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Abstract

Background

Studies in the literature have indicated that the timing of seasonal influenza epidemic varies

across latitude, suggesting the involvement of meteorological and environmental conditions

in the transmission of influenza. In this study, we investigated the link between meteorologi-

cal parameters and influenza activity in 9 sub-national areas with temperate and subtropical

climates: Berlin (Germany), Ljubljana (Slovenia), Castile and León (Spain) and all 6 districts

in Israel.

Methods

We estimated weekly influenza-associated influenza-like-illness (ILI) or Acute Respiratory

Infection (ARI) incidence to represent influenza activity using data from each country’s sen-

tinel surveillance during 2000–2011 (Spain) and 2006–2011 (all others). Meteorological

data was obtained from ground stations, satellite and assimilated data. Two generalized

additive models (GAM) were developed, with one using specific humidity as a covariate and

another using minimum temperature. Precipitation and solar radiation were included as

additional covariates in both models. The models were adjusted for previous weeks’ influ-

enza activity, and were trained separately for each study location.
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Results

Influenza activity was inversely associated (p<0.05) with specific humidity in all locations.

Minimum temperature was inversely associated with influenza in all 3 temperate locations,

but not in all subtropical locations. Inverse associations between influenza and solar radia-

tion were found in most locations. Associations with precipitation were location-dependent

and inconclusive. We used the models to estimate influenza activity a week ahead for the

2010/2011 period which was not used in training the models. With exception of Ljubljana

and Israel’s Haifa District, the models could closely follow the observed data especially dur-

ing the start and the end of epidemic period. In these locations, correlation coefficients

between the observed and estimated ranged between 0.55 to 0.91and the model-estimated

influenza peaks were within 3 weeks from the observations.

Conclusion

Our study demonstrated the significant link between specific humidity and influenza activity

across temperate and subtropical climates, and that inclusion of meteorological parameters

in the surveillance system may further our understanding of influenza transmission

patterns.

Introduction
Influenza is an acute respiratory infection that continues to be a serious global public health
and economic concern. WHO estimates that seasonal influenza can result in up to 500,000
deaths and 5 million severe illnesses worldwide annually [1]. In Europe, there could be around
38,500 excess deaths due to influenza (out of ~500 million population) but with considerable
variations each year [2]. The latest pandemic due to A(H1N1)pdm09 was estimated to cause
280,000 deaths, with most among the non-elderly adults, in contrast to seasonal influenza
where mortality is highest in the elderly [3].

The timing of seasonal influenza epidemic varies across latitude, suggesting the involvement
of meteorological and environmental conditions. In temperate regions (23°27’−66°33’N and
23°27’−66°33’S), influenza epidemics typically occur during winter time—December to March
in the Northern Hemisphere and May to September in the Southern Hemisphere [4]. In the
tropics (23°27’N−23°27’S) and in some locations in the subtropics (23°27’−35°N and 23°27’−-
35°S), however, influenza seasonality is less clear and the epidemic pattern varies widely: from
year-round high influenza activity, peaks that coincide with rainy seasons, to multiple peaks in
a year [5–8].

Influenza transmission generally increases under conditions and settings that promote [9]:
influenza virus survival, or more frequent contacts with infected humans or contaminated
objects, and when there is insufficient human immunity against circulating influenza virus.
Meteorological and environmental conditions may therefore influence how easily infection
may take place. Winter time meteorological conditions (temperature, humidity and solar radia-
tion) are often associated with influenza epidemics in the temperate regions [10–12]. Such
favorable conditions were corroborated through laboratory and animal studies: low tempera-
ture and humidity increased transmission efficiency [13,14] and prolonged virus survival out-
side the body [15,16]. The contribution of solar radiation on influenza seasonality in the
temperate region, however, remains inconclusive [17]. Solar radiation’s ultraviolet may (i)
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stimulate vitamin D production, modulate the immune system and safeguard the body against
influenza virus [18]; and (ii) inactivate influenza viruses [19], though excessive UV exposure
may also damage immune system. Influenza in the tropics, on the other hand, is more fre-
quently associated with rainfall though the direct causal link remains to be established. It is
postulated that rainfall can also promote indoor crowding that increases the probability of
both aerosol and contact transmission.

In Europe, association with absolute humidity has been demonstrated at national level in
several countries [20,21]. These studies showed inverse relationship with absolute humidity
which accounted for up to 3% of influenza variability. A study in Israel [22] indicated that both
temperature and humidity modulated the country’s influenza transmission. Furthermore,
another study demonstrated through a mathematical model and forecast that influenza
dynamics in Israel was influenced by a combination of temperature, humidity, antigenic drift
and immunity lost [23].

Because there had been varying associations between meteorological parameters and influ-
enza activity across climate zones, we investigated such relationship in two different climates
(Fig 1)–Germany, Slovenia and Spain in the temperate zone, and Israel in the subtropical zone.
Furthermore, since temperature, precipitation, humidity and other parameters may vary signif-
icantly within a climatic zone and even a country, our study was conducted at sub-national
level (Fig 1). We used 9 sets of sub-national influenza data ranging from township (Ljubljana
in Slovenia), city (Berlin in Germany), district (all 6 districts in Israel: North, Haifa, Tel Aviv,
Center, Jerusalem and South) to community (Castile and León in Spain).

