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A B S T R A C T

Soil microbes play an important role in terrestrial carbon (C) cycling, but their functional response to global
warming remains yet unclear. Soil metaproteomics has the potential to contribute to a better understanding of
warming effects on soil microbes as proteins specifically represent active microbes and their physiological
functioning. To quantify warming effects on microbial proteins and their distribution among different functional
and phylogenetic groups, we sampled forest soil that had been artificially warmed (+4 °C) during seven
consecutive growing seasons and analyzed its metaproteomic fingerprint and linked to soil respiration as a
fundamental ecosystem service.

Bacterial protein abundances largely exceeded fungal abundances at the study site but protein abundances
showed only subtle differences among control and warmed soil at the phylum and class level, i.e. a temperature-
induced decrease in Firmicutes, an increase in Agaricomycetes and Actinobacteria, and a decrease in the Asco/
Basidiomycota ratio. Community function in warmed soil showed a clear trend towards increased proteins
involved in microbial energy production and conversion, related to the increased CO2 efflux from warmed soil as
a result of stress environmental conditions. The differences in community function could be related to specific
phyla using metaproteomics, indicating that microbial adaptation to long-term soil warming mainly changed
microbial functions, which is related to enhanced soil respiration. The response of soil respiration to warming
(+35% soil CO2 efflux during sampling) has not changed over time. Accordingly, potential long-term microbial
adaptations to soil warming were too subtle to affect soil respiration rates or, were overlaid by other co-varying
factors (e.g. substrate availability).

1. Introduction

Soils are a huge reservoir of organic Carbon (C), and the biotic CO2

efflux from soil (=soil respiration) is one of the largest fluxes in the
global C cycle. Global warming stimulates C flux from soil to the
atmosphere by increased decomposition of SOM and consequently
increases respiration rates of decomposer microbes (Cox et al., 2000;
Qian et al., 2010; Trumbore et al., 1996). Alpine regions are strongly
affected by global warming (Pepin et al., 2015) and C stocks of
calcareous forest soils in the study region have been identified as

particularly vulnerable (Prietzel et al., 2016). Among all natural
environmental compartments, soils likely contain the greatest microbial
biomass and diversity, which classifies them as one of the most
challenging habitats for microbiologists (Mocali and Benedetti, 2010;
Nannipieri et al., 2003; Torsvik and Øvreås, 2002). How these complex
communities respond to a warmer climate remains poorly understood,
since the long-term response of decomposer microbes may deviate from
their short-term response to rising temperatures. There is evidence that
long-term warming potentially alters decomposer community physiol-
ogy and accordingly the CO2 efflux from soil (Allison et al., 2010;
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Bardgett et al., 2008; Rousk et al., 2012). Long-term warming may
provide competitive advantage for species adapted to higher tempera-
tures (Rinnan et al., 2009; Yergeau et al., 2012), which are supposed to
allocate more of a given C substrate into their biomass and less into
respiration (Fierer et al., 2009; Keiblinger et al., 2010). This could, in
turn, mitigate warming effects through reduced CO2 emissions from soil
over time (Allison et al., 2010; Knorr et al., 2005). Therefore, together
with warming induced changes in C substrate availability and quality,
microbial adaptation mechanisms may be the primary drivers of future
soil C dynamics and soil respiration rates (Craine et al., 2013; Frey
et al., 2013; Wei et al., 2014). Warming driven changes in microbial
functioning are however difficult to detect and it is even more difficult
to assign them to specific changes in microbial community structure.
New metaproteomic approaches can contribute to a better under-
standing of this link. While, amplicon sequencing approaches provide
information on microbial community structure, they lack information
on functional changes. Meta-omics approaches, especially metaproteo-
mics, allow the simultaneous examination of various protein functions
(e.g., transcription, signal transduction) and responses (such as changes
in relative abundances of functional proteins), and therefore help to
unravel the complex interplay between soil respiration dynamics,
microbial community structure, and physiological functioning of soil
microbes in a changing environment (Aylward et al., 2012; Bastida and
Jehmlich, 2016; Bastida et al., 2009; Kim et al., 2010).

