrointestinal (GI) symptoms e.g. experimental rotavirus infec-

tion in Caco-2 monolayers caused a rapid decrease of TER and a

massive tight junction dysregulation within the first 24 h [38].

The second important finding of this study was that macro-

pinocytosis is an endocytic pathway in TBEV infection. Virus

trafficking via macropinosomes was recently described for a

growing number of viruses from other families such as echovirus

[39], lentiviral HIV [40], or as reviewed for Vaccinia virus,

Adenovirus 3, Coxsackievirus B, and Herpes simplex virus 1 etc.

[28]. Several lines of evidence indicate that the TBEV internal-

ization by Caco-2 cells is associated with macropinocytosis: (i)

TBEV was detected in mid-sized vesicles of approximately 200 to

500 nm by EM in Caco-2 cells. These observations also revealed

the virus particles probably assemble in the rER [41]. (ii)

Intracellular trafficking of TBEV containing vesicles was mediated

by e.g. SNX5 signaling, which regulates the formation and

maturation of macropinosomes [23]. Also EEA1 presented

evidence for early endosomes in co-localization with TBEV. (iii)

Inhibition of actin- or microtubule-dependent cytoskeleton polar-

ization blocked virus particle trafficking and the inhibition of PI3K

signaling also blocked virus uptake. (iv) Inhibition experiments

with EIPA and fluid uptake assays of infected Caco-2 cells provide

further evidence for a macropinocytosis mechanism. All these

findings support the hypothesis that uptake of viral particles is

mediated by the process of macropinocysis. Since the reduction in

virus endocytosis in these experiment was partial, the evaluation of

e.g. clathrin-mediated endocytosis by other specific inhibitors is up

to further investigations.

In our study we showed how the flavivirus TBEV infect

intestinal Caco-2 cells. We now postulate that TBEV transmission

and translocation into the organism can occur via the small

intestine, but this remains to be experimentally confirmed by an

animal infection model. Although some cases of TBEV infection of

Figure 4. Cytoskeletal integrity is important for TBEV infection
in Caco-2 cells. (A) Actin re-arrangements following TBEV infection.
Cells infected with TBEV strain K23 were fixed at 24 h. Samples were
stained for actin microfilament and the apical cell-domain (perijunc-
tional cytoskeleton) was visualized by fluorescence microscopy with
Acti-stain 488 phalloidin. Non-infected cells were used as controls.
White arrows indicate representative areas of more condensed actin
filaments in the right image. (B) Inhibition of TBEV cell entry by blocking
microfilaments. Caco-2 cells were treated with cytochalasin D (Cyt D),
nocodazole (Noc) or LY294002 (LY) for 30 min. DMSO treated Caco-2
cells were used as control. After treatment with inhibitors, cells were
incubated with TBEV strain K23 for 1 h. Virus entry was monitored by
RT-qPCR, n = 3; **P,0.01 to control in Student’s t test.
doi:10.1371/journal.pone.0096957.g004

TBEV Translocation across the Epithelial Barrier

PLOS ONE | www.plosone.org 6 May 2014 | Volume 9 | Issue 5 | e96957



lab workers by aerosols were described, when cell culture flask

containing high amounts of virus were broken in the incubator

[42], TBEV transmission via the respiratory tract or oropharyn-

geal epithelial cells needs to be further investigated. In addition,

oral experimental infection of animals resulted in a TBEV

infection after an incubation time of several days [11,12]. TBEV

can resist to gastric juice that showed the possibility of alimentary

TBEV infection [13]. Furthermore, other viruses such as HIV and

EBV can induce persistent infections after oral transmission in

animal models [43,44]. Therefore, it is reasonable that virus

translocation via the small intestine is a possible route when

humans consume unpasteurized milk products. Milk-borne

infections and translocation across tight human epithelial barriers

were also reported for other virus, as e.g. Human T-cell leukemia

virus (HTLV-1) [45]. Furthermore, Human immunodeficiency

virus (HIV) transmission from maternal milk was shown [46]. Milk

as a vehicle for pathogen transmission is often observed and milk

or its products protect pathogens to survive in the gastric acidic

environment in order to get access to enterocytes. As the buffer

capacity of milk and milk products is quite high, antibacterial or

antiviral activity of the gastric juice is lowered when consuming

milk, especially in young children or person with low gastric

secretion [47]. Therefore, the gastric passage of pathogens (even in

case of the gastric pathogen Helicobacter pylori) depends on the

susceptibility of the hosts as well as on the type of the diet [47].

In our experimental infection model, the beginning structural

changes of the cytoskeleton and vacuolization in the early phase

lead to further developed pathological changes in the late phase of

infection. Although we cannot completely exclude virus translo-

cation e.g. via apoptotic leaks, we found indications that the

epithelium was not hampered in its integrity up to 48 h p.i. Thus,

we conclude that virus particles were released via exocytosis.