Materials and Methods

Influenza Data
Influenza sentinel surveillance data was collected from 2000 to 2011 for Castile and León
(Spain), and 2006–2011 for all the other locations. The German influenza sentinel system is
based on Acute Respiratory Infection (ARI) surveillance, while the systems in other countries
are based on Influenza-Like-Illness (ILI) surveillance. For each study location, we obtained the

Fig 1. Study Locations.

doi:10.1371/journal.pone.0134701.g001
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weekly number of: (i) ILI or ARI cases, (ii) respiratory samples tested for influenza, (iii) respira-
tory samples tested positive for influenza, and (iv) the population covered by the sentinel sys-
tem. Respiratory samples were tested by RT-PCR with the date of the visit to the physicians
recorded. Detailed description of each country’s sentinel surveillance system can be found in
S1 Text.

In order to obtain indicators for influenza activity, we multiplied the number of weekly ILI
or ARI cases by the proportion of respiratory samples that were tested positive for influenza
from the corresponding week. We then divided this number by the population served by the
practitioners in that sentinel surveillance area to obtain the rate of medically attended influ-
enza-associated ILI or ARI cases per 100,000 population. The areas and populations for the
study locations are given in Table 1.

Meteorological Data
In this study, we assessed the relationship between influenza activity and 4 meteorological
parameters that have been implicated in influenza transmission as described previously: spe-
cific humidity, minimum temperature, precipitation and solar radiation. Specific humidity
measures the mass of water vapor in a unit mass of air (expressed in g/kg). Unlike relative
humidity, it does not depend on temperature and is conceptually similar to absolute humidity,
which measures the mass of water vapor in a unit volume of air (expressed in g/m3). Hence,
the dynamics of specific humidity is similar to that of absolute humidity. Several influenza
studies have used specific humidity as a measure of absolute humidity [10,24]. For air tempera-
ture, there are typically 3 measurements—minimum, mean and maximum temperature. An
animal study has indicated that influenza transmission was associated with cold temperature
[13]. Hence is the use of minimum temperature in this study, although those three measures
were indeed strongly correlated with one another.

Daily minimum temperature was obtained from ground station data archived at the
National Climatic Data Center (NCDC) [25] (for Spain, Slovenia and Israel) and at Germany’s
climate data center [26] (for Berlin). Daily precipitation for Spain, Slovenia and Israel were
obtained from the Tropical Rainfall Measuring Mission (TRMM) satellite via NASA’s Interac-
tive Online Visualization And Analysis Infrastructure (GIOVANNI) [27]. Specific humidity
and solar radiation for all study locations, as well as precipitation for Berlin, were obtained
from the Global Land Data Assimilation System (GLDAS)[28]–a system that utilizes ground
and satellite measurements to model global terrestrial geophysical parameters with contiguous

Table 1. Study locations and influenza data summary.

Country Sub-National Locations Area (km2) Population Study Period Total Specimens Tested* % Positive for Influenza*

Germany Berlin 891 3,520,061 2006–2011 2258 47.3

Slovenia Ljubljana 164 280,278 2006–2011 319 31.66

Spain Castilla y León 94,222 2,558,463 2000–2011 1255 37.05

Israel Northern District 3,320 1,241,900 2006–2011 416 29.33

Haifa District 866 880,700 2006–2011 162 30.25

Central District 1,294 1,770,000 2006–2011 1461 30.39

Tel Aviv District 172 1,227,900 2006–2011 582 42.1

Jerusalem District 653 907,300 2006–2011 1049 42.33

Southern District 14,185 1,201,200 2006–2011 935 28.77

* Excluding observations during pandemic period (May 2009–May 2010).

doi:10.1371/journal.pone.0134701.t001
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spatial and temporal coverage. Both TRMM and GLDAS datasets have 0.25° spatial resolution
(~25 km at the equator), and they are available for download from NASA Goddard Earth Sci-
ences Data and Information Services Center (GES DISC) GIOVANNI portal [29].

When there was more than one ground station, we first averaged the daily data across sta-
tions before calculating the weekly average. For TRMM and GLDAS data, we averaged all pix-
els that had more than 10% of its pixel coverage within the study region, and subsequently took
the weekly average. Normally influenza incubation period is 1–4 days and infectious period
(when viral shedding occurs) is up to 7 days (10 days or more in children). A number of studies
however have shown that influenza activity can be associated with meteorological conditions
up to 2 months earlier [9,10,12].