We sampled soil from a long-term soil warming experiment
(Achenkirch) and performed a metaproteomic survey along with a

characterization of the topsoil C. We hypothesized that the protein
abundances would shift towards a microbial community that is
dominated by oligotrophic lifestyle in warmed plots, as has been
observed in other long-term warming of temperate forest soils
(DeAngelis et al., 2015). Because soil respiration rates were still
strongly accelerated after 7 years of warming, we further hypothesized
increasing functional proteins towards more expenses in energy pro-
duction (i.e. towards respiration related processes) when compared to
microbial growth and other metabolism-related functions.

2. Material and methods

In the present study, soil samples were collected from the warming
experiment located in Achenkirch, Austria (11° 38′ 21″ East; 47° 34′ 50″
North). The study site is located at 910 m a.s.l. in the North Tyrolean
Limestone Alps. The 130-year-old mountain forest consists of Norway
spruce (Picea abies) with inter-spread of European beech (Fagus
sylvatica) and silver fir (Abies alba). Mean annual air temperature and
precipitation were 6.9 °C and 1506 mm, respectively (1992–2012,
ZAMG). Soils were shallow Chromic Cambisols and Rendzic Leptosols
with high spatial variability (FAO, 1998). More details on the study site
and soil characteristics are given in Supplementary Table S1. Soil was
warmed 4 °C above ambient continuously during snow-free seasons
since 2005 using resistance heating cables which were buried ∼ 2–3 cm
into the mineral soil (Schindlbacher et al., 2009). Three experimental
control and warmed plots with subplots size of 2 × 2 m each were

Fig. 1. Phylogenetic network of proteins. Relative abundances calculated from the sum of the normalized spectral abundance factor (NSAFs) found for the warmed plot. The size of the
nodes and labels represents the abundance of the corresponding taxonomic group. Labels are class-level assignments and shape-indicators are: Triangle, only abundant in control;
Rectangle, only abundant in warmed plot; Circle, abundant in both. For the proteins that were abundant in both treatments (shown in circles) the gradient of colour represent the increase
(red) or decrease (blue) of the % change in relative abundance of the treatment plots compared with control. Values are the mean of three biological replicates. *indicates independent-
samples t-test at a significance level of 0.05. Taxonomic networks were generated using the perfuse force directed layout in Cytoscape 3.3.0 (free download: http://www.cytoscape.org/
download.php) and manual adjustments.

D. Liu et al. Applied Soil Ecology 117–118 (2017) 196–202

197

http://www.cytoscape.org/download.php
http://www.cytoscape.org/download.php


imposed in this study. A homogenized composite soil sample (10 sub-
samples obtained with a 2 cm diameter corer) was taken from the Ah
horizon (0–5 cm) from each of the three warmed and three control plots
at 3rd of October 2012. The samples were stored in cooling boxes and
transported to the laboratory in Vienna where the soil samples were
homogenized with 2 mm mesh sized sieves and stored frozen at −80 °C
for soil metaproteome analysis as suggested in Keiblinger et al. (2016).

Total soil C and N were measured by combustion using a C/N
analyzer (Thermo Finnigan Flash EA 1112). Soil carbonate content was
determined by treating soil samples with 10% HCl, connected to a
Scheibler apparatus according to Austrian Standards (OENorm-L1084,
2006). Organic carbon was determined by subtracting the inorganic C
content from the measured total C (Blume et al., 2015). Dissolved
organic C (DOC) was determined through soil extraction (2 h shaking
with a soil to distilled water ratio of 1:5 w/v), followed by centrifuga-
tion and analysis of the extract solution on a Multimode Plate Reader
(PerkinElmer, EnSpire) at a wavelength of 254 nm (Brandstetter et al.,
1996). Soil CO2 efflux in the field was measured using an infrared gas
analyzer as described in (Schindlbacher et al., 2009).

