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Abstract 

Background: The aim of this study was to assess the cost-effectiveness of human papillomavirus (HPV) vaccination 
in addition to the current cervical cancer screening programme in Germany using a dynamic transmission model.

Methods: Based on a mathematical model simulating the transmission dynamics and the natural history of HPV 
infection and associated diseases (cervical intraepithelial neoplasia, cervical cancer, and genital warts), we estimated 
the epidemiological and economic consequences of HPV vaccination with both the quadrivalent and bivalent vac-
cines. In our base case analysis, we assessed the cost-effectiveness of vaccinating 12-year-old girls with a 3-dose 
schedule. In sensitivity analysis, we also evaluated the use of a 2-dose schedule and assessed the impact of vaccinat-
ing boys.

Results: From a health care payer perspective, incremental cost-effectiveness ratios (ICERs) of a 3-dose schedule 
were €34,249 per quality-adjusted life year (QALY) for the bivalent and €14,711 per QALY for the quadrivalent vaccine. 
Inclusion of indirect costs decreased ICERs by up to 40%. When adopting a health care payer perspective, ICERs of a 
2-dose approach decreased to €19,450 per QALY for the bivalent and to €3645 per QALY for the quadrivalent vaccine. 
From a societal perspective, a 2-dose approach using the quadrivalent vaccine was a cost-saving strategy while using 
the bivalent vaccine resulted in an ICER of €13,248 per QALY. Irrespective of the perspective adopted, additional vac-
cination of boys resulted in ICERs exceeding €50,000 per QALY, except for scenarios with low coverage (20%) in girls.

Conclusions: Our model results suggest that routine HPV vaccination of 12-year-old girls with three doses is likely 
to be cost-effective in Germany. Due to the additional impact on genital warts, the quadrivalent vaccine appeared to 
be more cost-effective than the bivalent vaccine. A 2-dose schedule of the quadrivalent vaccine might even lead to 
cost savings when adopting a societal perspective. The cost-effectiveness of additional vaccination of boys was highly 
dependent on the coverage in girls.
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Background
Persistent infection with high-risk (oncogenic) types of 
human papillomavirus (HPV) is the main cause of cervi-
cal cancer and its precursors [1]. Infection with high-risk 
HPV types can also cause other types of anogenital can-
cer (i.e. vaginal, vulvar, anal, and penile cancer) and oro-
pharyngeal cancer [2, 3], whereas infection with low-risk 

(non-oncogenic) HPV types is primarily associated with 
genital warts [4].

Clinical studies have demonstrated high efficacy of pro-
phylactic HPV vaccines in the prevention of HPV infec-
tions, premalignant anogenital lesions (cervical, vaginal, 
vulvar, and anal lesions), and genital warts [5–7]. In Ger-
many, there are currently three HPV vaccines available 
to prevent HPV infection and related diseases: a bivalent 
vaccine  (Cervarix®), a quadrivalent vaccine  (Gardasil®), 
and a 9-valent vaccine  (Gardasil® 9). All three vaccines 
protect against the high-risk genotypes 16 and 18, which 
cause approximately 70% of all cervical cancer cases 
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[8]. The quadrivalent vaccine is additionally directed 
against the low-risk genotypes 6 and 11, which account 
for approximately 90% of genital warts [9]. The recently 
approved 9-valent version of  Gardasil® protects against 
the four strains of the quadrivalent vaccine and five addi-
tional high-risk strains (31, 33, 45, 52, and 58). All avail-
able vaccines are licensed for use in females and males.

In Germany, routine HPV vaccination with two doses 
is currently recommended for females aged 9–14  years 
[10, 11]. However, three doses are necessary when vac-
cinating adolescent girls aged 15–17  years (due to 
delayed initiation or series completion) or when the 
interval between the first and the second dose falls below 
6 months. Before August 2014, three HPV vaccine doses 
were recommended for females aged 12–17  years. Both 
recommendations have primarily aimed at preventing 
cervical cancer. Since 1971, a cervical cancer screening 
programme is implemented in Germany, which is cur-
rently based on an annual Pap smear beginning at the age 
of 20 years.

No independently funded dynamic transmission model 
analysing the cost-effectiveness of HPV vaccination in 
the German health care setting, which can support the 
national decision-making process of the Standing Vacci-
nation Committee (STIKO), has been published yet.

The purpose of this study was threefold: (a) to assess 
the cost-effectiveness of the bivalent and quadriva-
lent vaccines in addition to the existing cervical can-
cer screening programme in Germany using a dynamic 
transmission model, (b) to quantify the economic impact 
of switching from a 3-dose to a 2-dose schedule, and (c) 
to compare our results with findings of previously pub-
lished studies on the cost-effectiveness of HPV vaccina-
tion in Germany.

Methods
Overview
We developed a mathematical model simulating the 
transmission dynamics and the natural history of HPV 
infection and associated diseases to evaluate the epi-
demiological and economic consequences of HPV vac-
cination in Germany. The age-structured model takes 
account of the occurrence of cervical intraepithelial 
neoplasia (CIN), cervical cancer, and genital warts. It 
was calibrated using German cancer statistics and other 
data. In the base case analysis, which was conducted 
from both a health care payer and a societal perspective, 
HPV vaccination of 12 year old girls in conjunction with 
the existing cytological screening programme was com-
pared to screening alone. The time horizon was set to 
100 years after the introduction of HPV vaccination. Epi-
demiological and economic parameter estimates were 
obtained from published literature and supplemented 

by expert interviews. The model was programmed using 
the software R. All cost calculations were performed 
using Microsoft Excel. Details on the methods and data 
sources used to construct the model are described in the 
following sections. A more detailed description of the 
underlying epidemiological model and the correspond-
ing model parameters regarding the transmission of 
HPV, the natural history of cervical HPV infection, and 
the simulated screening programme has been published 
previously [12].

Model structure
The basic model structure combines an age-structured 
deterministic compartmental model, which simulates the 
sexual transmission of HPV, with a model that represents 
the natural history of cervical cancer.

The transmission dynamics are described by a SIRS-
model where the population is divided into susceptible 
individuals (S), infectious individuals (I), and recovered 
(and therefore immune) individuals (R). Our model con-
siders six groups of viral strains: HPV 16, HPV 18, phy-
logenetically related high-risk types with potential for 
cross-protection (HPV 31/33/35/39/45/51/52/56/58/59), 
other high-risk types without potential for cross-protec-
tion, HPV 6/11, and other low-risk types. We neglected 
any synergistic and antagonistic interactions between dif-
ferent HPV types as multi-strain interactions are subject 
to controversy.