Analytic Approach
We employed Generalized Additive Model (GAM) [30] which can account for nonlinear rela-
tionship by using smoothing splines function of the covariates. GAM is commonly used in
mortality-pollution studies [31–33] and was used to relate meteorological factors to influenza-
associated mortality [34]. Covariates included in the models were the meteorological parame-
ters and the previous week’s influenza activity (to account for autocorrelation in the time
series). Due to high correlation between specific humidity (SH) and minimum temperature
(TMIN) (correlation coefficient 0.86–0.98), we developed two models—one with SH and
another with TMIN—such that the two variables did not enter the model concurrently in order
to avoid spurious relationship due to concurvity. For each location k, the two models are:
Model 1 (SH):

lnðyt;kÞ ¼ aþ sðSHt1;k
Þ þ sðPt1 ;k

Þ þ sðSRADt1 ;k
Þ þ sðlnðyt1 ;kÞÞ 1

Model 2 (TMIN):

lnðyt;kÞ ¼ aþ sðTMINt1 ;k
Þ þ sðPt1 ;k

Þ þ sðSRADt1 ;k
Þ þ sðlnðyt1 ;kÞÞ 2

where yt,k is the influenza-associated ILI or ARI at time t and location k; α is the intercept; s(�)
indicates smooth spline function, in particular we used penalized cubic regression smoothing
splines [35] (S1 Text); SH is specific humidity (in g/kg); P is precipitation (mm); and SRAD is
solar radiation (W/m2). Subscript t1 indicates 1-week lag. The model assumed over dispersed
Poisson structure [35]. Population was entered as an offset such that the regression was for rate
of influenza-associated ILI or ARI per population, which is referred as influenza activity hence-
forth. The models were fitted for each study location separately. All analysis was performed
using R software [36] with the mgcv package for GAM. Model estimation was performed using
Penalized Iteratively Reweighted Least Squares (P-IRLS) [35].

We applied backward selection for the meteorological variables, with the model perfor-
mance as selection criteria. The model performance was measured by Generalized Cross Vali-
dation (GCV) score [35], which is essentially the model’s error that also accounts for the
degrees of freedom (see S1 Text). In fitting the model, we inflated the GCV score (setting
gamma = 1.4) in order to reduce over-fitting without degrading much of the prediction error
performance as suggested by Wood [35]. Autocorrelation was subsequently assessed using
autocorrelation and partial autocorrelation function graphs. If significant partial autocorrela-
tion was present in the first two lags [37], we increased the splines’maximum allowable degree
of freedom by 1, to a maximum of 6. If autocorrelation persisted, we added the 2-week lag of
the dependent variables. The significance of each smooth term in the model was tested (smooth
function, s(.) = 0) using Bayesian confidence intervals for the smooths as described in Wood
[38]. The shapes of the resulting meteorological smooth terms were plotted with its 95%
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confidence limits (calculated using Bayesian confidence intervals [35]). A downward slope
indicated an inverse relationship with the dependent variable, and an upward slope indicated a
proportional relationship.

For each study location we divided the data into training and validation datasets. Validation
datasets consisted of data from the last season (2010/2011). We excluded data during the pan-
demic year (May 2009-May 2010) from the analysis, because they may not well represent the
typical influenza epidemics. The resulting model was used to estimate influenza activity for
2010/2011 season. We identified the peak week in this season by simply taking the maximum
value, and calculated the differences between the time that the estimated and observed peak
occur.

Using the data during an influenza season (taken as January-March), we calculated for each
study location, the change in influenza activity when the significant meteorological covariates
were increased, one at a time, by a small increment (10% of the range) from its median value,
while the other covariates were held at their median values. These increments, on average
across locations, corresponded to approximately 0.5g/kg for SH, 8.1 mm for precipitation, 16.4
W/m2 for SRAD and 0.6°C for TMIN. The associated change in influenza activity was
expressed as percentage change relative to the influenza activity value when the meteorological
parameters were at their median values. This analysis was performed to quantitatively assess
how influenza varied with small changes in the meteorological parameter. We further assessed
the contribution of the meteorological parameters to the model by removing one meteorologi-
cal parameter at a time and calculated the percent change in the deviance from the full model
(see S1 Text).

Results

Specific Humidity Model (Model 1)
Using GAM with backward selection applied to the meteorological covariates and adjusted for
previous weeks’ influenza incidence, we found that influenza-associated ILI or ARI per 100,000
population (influenza activity) was inversely associated (p<0.05) with specific humidity (SH)
in all locations (Table 2). Plots of the resulting SH smooth term (Fig 2) showed a decreasing
trend, indicating an inverse association with influenza activity. In most locations, SH smooth

Table 2. Model 1 (with specific humidity) regression parameters. Models were adjusted for previous weeks’ influenza activity.

Meteorological Smooth Terms EDF (p-value)* Adj. % Dev. Pred. Corr.

Specific Humidity Precipitation Solar Radiation R2 Explained Coeff.ǂ

Berlin 1.72 (<0.001) 1 (0.001) 0.70 75.7 0.87

Ljubljana 1.96 (<0.001) 1.71 (0.06) 1.97 (<0.001) 0.34 63 0.02

Castile & León 1.91 (0.002) 2.52 (0.001) 1.61 (<0.001) 0.56 72.1 0.88

North 1.88 (<0.001) 1.81 (<0.001) 1 (0.07) 0.64 75.1 0.71

Haifa 1.91 (0.02) 1 (0.001) 0.19 51.2 0.33

Center 1 (<0.001) 1 (0.01) 1 (0.01) 0.71 83.2 0.86

Tel Aviv 1.88 (<0.001) 1 (0.04) 0.70 77.6 0.91

Jerusalem 1.78 (0.001) 2.81 (<0.001) 0.75 86.1 0.84

South 1.88 (0.002) 1 (0.009) 1 (0.003) 0.69 73.6 0.82

* EDF is the effective degree of freedom for the estimated smooth terms. Meteorological parameter units: g/kg for specific humidity, mm/day for

precipitation, W/m2 for solar radiation.
ǂ Correlation coefficient between the estimated influenza-associated ILI or ARI with the observed during 2010/2011 season.