Figure 5. Characteristics of macropinocytosis in TBEV infected Caco-2 cells. (A) Impaired TBEV entry by EIPA. Dose-dependence of EIPA-
induced inhibition of TBEV entry. Caco-2 cells were pre-treated with EIPA for 30 min, followed by incubation with TBEV in the presence of the
inhibitor. After 1 h, virus entry was monitored by RT-qPCR. n = 4; *P,0.05, **P,0.01 to DMSO control in Student’s t test. (B) Fluid uptake.
Accumulation of intracellular FITC-dextran (green) induced by TBEV infection. Caco-2 cells were treated with TBEV strain K23 for 1 h and then washed
with PBS. Subsequently, cells were incubated with FITC-labeled dextran (1 mg/ml). After 4 h, cells were washed, fixed and observed by confocal
microscopy. One representative image of a triplicate is depicted. (C) Accumulation of dextran in cells was analyzed by counting the total number of
intracellular FITC-dextran-containing vesicles in a low power field using ImageJ. **P,0.01 (n = 3). (D) Immunofluorescence microscopy. TBEV co-
localization (as merge in yellow, indicated by arrows) with early endosomal antigen-1 (EEA1) or (E) Sorting nexin-5 (SNX5) after virus entry. Cells were
fixed and stained for TBEV anti-E protein and EEA1 or SNX5 with primary antibodies, followed by secondary antibodies as indicated in the image. A
representative image (636 objective) is shown. Yellow dots as merge indicate TBEV particles in co-localization with EEA1 or SNX5.
doi:10.1371/journal.pone.0096957.g005
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However, after prolonged incubation time up to 5 days p.i.

apoptosis ratio was massively increased in infected cell monolayers.

Concomitantly, TER decreases after 4 days and was lowered to

the half of the initial value at day 5. Therefore, paracellular virus

translocation through the epithelial barrier may occur in the late

phase of infection in the leaky epithelium. The induction of

apoptosis by cytokine production, as shown for cytokine-contain-

ing supernatants of HIV-infected cells may also contribute to the

barrier defect [48]. Moreover, we found additional pathological

changes in late TBEV infection like the subcellular distribution of

tight junction proteins in single areas of infected Caco-2

monolayers that can promote virus translocation via the para-

cellular pathway (Figure S2). These kind of focal barrier defects

were prominently observed in infection models of bacterial enteric

pathogens e.g. Yersinia enterocolitica [49], Campylobacter concisus [50]

or Escherichia coli 536 [51]. The drop in TER by TBEV can be

assigned to the massive induction of apoptosis in the late phase of

infection, but also re-distribution of barrier-forming tight junction

proteins may contribute to the epithelial barrier defect. The

lowered epithelial barrier function together with apoptosis

induction were induced by the virus directly and/or by the host

response to the infection (e.g. cytokine induction) likewise shown

for infection of the small intestine by other viruses, e.g. astrovirus

or HIV [48,52]. Pathological apoptosis induction can influence

TER and increase permeability of the epithelium for macromol-

ecules up to 4 kDa [50,53]. Thus, a passive uptake mechanism

into the organism for virus translocation and on the other hand the

loss of solutes and water (diarrhea) is supposedly a further

pathogenic features of TBEV infection. Similarly, the pathogenic

mechanisms in the human small intestine during norovirus

infection could be described by epithelial apoptosis induction

and tight junction dysregulation [54]. Moreover, the norovirus

p20 protein showed interference with epithelial restitution

mechanisms when stably transfected into HT-29/B6 colon cells

[55]. Likewise tight junction disruption caused by the capsid of the

West Nile virus was found in Caco-2 monolayers [56]. From HIV

infection it is known that the enteric immune cells were the site of

virus progeny and that the HIV causes GI symptoms per se in the

acute phase of infection (HIV enteropathy), thereby both apoptosis

induction and tight junction changes contribute to the diarrhea

[57]. Thus, it is supposable that the GI tract may also serve as the

site for TBEV propagation and dissemination.

As TBEV can translocate via the transcellular as well as the

paracellular pathway, the entry of the virus into the organism may

lead to a systemic infection and subsequently infection of the

nervous system. It was demonstrated that TBEV lead to

breakdown of the blood-brain barrier in experimental infected

mice [35]. Moreover, another report showed that TBEV infection

of rat astrocytes did not influence their cell viability [34]. These

studies, together with our findings, indicated that both transcel-

lular as well as paracellular translocation of the virus can occur

during infection. The mechanisms by which the viruses perturb

the intestinal epithelial barrier by transcytosis and paracellular

translocation (e.g. over apoptotic leaks) is also supposable for virus

Figure 6. Translocation of TBEV through Caco-2 monolayers
without affecting transepithelial electrical resistance (TER). (A)
Virus amount in basal medium. Polarized Caco-2 monolayers grown on
permeable supports were infected with TBEV strain K23 from the apical
surface. Basal medium was harvest at different time points and viral
RNA in each sample was detected by RT-qPCR. The data were displayed
as mean with standard deviation. (B) Transepithelial electric resistance
(TER) measurements during TBEV infection. Polarized Caco-2 monolay-
ers, grown on permeable supports, infected with TBEV K23 (circles) from
the apical surface. Non-infected cells served as controls (triangles). TER
values were measured from 0 h to 120 h post infection. n = 5, *P,0.05,
**P,0.01 to control in Student’s t test. (C) Cell viability during TBEV