In order to extract proteins (with three biological replicates for each
treatment) from forest soil samples, frozen soil samples were ground in
liquid N2 prior to extract proteins based on the SDS–phenol method
previously described by Keiblinger et al. (2012). For more details on
extraction as well as sample processing &mass spectrometry see
electronic Supplementary file 1. The mass spectrometry proteomics
data have been deposited to the ProteomeXchange Consortium via the
PRIDE (Vizcaíno et al., 2016) partner repository with the dataset
identifier PXD004428 and 10.6019/PXD004428.

The obtained MS/MS data were searched against NCBI entries,
downloaded from NCBI server webpage https://www.ncbi.nlm.nih.
gov/at the 25th June 2014. The new version of PROteomics results
Pruning and Homology group ANotation Engine (PROPHANE) work-
flow (www.prophane.de) was used to assign proteins to phylogenetic
(Fig. 1) and functional (Fig. 2B & C) groups. Protein abundances were
calculated based on the normalized spectral abundance factor (NSAF,
Zybailov et al., 2006). The obtained proteins were classified into cluster
of orthologous groups (COG; prokaryotic proteins) and TIGR (main role
and subrole) categories based on their protein assignments
(Fig. 2B & C).

Diversity of microbial taxa and functional categories was calculated
at class-level with Shannon diversity index (H′) by considering the
proportion of each class/functional category in NSAF values (i) relative
to the total number of classes/functional categories in NSAF value (pi),
and then multiplied by the natural logarithm of this proportion (ln pi).
The products are summed across the total number of classes/functional
categories (S) and multiplied by (−1) see Eq. (1).

∑H p p′ = − ln( )
i

S
i i=0 (1)

Significance of the diversity index between the two treatments was
calculated by independent-samples t-test at a significance level of 0.05.
Cytoscape 3.3.0 was used for visualization of the community structure
and the NSAF values of microbial class level were taken to create
taxonomic networks.

3. Results and discussion

3.1. Taxonomic changes

Bacterial proteins dominated the microbial community compared to
the amount of fungal proteins as expressed by the sum of the NSAF
values (Table 1). This high bacterial abundance in the topsoil confirms
a previous assessment (Schindlbacher et al., 2011) and is likely
associated with the comparatively high pH at the calcareous study site
(Bárcenas-Moreno et al., 2011; Rousk et al., 2009). However, the
observed small and almost equal amount of fungal proteins in warmed

and control plots could also be attributed to a generally poor repre-
sentation of environmentally-relevant eukaryotes (including fungi) in
genomic databases (Kollmar et al., 2014). Two hits on archaeal proteins
were detected in only one replicate of our control samples, which might
be due to the fact that the present site is characterized by nearly neutral
pH, whereas archaeal abundance was mentioned to be high in acidic
temperate forest soils (Kemnitz et al., 2007), and to decrease with rising
pH (Tripathi et al., 2013). Data shown here are based on the level of
phylum and class, and to some extent on the level of order. With the
present data set, statistical analysis on a deeper level of resolution for
microbial taxa was not possible with high confidence. However, the
resolution level for soil metaproteomics is generally lower compared to
metagenomics and −transcriptomics partly due to stabilization of
proteins from the soil extracellular matrix (Keiblinger et al., 2016;
Nielsen et al., 2006). Microbial diversity at class-level as revealed by
the averaged Shannon index (H′) based on NSAF values for bacteria and
fungi was slightly (albeit not significantly) lower in the warmed plot
compared to the control (Table 1). This was surprising because
environmental parameters did differ between control and warmed
plots: Concentrations of total C, dissolved organic C (DOC) and total
organic C (TOC) were significantly lower in the warmed plot than in the
control (P < 0.05), while respiration was higher (Table 1). These
parameters have been considered as part of a multifunctionality index
(Bastida et al., 2016; Wagg et al., 2014), which is basically an index for
the active diversity of an ecosystem. This would suggest that event
though microbial diversity at class-level was not significantly different
in warmed plots, the functional diversity did in fact change.