doi:10.1371/journal.pone.0134701.t002
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plots showed log linear relationship with influenza activity. Such relationship was also revealed
by the effective degree of freedoms (EDF in Table 2) of one, or approximately one. Association
with precipitation was found in 1 temperate location and in 4 Israeli subtropics locations with
higher EDF (1–2.52, Table 2) and varying trends (Fig 2): an increasing trend in Center, Tel
Aviv and South districts of Israel, and both increasing and decreasing trends in Castile and
León (Spain) and North district (Israel). Lastly, solar radiation (SRAD) was inversely associated
with influenza activity in all 3 temperate locations and in more than half of the subtropics loca-
tions (Fig 2). Similar to SH, association with SRAD showed close-to-linear relationship (EDF
1–2.81). The models’ performance as measured by the adjusted R2 ranged from 0.19 to 0.75
(mean 0.59), with 51% to 86% deviance explained (Table 2).

When SH median value during influenza season was increased by 10% of the range (average
of 0.5 g/kg across locations), influenza activity was decreased by 6.9–53.6% in all locations
(Table 3). This percentage change indicated how much influenza activity changed when SH
was increased, relative to the value of influenza activity at the time when SH was at its median
value. Increase in precipitation (~ 8.1 mm) was associated with decreased influenza activity in
Castile and León (18.7%) and increased influenza activity in North District (44.7%), Center
District (11.04%), Tel Aviv District (6.2%) and South District (8.7%) (Table 3). Since the pre-
cipitation smooth term showed both decreasing and increasing trends (Fig 2), we further calcu-
lated the change in influenza activity from precipitation’s 90th percentile value and found that
influenza increased by 21% (95% CI = 8.4–33.6%). The result for Castile and León indicated
that higher amount of precipitation was proportionally associated with influenza activity while
low precipitation had an inverse association. For SRAD, a small increase (~16.4 W/m2) from
the median was associated with 4.5–27.2% decrease in influenza activity in Berlin, Castile and
León, Haifa, Center, Jerusalem and South. There was no statistical changes in influenza activity
in Ljubljana, but similar to precipitation, an increase from the 90th percentile value was associ-
ated with decreased influenza activity by 94.3% (95% CI = 84.2–105.7%).

We estimated the contribution of the meteorological parameters to the model based on the
changes in the model’s deviance when the specified meteorological covariate was removed
(Fig 3). SH had the largest contribution (2.3%-11.3%) for all locations except in Castile and
León. In Castile and León, SRAD had the largest contribution (3.91%).

We further used the model to predict the influenza activity in the 2010/2011 season (Fig 4),
which was not included in training the model (see S1 Fig for training data estimation). In 6 of
the 9 study locations, the models closely followed the rise and fall of the curves. The models
accurately estimated the peak week timing (defined simply as the maximum within the season)
in Jerusalem and South; while for the other locations the peak week timing was estimated
within 1 week (Berlin, Castile and León, Center and Haifa), 3 weeks (North and Tel Aviv) and
11 weeks (Ljubljana) of the observed. Correlation coefficients between the estimated and
observed influenza activity (Table 2) were lowest in Ljubljana and Haifa (approximately 0.1),
while in the other 7 locations it ranged from 0.74 to 0.95 (mean 0.88).

Minimum Temperature Model (Model 2)
When minimum temperature (TMIN) was used as a covariate instead of SH, we found that
TMIN was inversely associated (p<0.05) with influenza activity in all locations but Jerusalem
District in Israel (Table 4). TMIN smooth terms’ EDF were, in general, higher than SH in
Model 1 (EDF up to 2.82 in Table 4). Association with precipitation was observed in 6 out of
the 9 locations. SRAD was associated with influenza activity in all temperate locations and in 2
of the 6 subtropics locations. Similar to Model 1, our results using Model 2 indicated: 1) a
decreasing trend in influenza activity (log-scale) as TMIN increased (Fig 5); 2) a varying
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Fig 2. Plots of the meteorological smooth terms for Model 1 (with specific humidity).Only terms that
are significant are plotted. The y-axis is in the predictor scale (log(y)) and normalized, while the x-axis is the
value of the meteorological variable. The dashed lines are the 95% confidence interval. Downward slope
indicates inverse relationship, while upward slope indicates proportional relationship.

doi:10.1371/journal.pone.0134701.g002
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relationship between influenza activity and precipitation; and 3) a decreasing trend in influenza
activity as SRAD increased (except in South where increasing trend was also observed). The
adjusted R2 for Model 2 ranged from 0.30 to 0.72 with 61.8% to 85.4% deviance explained
(Table 4).

Table 3. Percentage change in influenza-associated ILI or ARI per 100,000 populations when one of the meteorological variables was increased
from its median value by 10% of its range (Δx) during epidemic weeks (Model 1).

