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ARTICLE INFO ABSTRACT

Keywords: Plasmodium parasites, the causative agents of malaria, display a well-regulated lipid metabolism required to
Malaria ensure their survival in the human host as well as in the mosquito vector. The fine-tuning of lipid metabolic
Plasmodium pathways is particularly important for the parasites during the rapid erythrocytic infection cycles, and thus
Phospholipase

enzymes involved in lipid metabolic processes represent prime targets for malaria chemotherapeutics. While
plasmodial enzymes involved in lipid synthesis and acquisition have been studied in the past, to date not much is
known about the roles of phospholipases for proliferation and transmission of the malaria parasite. These
phospholipid-hydrolyzing esterases are crucial for membrane dynamics during host cell infection and egress by
the parasite as well as for replication and cell signaling, and thus they are considered important virulence
factors. In this review, we provide a comprehensive bioinformatic analysis of plasmodial phospholipases iden-
tified to date. We further summarize previous findings on the lipid metabolism of Plasmodium, highlight the roles
of phospholipases during parasite life-cycle progression, and discuss the plasmodial phospholipases as potential
targets for malaria therapy.

Lipid metabolism
Red blood cell
Membrane

1. Introduction

Approximately 200 million new malaria cases are recorded per year,
resulting in more than 400,000 deaths (World Health Organization,
2016). Antimalarial drug development and vector control strategies
have contributed to reduce the malaria burden during the last decade.
However, half of the worldwide population remains exposed to malaria,
all available antimalarial drugs are meanwhile facing parasite che-
moresistance issues and no vaccine is yet commercialized (reviewed in
White et al., 2014).

Responsible for this devastating tropical disease are unicellular
parasites of the genus Plasmodium. Currently five Plasmodium species
infecting humans are known. Of these, P. falciparum, P. vivax, P. ma-
lariae and P. ovale exclusively infect humans, with P. falciparum being
responsible for the majority of deaths by malaria. P. knowlesi was ori-
ginally described as a simian parasite and only recently has emerged as

an important cause of human malaria (reviewed in Barber et al., 2017).

Malaria parasites undergo a complex life-cycle starting with their
transmission to the human host by blood-feeding Anopheles mosquitoes.
Once injected into the human dermis, infective sporozoites immediately
target the liver to replicate asymptomatically in hepatocytes, in con-
sequence producing tens of thousands liver stage merozoites. Once re-
leased to the blood stream, the merozoites infect red blood cells (RBCs)
to begin erythrocytic schizogony. These erythrocytic infection cycles,
which last 24-72h depending on the Plasmodium species, are re-
sponsible for the typical symptoms of malaria such as fever, anemia and
organ failure (reviewed in Cowman et al., 2016; Haldar and Mohandas,
2009).

During the erythrocytic infection cycle, a proportion of blood stage
parasites enter the sexual pathway in response to stress factors, which
results in the production of the transmissible intra-erythrocytic game-
tocyte stages. Following maturation, a process that takes 10 days for
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gametocytes of P. falciparum, the gametocytes are capable of forming
gametes immediately after uptake by the blood- feeding Anopheles
mosquito vector. The gametes fuse to form a motile zygote, termed
ookinete, which traverses the gut wall of the mosquito and then
transforms into an oocyst, in which the parasite undergoes another
round of asexual replication before accumulating as infective spor-
ozoites in the mosquito salivary glands (reviewed in Bennink et al.,
2016; Kuehn and Pradel, 2010).

In the human host, Plasmodium spends the majority of its time
within a host cell (HC), either a hepatocyte or a RBC. This intracellular
life-style offers protection against attack by the human immune system
and provides the parasite a ready source of nutrients. Growth inside the
HC is accompanied by an intense period of membrane biogenesis, in-
cluding the formation of a vacuolar system that supports expansion and
nutrient intake by the parasite as well as the development of daughter
cells (reviewed in Vial et al., 2003). This process requires de novo
synthesis and acquisition but also the degradation of phospholipids
(PLs) and neutral lipids (NLs).

While the importance of phospholipases for the lipid turnover
during propagation and spread of pathogens has been acknowledged for
years (e.g. reviewed in Cotes et al., 2008; Djordjevic, 2010; Flores-Diaz
et al,, 2016; Kuhle and Flieger, 2013; van der Meer-Janssen et al.,
2010), surprisingly the phospholipases of malaria parasites as media-
tors of biomembrane dynamics are hitherto under-investigated. Not-
withstanding the limited number of studies that have addressed phos-
pholipase functions to date, they revealed critical roles for these PL-
hydrolyzing enzymes during the Plasmodium life-cycle. Therefore, this
review focuses on the phospholipases of malaria parasites to bring well-
deserved attention to this class of hydrolases. The review provides a
detailed in-silico analysis on putative plasmodial phospholipases, de-
scribes their currently known functions and evaluates them as potential
drug targets. The review further highlights and summarizes previous
findings on the Plasmodium lipid metabolism.

2. Membrane dynamics and lipid turnover in plasmodial parasites

During their intracellular development, Plasmodium induces sub-
stantial changes in the structural and functional properties of the HC.
Inside the HC the parasite is enclosed by a parasitophorous vacuolar
membrane (PVM), a membranous compartment that arises by in-
vagination of the RBC membrane during invasion (Fig. 1A). Ad-
ditionally, tubovesicular networks (TVNs) are formed by the parasite
that protrude from the PVM into the erythrocytic cytosol and which
may allow for the transport of molecules from the parasite cytosol to
the HC surface and vice versa. Such TVNs have previously been de-
scribed in infected RBCs (iRBCs) and in hepatocytes (e.g. reviewed in
De Niz et al., 2016; Sherling and van Ooij, 2016). Further compart-
ments of the exomembrane system in iRBCs are the Maurefs clefts
(MCs) and mobile J-dots. The rapid parasite growth also requires large
lipid quantities to maintain cell-internal membrane compartments.
These include the parasite plasma membrane (PPM), the food vacuole
(FV), the endoplasmic reticulum (ER), the Golgi apparatus, the nucleus,
the mitochondrion and apicoplast as well as the apical organelles, i.e.
micronemes and rhoptries, and the inner membrane complex (IMC) of
the invasive and transmissible life-cycle stages (Figs. 1A and B).