However, when examining microbial community structure on the
phylum level (Fig. 1), we observed a few significant differences
between control and warmed soil. For instance, the relative abundance
of the phylum of Firmicutes was approx. 80% lower (P < 0.05) in
warmed soil (Fig. 1). Within the phylum of Firmicutes, the class Bacilli
was less abundant (P < 0.05, Fig. 1) with soil warming. Bacilli have a
strong ability to secrete extracellular enzymes (McSpadden Gardener
and Driks, 2004) and a large versatility for carbohydrate utilization
(Yadav et al., 2011). Therefore, the low abundance of this class might
explain the low concentrations of DOC in warmed plots (Table 1),
indicating a decrease in SOC decomposition and a deficiency in easily
available C.

The most abundant bacterial phylum over all samples were
Proteobacteria (> 60%), dominated by the class of α-Proteobacteria
(40% of total bacteria). Within the Proteobacteria, warming induced
changes on the resolution of orders, such as Rhizobiales and
Rhodospirallales significant declined (P < 0.05; Fig. 2A). The decline
in relatively fast growing Rhodospirallales had also been found in other
long-term warming experiments, which was suggested to be related to
their copiotrophic life strategy (DeAngelis et al., 2015; Deslippe et al.,
2012). While DeAngelis et al. (2015) found that Rhizobiales mostly
increased with warming, we found a decline in the present study. This
might be explained by the fact that Rhizobiales abundance is associated
with high DOC concentrations (Bastida et al., 2015, 2016), but DOC
was low in warmed plots.

Among the phyla that most strongly increased with warming were
Actinobacteria and Cyanobacteria (Fig. 1). Cyanobacteria are known for
their capacity to thrive in soils of low resource availability, which might
constitute an advantage in sites that are depleted in available C. In
addition, Cyanobacteria are a key ecological phylum in drylands
(Bastida et al., 2016), another potential benefit in warmed soils, as
lower water content is often a secondary effect of soil warming (e.g.
Conant et al., 2004). In this study, soil water content was slightly lower
in the warmed soils, albeit not significantly (Table 1).

The class of Actinobacteria dominated by the order of
Actinomycetales increased most strongly (Fig. 1), albeit not significantly.
Increases in Actinobacteria abundance in response to warming is
generally acknowledged, it has been reported after FAME analysis in
the temperate Harvard forest site after 12 years of warming (Frey et al.,
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2008), in a metagenomics study after 20 years of warming (DeAngelis
et al., 2015; Pold et al., 2016), and also in arctic soils warmed for 18
years (Deslippe et al., 2012). Actinobacteria are relatively slow-growing
bacteria with filamentous growth form similar to fungi, and they
contain many representative taxa that are able to decompose complex
soil organic C (Barret et al., 2011). The latter is in accordance with the
depletion of easily available C pools when copy numbers of carbohy-
drate-degrading Actinobacterial genes increased with warming (Pold

et al., 2016). This often-observed dominance of Actinobacteria after
long-term warming indicates changing niches in soil and different
microbial contributions to C-cycling (DeAngelis et al., 2015).

There appeared a slight reduction in fungal NSAFs (Table 1) which
was, however different on the level of phylum and class (Fig. 1). On the
phylum level, we observed a shift from Ascomycota to Basidiomycota
with warming, which resulted in a declined ratio of Asco-/Basidomycota
(P < 0.05, Table 1). Ratios of Asco-/Basidomyctoa have been reported
to decrease over the course of decomposition, where Basidiomycota are
considered to decompose lignin and cellulose (Kuramae et al., 2013;
Zhang et al., 2014). Within the Basidiomycota, the class of Agaricomy-
cetes dominated by the order of Agaricales was significantly more
abundant in warmed plots. The Agaricales include several button
mushrooms that are dominant ectomyccorhizal species. In warmed
soil, however, not all orders within the class of Ascomycota declined, as
increasing relative abundances of Eurotiomycetes and Dothideomycetes
were examined. Both have been shown to produce C-degrading
enzymes, specifically cellulases (Schneider et al., 2012). On the other
side, the class of Saccharomycetes dominated by the order of Sacchar-
omycetales significantly (P < 0.05, Fig. 1) declined with warming. This
class had been reported to prefer soils with organic amendments
(Bastida et al., 2015), therefore the reduction in warmed plots in the
present study was probably due to the low availability of DOC. Besides,
Saccharomycetales were described as oligotrophs according to Starke
et al. (2016). Decreasing ratios of Asco-/Basidiomycota with soil
warming may consequently shift the fungal community towards more
saprotrophic species.