Specific Humidity Rainfall Solar Radiation

Berlin -6.89 (-11.19,-2.60) -4.48 (-7.07,-1.89)

Ljubljana -30.99 (-45.16,-16.81) 5.81 (-11.34,22.96)

Castile & Leon -6.66 (-11.42,-1.89) -18.73 (-28.62,-8.85) -18.36 (-24.78,-11.95)

North -53.61 (-66.47,-40.75) 44.74 (23.38,66.10)

Haifa -46.65 (-70.68,-22.62) -27.17 (-40.49,-13.86)

Center -22.02 (-30.55,-13.49) 11.04 (2.55,19.53) -11.21 (-19.62,-2.79)

Tel Aviv -31.51 (-40.17,-22.86) 6.18 (0.213,12.15)

Jerusalem -19.09 (-26.90,-11.27) -8.41 (-14.30,-2.52)

South -22.23 (-33.37,-11.09) 8.71 (1.95,15.47) -10.64 (-16.98,-4.31)

doi:10.1371/journal.pone.0134701.t003

Fig 3. Percentage change in model deviance when the specified meteorological parameter was
excluded fromModel 2. SH is specific humidity, PRCP is precipitation and SR is solar radiation.

doi:10.1371/journal.pone.0134701.g003
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Fig 4. Estimated influenza activity in 2010/2011 season using Model 1 (with specific humidity). Black
line is the observations, red line is the predicted influenza and the shaded areas are the 95% CI.

doi:10.1371/journal.pone.0134701.g004

Table 4. Model 2 (with minimum temperature) regression parameters. Models were adjusted for previous weeks’ influenza activity.

Meteorological Smooth Terms EDF (p-value)* Adj. % Dev. Pred. Corr.

Min. Temp Precipitation Solar Radiation R2 Explained Coeff. ǂ

Berlin 1.6 (0.006) 1 (0.01) 0.71 75.3 0.87

Ljubljana 1.95 (<0.001) 1.7 (0.008) 2 (<0.001) 0.30 61.8 0.10

Castile & León 1.84 (<0.001) 1.87 (0.007) 1.61 (<0.001) 0.56 72.0 0.84

North 1 (<0.001) 1.94 (<0.001) 0.58 74.5 0.55

Haifa 1.91 (0.003) 3.91 (<0.001) 2.98 (0.1) 0.54 65.8 0.02

Center 1 (<0.001) 1 (<0.001) 0.70 82.7 0.90

Tel Aviv 1.75 (<0.001) 0.66 74.4 0.80

Jerusalem 2.82 (0.2) 3.92 (0.007) 1 (<0.001) 0.72 85.4 0.90

South 1.55 (<0.001) 2.32 (0.01) 0.71 72.4 0.89

* EDF is the effective degree of freedom for the estimated smooth terms. Meteorological parameter units: °C for minimum temperature, mm/day for

precipitation, W/m2 for solar radiation.
ǂ Correlation coefficient between the estimated influenza-associated ILI or ARI with the observed during 2010/2011 season.

doi:10.1371/journal.pone.0134701.t004
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Fig 5. Plots of the meteorological smooth terms for Model 2 (with minimum temperature).Only terms
that are significant are plotted. The y-axis is in the predictor scale (log(y)) and normalized, while the x-axis is
the value of the meteorological variable. The dashed lines are the 95% confidence interval. Downward slope
indicates inverse relationship, while upward slope indicates proportional relationship.

doi:10.1371/journal.pone.0134701.g005
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When TMIN’s median during influenza season was increased by 10% of its range (average
increment of ~1.2°C), we found that influenza activity was decreased by 7.8% to 42.9% in all
locations (Table 5). Increase in precipitation was followed by decreased influenza activity in
Castile and León, North and Haifa (by 35.93% and 192.68%, respectively). There were no sta-
tistical changes in influenza activity in Ljubljana, Jerusalem and South. However, increase from
precipitation’s 90th percentile value showed a statistical increase in influenza activity in Lju-
bljana and South (27.7% and 15.1% respectively). An increase in SRAD by 10% of its range was
associated with decreased influenza activity in Berlin (3.8%), Castile and León (16.4%), Center
(17.5%), and Jerusalem (10%). There were no statistically significant changes in influenza activ-
ity in Ljubljana (Table 5).

When we further estimated the contribution of the meteorological covariates to the model
we found that TMIN had the largest contribution (Fig 6) in Berlin, Ljubljana and Israel’s
North, Haifa, Tel Aviv and South Districts (2.5%-16.2%). Similar to Model 1, SRAD had the
largest contribution in Castile and León (2.8%). This pattern was also found in Jerusalem and
Center Districts where SRAD contributed to 1.1% and 2.3%, respectively.

TMIN models’ estimation of influenza activity in 2010/2011 could also closely follow the
rise and fall of the observed influenza activity curves in more than half of the locations (Fig 7).
In 3 out of the 9 locations (Castile and León, Center, and Jerusalem), the model estimated the
peak week timing within 1 week of the observations (Fig 7). In Berlin and South the estimated
peak week timing was within 2 weeks, while it was within 3 weeks in North and Tel Aviv. In
Haifa and Ljubljana, the peak week was estimated within 8 and 10 weeks of the observed,
respectively. Similar to Model 1, correlation coefficients between the observed influenza activ-
ity and the estimate from the models were lowest in Ljubljana and Haifa (less than 0.1). For
other locations, the correlation coefficients ranged from 0.55 to 0.90 (Table 4). The estimated
influenza activity for the training data is shown in S2 Fig.