To estimate the long-term consequences of HPV infec-
tion, the transmission model was complemented by a 
module covering the cervical carcinogenesis. This part of 
the model includes type-specific health states for having 
CIN of three grades (CIN 1, CIN 2, or CIN 3), having car-
cinoma in situ (CIS), and having invasive cervical cancer 
of different stages according to the International Federa-
tion of Gynecology and Obstetrics (FIGO) classification 
system. CIS and invasive cancer states were further sub-
divided into undetected and detected disease states. For 
women who had undergone hysterectomy, only transi-
tions between the susceptible, infected, and immune 
(recovered) states were permitted. Therefore, with the 
exception of sexual mixing and background mortality, 
those women were modelled identically to males who 
were only allowed to move between the susceptible, 
infected, and immune states. The occurrence of geni-
tal warts in both genders was modelled as an event that 
was linked with incident infections with low-risk types, 
but only a proportion of those newly infected individu-
als were assumed to develop clinical symptoms of genital 
warts and to seek medical treatment. A simplified flow 
diagram of the model structure representing the natural 
history of HPV infection and cervical cancer in women is 
outlined in Fig. 1.
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Data sources and model inputs
Demographic, behavioural, and transmission parameters
The model population is based on a constant number of 
one million births per year and the 2008 mortality rates 
in Germany derived from the Federal Statistical Office. 
Our model focusses on heterosexual transmission of 
HPV infection only. We assumed the sexual debut to be 
at the age of 12 years and divided the sexually active pop-
ulation into ten age groups (12–13, 14–15, 16–17, 18–24, 
25–34, 35–44, 45–54, 55–64, 65–74, and 75–100  years) 
and three sexual activity-based risk groups (low, mod-
erate, and high activity). The proportions of individuals 
belonging to the different activity classes were 80, 15, 
and 5% for the low, moderate, and high activity groups, 
respectively [13]. The mixing patterns between indi-
viduals of the different age and risk groups were deter-
mined by two mixing parameters. These parameters for 
the assortativeness of mixing by age and by risk group 
were set to 0.4 and 0.3, respectively [14]. An assortative-
ness by age of 0.4 means that 40% of new sexual partners 
are preferentially chosen from the same age group while 
the remaining sexual partners are chosen proportionally 
from all age groups depending on their size. An assorta-
tiveness by risk group of 0.3 means that 30% of partners 
are preferentially chosen within the same sexual activity 
group while the remaining sexual partners are chosen 

proportionally from all sexual activity groups depending 
on their size. As robust German data on patterns of sex-
ual behaviour were lacking, we used data from the trans-
mission model by Zechmeister et al. [15], which had been 
originally derived from British and Norwegian surveys of 
sexual behaviour.

Natural history
The initial values of the epidemiological model param-
eters regarding the natural history of cervical cancer 
were obtained from the published literature, particularly 
from previous modelling studies [14, 16–20]. Whereas 
some parameter values were directly incorporated in our 
model, other values were derived through calibration. 
Details on the parameter values used in our model are 
provided in an article by Horn et al. [12].

Not every HPV infection is followed by the develop-
ment of a type-specific resistance. Hence, we only allowed 
a fraction of the infected population to be immune after 
infection for a certain period of time [21]. The proportion 
of individuals experiencing a seroconversion was esti-
mated to be 60% [22]. The fraction of seroconverted indi-
viduals developing a naturally acquired immunity was 
estimated to be 30% [23]. Waning of naturally acquired 
immunity was assumed to be 10% per year resulting in an 
average type-specific immunity of 10 years.
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Fig. 1 Simplified model structure (adapted from Horn et al. [12])
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In our model, the CIS state was subdivided into two 
compartments as proposed by Insinga et al. [24] to avoid 
short transition times from CIS to invasive cancer result-
ing from the exponential distribution.

Screening programme
The screening module of our model was constructed to 
reflect the current screening practice in Germany. We 
applied age-specific screening coverage rates that were 
obtained from German data [25] and assumed the pro-
portion of women who never participate in screening 
to be 7% as done in other modelling studies [18, 19]. To 
simulate the future effects of the stepwise increase in 
screening coverage in Germany during the 1990s and to 
prevent an overestimation of the vaccine-induced reduc-
tion in cervical cancer-related burden of disease, we 
incorporated historical changes in screening uptake in 
our model. For this purpose, we combined the current 
age-specific screening coverage rates with the observed 
changes in participation in early cancer detection pro-
grammes over time [26]. Diagnostic follow-up (including 
management of abnormal cervical cytology and histol-
ogy) was modelled by the use of integrated decision trees. 
The construction of these decision trees was based on 
clinical guidelines, empirical studies, health economic 
models, and an interview with members of the German 
working group on cervical pathology and colposcopy that 
was conducted explicitly for this purpose.

Vaccination
In the base case scenario, we analysed the cost-effec-
tiveness of vaccinating 12-year-old girls with three 
doses. Vaccination coverage was assumed to be 50% 
based on several studies assessing HPV vaccine uptake 
in Germany [27–32]. In these studies, reported uptake, 
defined as receipt of at least one HPV vaccine dose, 
ranged from 30 to 60%. When considering only those 
females who received the full course of three doses, 
uptake ranged from 27 to 48%. We assumed completion 
of the 3-dose series for all girls who initiated vaccina-
tion. All analyses were carried out for both the biva-
lent and quadrivalent vaccines. Vaccine efficacy against 
HPV 16/18 infection was estimated to be 98% for both 
vaccines, and vaccine efficacy in preventing HPV 6/11 
infection was estimated to be 100% for the quadrivalent 
vaccine. Cross-protection against non-vaccine onco-
genic HPV-types was not considered in the base case 
scenario but was explored in sensitivity analysis taking 
the different cross-protection profiles of the vaccines 
into account. Currently, the maximum duration of vac-
cine protection is unknown. Clinical efficacy against 
type-specific infection and associated diseases has been 
demonstrated up to 9.4 years post-vaccination [33], but 

long-term persistence of antibody responses has been 
predicted by statistical modelling of individual antibody 
data [34, 35]. Taking both the evidence based on lim-
ited follow-up of adolescent girls and women in clini-
cal trials and the predictions of statistical models into 
account, we decided to assume a 10 years lasting initial 
period of sustained vaccine protection followed by a 
period of waning immunity using a waning rate of 10% 
per year. This approach resulted in an average duration 
of vaccine-induced immunity of 20 years. We separately 
examined the impact of lifelong protection as well as 
the influence of administering a booster dose in sensi-
tivity analysis. While in the base case scenario vaccina-
tion was restricted to girls, immunisation of boys was 
assessed in sensitivity analysis. A 2-dose schedule was 
also examined in sensitivity analysis. All vaccination-
related input data are presented in Table 1.