In contrast to the present study, previous assessments of the
microbial community structure using PLFA and bacterial DNA/RNA

Fig. 2. (A) Changes in Proteobacteria diversity on the level of orders based on normalized spectral abundance factors (NSAFs); (B) Bacterial community functionality, based on the
classification of orthologous groups (COG; prokaryotic proteins) and (C), TIGR (subrole) categories based on their protein assignments. The x-axis shows absolute numbers of normalized
spectral abundance factors (NSAFs). Data represent the mean ± SD of three biological replicates. *represent significant differences, P < 0.05, independent-sample t-test. Values in
bracket show the percentage change of the warmed plot compared to the control.

Table 1
Chemical properties, CO2 flux and water content, as well as the abundance of bacterial,
fungal and plant proteins, Shannon diversity indices and ratios between microbial
proteins. Data show mean and standard deviation; significant differences according to
the Independent-Samples t-Test (P < 0.05) are indicated with *.

Control Warmed

Water content%w/w 45.6 ± 3.4 42.1 ± 5.2
Total C (g 100 g−1) 13.53 ± 1.68 10.79 ± 1.33*
Total organic carbon (mg C kg−1). 12.34 ± 0.90 10.51 ± 1.31*
Total N (g 100 g−1) 0.63 ± 0.11 0.54 ± 0.07
C/N ratio 21.70 ± 1.69 20.11 ± 1.15
Dissolved organic carbon (mg C kg−1) 1.08 ± 0.18 0.97 ± 0.04*
CO2 flux (μmol m−2 s−1) 2.96 ± 0.56 4.58 ± 0.94*
Bacteria (NSAFs) 0.546 ± 0.029 0.461 ± 0.095
Fungi (NSAFs) 0.020 ± 0.005 0.020 ± 0.007
Ascomycota/Basidiomycota (NSAFs ratio) 2.11 ± 0.04 1.20 ± 0.05*
Plant proteins (Streptophyta) NSAFs 0.12 ± 0.09 0.06 ± 0.01
Shannon-Ba 0.43 ± 0.37 0.22 ± 0.38
Shannon-Fb 1.15 ± 0.48 0.71 ± 0.65

a The Shannon index of bacterial diversity.
b Shannon index of fungal diversity.
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at our site did not find significant changes in microbial community
structure after four years of warming (Kuffner et al., 2012;
Schindlbacher et al., 2011). However, when compared to these previous
studies, the metaproteomics approach in the present study provided a
better characterization of the soil microbial community that is actively
involved in SOC decomposition, a process that is strongly related to soil
temperature. Nevertheless, it has to be noted that our study represents

only a snapshot in time, as–given to feasibility issues and the complex-
ity of the metaproteomics approach–only soil samples from a single
date were used. Microbial biomass and decomposition can change
considerably throughout the seasons and microbial functionality may
change as well (Castro et al., 2010; DeAngelis et al., 2015; Machmuller
et al., 2016); such temporal variations, however, were not captured in
the present study.

Fig. 3. Significant changed microbial community functionalities and its function assigned taxonomic groups based on normalized spectral abundance factors (NSAFs) of microbial
proteins. (A), the clusters of orthologous group (COG) categories; (B), TIGR main/sub role; values on the x-axes are NSAF values of microbial functions assigned to their phylogentetic
origin at class-level. * asterisks refer to the functions where the α-Proteobacteria functions are significantly reduced. To indicate their origin on the phylum level, shadings were included,
dotted bars indicate Proteobacteria, Firmicutes are crosshatched, Verrucomicrobia are striped from bottom right to top left, Actinobacteria are striped from bottom left to top right,
Acidobacteria are plaid and heterogenous.
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3.2. Functional changes and physiological adaptation