Model Comparison
Based on the GCV score, the TMIN model (Model 2) performed better in 3 locations (Castile
and León, North and Haifa), while the SH model (Model 1) was a better model for the other 6
locations (Table 6). However, the differences in the GCV scores were relatively small (< 17%
improvement). Furthermore, if we compared the model’s adjusted R-squared values, the differ-
ence between TMIN and SH models was very small (0.06 or less except in Haifa where the dif-
ference was 0.35). Both models produced very similar estimation of influenza activity during
2010/2011 season in the temperate locations (Figs 4 and 7).

Table 5. Percentage change in influenza-associated ILI or ARI per 100,000 populations when one of the meteorological variables was increased
from its median value by 10% of its range during epidemic weeks (Model 2).

Min. Temp Precipitation Solar Radiation

Berlin -10.57(-15.83,-5.31) -3.77(-6.58,-0.966)

Ljubljana -41.71(-55.41,-28.01) 1.61(-17.36,20.58) -3.18(-19.96,13.61)

Castile & León -7.84(-13.04,-2.64) -10.27(-18.71,-1.82) -16.40(-23.22,-9.58)

North -35.50(-41.45,-29.55) 35.93(14.98,56.89)

Haifa -42.85(-60.21,-25.49) 192.68(44.05,341.32)

Center -18.47(-25.67,-11.28) -17.15(-23.87,-10.43)

Tel Aviv -18.87(-24.23,-13.52)

Jerusalem -10.59(-25.40,4.23) -10.00(-15.36,-4.63)

South -22.03(-29.60,-14.47) 5.06(-15.39,25.52)

doi:10.1371/journal.pone.0134701.t005
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Sensitivity Analysis
We tested our models using excess influenza-associated ILI or ARI, which is another frequently
used influenza indicator [39–41] and defined as the amount of ILI or ARI that exceeds the
baseline values (please see S1 Text for detailed descriptions and results). We found similar asso-
ciations between meteorological parameters and the excess. In Model 1, SH was associated
with influenza activity in all locations, whereas association with precipitation and SRAD were
location-dependent (S4 Fig). Similarly, in Model 2, TMIN was associated with excess ILI (or
ARI) in all locations, whereas association with precipitation and SRAD were location-depen-
dent (S2 Table and S5 Fig).

In the main analysis, we used meteorological variables averaged over the previous 1 week
(1-week lag). We further trained Model 1 and 2 using meteorological variables averaged over
the previous 1 to 2 weeks and 1 to 3 weeks. Our results showed SH (in Model 1) was inversely
associated (p<0.05) with influenza activity in all locations and with all average periods (S1
Appendix). TMIN (in Model 2) was inversely associated with influenza activity in all temperate
locations (S2 Appendix), but not all subtropical locations. Associations with precipitation and
SRAD when using all average periods remained location-dependent for both models, similar to
the main results.

Fig 6. Percentage change in model deviance when the specified meteorological parameter was
excluded fromModel 2. TMIN is minimum temperature, PRCP is precipitation and SR is solar radiation.

doi:10.1371/journal.pone.0134701.g006
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Discussion
Our models (when adjusted for the previous weeks’ influenza activity) demonstrated that spe-
cific humidity (SH) was inversely associated with influenza activity in all locations while mini-
mum temperature (TMIN) was inversely associated in all temperate locations but not all
subtropical locations. Associations with precipitation and solar radiation (SRAD) were
observed in the two models, but the direction of these associations was location-dependent.

Fig 7. Estimated influenza activity in 2010/2011 season using Model 2 (with minimum temperature).
Black line is the observations, red line is the predicted influenza and the shaded areas are the 95% CI.

doi:10.1371/journal.pone.0134701.g007

Table 6. Difference in model performance (based on GCV score) between Model 1 and 2. Negative
value indicated that the former model had better performance (lower GCV score is preferable). Model 1 is with
specific humidity and Model 2 with minimum temperature.

Δ GCV
Model 1—Model 2

Berlin -95.20 (-1.17%)

Ljubljana -0.03 (-3.03%)

Castile & León 0.04 (0.83%)

North 0.07 0.57%)

Haifa 5.51 16.92%)

Center -0.64 (-1.64%)

Tel Aviv -7.4 (-12.36%)

Jerusalem -0.59 (-10.94%)

South -1.07 (-4.35%)

doi:10.1371/journal.pone.0134701.t006
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Taken together, our results imply that SH was an important covariate for influenza activity for
these locations with temperate and subtropical climates, and TMIN was an important covariate
in the temperate regions.

Consistent with our findings, epidemiological studies in the temperate regions as well as ani-
mal studies have indicated the inverse association between influenza activity and both tempera-
ture and humidity [8,10,13,24,34]. In modern societies, individuals spend most of their time
indoors. Consequently, indoor humidity and temperature would primarily modulate influenza
virus survivability, aerosol-borne transmission and contact transmission. Since the humidity
and temperature measures used in this study were taken outdoors, the relationship revealed
here may not imply the direct effect due to indoor virus survivorship or transmission efficiency.
One explanation could be that the outdoor humidity and temperature may affect the indoor
condition and enhance the suitability for transmission. Recent study indicated that indoor
absolute humidity in school settings could be very low during winter, and that the fluctuations
in the indoor humidity were primarily associated with changes in the outdoor absolute humid-
ity [42]. Alternatively, low outdoor temperature and humidity may be sufficiently uncomfort-
able. This may promote indoor crowding and in turn increase the probability for contact and
other modes of transmission. Finally, extreme outdoor conditions with low temperature and
humidity and frequent changes in ambience from outdoor to indoor could alter the respiratory
epithelium, which would facilitate the virus’ adhesion to the cell receptors [43,44].