Resource utilisation and direct health care costs
Our model takes into account resource use associated 
with vaccination, screening, management of abnormal 
cytological screening results, management and treat-
ment of biopsy-confirmed CIN, and treatment of cervical 
cancer and genital warts. Direct health care costs were 
calculated considering all relevant cost components that 
are reimbursed by the statutory health insurance. These 
components include medication, physician consulta-
tions, outpatient diagnostic procedures, laboratory test-
ing, therapeutic appliances and outpatient health care 
services provided by non-physicians (i.e. medical com-
pression tights and manual lymphatic drainage as part of 
lymphoedema treatment), and hospitalisations.

Treatment patterns and related resource consumption 
were mainly derived from clinical guidelines and pub-
lished studies on the current management of cervical 
cancer and its precursors [36–39]. Literature-based evi-
dence was supplemented by expert opinion to account 
for missing data for Germany and variation in clinical 
practice. For instance, the experts were asked to estimate 
the stage-specific frequency of utilisation for different 
outpatient and inpatient treatment procedures of cervical 
cancer. A total of six expert interviews with gynaecolo-
gists were conducted by telephone or in written form. 
Table 2 gives an overview of the assumed treatment pat-
terns and resource utilisation in the treatment and post-
treatment follow-up of cervical cancer.

Most unit costs were based on official German price 
lists, fee scales, or catalogues. Vaccine prices and drug 
costs were obtained from the pharmaceutical database 
LAUER-TAXE® [40]. The cost per dose of both vaccines 
was estimated at €150.41. The mean vaccine administra-
tion fee was calculated to be €7.50 per dose, based on 
a review of the immunisation fee scales of all regional 
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Associations of Statutory Insurance Physicians in Ger-
many. Charges for outpatient visits as well as outpatient 
diagnostic and treatment procedures were based on the 
physician fee scale (Einheitlicher Bewertungsmaßstab, 
EBM) of the statutory health insurance. Hospitalisation 
costs were retrieved from the German diagnosis-related 
group (DRG) catalogue using a base rate of €2935.78 
and the cost weights of various DRGs (N01A, N01E, 
N03B, N09Z, N15Z, and N60A). Costs of inpatient pal-
liative care and treatment were calculated assuming a 
length of stay of 30 days and combining the DRG N60B 
with a supplementary fee for palliative care (ZE60.01). All 
direct costs were adjusted for patient co-payments. Cost 
estimates for treating CIN 3 and CIS were taken from a 
German resource use study providing intervention costs 
associated with a PAP IV diagnosis of the Munich Cyto-
logical Classification, which corresponds to severe dys-
plasia and CIS [41]. Costs for treating genital warts were 
based on own calculations using data from a German 
cost-of-illness study [42]. All costs are reported in 2010 
euros. Where 2010 prices were not available, prices were 
inflated to 2010 values using the German consumer price 
index (CPI). The base case values of the aggregated direct 
health care costs are summarised in Table 3.

Indirect costs
Indirect costs in terms of production losses were con-
sidered when adopting a societal perspective. Data 
on absence from work due to HPV-associated illness 
were obtained from the statistics of a German sickness 
fund [43] using year 2008 information. Indirect costs 
were calculated by the friction cost  approach assum-
ing the friction period equal to the average duration of a 
vacant job position. According to a report of the Federal 

Employment Agency [44], this period was assumed to be 
63 days. Cost per work day lost was estimated at €85.13 
using 2010 data on monetary compensation and num-
ber of employees in Germany from the Federal Statisti-
cal Office [45]. Indirect costs due to CIN and cervical 
cancer were weighted by age-specific employment rates 
of women to avoid an overestimation of the production 
losses. All indirect cost inputs are summarised in Table 4.

Health state utilities
In the absence of utility values that are specific to Ger-
many, the data for calculating quality-adjusted life years 
(QALYs) were taken from the international literature and 
previous health economic models. These studies applied 
different methods for eliciting QALY weights including 
the use of the EQ-5D questionnaire [46], the time trade-
off technique [47], and an expert-based application of the 
Health Utility Index (HUI) Mark II [48]. The selection of 
utility values was guided by the model structure. The util-
ity values used in our model are presented in Table 5. We 
assumed the baseline utility value of normal health to be 
1.0. Estimates for the duration of reductions in quality of 
life were mainly based on expert opinion. QALY losses 
associated with Pap smear-based screening and diagnos-
tic follow-up of cytological and histological results were 
not considered in our modelling approach.

Discounting
In the base case analysis, future costs and health effects 
were discounted at an annual rate of 3% as recommended 
by guidelines of the Institute for Quality and Efficiency 
in Health Care [49] and the STIKO [10]. Other German 
recommendations on health economic evaluation, also 
referred to as Hanover Consensus, favour a discount rate 

Table 1 Vaccination-related input variables

HPV human papillomavirus

Parameter Value Source

Vaccine efficacy HPV 16/18 in females 98% [81, 82]

HPV 6/11 in females (quadrivalent vaccine only) 100% [83]

HPV 16/18 in males 90.4% [84]

HPV 6/11 in males (quadrivalent vaccine only) 90.4% [84]

Cross-protection provided by the quadrivalent vaccine  
(considered in sensitivity analysis only)

HPV 31/33/35/39/45/51/52/56/58/59 32.5% [85, 86]

Cross-protection provided by the bivalent vaccine  
(considered in sensitivity analysis only)

HPV 31/33/35/39/45/51/52/56/58/59 68.4% [86]

Duration of full protection 10 years Assumption

Waning (after the duration of full protection) 0.1 per year Assumption

Vaccination coverage 50% Assumption

Age at vaccination 12 years Assumption

Booster vaccination No booster vaccination in the base case analysis Assumption
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of 5% [50], which was considered in sensitivity analysis. 
In addition, we assessed the impact of differential dis-
counting (3% for costs and 1.5% for health effects) [51].