The drastic membrane dynamics during intracellular growth of
Plasmodium requires a finely regulated lipid metabolism. In general,
three types of lipids are distinguished, i.e. PLs, NLs and cholesterol
(Table 1). PLs are amphiphatic molecules harboring apolar/hydro-
phobic long chain fatty acids (FAs) and a polar/hydrophilic part, which
is represented by the phosphate and the attached alcohol. By contrast,
NLs, such as triacylglycerol (TAG), diacylglycerol (DAG), but also
cholesterol, a polycyclic alcohol, are hydrophobic molecules. While the
parasite is capable to de novo synthesize PLs or NLs, the precursors need
to be scavenged from the host or surrounding serum (Fig. 2). FAs, re-
action products of phospholipases A (PLA) and lipases, are incorporated
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from the host serum by blood stage parasites to synthesize PLs or NLs
and are essential for parasite survival (Mitamura et al., 2000;
Vielemeyer et al., 2004; reviewed in Vial et al., 2003). Plasmodium can
also synthesize FAs de novo via the fatty acid synthase II (FASII)
pathway located in the apicoplast, a relict plastid of algal origin that
arose through secondary endosymbiosis (e.g reviewed in van Dooren
and Striepen, 2013). FA synthesis via FASII, though, occurs primarily in
the mosquito-resident and intrahepatic stages (van Schaijk et al., 2014;
Vaughan et al., 2009; Yu et al., 2008).

Plasmodium generates PL from polar heads, like choline, ethanola-
mine or serine (S), which are mainly taken up from the serum (reviewed
in Ben Mamoun et al., 2010; Déchamps et al., 2010), whereas phos-
phatidylinositol (PI) is made by the parasite from inositol that is either
taken up from the serum or generated de novo from glucose-6-phos-
phate via inositol-3-phosphate (reviewed in Ramakrishnan et al., 2013).
Phosphatidylethanolamine (PE) is synthesized by the parasite via the
phosphorylation of ethanolamine obtained from plasma or through
decarboxylation of S (Fig. 2). S, in turn, is acquired via direct import or
haemoglobin degradation. Phosphatidylcholine (PC) is generated from
choline by two routes in Plasmodium, i.e. the de novo cytidine dipho-
sphate (CDP)-choline (Kennedy) pathway and the S decarboxylase-PE
methyltransferase (PEMT) pathway (reviewed in Tischer et al., 2012).
Another potential PC synthesis pathway is the Lands cycle, in which
phospholipase A, (PLA,) removes a FA from PC that has derived from
the Kennedy pathway, resulting in the formation of lysoPC. The lysoPC
in turn is re-acetylated in a reverse reaction with another FA, resulting
in PC with a modified FA residue. Since no lysoPC-acetyltransferase has
yet been identified in Plasmodium, a potential role of the Lands cycle in
plasmodial PC synthesis and PC diversity has to be elucidated.

To date, lipid and membrane compositions of malaria parasites have
mainly been studied in the blood stages of P. falciparum. This can be
explained by the fact that these stages can be cultivated in vitro, har-
vested at high cell numbers and purified to obtain distinct blood stages.
Noteworthy, the majority of studies focused on lipid components of
uninfected (u)RBCs versus iRBCs or RBC-freed parasites (here, mostly
the trophozoite stages are used for analysis). With the exception of the
below discussed apicoplast and microvesicles, the purification of dis-
tinct membranous organelles or components of the exomembrane
system is not yet possible.

After infection by P. falciparum, the total amount of PLs increases
approximately 5-fold in the iRBCs (Beaumelle and Vial, 1988; Gulati
et al., 2015; Simoes et al., 1992; reviewed in Déchamps et al., 2010). In
uRBCs, cholesterol and PL are the major lipids, with PL mostly being PC
(~20-40%; percentages differ between studies), PE (~15-30%), PE
plasmalogen (~15%), sphingomyelin (SM) (~15%) and phosphati-
dylserine (PS) (~10-15%). The membrane composition of RBC-freed
malaria parasites is primarily composed of PLs like PC (~40%) and PE
(~30%). The amount of SM (~15%) in the parasites is comparable to
that of uRBCs, while PS (~5%) and PE plasmalogen (~ 10%) are found
at lower concentrations (Botté et al., 2013; Gulati et al., 2015; reviewed
in Vial et al., 2003). Cholesterol is almost absent in the membranes of
Plasmodium parasites, related to its inability to synthesize sterols (re-
viewed in Déchamps et al., 2010; Vial et al., 2003; Vial and Ancelin,
1992). In iRBCs, relative membrane cholesterol levels decrease in-
wardly from the RBC membrane (RBCM) via the MC/TVN to the PPM,
with cholesterol appearing to travel from RBCM to PVM, but not vice
versa (Tokumasu et al., 2014). The reduced susceptibility of iRBCs to
cholesterol-binding pore formers like streptolysin O that selectively
permeabilizes cholesterol-containing membranes underlines the re-
duced cholesterol content in iRBCs compared to uRBCs (Jackson et al.,
2007). TAG and DAG increase by 2- to 5-fold in the parasite during the
48-hours RBC infection (Gulati et al.,, 2015). These NLs accumulate
mostly in the FV, where they appear to be involved in heme detox-
ification (Gulati et al., 2015; Jackson et al., 2004).

During parasite growth in the iRBC, an increase in lysopho-
spholipids (LPL) can also be detected (Gulati et al., 2015). LPLs, which
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Fig. 1. Membrane compartments of the P. falciparum blood stages. (A) The
trophozoite-infected red blood cell. (B) The merozoite. ER, endoplasmic
reticulum; FV, food vacuole; IMC, inner membrane complex; MC, Maurer’s
cleft; PPM, parasite plasma membrane; PVM, parasitophorous vacuole