We found that the association between influenza activity and precipitation varied across
regions. The associations could be bimodal, proportional, or inversely proportional. However,
the estimated contribution of precipitation to both models as measured by the percent increase
in the model deviance was not only relatively low (< 9.7%), but it was also the lowest in most
locations. Thus, precipitation may not be a strong covariate for influenza activity in these tem-
perate and subtropical locations.

In both models we found that SRAD was a significant covariate in the temperate locations,
but location-dependent in the subtropics. In locations where the associations was found, SRAD
was inversely associated with influenza activity, consistent with another influenza study for the
United States [12]. Several studies have suggested that the amount of sunshine modulates the
immune system, including regulation of vitamin D, which in turn affects the susceptibility to
influenza infection [18,45]. An empirical study has also suggested that sunlight’s ultraviolet
radiation could increase the inactivation of influenza virus in the environment [19]. In contrast
to these findings, solar radiation has very limited reach to deactivate indoor influenza virus,
and a simulation study [17] demonstrated that seasonal variations in vitamin D levels were
unlikely to be the principal determinant for influenza seasonality in temperate regions.
Although our results indicated significant associations with SRAD in temperate and some sub-
tropical locations, the estimated contribution to the model was not very large (< 6.2%).

The contributions of meteorological parameters to the model were relatively low—mostly
less than 13%. This result was consistent with another study in European countries [20] and
Netherlands [21], which used different models and covariates. Their results indicated that
absolute humidity explained only 3% of the variation in influenza transmission. Despite the
small contribution, absolute humidity may determine the timing for sustained transmission
[21].

The resulting smooth term plots generally showed similar pattern across locations for each
of the 3 meteorological parameters: specific humidity, minimum temperature and solar radia-
tion (Figs 2 and 5). Each of them showed a downward trend, implying inverse relationship
with influenza activity. There were slight variations in the plots among locations. This could be
due to varying association with meteorological conditions across the temperate and the sub-
tropics. In training the model, we have taken precautions (see Methods) to limit the flexibility
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of the spline functions so as to avoid overfitting that may lead to over compensation for some
covariates. Moreover, the associations between these meteorological parameters and influenza
activity as indicated by the smooth plots were consistent with the associations found in the lit-
erature. As there were finite samples represented by somewhat noisy time series, it was natural
to find slight variations in the meteorological smooth plots. The smooth plots for precipitation
noticeably varied across locations. As we previously concluded, the association with precipita-
tion was inconclusive: its contributions to the model were lowest in most locations, and it was
not a strong covariate for influenza activity.

As described in the Methods section, we excluded observations during the pandemic year as
they may not well represent the typical influenza epidemics. When the models were trained
with data that include observations during the pandemic year, we found different association
between influenza activity and both SH and TMIN. Instead of an inverse association, we found
that influenza activity increased at the lower- and higher-end values of SH and TMIN (S3
Appendix). It was previously shown [46] that in the temperate regions, higher susceptibility in
a pandemic may cause an early start of the transmission in the fall when absolute humidity was
not low, and that additional waves may appear in the winter when the absolute humidity
became low. When pandemic year was included in our analysis, our results showed that both
low and high SH and TMIN favor influenza incidence and therefore corroborated this previous
finding.

We separately trained the model at each study location because our previous study in subna-
tional locations in the tropical Central America demonstrated varying associations between
influenza activity and the meteorological parameters [47]. In particular was Guatemala with
subtropic-like climate that had an association more similar to the subtropic than the tropic.
Because the locations in the current study span from 32°N (Tel Aviv and Jerusalem) to 52°N
(Berlin), it is reasonable to assume that the influenza-meteorological association may vary
across this wide latitude span. When we trained the model to all locations at the same time (S4
Appendix), we found that specific humidity, minimum temperature and solar radiation were
inversely and significantly associated with influenza. However, precipitation was no longer
associated with influenza activity. When the 9 subnational regions were modeled individually,
precipitation showed significant association for 5 regions (SH model) and 6 regions (TMIN
model). Therefore we chose to train the model at each location separately so as to understand
the difference in influenza-meteorology association in this wide latitude span.