Analytic strategy and sensitivity analysis
To determine the cost-effectiveness of the introduction of 
HPV vaccination in Germany, we calculated incremental 

Table 2 Treatment patterns and  resource utilisation in  the treatment and  post-treatment follow-up of  cervical cancer 
(percentages are average values based on experts’ responses)

FIGO International Federation of Gynecology and Obstetrics

Cervical cancer stage (FIGO  
classification) or treatment phase

Treatment patterns and resource utilisation

FIGO IA1 Conisation 60%

Conisation with pelvic lymph node dissection 10%

Simple hysterectomy 20%

Simple hysterectomy with pelvic lymph node dissection 10%

FIGO IA2 Conisation with pelvic lymph node dissection 20%

Radical trachelectomy with pelvic lymph node dissection 10%

Simple hysterectomy 10%

Simple hysterectomy with pelvic lymph node dissection 60%

FIGO IB1 Radical hysterectomy with pelvic lymph node dissection 64%

Radical hysterectomy with pelvic lymph node dissection and adjuvant chemoradiotherapy 16%

Radical trachelectomy with pelvic lymph node dissection 5%

Chemoradiotherapy 15%

FIGO IB2 Radical hysterectomy with pelvic and paraaortic lymph node dissection 49%

Radical hysterectomy with pelvic and paraaortic lymph node dissection and adjuvant chemoradio-
therapy

21%

Chemoradiotherapy 30%

FIGO IIA Radical hysterectomy with pelvic and paraaortic lymph node dissection 35%

Radical hysterectomy with pelvic and paraaortic lymph node dissection and adjuvant chemoradio-
therapy

15%

Chemoradiotherapy 50%

FIGO IIB Radical hysterectomy with pelvic and paraaortic lymph node dissection 12%

Radical hysterectomy with pelvic and paraaortic lymph node dissection and adjuvant chemoradio-
therapy

18%

Chemoradiotherapy 70%

FIGO IIIA Radical hysterectomy with pelvic and paraaortic lymph node dissection 2%

Radical hysterectomy with pelvic and paraaortic lymph node dissection and adjuvant chemoradio-
therapy

8%

Chemoradiotherapy 90%

FIGO IIIB Radical hysterectomy with pelvic and paraaortic lymph node dissection 2%

Radical hysterectomy with pelvic and paraaortic lymph node dissection and adjuvant chemoradio-
therapy

8%

Chemoradiotherapy 90%

FIGO IVA Radical hysterectomy with pelvic and paraaortic lymph node dissection 2%

Radical hysterectomy with pelvic and paraaortic lymph node dissection and adjuvant chemoradio-
therapy

8%

Chemoradiotherapy 80%

Exenteration 2%

Exenteration and adjuvant chemoradiotherapy 8%

FIGO IVB Chemoradiotherapy 40%

Palliative chemotherapy 60%

Post-treatment follow-up Outpatient visits, Pap-smears, and pelvic and abdominal ultrasonography 100%

Hormone replacement therapy (women <50 years) 50%

Manual lymphatic drainage and medical compression tights 10–30%
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Table 3 Direct health care costs

Parameter Direct costs (€, 2010 price level)

Vaccination costs

 Vaccine (initial series of 3 doses) 451.23

 Administration (initial series of 3 doses) 22.50

 Booster shot (per dose) 150.41

 Administration of booster shot (per dose) 7.50

Costs of screening, management of abnormal cytological screening results, and observational follow-up of CIN 1 and CIN 2

 Cytological screening (Pap smear) 25.23

 Follow-up smear (including quarterly Gynaecologist’s fee and optional colposcopy) ≤59 years 20.15

60+ years 20.33

 HPV test (including quarterly Gynaecologist’s fee) ≤59 years 44.77

60+ years 44.94

 HPV test and follow-up smear (including quarterly Gynaecologist’s fee) ≤59 years 50.55

60+ years 50.73

 Colposcopy (including quarterly Gynaecologist’s fee) ≤59 years 14.37

60+ years 14.54

 Biopsy and histology 129.47

Costs of CIN/CIS treatment and post-treatment follow-up

 Conisation of the cervix (CIN 1 and CIN 2) ≤39 years 525.05

40–59 years 531.22

60+ years 534.17

 Treatment of CIN 3 and CIS 1621.53

 Post-treatment follow-up of CIN/CIS (year 1 and 2 after treatment) ≤59 years 70.71

60+ years 71.06

Costs of cervical cancer treatment and post-treatment follow-up

 Diagnostics of symptom-detected cervical cancer ≤59 years 323.03

60+ years 324.08

 Diagnostics of screen-detected cervical cancer ≤59 years 179.18

60+ years 180.06

 Treatment of cervical cancer (FIGO I) ≤59 years 7586.98

60+ years 7591.22

 Treatment of cervical cancer (FIGO II) ≤59 years 11,455.22

60+ years 11,456.94

 Treatment of cervical cancer (FIGO III) ≤59 years 12,380.21

60+ years 12,380.70

 Treatment of cervical cancer (FIGO IV) ≤59 years 10,615.72

60+ years 10,616.21

 Post-treatment follow-up of cervical cancer (year 1 after treatment) ≤49 years 841.53

50–59 years 835.65

60+ years 836.35

 Post-treatment follow-up of cervical cancer (year 2 after treatment) ≤49 years 428.13

50–59 years 422.25

60+ years 422.95

 Post-treatment follow-up of cervical cancer (year 3 after treatment) ≤49 years 352.42

50–59 years 346.54

60+ years 347.24

 Post-treatment follow-up of cervical cancer (year 4 and 5 after treatment) ≤49 years 282.50

50–59 years 276.62

60+ years 276.97
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cost-effectiveness ratios (ICERs) using life  years (LYs) 
gained and QALYs gained as outcome measures. The base 
case analysis was carried out from the German health care 
payer perspective, which is the perspective of the statu-
tory health insurance funds (taking account of reimbursed 
direct costs only), and from the societal perspective (con-
sidering reimbursed direct costs as well as indirect costs). 
Patient co-payments were not included in both perspec-
tives since not all relevant sources provided sufficient 
details on that aspect.

We evaluated the long-term health and economic effects 
of vaccinating 12-year-old girls against HPV alongside 
the current cytology-based cervical cancer screening pro-
gramme compared to an exclusive continuation of the 
cytological screening programme. Deterministic sensitiv-
ity analyses were performed to test the robustness of the 
results to changes in model input data and assumptions. 
The impact of varying single model parameters was exam-
ined by one-way sensitivity analyses. Parameters varied 
were characteristics of the vaccination programme, costs, 
utilities, and the discount rate. Furthermore, we assessed 
the implication of incorporating vaccine-specific cross-pro-
tection and evaluated the additional impact of vaccinating 
boys. Since a 2-dose schedule showed equivalent antibody 
response and similar efficacy to the standard 3-dose regi-
men [52–54], we also analysed the cost-effectiveness of 
administering only two doses at the age of 12 years assum-
ing the same level of protection. Multivariate sensitivity 
analyses were carried out in terms of best-case (6/11/16/18 
efficacy: 100%; vaccine-specific cross-protection: 32.5 or 
68.4%; lifelong protection; 20% increase in screening and 
treatment cost; 20% increase in quality of  life detriments; 
societal perspective) and worst-case (6/11/16/18 efficacy: 
80%; no cross-protection; average duration of protection: 
15  years; 20% decrease in screening and treatment cost; 
20% decrease in quality of life detriments; health care payer 
perspective) analyses.