membrane; RBCM, red blood cell membrane; TVN, tubovesicular network.
Blue lines in A depict parasite proteins.
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in addition to FAs are products of PLA activity, possess single FA chains.
They are minor constituents of cell membranes, but can mediate cell
signaling, calcium mobilization and protein folding and are further
known to promote cell proliferation and migration (reviewed in
Grzelezyk and Gendaszewska-Darmach, 2013). Similar to DAGs, TAGs
and PLs, the levels of plasmodial bis(monoacylglycero)phosphate
(BMP) peak at the end of the erythrocytic replication cycle, when
merozoites are released. While BMP has not yet been studied in Plas-
modium, the molecule was described to mediate the fusion between the
membrane of the vacuolar compartment and host autophagosomes in
Leishmania parasites (Schaible et al., 1999), suggesting that BMP might
also be involved in vesicle fusion prior to iRBC egress by the merozoites.
During infection, the RBCM also undergoes some remodelling.
While the PL composition does not alter significantly, the PLs exhibit an
increase in the ratio of unsaturated to saturated FA chains (reviewed in
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Vial et al., 2003). An exposure of PS on the outer leaflet, known as a
final step of apoptosis, was also sometimes observed. These alterations
might support iRBC rigidity and cytoadherence of the iRBCs to capillary
walls (Brand et al., 2003; Eda and Sherman, 2002).
Cholesterol-rich lipid rafts are located in the iRBCM. It was postu-
lated that host proteins residing in these cholesterol-rich rafts are re-
cruited to the PVM, while non-raft proteins remain in the RBCM (re-
viewed in Haldar et al., 2001, 2002). However, RBCM-raft proteins like
stomatin and band 3 appear to be excluded from parasite- derived
membranes, while flotillin-1, -2 and some other RBCM raft proteins are
recruited to the PVM (Murphy et al., 2004; reviewed in Murphy et al.,
2006).
Both uRBCs and iRBCs release microvesicles into the host serum,
which are suggested to arise by blebbing from lipid rafts (Mantel et al.,
2013; Nantakomol et al., 2011; reviewed in Mantel and Marti, 2014).
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Subclasses of phospholipids and neutral lipids and their different functions for membrane dynamics.

lipid  Biological function References
Phospholipids PC Forms PL bilayer, most abundant PL in mammalian cell membranes (40-50% of total PLs), precursor ~ Reviewed in Cole et al. (2012), van der Veen et al.
of signaling molecules, key element of lipoproteins (2017), and Vance, (2008)
PE Forms PL bilayer, second most abundant mammalian membrane PL (20-50% of total PLs), involved = Reviewed in van der Veen et al. (2017), Vance
in membrane fusion and curvature formation, donor of the ethanolamine moiety that covalently (2008) , and Vance and Tasseva (2013)
modifies several proteins
PS Forms PL bilayer, minor membrane PL (2-10% of total PLs), required for targeting and function of =~ Reviewed in Vance (2008), and Vance and Tasseva
several intracellular signaling proteins (2013)
PI Phosphorylated forms (phosphoinositides) play important roles in lipid signaling, cell signaling and  Reviewed in Balla (2013)
membrane trafficking
SM Structural components of biomembranes, second messenger precursor, clusters with cholesterol as Linardic and Hannun (1994); reviewed in Ohvo-
basis for lipid rafts, regulation of membrane fluidity Rekild et al. (2002)
Neutral lipids TAG  Present in plasma and the fluid core of triglyceride-rich lipoproteins, lipid droplets have a fluid Reviewed in Heeren and Beisiegel (2001), and
triglyceride-rich core, energy depot lipid Murphy and Vance (1999)
DAG  Second messenger signaling lipid, present in low amounts on lipoproteins, able to modulate the Reviewed in Berridge (1984), and Gémez-
biophysical properties of biomembranes Fernandez and Corbaldn-Garcia (2007)
Cholesterol C Builds up and maintains membranes, modulates membrane fluidity, involved in cell signaling, Reviewed in Incardona and Eaton (2000), and

formation of lipid rafts, intracellular transport

Ohvo-Rekila et al. (2002)

C, cholesterol; DAG, diacylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PL, phospholipid; PS, phosphatidylserine; SM, sphingomyelin;

TAG, triacylglycerol.

These structures are likely involved in mediating cell-cell communica-
tion between parasites and in the induction of gametocyte formation
(Mantel et al., 2013; Nantakomol et al., 2011; Regev-Rudzki et al.,
2013). Isolated microvesicles exhibited enriched PS and PI levels
compared to the RBCM (Gulati et al., 2015).

Another membranous compartment, which has been investigated
for its lipid content in more detail, is the plasmodial apicoplast. A recent
study reported the successful purification of this plastid, allowing the
authors to determine its lipid content. They found that the apicoplast is
enriched in PIs, particularly PI3-phosphate, as well as in other PLs
having saturated FAs, suggesting limited acyl exchange with other
membrane PLs or the requirement for specific physical properties in the
apicoplast (Botté et al., 2013; Tawk et al., 2010). Interestingly, the
apicoplast also features lipids atypical for plastids, such as SM, cer-
amides and cholesterol. These lipids were suggested to contribute to
changes in multi-membrane properties affecting both permeability and
the activity of integral membrane transporter proteins (Botté et al.,
2013).

Lipid levels were also investigated for the intraerythrocytic game-
tocytes. Similar to RBCs infected with asexual blood stages, RBCs
containing gametocytes had 6-fold higher lipid levels compared to
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uRBCs (Tran et al., 2016). This is particularly apparent for ceramides, a
subgroup of sphingolipids, which are almost non-existent in the uRBCs,
but which increase 6-fold in trophozoite- iRBCs and 9-fold in gameto-
cyte-iRBCs. In this context, a gametocyte-specific ATP-binding cassette
transporter was identified, which appears to be involved in the accu-
mulation of NLs, particularly TAGs and DAGs (Tran et al., 2014). The
high content of DAGs in gametocytes might be linked to the various
signaling pathways that are activated to initiate gametogenesis, once
the gametocytes have entered the mosquito midgut. Among others,
during gametogenesis the second messengers DAG and inositol-(1,4,5)-
triphosphate (IP3) are produced by hydrolysis of phosphatidylinositol-
(4,5)-biphosphate (PIP,) through phospholipase C (PLC), leading to a
release of calcium from the ER, which in turn activates calcium- de-
pendent protein kinases of the parasite as described below (reviewed in
Bennink et al., 2016; Kuehn and Pradel, 2010).

While cholesterol decreases from 50% of total lipid levels in uRBCs
to 20% in the trophozoite-iRBCs, the levels increase again during ga-
metocyte maturation with a peak at 30% in mature gametocyte-iRBCs
(Tran et al., 2016). Cholesterol increase in mature gametocytes might
give rise to the decreasing rigidity of the iRBC membrane in these
stages, needed for circulation and passage through the spleen (Tiburcio

FA

Fig. 2. Pathways of phospholipid synthesis in P.
falciparum.AP, apicoplast; Cho, choline; CS, cyto-
some; ER, endoplasmic reticulum; Etn, ethanola-
mine; FA, fatty acid; FASII, fatty acid synthase II; FV,
food vacuole; Gle, Glucose; GO, Golgi; GPI, glyco-
phosphatidylinositol; Hb, haemoglobin; Ino, inositol;
Ino3P, inositol-3-phosphate; IcFA, long chain FA; PC,
phosphatidylcholine; PE, phosphatidylethanolamine;
PI, phosphatidylinositol; PS, phosphatidylserine; PV,
parasitophorous vacuole; RBC, red blood cell; S,
serine; SM, sphingomyelin.
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et al., 2012). In opposite, PC levels, which increase from ~ 25 to 35% of
total lipid levels following RBC infection, decrease again to 25% in
mature gametocyte-iRBCs (Tran et al., 2016). The larger proportion of
PC present in trophozoite- compared to gametocyte-iRBCs might reflect
the need for these lipids in these stages, for instance to maintain the
exo-membrane system.