In most locations, the estimation of influenza activity during 2010/2011 season using both
specific humidity and minimum temperature models closely followed the onset and the fall of
the epidemic curves, though the magnitudes around the peak week were generally underesti-
mated. Our results imply that the meteorological parameters may only be associated during the
start and the end of an influenza epidemic period. Transmission propagation and its magni-
tude could be determined by the proportion of susceptible in the population, which was not
considered in the model. The SH and TMIN models in Ljubljana, North and Haifa could not
well estimate influenza activity during 2010/2011 season. The total numbers of specimens
tested for influenza in these 3 locations were lower compared to other locations (Table 1),
although Ljubljana had higher number of samples per population. In addition, in both Lju-
bljana and Haifa, there were 3 influenza peaks detected in the training period (2006 to 2010)
where others had 4 peaks during this period. The low number of influenza cases in these areas
may have contributed to the low model performance. Consequently, modeling accuracies for
2010/2011 influenza season in these 3 locations were not as good as others. In Ljubljana, the
forecasted peak timing was off by about 2 months. In Haifa, the predicted influenza activity
using TMIN model had the lowest correlation coefficient with the data (0.02), and we observed
a large prediction confidence interval (not shown). This could be due to the smaller number of
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influenza cases and fewer peaks during the study period. Our models only include meteorologi-
cal factors as covariates whereas there are other biological and socioeconomic factors, which
are not easily quantified and measured, that may influence influenza activity.

We demonstrated the capability of the meteorological-based models for projecting influenza
activity one week ahead using data from the previous week(s). Most of the meteorological
parameters are available within hours of the observations, and meteorological forecasts are
often available about 10 days before. Hence, provided that surveillance data for the previous
week is available, the model could be used for operational use to make influenza activity fore-
cast. On the other hand, although 10-day weather forecast is available, the accuracy of weather
prediction decreases as prediction period increases. The accuracy of influenza forecast that
depends on weather prediction is naturally affected. Hence, before 10-day weather forecast
become operationally reliable, influenza prediction derived from weather prediction can serve
as a reference for possible near-term influenza activity. In the event that surveillance data is not
available, historical (or average from previous years) data can be used. It is possible then to
forecast influenza activity 2 weeks ahead using historical average of influenza surveillance data,
and a combination of meteorological observations and 10-day forecasts. Additionally, influ-
enza models, based on historical data, such as in [48] could benefit from these meteorological
covariates and, reciprocally, this model could be improved adding reliable information from
the classical surveillance methods.

Limitations
We analyzed sub-national level influenza data which evidently had smaller populations and
influenza samples. This was a factor that may affect the statistical significance of the results.
However, the meteorological condition within a subnational location often had less variability,
which provided a better setting to understand the meteorological association with influenza.
Since our subnational data was limited to 9 study locations, this may hinder generalizing our
result to other similar locations. Nonetheless, despite these limitations, consistency of our
results with others in literature demonstrates the robustness of our approach and findings.

The influenza indicator used in this study assumed [49] that samples from the virological
surveillance were representative of the ILI or ARI patients in the clinical surveillance. This
assumption may not be entirely accurate in reality. Differences in the surveillance method
across the 4 countries studied (S1 Text) may also affect how close the indicator in representing
influenza activity. We have also conducted the analysis using another commonly-used influ-
enza indicator, excess ILI or ARI, which showed consistent results with our main finding. We
did not use the latter indicator because the epidemic week definition that was needed in the cal-
culation varied across countries. Moreover, an accurate estimation of such indicator typically
required more than 5 years of data [48] and the computation was sensitive to the periods of
observations included [50]. Despite its limitations, the current influenza indicator was the
most suitable for all study locations.

There are a multitude of factors that contribute to influenza transmission—from behavioral,
susceptibility, socioeconomic to meteorological conditions. In this study, we only considered
meteorological conditions and previous weeks’ influenza activity as covariates. Susceptibility
was not a covariate per se, but was reflected in previous week’s influenza activity, which was
one of the covariates. The susceptible population was also implicitly considered as the influenza
activity was constrained by the total, the recovered, and the susceptible populations. Other fac-
tors contributing to influenza transmission were not easily measured and quantified. These
unaccounted factors may contribute to the differences between the predicted and observed
influenza activity as seen in Figs 4 and 7.
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Although the models only considered a subset of the factors that affect influenza transmis-
sion, the onset and the fall of the epidemic curves were still accurately estimated, and the tim-
ing of the peak was closely estimated for most locations. The association between influenza
activity and meteorological parameters inferred by the models were also consistent with find-
ing in literature that used different modeling techniques.

Our findings only showed associations between influenza activity and meteorological
parameters and does not necessarily imply a causal relationship. However, these findings may
suggest the meteorological parameters that warrant further testing for causal relationship.
Another limitation to this study was the use of outdoor measurements where most people in
modern societies spend much of their time indoors. Lastly, other respiratory viruses may co-
circulate with influenza virus—such as Respiratory Syncytial Virus (RSV), adenovirus, parain-
fluenza virus and so on—which could vary with meteorological parameters. Since there was no
sufficient data to include the co-circulating respiratory viruses in the models, this is a potential
limitation of our study.

Conclusion
Our study demonstrated significant association between specific humidity and influenza activ-
ity across the 9 locations with temperate or subtropical climates. Such association at the subna-
tional level had frequently been found in the continental United States [10,34], but further
studies in the other temperate and subtropical regions are needed to extend the validity of the
association. Our study also indicated that the meteorological-based estimation of influenza
activity in most locations showed a good agreement with the observed data, especially during
the start and the end of an epidemic period. Therefore integrating meteorological parameters
for influenza forecasting in the surveillance system may benefit the public health efforts in
reducing the burden of seasonal influenza. More studies are necessary to understand the role of
these parameters in the viral transmission and host susceptibility process.
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