Model calibration and validation
Model calibration is the process of adjusting input 
parameter values until the simulation output matches 
empirical data. Our model was calibrated to reflect 
observations on age-specific prevalence of HPV  infec-
tion [55–59], age-specific prevalence of CIN [60], age-
specific incidence and mortality of cervical cancer [61], 
as well as HPV type-distribution in different cervical 
disease states [57, 62–65]. When data for Germany were 
not available, we used data from other countries. The 
modification of parameter values and the subsequent 
comparison of the simulation results with the observed 
data were performed manually. Furthermore, we used 
age-specific adjustment factors for four groups of 
parameters (progression probabilities of cancer, regres-
sion probabilities, detection of cancer by symptoms, and 
mortality of cervical cancer) to achieve a better fit to the 
observed data. More details regarding both the model 
calibration process and the results of the model valida-
tion have been previously published [12].

Systematic literature review
We performed a systematic literature review to compare 
our results with findings of previously published studies 
on the cost-effectiveness of HPV vaccination in Germany. 
A PubMed-based literature search was conducted using 
the following search terms: (“HPV” OR “human papillo-
mavirus”) AND (“vaccine” OR “vaccination” OR “immu-
nisation” OR “immunization”) AND (“cost-effectiveness” 
OR “economic”) AND “Germany”. This search was com-
plemented by scanning reference lists of previously iden-
tified full-text articles. A study was included if it met the 
following criteria: (i) it was an economic evaluation of 
HPV vaccination in Germany, (ii) it was conducted from 
a health care payer or a societal perspective, (iii) it was 
written in English or German, and (iv) it was published as 
a full-text article.

Table 3 continued

Parameter Direct costs (€, 2010 price level)

 Post-treatment follow-up of cervical cancer (from year 6 after treatment onwards) ≤49 years 262.35

50–59 years 256.47

60+ years 256.65

 Inpatient palliative care and treatment 7518.09

Costs of genital warts treatment

 Treatment of genital warts in females 572.14

 Treatment of genital warts in males 396.69

CIN cervical intraepithelial neoplasia, CIS carcinoma in situ, FIGO International Federation of Gynecology and Obstetrics
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Table 4 Indirect costs

CIN cervical intraepithelial neoplasia, CIS carcinoma in situ, FIGO International Federation of Gynecology and Obstetrics
a Average duration of absence from work in patients who missed work because of illness
b Weighted by age-specific employment rates of women
c Not weighted by age-specific employment rates as the fraction of genital warts patients who missed work was estimated directly on the basis of a German study 
[42]

Parameter Average absence from work (days)a Indirect costs (€, 2010 price level)b

Treatment of CIN 1 and CIN 2 15.9 15–19 years 336.50

20–24 years 835.26

25–29 years 965.33

30–34 years 977.31

35–39 years 1009.89

40–44 years 1063.18

45–49 years 1060.82

50–54 years 1010.30

55–59 years 853.97

60–64 years 410.89

Treatment of CIN 3 and CIS 21.3 15–19 years 450.79

20–24 years 1118.93

25–29 years 1293.18

30–34 years 1309.23

35–39 years 1352.87

40–44 years 1424.25

45–49 years 1421.10

50–54 years 1353.42

55–59 years 1144.00

60–64 years 550.44

Treatment of cervical cancer (all FIGO stages) 44.4 15–19 years 939.67

20–24 years 2332.42

25–29 years 2695.65

30–34 years 2729.11

35–39 years 2820.06

40–44 years 2968.87

45–49 years 2962.30

50–54 years 2821.22

55–59 years 2384.68

60–64 years 1147.39

Death due to cervical cancer (all FIGO stages) 63 (friction period) 15–19 years 1333.31

20–24 years 3309.52

25–29 years 3824.91

30–34 years 3872.38

35–39 years 4001.44

40–44 years 4212.58

45–49 years 4203.26

50–54 years 4003.08

55–59 years 3383.67

60–64 years 1628.06

Treatment of genital warts in females 7.7 15–64 years 30.81c

Treatment of genital warts in males 8.7 15–64 years 28.14c
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Results
Public health impact and costs
The continuation of the current cytology-based screen-
ing programme without additional HPV vaccination 
led to approximately 271,000 cervical cancer cases and 
about 78,000 cervical cancer deaths when considering a 
100-year time horizon. In the same period, low-risk HPV 
infections caused about 10 million cases of genital warts. 
In our model, even without HPV vaccination, cervical 
cancer incidence decreased during the first years of the 
simulated time horizon, which was related to increased 
screening coverage in the past. Discounted direct costs 
were €15.4 billion for the scenario without vaccination. 
More than 60% of these costs were incurred by screening 
and related follow-up procedures.

With implemented HPV vaccination, our model pro-
jected about 171,000 cervical cancer cases and about 
54,000 cervical cancer deaths. This means that supple-
menting the current screening practice with vaccination 
of 12-year-old girls with an assumed coverage of 50% 
prevented approximately 100,000 cervical cancer cases 
and 24,000 deaths over a time horizon of 100 years. These 
figures correspond to a 37% reduction in cervical cancer 
and a 30% reduction in cervical cancer mortality. Vac-
cination with the quadrivalent vaccine was additionally 
associated with an overall reduction in genital warts of 
88%. About 40% of all prevented cases of genital warts 
were prevented in males due to herd effects. Expected 
vaccination costs were €3.5 billion. Overall direct costs 
(compared to screening only) increased by €2.8 and €1.6 
billion for the bivalent and the quadrivalent vaccine, 

respectively. Table 6 shows the discounted costs consid-
ering a 100-year time horizon.

Cost‑effectiveness
Under base case assumptions, the discounted ICERs of 
a 3-dose schedule were €53,807 per LY and €34,249 per 
QALY for the bivalent vaccine and €30,910 per LY and 
€14,711 per QALY for the quadrivalent vaccine when 
adopting a health care payer perspective. Inclusion of 
indirect costs decreased the ICERs to €28,047 and €8984 
per QALY for the bivalent and the quadrivalent vaccine, 
respectively. Cost-effectiveness results of the base case 
analysis are summarised in Table 7.