A previous study investigated the changes in lipid compositions in
hepatocytes infected with the rodent malaria parasite P. berghei (Itoe
et al., 2014). Upon infection, the NL levels increase, but subside during
the late liver phase (approximately 45 hours after infection). Further,
an enrichment of PC was observed, as well as a slight increase in SM
and ceramides, while the levels of PE, PS and PI decreased. PC was
acquired from the HC, among others via lyso-PC, and mouse hepato-
cytes impaired in de novo PC synthesis via the Kennedy or the PEMT
pathway showed reduced infection with Plasmodium. The host-derived
PC was found in most membranes of the infected hepatocytes, like the
host cell membrane (HCM), the PPM and the PVM, where it plays a role
in membrane integrity (Itoe et al., 2014). In accordance with these
findings, proteins of the fam-a variant multigene family of malaria
parasites were demonstrated to be transported into the cytoplasm of
iRBCs as well as into the parasitophorous vacuole in infected hepato-
cytes. Most of Fam-A family members exhibit a steroidogenic acute
regulatory-related lipid transfer domain and are capable to transfer PC
in vitro, indicating that these proteins might be involved in acquisition
of host PC for the synthesis of parasite-derived membranes (Fougere
et al., 2016).

3. Phospholipases of plasmodial parasites

Phospholipases are a diverse group of enzymes mediating various
cellular functions including membrane synthesis or disruption as well
as regulation of signaling or inflammatory responses. Such lipolytic
enzymes are classified into groups A, B, C and D corresponding to the
different sites of PL hydrolysis (Fig. 3).

PLA and phospholipases B (PLB) target acyl ester bonds, whereas
phospholipases C (PLC) and D (PLD) cleave phosphodiester bonds in the
molecule. Therefore, typical reaction products of PLAs are free FAs and
LPLs. PLAs may be specific for the cleavage of one of the two acyl esters,

PLA,
EC3.1.1.32

.PLD
EC3.1.4.4

PLA,
EC3.1.14

PLC
EC3.1.4.10

Fig. 3. Phospholipid molecule and phospholipase cleavage sites.PLA; hydrolyses the acyl
ester bond at the sn-1 and PLA, at the sn-2 position; PLB has a combined PLA; and PLA,
activity; PLC hydrolyses the glycerol-oriented and PLD the alcohol- oriented phospho-
diester-bond. Numbers indicate stereospecific numbering positions. Crosses indicate
cleavage sites. EC, enzyme commission number; PL, phospholipase; R;/R,, non-polar
fatty acid chain; X, denotes the phospholipid head group, e.g. choline, ethanolamine,
inositol or serine.
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i.e. for the stereospecific numbering sn-1 or sn-2 positions, and in these
cases are designated PLA; (EC 3.1.1.32) and PLA, (EC 3.1.1.4), re-
spectively. The remaining FA in a LPL may be released by a lysopho-
spholipase A (LPLA) (EC 3.1.1.5). PLB (EC 3.1.1.5) cleaves phospholi-
pids both at sn-1 and sn-2 positions. PLC (EC 3.1.4.10) hydrolyses the
glycerol-oriented and PLD (EC 3.1.4.4) the alcohol-oriented phospho-
diester bond, thereby releasing DAG and a phosphoalcohol or phos-
phatidic acid and an alcohol, respectively. Additionally, some PLA/
LPLAs possess lipase activity and may liberate FAs from non-PLs such as
acylglycerols, and other enzymes may possess PL:sterol-O- acyl-
transferase activity, which transfers FAs from a PL directly to an ac-
ceptor molecule, such as cholesterol (reviewed in Flores- Diaz et al.,
2016). It is important to note that also phosphosphingolipids belong to
the class of PLs and therefore not only phospholipases targeting gly-
cerophospholipids but also sphingomyelinases (SMases) like SMase C
and D, which produce ceramides via SM cleavage, are of biological
importance (reviewed in Flores-Diaz et al., 2016).

In order to provide an overview of all established and potential
phospholipases of P. falciparum, we searched the PlasmoDB database
(http://plasmodb.org/plasmo; Aurrecoechea et al., 2009) using the EC
numbers 2.3.1.43, 3.1.1.4, 3.1.1.5, 3.1.1.32, 3.1.4.3, 3.1.4.4, 3.1.4.11,
3.1.4.12 and 3.1.4.41, classifying phospholipolytic enzymes. We fo-
cused on such proteins which showed domains predicted via the NCBI
Conserved Domain Database (https://www.ncbi.nlm.nih.gov/Structure
/cdd/wrpsb.cgi; Marchler- Bauer et al., 2011, 2015) typically asso-
ciated with lipolytic enzymes. We identified a total of 22 proteins, i.e.
14 with a predicted a/p hydrolase domain, four with a patatin-like
protein domain, one with a PC:sterol-O- acyltransferase domain, one
with a PI-PLC domain, one with a sphingomyelin phosphodiesterase
domain, and one with a PLA/lipase domain (Fig. 4; Table 2).

The highest number of candidates was found for the a/f hydrolase
family. All but two of the 14 putative enzymes were annotated as
LPLAs. Ten of these showed a high degree of homology to each other
(36-61%), were about 400 amino acids long, contained almost no ad-
ditional protein sequence outside the predicted a/p hydrolase domain,
and possessed no predicted signal peptide. All shared the characteristic
GXSXG motif embedding the catalytic active S flanked by glycine (G),
as well as the further two members of the catalytic triad, aspartate (D)
and histidine (H), typical for this group of enzymes (Arpigny and
Jaeger, 1999). The remaining four of the 14 LPLAs were in between 675
and 921 amino acids long, had substantial additional protein stretches
outside of the a/f hydrolase domain and two of them showed a pre-
dicted signal peptide. Interestingly, eight out of the 14 putative o/
hydrolases have peak transcript expression in the gametocyte stage
(Table 2). Only one of the 10 shorter ones designated as the prodrug
activation and resistant esterase PfPARE (PF3D7_0709700) was more
intensely characterized before. The protein was shown to have esterase
activity to activate esterified pepstatin, a potent peptidyl inhibitor of
malarial aspartyl proteases. P. falciparum pepstatin-resistant mutants
revealed changes in the pfpare gene and in the associated esterase ac-
tivity (Istvan et al., 2017). This suggests that this group of enzymes or at
least P/PARE might release short chain acids from non-PL substrates
and rather act as an esterase instead of a lipolytic enzyme. However, the
spectrum of enzymatic activity towards a variety of substrates including
PLs remains to be comprehensively determined.