infection. Caco-2 cells were infected with TBEV strain K23 at an MOI of 1
and cell viability was analyzed by MTT assay. Cell viability was measured
and calculated as a percentage of non-infected control cells. Data were
expressed as mean 6 standard error of the mean. (D) Analysis of
TUNEL-positive cells. Confluent Caco-2 cells were infected with TBEV
strain K23 and apoptosis was detected by a terminal deoxynucleotidyl
transferase-mediated deoxyuridine triphosphate nick-end labeling
(TUNEL) at 48 h and 120 h post infection. The ratios of TUNEL-positive
cells to all cells were analyzed in 4 low-power fields from 3 independent
samples of each group. **P,0.01.
doi:10.1371/journal.pone.0096957.g006
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translocation through the endothelial blood-brain barrier. The

tight junction can be involved in virus endocytosis and replication.

For example the Hepatitis C virus exploits the tight junction

proteins occludin and claudin-1 as receptors for cell entry into liver

cells [58]. In our cell model we did not find any co-localization of

TBEV and tight junction or other apical membrane compart-

ments such as lipid-rafts (data not shown), thus a cellular receptor

for TBEV entry remains unknown. As Melik and co-workers

reported that PDZ-domains might be important for TBEV

replication and assembly [59], it is supposable that PDZ-motives

of tight junction proteins (e.g. occludin) would be used by the virus

and thereby tight junctional dysregulation may be induced.

However, tight junction dysregulation by the virus has to be

determined separately from apoptosis induction, which can

facilitate tight junction changes alone. For further research, the

cellular defense mechanisms (clearance of virus particles) in low-

dose TEBV-infected epithelial cells are worthwhile to proceed. In

preliminary experiments low infectious doses did not affect

epithelial integrity nor resulted in high replication rates as seen

with MOI above 0.1 (data not shown). Therefore, a possible

transmission of TBEV between the cells via actin filament

rearrangement should be considered for upcoming observations

which seem to play an important role in TBEV infection [60].

Taken together, TBEV is able to translocate through the intestinal

epithelial barrier providing evidence that virus infection can occur

via the alimentary route. In Caco-2 cell monolayers, TBEV entry

into intestinal epithelial cells is mediated by macropincytosis and

replication of virus leads to high virus titers in apical and basal

compartments. Future studies should confirm the findings on

barrier breaking properties of TBEV infection on epithelial and

endothelial borders in animal models and clinical observations.

Supporting Information

Figure S1 TUNEL assay in TBEV infected Caco-2 cells,
supplementary to Figure 6D. Cellular apoptosis induced by

TBEV infection. TUNEL assay in TBEV infected Caco-2 cells.

Cells were infected with TBEV and apoptosis was detected by

TUNEL (red) at 48 h and 120 h post infection. Cells were

observed with the 206 objective (2006 total magnification).

Nuclei were stained with DAPI (blue). Micrographs were taken by

fluorescence microscopy.

(TIF)

Figure S2 The effects of TBEV on tight junction changes
may also contribute the drop in TER. Representative tight

junction protein ZO-1 distribution and F-actin as cytoskeletal

marker were stained in TBEV-infected and non-infected Caco-2

cells to display structural correlates to the electrophysiological

findings. (A) ZO-1 and F-actin were disrupted by TBEV infection.

Cells were fixed and stained for ZO-1 with primary antibodies and

secondary anti-Rabbit Alexa Fluor 594 (red), TBEV E monoclonal

antibody and anti- mouse conjugated with FITC (green). F-actin

(white) stained with Atto-Phalloidin 647N (Sigma-Aldrich). Nuclei

stained with DAPI (blue). Micrographs were taken by confocal

microscopy. (B) Corresponding image of (A) as Z-stack in XY-

plane.

(TIF)

Figure S3 Co-localization of TBEV and EEA1. The

infected cells were observed using confocal microscopy. The Z-

stack image shows the virus co-localizes with EEA1 as yellow dots

in XY-plane.

(TIF)

Figure S4 Co-localization of TBEV and SNX5. The Z-

stack images in XY-plane were taken using confocal microscopy.

The left image shows the virus co-localizes with SNX5 as yellow

dots. In the right control image SNX5 is evenly distributed.

(TIF)

Video S1 Co-localization of TBEV and EEA1. Infected

Caco-2 cells were observed using confocal microscopy and 3D

video was created with Carl Zeiss LSM Image Examiner software.

The moving 3D image shows the virus in co-localization with

EEA1 as yellow dots.

(MOV)

Video S2 Co-localization of TBEV and SNX5. The moving

3D image shows the virus in co-localization with SNX5 as yellow

dots.

(MOV)

Video S3 Tight junction changes induced by TBEV
infection. The moving 3D image (from Figure S2) shows that

TBEV rearrange ZO1 distribution in affected regions of Caco-2

monolayers.

(MOV)
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