Sensitivity analysis
Model results were highly sensitive to assumptions about 
the discount rate and the vaccination age. Vaccinating 
16-year-old girls was more cost-effective than vaccinat-
ing 12-year-old girls as long as no lifelong protection 
was assumed. Changes in duration of protection (mini-
mum duration: 10  years of stable protection combined 
with instant waning of protection afterwards; maximum 
duration: lifelong protection) had a minor (quadrivalent 
vaccine) to moderate (bivalent vaccine) impact on the 
economic results. ICERs increased with increasing cover-
age due to the combination of diminishing marginal ben-
efit of vaccine-induced protection in the population and 
linearly increasing vaccination cost. In scenarios with 
low coverage (≤20%), the use of the quadrivalent vaccine 
led to cost savings from a societal perspective. However, 
a low coverage was also associated with fewer prevented 

Table 5 Utility values

CIN cervical intraepithelial neoplasia, CIS carcinoma in situ, FIGO International Federation of Gynecology and Obstetrics

Health state Utility value Duration Source

Treatment of CIN 1 0.91 2 months [47]

Treatment of CIN 2 0.87 2 months [47]

Treatment of CIN 3 0.87 2 months [47]

Treatment of CIS 0.80 2 months [48]

Follow-up of CIS 0.97 1.8 years (22 months) [48]

Treatment of FIGO I 0.65 6 months [87]

Follow-up of FIGO I 0.97 Up to 4.5 years (54 months) [48, 87]

Treatment of FIGO II 0.56 6 months [87]

Follow-up of FIGO II 0.90 Up to 4.5 years (54 months) [48, 87]

Treatment of FIGO III 0.56 6 months [87]

Follow-up of FIGO III 0.90 Up to 4.5 years (54 months) [48, 87]

Treatment of FIGO IV 0.48 6 months [88]

Follow-up of FIGO IV 0.62 Up to 4.5 years (54 months) [48, 87]

Palliative care 0.29 1 month [89]

Treatment of genital warts 0.93 2 months [46, 48] (mean value of both sources)
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cases of cervical cancer (20% coverage: 47,000 prevented 
cases; 10% coverage: 24,000 prevented cases). Considera-
tion of vaccine-specific cross-protection benefits yielded 
ICERs of €24,576 per QALY (at an estimated reduction in 
cervical cancer cases of 119,000) for the bivalent vaccine 
and €11,429 per QALY (at approximately 113,000 pre-
vented cervical cancer cases) for the quadrivalent vaccine 

when taking a health care payer perspective. Figure  2 
shows the results of several one-way sensitivity analy-
ses using the example of the quadrivalent vaccine with a 
3-dose schedule.

In the best case scenario of the 3-dose schedule 
(6/11/16/18 efficacy: 100%; vaccine-specific cross-
protection: 32.5 or 68.4%; lifelong protection; 20% 

Table 6 Discounted costs over a 100-year time horizon

CIN cervical intraepithelial neoplasia, CIS carcinoma in situ

Discounted costs (€ in thousands) No vaccination Bivalent vaccination Quadrivalent vaccination

Direct costs

 Vaccine (3 doses) 0 3,461,711 3,461,711

 Vaccine administration (3 doses) 0 172,614 172,614

 Screening 8,825,905 8,829,506 8,829,506

 Diagnostic follow-up of abnormal cytological screening  
results and observational management of CIN 1 and CIN 2

1,481,795 1,370,223 1,349,669

 Treatment of CIN 1,739,325 1,387,470 1,349,167

 Treatment of CIS 498,381 347,349 347,349

 Treatment of cervical cancer 1,233,413 1,013,599 1,013,599

 Treatment of genital warts in females 1,093,366 1,093,360 337,162

 Treatment of genital warts in males 556,932 556,924 178,880

 Total direct costs 15,429,116 18,232,756 17,039,658

Indirect costs (due to work loss)

 Treatment of CIN 1,978,965 1,618,578 1,566,941

 Treatment of CIS 338,862 234,758 234,758

 Treatment of cervical cancer 198,247 154,987 154,987

 Treatment of genital warts in females 58,878 58,878 18,156

 Treatment of genital warts in males 39,507 39,507 12,689

 Total indirect costs 2,614,460 2,106,708 1,987,532

Total costs

 Total direct and indirect costs 18,043,576 20,339,463 19,027,190

Table 7 Base case cost-effectiveness results (3-dose schedule)

ICER incremental cost-effectiveness ratio, QALY quality-adjusted life year, LY life year
a Compared to no vaccination

Discounted costs (€), health outcomes and ICERs No vaccination Bivalent vaccination Quadrivalent vaccination

Direct costs 15,429,115,908 18,232,755,877 17,039,657,688

Incremental direct  costsa – 2,803,639,969 1,610,541,780

Direct and indirect costs 18,043,576,056 20,339,463,474 19,027,189,752

Incremental total  costsa – 2,295,887,418 983,613,696

LYs lost 377,884 325,779 325,779

Incremental LYs  gaineda – 52,105 52,105

QALYs lost 547,617 465,757 438,136

Incremental QALYs  gaineda – 81,860 109,481

ICER (€/LY), health care payer perspective – 53,807 30,910

ICER (€/LY), societal perspective – 44,063 18,878

ICER (€/QALY), health care payer perspective – 34,249 14,711

ICER (€/QALY), societal perspective – 28,047 8984
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increase in screening and treatment cost; 20% increase 
in quality of  life detriments; societal perspective), about 
130,000 cervical cancer cases were prevented, and ICERs 
decreased to €11,156 per QALY for the bivalent vaccine 
and €154 per QALY for the quadrivalent vaccine. In the 
worst case scenario of the 3-dose schedule (6/11/16/18 
efficacy: 80%; no cross-protection; average duration of 
protection: 15 years; 20% decrease in screening and treat-
ment cost; 20% decrease in quality  of  life detriments; 
health care payer perspective), about 80,000 cervical can-
cer cases were prevented and ICERs increased to €50,300 
per QALY for the bivalent vaccine and €26,532 per QALY 
for the quadrivalent vaccine.

If the introduction of HPV vaccination was accom-
panied by an increase of the screening interval for all 
age  cohorts (regardless of whether they received vac-
cination or not), cost offsets came along with net QALY 
losses (i.e. ICERs were located in the south-west quad-
rant of the cost-effectiveness plane) when compared to 
the existing screening practice and no vaccination.