Four proteins with a patatin-like protein domain, designated as
patatin-like phospholipases (PLPs), were found encoded in the P. fal-
ciparum genome (PF3D7_0209100, PF3D7_0218600, PF3D7_0924000,
and PF3D7_1358000). One of the putative PLPs has a signal peptide and
their sizes vary between 679 and 2380 amino acids implying the pre-
sence of other protein domains in addition to the PLP domain. PLPs are
lipolytic enzymes with an unusual folding topology that differs from
classical lipases. PLPs were found both in eukaryotes, like the human
cytosolic PLA,, but also in a variety of bacteria, including pathogenic
ones (reviewed in Banerji and Flieger, 2004; Kienesberger et al., 2008).
For instance the PLPs ExoU and VipD of the lung pathogens
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Pseudomonas aeruginosa and Legionella pneumophila, respectively, have
been described as crucial secreted virulence factors which are injected
by the bacteria into the HC (Phillips et al., 2003; Sato et al., 2003;
Shohdy et al., 2005; VanRheenen et al., 2006; reviewed in Banerji and
Flieger, 2004; Flores-Diaz et al., 2016). The four plasmodial PLPs ex-
hibit the characteristic lipase motif GXSXG containing the catalytic S.
Three of the four PLPs further clearly comprised the second member D
of the catalytic S-D dyad, while the fourth enzyme (PF3D7_0924000)
possesses several candidates for catalytic Ds (Fig. 4, Table 2). While
currently no experimental data are available on the Plasmodium PLPs, a
new study in the apicomplexan model parasite Toxoplasma gondii de-
scribes an essential role for the PLP TgPL2 (a homolog of
Pf3D7_1358000) in maintenance of apicoplast integrity (Lévéque et al.,
2017). In the absence of TgPL2, the plastid is rapidly lost and the re-
maining apicoplasts appear enlarged with abnormal accumulations of
membranous structures (Lévéque et al., 2017). TgPL1, in contrast, lo-
calizes to cytosolic vesicles and is secreted upon immune stresses. While
no phospholipase activity for TgPL1 could be demonstrated, it was
shown to be important for parasite survival in activated macrophages
(Mordue et al., 2007; Tobin and Knoll, 2012). Another PLP of T. gondii,
termed TgPLA,, exhibits a calcium- independent PLA, activity and is
secreted during infection (Cassaing et al., 2000).

We further identified one P. falciparum gene, which encodes a PLA;

harboring a DDHD domain (PF3D7_0814400) characteristic for a metal
binding site often seen in phosphoesterases (reviewed in Lev, 2004).
The protein also contained a region with a GXSXG motif, which in-
dicated some acylhydrolase/phospholipase activity. Transcript expres-
sion of this putative PLA; peaks in mature gametocytes (Fig. 4; Table 2).

In addition to the potential acyl hydrolases described above, an
enzyme with a putative acyltransferase domain is encoded in the P.
falciparum genome (PF3D7_0629300). This protein consisted of 863
amino acids. The acyltransferase domain is located in the C-terminal
part of the protein (Fig. 4; Table 2). The protein has a predicted signal
peptide and its peak transcript expression was shown to be in the
sporozoite stage. The orthologue of this enzyme in P. berghei, PbPL, was
shown to support PVM rupture during parasite egress from the hepa-
tocyte as discussed below (Burda et al., 2015). The PLA and membrane
lytic activities of PbPL were demonstrated (Bhanot et al., 2005), po-
tential acyltransferase activities have yet to be shown.

Furthermore, two enzymes, which belong to the phosphodiester-
cleaving group, are encoded in the genome of P. falciparum. The first,
designated PI-PLC, is a protein of 1,385 amino acids (PF3D7_1013500).
The protein contains no signal peptide and is expressed in diverse life-
cycle stages (Fig. 4; Table 2). Several experimental studies are available
and discussed below. The second enzyme (PF3D7_1238600) spans 393
amino acids, comprised a sphingomyelin phosphodiesterase domain,

134



International Journal of Medical Microbiology 308 (2018) 129-141

(98pd 3xau U0 panunuod)