Compared to the taxonomic variation, community function was
more strongly affected by soil warming (Fig. 2B & C). Two specific
functions that are important for microbial energy status significantly
increased with soil warming (“Energy production and conversion” and
“ATP-proton motive force interconversion”; Fig. 2B & C). The higher
soil respiration rates in warmed plots (on the date of soil sampling, soil
CO2 efflux was 35% higher in warmed plots compared to controls)
could be attributed to the higher metabolic rate at higher temperatures,
and consequently increasing abundance of proteins belonging to these
two functional groups. Since we did not observe massive changes in
SOC chemistry and availability at our forest site yet (Schnecker et al.,
2016), the higher abundance of proteins related to energy production
also fits with our observations of, generally higher respiration rates,
lower substrate use efficiency at higher soil temperatures at our site
(Schindlbacher et al., 2015) and elsewhere (e.g. Frey et al., 2013;
Lehmeier and Billings, 2016; Tucker et al., 2013). Beside the increase in
protein abundance related to energy production, a set of functions
responsible for microbial growth and other metabolism-related func-
tions showed a declining trend in warmed soil (Fig. 2B & C). Among
them the identified proteins assigned to the three functional groups
“Posttranslational modifications, protein turnover, chaperones”, “Cell
wall/membrane/envelope biogenesis” and “Carbohydrate transport
and metabolism” were significantly lower in warmed than the control
plots (P < 0.05; Fig. 2B), supporting lower carbon use efficiency under
higher soil temperatures. The function “Cell wall/membrane/envelope
biogenesis” was considered as an indicator for copiotrophy (Bastida
et al., 2015). The reduction of this function indicates a shift towards a
higher activity of oligotrophic phyla. This is consistent with a study by
DeAngelis et al. (2015) who found lower numbers of rRNA copies in
warmed soils, which was interpreted to be related to reduced microbial
growth and hence an indicator for oligotrophic lifestyle. A shift towards
more oligotrophic communities suggest that warming may cause an
ongoing depletion in physically protected C pools that are usually
preferably decomposed by microbes of oligotrophic life strategy
(DeAngelis et al., 2015).

In a further step, we tried to link intracellular functions to their
phylogenetic origin (Fig. 3), comparing the abundances of the classes
that responded most strongly to warming. The significant decline in the
aforementioned functions in response to warming is directly associated
with a lower abundance of total and proteobacterial proteins (Fig. 3).
The significant increase in functions assigned to “Energy production
and conversion” was mainly related to a relative increase in the
abundance of δ-Proteobacteria, (Fig. 3A), while their function for
“protein and peptide trafficking” declined (Fig. 3B). Considering that
α-Proteobacteria decreased in all functions in warmed plots, even if the
total function increased, this further indicates the strong effect of
warming on this specific class, which was highly abundant. The
abundance of Bacilli was reduced in warmed plots and correlated with
DOC concentrations, which also decreased with warming. Furthermore,
their functions were related to “Energy metabolism” and “Protein fate”,
but only in control plots where DOC was not reduced (Fig. 3B).

4. Conclusion

In conclusion, the trend of changes in microbial community
structure that were found in the present study does not fully support
the development of microbial taxa towards a more oligotrophic life
strategy with soil warming that was suggested by DeAngelis et al.
(2015). We rather observed a development towards a more C depleted
environment that still favored enhanced CO2 release after 7 years of
warming. It seems plausible that the observed changes on the phylum
level in the present study were related to DOC changes, since many
parts of the active soil microbial community had been shown to
decrease with decreasing DOC concentrations (Bastida et al., 2016).

Some exceptions to this are Basidiomycota and Actinobacteria, which
both show hyphal growth forms and prefer C-depleted sites. These
physiologically different phyla may have a lower contribution to
biomass specific respiration than others due to a generally higher
investment into growth/biomass production. Consequently, an increase
in their abundance in warmed plots would only result in minor changes
to soil respiration. Taken together, the observed shifts at phylum and
class level could be a first sign for a microbial community composition
response to longer-term soil warming and corresponding changing SOC
availability. Furthermore, the link to specific changes in microbial
function may indicate an ongoing microbial adaptation to warming.
The present study suggests that long-term soil warming strongly affects
the physiological adaptation of soil microbes, which leads to soil CO2

emission rates that were still enhanced even after 7 years of soil
warming.
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