A 2-dose schedule led to ICERs of €19,450 per QALY 
for the bivalent vaccine and €3645 per QALY for the 
quadrivalent vaccine when taking a health care payer 
perspective. When adopting a societal perspective, the 

use of the quadrivalent vaccine with a 2-dose approach 
appeared to be a cost-saving strategy and the ICER of a 
2-dose schedule using the bivalent vaccine decreased to 
€13,248 per QALY.

Using base case assumptions for vaccinating girls 
(3-dose schedule with 50% coverage), additional vaccina-
tion of 12-year-old boys with three doses and a coverage 
of 50% resulted in ICERs of €130,449 per QALY for the 
bivalent vaccine and €117,240 per QALY for the quad-
rivalent vaccine from a health care payer perspective 
when compared with vaccinating girls alone. Assuming 
a low coverage in girls (20%), the cost per QALY of vac-
cinating boys at a similar coverage level (20%) decreased 
to €57,024 for the bivalent vaccine and to €37,985 for the 
quadrivalent vaccine. Assuming a high coverage in girls 
(80%), additional vaccination of boys (regardless of the 
coverage level) resulted in ICERs of more than €400,000 
per QALY for both vaccines. When using a 2-dose sched-
ule and assuming that two doses are as effective as three 
doses, ICERs of vaccinating boys remained above €50,000 
and €200,000 per QALY in scenarios with moderate and 
high coverage in girls, respectively. Results of additional 
vaccination of boys with two or three doses are summa-
rised in Table 8.

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000

Quality of life detriments (± 20%)

Dura�on of protec�on (10 years to lifelong)

Efficacy HPV 16/18 (80% to 100%)

Inclusion of cross-protec�on

Direct treatment costs (± 20%)

Booster vaccina�on (1 dose) to achieve lifelong immunity

Inclusion of indirect costs (societal perspec�ve)

Vaccina�on costs (± 20%)

2-dose schedule

Coverage (20% to 80%)

Discount rate (3%/1.5% to 5%/5%)

Exclusion of the impact on HPV 6/11 (bivalent vaccine)

Vaccina�on age (16 years to 22 years)

ICER (€/QALY)

Base case (HPV 6/11/16/18 vaccine)

Fig. 2 Results of one-way sensitivity analyses for the quadrivalent vaccine (3-dose schedule, health care payer perspective). Black bars represent the 
upper bounds, and grey bars represent the lower bounds
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Systematic literature review of previously published 
economic evaluations of HPV vaccination in Germany
The PubMed search resulted in 17 articles published 
before June 2016, of which three met the inclusion cri-
teria [66–68]. One further study reflecting the German 
health care setting was identified by hand-searching 
reference lists [69]. Table  9 gives an overview of the 
included studies.

Hillemanns et  al. [69] used a static cohort model to 
estimate the cost-effectiveness of vaccinating 12-year-
old girls alongside the existing cervical cancer screening 
programme compared to screening alone from the Ger-
man health care payer perspective. They performed a 
cost-effectiveness analysis (CEA) and a cost-utility analy-
sis (CUA) of the quadrivalent vaccine assuming a lifelong 
duration of protection. ICERs of the base case analysis, in 
which effects on CIN, cervical cancer, and genital warts 
in women were considered, were €15,684 per LY and 
€10,530 per QALY. ICERs increased to €16,689 per LY 
and €11,658 per QALY when genital warts were excluded. 
Restricting the duration of vaccine-induced protection 
to 20  years almost doubled the ICERs (€28,991 per LY; 
€19,445 per QALY).

Schobert et  al. [67] presented results of both a CEA 
and a CUA using a dynamic transmission model that 
has already been used to evaluate the cost-effective-
ness of HPV vaccination in other countries. They esti-
mated the economic impact of vaccinating girls aged 
12–17  years with three doses of the quadrivalent vac-
cine from a health care payer perspective considering 
HPV-associated diseases in women (CIN, cervical cancer 
and genitals warts) and men (genital warts). In the base 
case analysis, it was assumed that the vaccine provided 
lifelong protection, and the corresponding ICERs were 
€10,205 per LY and €5525 per QALY. The cost per QALY 
increased to about €10,000 when limiting the duration 
of protection to 20  years or excluding the protection of 
HPV6/11-associated diseases.

Kotsopoulos et  al. [66] adopted a societal perspec-
tive and used a cost-benefit analysis (CBA) based on a 
static cohort model to quantify the economic impact of 
a 2-dose schedule of the quadrivalent vaccine in the pre-
vention of HPV-related diseases in females and males 
(CIN, cervical, vaginal, vulvar and anal cancer, and genital 
warts). Female vaccination at the age of 12 years led to a 
benefit–cost ratio (BCR) of 3.3 meaning that €1 invested 
in HPV vaccination returns €3.3 in terms of prevented 
medical costs and productivity losses due to premature 
mortality. BCRs of male vaccination and universal vac-
cination (i.e. vaccination of males and females) were 0.3 
and 1.8, respectively. However, the CBA was limited to a 
cost comparison (including cost-offsets) as health ben-
efits were not valued in monetary units. Therefore, from 

a methodological perspective and in accordance with the 
commonly accepted definition of CBA [70], this study 
offers only a partial evaluation.

Soergel et  al. [68] developed a static model based on 
the conisation-related neonatal morbidity and mortal-
ity in Germany. They conducted both a CEA and a CUA 
of HPV 16/18 vaccination with measuring the effects of 
HPV vaccination in terms of a reduced number of conisa-
tions and a corresponding decrease in conisation-associ-
ated neonatal morbidity and mortality. When vaccinating 
12-year-old girls the cost per LY was €45,101 and the cost 
per QALY ranged from €43,505 to €47,885.