135

A. Flammersfeld et al.

(5002)
Te 3@ Junode|
pue ‘(£102)
JERERUZSE] 9'Sy  006¥CEL 96 00E€E0T 60'T /o1qesuadsip ¥'Ly  00€£0TTT LSVE q 6'CS €Sy STTE VIdT 009251
payqryur usym uﬁwan_u>uﬁ
onAdorypAisenur
Jo Juourrredwn ‘unelsoydAdos
£q panquyur ‘Aianoe
(2002) D asedrjoydsoydosA] pue
‘Te 12 epeueH T'SE  00¥8SHI 8TE  00L9SPT - /adfyousyd ou €Ty  00TESHT D dseurpAwoduryds SN/ [4R441 VA 09 €6€ CIV'TE ddiNS  0098€ZT
- L'SE  00S+C60 €1  00€LT60 10°T /3[qesuadsip 2'C€ 0081260 1€°611 J0 '8 789 TETTE 'Vid 0099211
(£102)
‘Te 39 ueAls| 9'Sy  00v9TS0 98y  00E€FE0T 60T /2[qesuadsip L€y 00€0TTL €991 /LT'1T MO /ADD 81y 6S€ STTE VIdT 0068€0T
(e1102) yuswdo[aadp ddels  Gg'LT /$0°CT M0
‘Te 19 aqeey S'19  00€EI80 €09 009€180 00°0 /[eIUAsSd 0’19 0061TCT POO[q SULIMp [enuassd AT /90°L  /ADD /dL TY9T  S8El ITV'TE OTd-Id  00SETOT
(9102) sisATeue osedry
Te 30 uewds 1'6C 00614T1 092  00652C1 - — PUNOJION ISYMNJ OU ‘TTX/d Paleusisaq LTS uL 9'88 €9/ €TT'T'E  [0IDAS[A%®  009T00T
(9102) sisA[eue
Te 39 uewpds 6'8C 00614Z1 ¥'8C  006STC1 - - PuUnojIoN IaYMNJ ou ‘ITX/d pareudisoq ¥T'STL a L'L01 26 STTE VIdT 00¥1001
(6002)
uoja[dua, 6'St  006¥CEL 0TS 00€PE0T 60'T /91qesuadsip L'TF  00€0TT1 €T /IS8T ADD /IIDD 8'0F L€ S'TTE VIdT 002/£60
- €9y 00SIOVI 0'St  00€¥€0T 60T /o]qesuadsip 8'0F  00£0TT1 ¥6'9 q 9'6¥ (45N N VIdT 00£9€60
V1d
- 6'LF  0002TLO S'9%  00STTLO 69°0 /91qesuadsip €6F 006280 06'891 VA §'IST g¢6cl +v'T'T'e  uneed  000¥260
260
- 9'€9  008STHT €Y9  006SCHT  /MO[s Apuedyrusis 9'€9  00I€THL 1L€21 ds 808 69 TETTE 'Vid 00v+180
(1002)
‘Te 19 933anz
pue (0102)
‘[& 39 TULISAA[IS 04T 00614T1 S§'ST  006SCTT - — PpunojjoN 0€'vY /LT'6€ O /ADD $'8L S§/9 STTE VId1 0081€L0
a8eaead
(£102) 19159 Aq uneysdad sajeanoe
‘Te 39 ueAlS| 095 00¥8010 995 001I0TT0 60°T /o1qesuadsip LSS 00€0TTT Ay1anoe ase1Rsy :HYVdSd 98'84T1 ADD ¥y 89€ S'TTE VIdT 004600
(6002)
uoyardura, €Sy 00¥8010 6'vF  00EPEOT 60°T /91qesuadsip 6'8€  00€£0TT1 92'8S a T6b ver  STTE VIdT 00220L0
(5102)
‘Te 19 epaing uoneidru
pPue (S002) 9j10zo1ods pue amnydni
‘e 32 Joueyg 6°'LE  00COTIL §'L€  0020TIL £6°0 /3]qesuadsip ¥'I€  0018TIL INAd Ut paajoaut 1dqd 60'C691 ds T'66 €98 EV'TET IVDT 00£6290
(5002) V1d
‘e 39 Junode] T6C  00£TOL0 S'LT  00¥90v0 - /odfyouayd ou ¥'I€  00ESIE0 TT0ST ulL 9'e8c 08¢z v'I'T'e  -uneed 0098120
V1d
- 629 000210 TC9 00LST¥0 -/ ad&jouayd ou 009 00290€0 €5°0L aL €'8L 649 $TTE  runeed 0016020
(6002) Te 1@
B3DI009.1INY 81y 006bCET 9%y  00EHE0T 60°T /91qesuadsip L'TF  00€£0TT1 75'88 ADD [ 44 €8¢ GTTE VIdT 00¥2010
[ADIdA]
WINV 19A3] mzo_mmw‘axw
HN)Id T0dAd el ImoIs aane[RI dd uorssaxdxa yead £aedd
Y [%] Anuspl A1 sued [%] Amuspl (I dusH /odfjouayd gd  [%] Amuspl @I dueDH A1ande pue uonduNg yead joa8eis [e@] MW VV'ON  ‘ouDH swzuyg (] dU8D

*(HNDI) H urens 1sajmouy ‘d pue (10dAd) 10d Xpaa ‘d ‘(VINVEd) VINV 12y842q 4 ut s3ojoypio urajoid snodojowoy jsowr Ioy) pue /(g wnndiopf g jo sswkzus onkjodi] aanemnd
T dIqelL



A. Flammersfeld et al. International Journal of Medical Microbiology 308 (2018) 129-141

but no signal peptide and appears to be predominantly expressed in the
sporozoite stage (Fig. 4; Table 2). The protein was enzymatically
characterized as sphingomyelinase C and lysophospholipase C. As dis-
cussed below, the enzyme can be inhibited by the neutral SMase in-
hibitor scyphostatin (Hanada et al., 2002).

The genes for most of the 22 putative phospholipases were also
found in the genomes of other Plasmodium species, such as P. vivax, P.
knowlesi and P. berghei, showing their importance for the life-cycle of
the Plasmodium genus. The PlasmoGem knockout screen database
(http://plasmogem.sanger.ac.uk/phenotyp es; Bushell et al., 2017;
Gomes et al., 2015) was searched for the P. berghei homologues of the P.
falciparum phospholipases in order to evaluate if these are essential for
the erythrocytic replication cycle. Analyses of the blood-stage growth
phenotypes revealed that 14 of the putative phospholipases were pre-
dicted to be dispensable for erythrocytic replication, while PI-PLC
(PBANKA_1013500) and the putative PLA, (PBANKA_135800) were
determined to be essential with significantly reduced relative growth
rates (Table 2). Interestingly, the genes of three proteins from the a/f
hydrolase family (PF3D7_0731800, PF3D7_1001400, PF3D7_1001600)
were not identified in the P. berghei genome (Table 2), indicating that
they might be specific to the human pathogenic parasites. The genes
PF3D7_1001400 and PF3D7_1001600 are adjacent to each other on
chromosome 10 of P. falciparum. Amino acid comparison of
PF3D7_1001400 shows 55% identity with PF3D7_1001600, lacking the
region coding for the N-terminal part including the signal peptide,
suggesting that the genes are paralogs that arose via gene duplication.

Istvan et al.

(2017)

Identity [%] Ref.

48.8
43.0
41.9

Gene ID

PKNH'

1113500 46.3
1324900
1324900
1324900

Identity [%]

1113900 43.9
1034300 51.3
1034300 44.5
1034300 45.7

Gene ID

relative growth rate®> PVPO1'

dispensable/ 1.09
dispensable/ 1.09
dispensable/ 1.09

essential/ 0.24

4. The role of plasmodial phospholipases during life-cycle
progression

Identity [%] PB phenotype/

45.2
47.6
43.0
39.2

Phospholipases can contribute to the virulence of many pathogens,
such as the bacteria Listeria monocytogenes, L. pneumophila, and P. aer-
uginosa, by directly affecting pathogen propagation and HC egress by
membrane lysis, by depleting/modifying integral PLs or by means of
their reaction products, thereby manipulating signaling pathways (re-
viewed in Flores-Diaz et al., 2016). In Plasmodium, however, the func-
tions of most phospholipases during parasite growth and survival are to
date not well known.

Probably the best- studied plasmodial phospholipase is PI-PLC
(PF3D7_1013500), which was shown to be involved in calcium-de-
pendent signaling pathways leading to merozoite invasion of RBCs, to
initiation of gametogenesis and to sporozoite motility. In eukaryotes,
PI-PLC hydrolyses the membrane lipid PIP,, thereby releasing the two
second messengers IP; and DAG. While DAG activates protein kinase C
(PKC), IP; triggers the calcium release from intracellular compartments
like the ER (reviewed in Berridge et al., 2000). Generally, PI-PLC is
activated via the G protein-coupled receptor pathway (reviewed in
Rhee, 2001). Noteworthy, while the involvement of PI-PLC in multiple
processes during life-cycle-progression of the malaria parasite has been
demonstrated, to date neither a heterotrimeric G- protein nor a PKC or
an [P;-responsive calcium channel have been identified in Plasmodium
(Alves et al., 2011; Beraldo et al., 2007).

RBC invasion by merozoites is a complex multi-step process,
mediated by specific receptor-ligand interactions. The initial, random
contact of the merozoite with the RBC leads to activation of the plas-
modial PI-PLC and in consequence to a rise in intracellular calcium. The
increased calcium levels then trigger the secretion of microneme-re-
sident proteins like EBA175 or AMA1 and their relocation to the mer-
ozoite PPM. At their destination, they support intensified binding of the
merozoite to the RBC as well as its reorientation prior to RBC invasion
(reviewed in Cowman et al., 2012; Cowman and Crabb, 2006). In-
hibition of PI-PLC with the commercial PLC inhibitor U73122 prevents
calcium-mediated signaling and thus activation of the plasmodial pro-
tein kinase B by calmodulin, in consequence impairing secretion of
micronemal proteins (Raabe et al., 2011a, 2011b; Singh et al., 2010;
Vaid et al., 2008; Vaid and Sharma, 2006).

Gene ID
KA
1134300
1220300
1220300
1220300

Function and activity
PB
AN

16.41/12.77

Peak
expression
level®
[FPKM]
69.48
705.31
44.75

2

peak

expression”

SZ

R/ TR/ GCV 12.12/
GCV

GCV

No.AA MW [kDa] Stage of
238.2
43.7
41.4
42.7

2012
373
353
371

EC no.
3.1.1.4
3.1.1.5
3.1.1.5
3.1.1.5

Enzyme

PLA,
LPLA
LPLA
LPLA

2 Table “Transcriptomes of 7 sexual and asexual life stages” of P. falciparum 3D7 under plasmodb.org/plasmo/, Lépez- Barragan et al. (2011).

1 plasmodb.org/plasmo/, Aurrecoechea et al. (2009).
3 http://plasmogem.sanger.ac.uk/, Bushell et al. (2017), and Gomes et al. (2015).

1358000 patatin-like

Gene ID
PF3D7’
1401500
1476700
1476800

FPKM, transcript levels of fragments per kilobase of exon model per million mapped reads; AA, amino acid, GCII/V, gametocyte stage II/V; LCAT, phosphatidylcholine-sterol O-acyltransferase; LPLA, lysophospholipase A; MW, molecular weight;

PLA, phospholipase A; Ok, ookinete stage; PI-PLC, phosphoinositide-specific phospholipase C; SMPD, sphingomyelin phosphodiesterase; R, ring stage; SP, sporozoite stage; SZ, schizont stage; TR, trophozoite stage.
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The plasmodial PI-PLC is also involved in the signaling pathways
initiating gametogenesis, as was shown for P. berghei and P. falciparum
(reviewed in Bennink et al., 2016; Kuehn and Pradel, 2010). Once in the
mosquito midgut, the intraerythrocytic gametocytes sense the change
of hosts due to the perception of environmental factors present in the
gut lumen, triggering their egress from the RBC and their transforma-
tion into gametes. Initially, a plasmodial guanylyl cyclase becomes
activated, leading to the synthesis of cyclic GMP (cGMP) (Carucci et al.,
2000; Muhia et al., 2001). The rise of cGMP activates the cGMP- de-
pendent protein kinase G, which regulates the generation of PIP, (Alam
et al., 2015; Brochet et al., 2014; McRobert et al., 2008). At the same
time, PI-PLC is stimulated, which hydrolyses PIP, to generate DAG and
IP; (Martin et al., 1994; Raabe et al., 2011b), resulting in the release of
calcium from internal stores (Billker et al., 2004). Downstream of this
signaling cascade, the increased calcium levels are sensed by specific
calcium-dependent protein kinases, which in turn control DNA re-
plication and protein biosynthesis (Billker et al., 2004; Ojo et al., 2014,
2012; Sebastian et al., 2012).

PI-PLC activity has also been linked to the gliding motility of
Plasmodium sporozoites (Carey et al., 2014; Kebaier and Vanderberg,
2010). Gliding, a substrate-dependent motility that is specific for api-
complexan parasites and driven by an actin-myosin motor, is required
by the malaria parasite to migrate across tissues and through HCs
(Kebaier and Vanderberg, 2010; Vanderberg, 1974; Yoeli, 1964; re-
viewed in Ménard et al., 2013). Mandatory for gliding is the discharge
of adhesive proteins, like the thrombospondin-related adhesive protein
TRAP, from the micronemes and their relocalization to the sporozoite
PPM. For the transmembrane protein TRAP it was shown that it engages
with the motor complex, while simultaneously binding to HC receptors,
resulting in its relocation to the posterior end of the parasite, thereby
supporting sporozoite movement along the HC surface (reviewed in
Ménard, 2001; Vaughan et al., 2008). During motility, again calcium is
the key signaling molecule, coordinating microneme discharge and
actin-myosin motor activity. It is postulated that PI-PLC regulates the
calcium levels in sporozoites, since both U73122 and the IP3 receptor
blocker 2-APB inhibit sporozoite gliding motility in a dose-dependent
manner (Carey et al., 2014).