Discussion
Summary of key findings
In our model, vaccination of 12-year-old girls against 
HPV was associated with ICERs often considered as 
good value for money (below €50,000 per QALY). Addi-
tional protection against genital warts in females and 
males by the quadrivalent vaccine improved results sub-
stantially. This high impact of the HPV 6/11 component 
of the quadrivalent vaccine is largely due to the different 
time points at which prevention of HPV-associated out-
comes occurs. Genital warts can be prevented relatively 
soon after vaccination, while the development of cervi-
cal cancer usually takes many years. Consequently, the 
discounting of future events leads to an emphasis on the 
prevention of genital warts and lowers the influence of 
avoided cervical cancer cases on the cost-effectiveness 
of HPV vaccination. In addition, the indirect benefits of 
preventing genital warts in males intensify the impact of 
the protection against HPV 6/11. However, when taking 
vaccine-specific cross-protection into account, estimated 
reduction in cervical cancer was higher for the biva-
lent vaccine than for the quadrivalent vaccine, despite a 
higher overall cost per QALY estimate. Inclusion of indi-
rect costs lowered (improved) the ICERs by up to 40%. 
An even bigger improvement of the cost-effectiveness 
was shown by using a 2-dose schedule instead of a 3-dose 
schedule when assuming that two doses are as protective 
as three doses. This substantial improvement was trig-
gered by the reduction in vaccination costs. By contrast, 
additional vaccination of boys resulted in mainly high or 
very high cost-effectiveness ratios, except for scenarios 
with low coverage in girls. This finding is in line with 
previous research on the cost-effectiveness of including 
males in HPV vaccination programmes in high-income 
countries [71]. However, male HPV-related cancers 
were not considered in our analyses, and the model was 
restricted to heterosexual transmission of HPV infection. 
Studies focussing on men who have sex with men (MSM) 
showed that HPV vaccination of MSM is likely to be a 
cost-effective intervention [72–74].
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Comparison with other models
In other models reflecting the German health care set-
ting, the cost per QALY of quadrivalent HPV vaccination 
with three doses ranged between €10,000 and €20,000 
from a health care payer perspective when assuming a 
20  years lasting duration of protection and considering 
effects on CIN, cervical cancer, and genital warts [67, 
69]. Our estimate of €14,711 per QALY falls within this 
range of estimates. When adopting a societal perspective, 
quadrivalent HPV vaccination of 12-year-old girls with 
two doses resulted in cost savings in our model. This also 
compares well with previous findings [66]. In contrast, 
the study by Soergel et al. [68] allows no direct compari-
son with our estimates because it focussed on conisation-
associated neonatal morbidity and mortality. However, 
Soergel et  al. [68] showed that vaccinating girls against 
HPV 16/18 might even be cost-effective without consid-
ering the impact on cervical cancer.

Strengths and limitations
An important strength of our study is that we presented 
results for a wide range of scenarios varying the target 
group (female vaccination vs. no vaccination; female and 
male vaccination vs. female vaccination), coverage rate, 
and number of vaccine doses. Another strength is that we 
used a dynamic transmission model to estimate the cost-
effectiveness of HPV vaccination in Germany. Compared 
to static models, which account only for direct effects of 
vaccination, dynamic models also capture indirect effects 
in terms of herd protection [75]. Furthermore, we included 
the impact of historical changes in participation rates of 
the cytological cervical cancer screening in Germany. This 
is one reason why our model might provide more accurate 
results than the dynamic model from Schobert et al. [67]. 
In addition, we applied a more comprehensive calibration 
approach than the aforementioned model and used age-
specific epidemiological data for several calibration targets.

We acknowledge that our model also has several limita-
tions. First, we did not include other cancers than cervical 
cancer. Other modelling studies showed that consider-
ing the impact on vaginal, vulvar, penile, anal, and head 
and neck cancer could improve the cost-effectiveness of 
HPV vaccination [76, 77]. However, our model reflects 
the goal of the current German HPV immunisation rec-
ommendation, which is defined (by STIKO) as the reduc-
tion in disease burden caused by cervical cancer. Second, 
our model evaluated the cost-effectiveness of the bivalent 
and quadrivalent vaccines, but did not include the new 
9-valent HPV vaccine, which was introduced in Germany 
after completion of this study. However, we investigated 
the impact of including vaccine-specific cross-protection 
against non-vaccine high-risk HPV types in sensitiv-
ity analyses, and corresponding results might give an 

impression of the cost-effectiveness of higher-valent vac-
cines. We recommend including the 9-valent HPV vac-
cine in future modelling studies. Third, our model did not 
account for potential cross-protection of the bivalent vac-
cine against low-risk HPV types. Results of an ecological 
study suggest that there might be a moderate cross-pro-
tective effect of the bivalent vaccine against genital warts 
since the rates of genital warts have declined after the 
introduction of a national HPV vaccination programme 
using the bivalent vaccine in England [78]. In addition, a 
post hoc analysis of a clinical trial showed that the bivalent 
vaccine provides a moderate efficacy against persistent 
infection with low-risk HPV types [79]. Nevertheless, the 
underlying biological mechanisms of these findings have 
not yet been clarified conclusively. Fourth, in our base 
case analysis, we assumed a vaccination age of 12 years in 
order to ensure comparability with other studies although 
most girls in Germany have received the first dose in the 
age of 13 or 14 years [28]. However, the updated immuni-
sation recommendation favours a younger vaccination age 
(from 9 years), which might impact future health and eco-
nomic effects of HPV vaccination. Fifth, modelling of cer-
vical cancer screening was based on cytological screening, 
which predominantly reflects the current screening prac-
tice in Germany. However, future changes to cervical 
cancer screening may involve primary HPV testing [80]. 
Sixth, input data on sexual behaviour were based on sur-
veys from other European countries, and actual behaviour 
in Germany might differ from that in other countries. 
Seventh, due to the lack of German-specific utility val-
ues, the utility estimates we used in our model were 
taken from international studies with some of them rest-
ing on expert opinion. Furthermore, we assumed a base-
line utility value of 1.0 in the absence of HPV-associated 
diseases, which might lead to a potential overestimation 
of HPV-related QALY losses. However, sensitivity analy-
ses showed that variations in utilities had limited impact 
on the results. Eighth, since we used a stable population 
approach, our model did not take account of demographic 
trends and their implications.

Conclusions
Considering the often-cited threshold of €50,000 per 
QALY, our model results suggest that routine HPV vacci-
nation of 12-year-old girls with three doses is likely to be 
cost-effective in Germany. Due to the additional impact 
on HPV 6/11-related diseases (mostly genital warts), the 
quadrivalent vaccine appeared to be more cost-effective 
than the bivalent vaccine, even when considering the 
higher cross-protection of the bivalent vaccine. Most of 
these findings are consistent with results predicted by 
previously published industry-funded models of HPV 
vaccination in Germany. Our model also showed that a 
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2-dose schedule of the quadrivalent vaccine could result 
in cost savings when assuming an equivalent level of pro-
tection and adopting a societal perspective. Additional 
vaccination of boys was found to be a cost-effective strat-
egy in scenarios with low coverage in girls. However, 
there is a need for an extended version of this model that 
also accounts for the potential impact on non-cervical 
cancer types in both genders since the consideration of 
this aspect might lead to more favourable results regard-
ing the additional vaccination of boys in scenarios with 
moderate or high coverage in girls.
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