Besides PI-PLC, one more phospholipase has been functionally
characterized in the malaria parasite, i.e. a putative lecithin:cholesterol
acyltransferase (LCAT; PFD37_0629300), which was demonstrated to
be involved in membrane dynamics during hepatocyte invasion and
egress by P. berghei parasites. This phospholipase, termed PbPL, exhibits
membrane lytic activity in vitro and following hepatocyte infection,
PbPL localizes to the PVM (Bhanot et al., 2005; Burda et al., 2015).
Upon genetic knock-out, PbPL-deficient sporozoites lose their in-
fectivity and their ability to cross epithelial cell layers. Also, while the
PbPL-deficient parasites undergo replication and develop merozoites,
these are unable to egress from the host hepatocyte (Burda et al., 2015).
In this context, perforin-like proteins have previously been identified
and shown to be important for parasite egress from the HC in a calcium-
dependent manner (Deligianni et al., 2013; Garg et al., 2013; Wirth
et al.,, 2014). It is thus suggested that during egress PbPL acts in a
conglomerate of different phospholipases or pore-forming proteins.
Noteworthy, following PVM rupture, the hepatocyte cytoskeleton de-
grades, and during this process PIP,, promoting the linkage between
actin and the HCM, disappears from the inner plasma membrane leaflet
(Burda et al., 2017). A similar loss was observed for IP5 and PS, in-
dicating that major modifications of the hepatocyte PLs content occur
during egress. While this study is the first one to link phospholipases to
HC egress by Plasmodium, a role of a LCAT during T. gondii replication
and egress has also been reported (Pszenny et al., 2016). TgLCAT,
which reveals 32-35% identity and 39-43% similarity with LCATs from
different Plasmodium species, is secreted by the parasite and transforms
PC into LPC and therefore exhibits PLA activity. T. gondii parasites
lacking LCAT are impaired in growth, virulence and egress from the HC
(Pszenny et al., 2016).
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5. Phospholipases as targets for chemotherapeutics

The need of lipids for growth and proliferation of Plasmodium makes
the lipid metabolism an attractive target for therapeutic measures (re-
viewed in Coppens, 2013; Mitamura and Palacpac, 2003;
Ramakrishnan et al., 2013). Still, to date little work has been done to
validate plasmodial phospholipases as chemotherapeutic targets. As
pointed out earlier, a neutral SMase, termed PfNSM, has been identified
in P. falciparum, which exhibits PLC/SMase C activity towards lyso-PC
as well as SM. In general, SMases C hydrolyse SM to ceramide and
phosphorylcholine. Scyphostatin, a SMase inhibitor, inhibits the PLC/
SMase C activity of recombinant PANSM and blocks parasite growth
with an ICsy value of approximately 4 uM (Hanada et al., 2002). The
physiological and pathological role of the PNSM in Plasmodium re-
mains unknown, but it was speculated that the enzyme is involved in
degradation of host-derived SMs to ceramides that in turn modulate cell
cycle progression and are used for synthesis of parasite- derived SMs
(Hanada et al., 2002). SMases C were also shown to play an important
role in bacterial virulence, e.g. for Bacillus cereus (Oda et al., 2014,
2012), Staphylococcus aureus (Hayashida et al., 2009; Huseby et al.,
2010; Katayama et al., 2013) or Listeria ivanovii (Gonzalez-Zorn et al.,
1999). The SMase C inhibitor SMY-540 exhibits a strong inhibitory
effect against B. cereus and significantly reduces lethality of B. cereus-
infected mice (Oda et al., 2014).

Previous studies also implicated phospholipases as virulence factors
in opportunistic fungi such as Candida albicans, C. glabrata, Cryptococcus
neoformans and Aspergillus fumigatus and thus have been evaluated as
potential antifungal targets (reviewed in Djordjevic, 2010; Hossain and
Ghannoum, 2000; Neely and Ghannoum, 2000). For example in vivo
studies using PLB-producing as well as PLB-deficient Candida strains
demonstrated that the PLB-producing strain is capable of penetrating
deep into mouse sub-mucosal tissue and gastric mucosal, while the PLB-
deficient strain was not invasive (Mukherjee et al., 2001). Treatment
with synthetic phospholipase inhibitors exhibiting lipophilic beta-
blocking structures in combination with fluconazole, a triazole used for
antifungal medication, blocks tissue penetration and prevents death of
mice infected with lethal inocula of C. albicans (Hinel et al., 1995).
Further, the PLB CnPLbl of C. neoformans is important for survival of
the fungi in macrophages. CnPLbl has been evaluated as antifungal
drug target in the past, but to date inhibitors such as bis- pyridinium
compounds were not effective against the enzyme (reviewed in
Djordjevic, 2010).

Beside their roles in virulence of pathogenic microorganisms,
phospholipases are assigned to different life-style diseases, such as
cardiovascular diseases and atherosclerosis, but also immune disorders
and cancer (reviewed in Quach et al., 2014). For example, expression of
the human secretory PLA,s (sPLA,), a diverse family of phospholipases
encompassing 19 members, is increased in breast, lung and prostate
cancers compared to control tissues (e.g. Denizot et al., 2005; Sved
et al., 2004; Yamashita et al., 1994, 1993; Zhang et al., 2015). The link
between PLA, and cancer makes these enzymes potential anti-cancer
targets (reviewed in Cummings, 2007; Marks et al., 2000; Wang and
Dubois,2006). Although a broad range of PLA, inhibitors exist (re-
viewed in Farooqui et al., 1999; Kokotou et al., 2017; Meyer et al.,
2005), current knowledge about the mode of action or toxicity in hu-
mans or animal models is limited and their effectiveness as pharma-
cological agents has yet to be addressed (reviewed in Cummings, 2007;
Laye and Gill, 2003). A main drawback in targeting PLA, with che-
motherapeutics is the wide range of individual PLA, isoforms, as well as
their physiological roles in healthy cell homeostasis (reviewed in
Balsinde et al., 1999; Cummings, 2007).

6. Conclusions

The lipid metabolism of malaria parasites is crucial for intracellular
growth as well as for propagation and transmission of the pathogen.
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Therefore, enzymes involved in lipid metabolic processes represent
prime targets for malaria chemotherapeutics. Despite their important
role for PL processing and thus for membrane synthesis and break-
down, to date little is known about the functions of the 22 annotated
plasmodial phospholipases. Current data on these PL-hydrolyzing es-
terases and the comparison with phospholipases of other pathogens
suggest that some of the enzymes represent important virulence factors
involved in HC infection and egress, but also in cell signaling and cell-
to-cell communication. A detailed functional characterization of the
plasmodial phospholipases will help to validate these enzymes as po-
tential new targets for antimalarial chemotherapy.
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