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Abstract

The type I interferon (IFN) system is a first line of defense against viral infections. Viruses have developed various mechanisms
to counteract this response. So far, the interferon antagonistic activity of influenza A viruses was mainly observed on the level
of IFNb gene induction via action of the viral non-structural protein 1 (NS1). Here we present data indicating that influenza A
viruses not only suppress IFNb gene induction but also inhibit type I IFN signaling through a mechanism involving induction
of the suppressor of cytokine signaling-3 (SOCS-3) protein. Our study was based on the observation that in cells that were
infected with influenza A virus and subsequently stimulated with IFNa/b, phosphorylation of the signal transducer and
activator of transcription protein 1 (STAT1) was strongly reduced. This impaired STAT1 activation was not due to the action of
viral proteins but rather appeared to be induced by accumulation of viral 59 triphosphate RNA in the cell. SOCS proteins are
potent endogenous inhibitors of Janus kinase (JAK)/STAT signaling. Closer examination revealed that SOCS-3 but not SOCS-1
mRNA levels increase in an RNA- and nuclear factor kappa B (NF-kB)-dependent but type I IFN-independent manner early in
the viral replication cycle. This direct viral induction of SOCS-3 mRNA and protein expression appears to be relevant for
suppression of the antiviral response since in SOCS-3 deficient cells a sustained phosphorylation of STAT1 correlated with
elevated expression of type I IFN-dependent genes. As a consequence, progeny virus titers were reduced in SOCS-3 deficient
cells or in cells were SOCS-3 expression was knocked-down by siRNA. These data provide the first evidence that influenza A
viruses suppress type I IFN signaling on the level of JAK/STAT activation. The inhibitory effect is at least in part due to the
induction of SOCS-3 gene expression, which results in an impaired antiviral response.
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Introduction

Influenza A viruses are negative-stranded RNA viruses that

belong to the family of orthomyxoviruses. The segmented genome of

influenza A virus encodes for up to 11 viral proteins. As many other

viruses, influenza viruses have evolved strategies to counteract

cellular antiviral responses, especially to circumvent the type I IFN

system as a first line of defense against the pathogenic invader.

Among the influenza viral proteins, the NS1 has been identified

as the main type I IFN antagonistic factor. So far two major

mechanisms have been described by which NS1 suppresses the

initial expression of IFNb. On the one hand NS1 inhibits vRNA-

mediated induction of the transcription factors interferon

regulatory factor-3 (IRF-3), activating protein–1 (AP-1) and NF-

kB that target the IFNb promoter. This most likely occurs via

binding to the RNA-sensor retinoic acid inducible gene (RIG-I)

and inhibition of RIG-I-mediated signaling in response to viral

RNA [1,2]. On the other hand NS1 inhibits maturation [3,4] and

nuclear export of host mRNAs [5]. Other functions of the

multifunctional protein include block of activation of the dsRNA-

activated protein kinase PKR by direct interaction [6] or

activation of the phosphatidylinositol-3 kinase PI3K/Akt pathway

to prevent premature apoptosis induction [7,8].

While the NS1-mediated antagonistic activities of influenza

viruses mainly affect the induction of genes such as IFNb, so far no

viral suppression of IFN signaling has been described.

IFN are among the first molecules synthesized in response to viral

infections [9]. The IFN family includes three classes. Type I comprises

the well known IFNa and IFNb. The only member of type II IFN is

IFNc. Type III IFN comprises IFNl1, -l2, and -l3. All classes of IFN

bind to different receptors and are structurally not related [10,11].

Type I IFN belong to the key cytokines produced by influenza A

virus-infected epithelial cells [12,13]. The antiviral activity of type I

IFN is mediated by a set of IFN-induced genes (ISGs).

Binding of IFNa/b to its receptor is the initial step in this

signaling process, followed by activation of the JAK family and

subsequent activation of STAT proteins [14].

Ligand binding leads to dimerisation of the type I IFN receptor

subunits IFNAR1 and IFNAR2 and causes their conformational

change. The JAK kinase Tyk2, which is constitutively bound to

IFNAR1, phosphorylates the receptor at tyrosine residues and

creates a docking site for STAT2. Subsequently, Tyk2 phosphor-
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ylates STAT2 at Y690. At the same time the receptor-bound

JAK1 phosphorylates STAT1 at Y701 [15,16].

The phosphorylated transcription factors dimerise and bind to

IRF-9 [17]. The newly formed heterotrimer, called IFN-

stimulated gene factor 3 (ISGF3), translocates into the nucleus

and binds to IFN-stimulated response elements (ISRE), to initiate

gene transcription of ISGs. Treatment of cells with type I IFN up-

regulates expression of an array of genes including SP110, IRF-1

and many others [18]. Among these ISGs the 29, 59 -

oligoadenylate synthetase 1 (OAS1), the Mx proteins and the

dsRNA-activated protein kinase (PKR) are described to directly

interfere with viral replication [19]. Both, PKR and the OAS1/

RNaseL system are capable of inhibiting cellular and viral

translation.

IFN-induced JAK/STAT signaling can be inhibited at different

levels by several viral and cellular factors through various

mechanisms. The large T-antigen of murine polyomavirus

(MPyV) binds to JAK1 and inhibits downstream signaling [20],

whereas the VP24 of Ebola virus (EBOV) binds to karyopherina-1

thereby blocking nuclear accumulation of STAT1 [21].

Endogenous cellular key regulators, capable of negatively

regulating JAK/STAT-mediated signal transduction, include

suppressor of cytokine signaling (SOCS) proteins, protein tyrosine

phosphatases (PTP) and protein inhibitor of activated STATs

(PIAS). The family of SOCS proteins comprises eight members

(cytokine-inducible SH2 domain-containing protein (CIS) and

SOCS1-7). All members contain a central SH2 domain, an N-

terminus of variable length and sequence and a C-terminal 40

amino-acid module called SOCS box [22]. The SOCS box is

necessary for recruitment of the ubiquitin transferase system and

for stabilization and/or degradation of SOCS proteins [23–25].

The N-terminus contains a kinase inhibitory region (KIR), which

functions as pseudo substrate for the JAK [26]. SOCS-1 and

SOCS-3 differ in their mode of action. For inhibition of the kinase

activity of JAKs, SOCS-1 binds directly to the activation loop of

JAKs [26–28]. In contrast, SOCS-3 first binds to the receptor

[29,30].

Induction of SOCS-3 gene transcription by viruses was reported

for HSV-1, HCV [31–33] and for respiratory viruses, such as

SARS and RSV [34,35]. The level of induction of SOCS-3

by HSV-1 seems to determine whether infection turns to acute

or persistent progression [31]. For HCV it has been suggested

that upregulation of SOCS-3 may contribute to the non-respon-

siveness of HCV patients to IFN therapy [33,36–38]. Elevated

SOCS-3 mRNA levels during RSV infection were linked to Th2

cell-mediated immune disease as atopic dermatitis and asthma

[39,40].

In the present study we show that influenza A virus can be

added to the list of viruses that induce SOCS-3 expression. The

protein functionally interferes with viral replication by providing a

virus-supportive IFN-antagonistic activity on the level of type I

IFN-signaling that has not been described so far.

Results

IFNa/b but not IFNc-induced STAT phosphorylation is
inhibited in influenza A virus infected cells

Phosphorylation of STAT1 and STAT2 by members of the

JAK tyrosine kinase family is a prerequisite for activation of

these transcription factors to drive type I IFN-induced gene

expression. Therefore, we analyzed whether STAT phosphor-

ylation patterns are altered in influenza A virus infected cells

that were stimulated with IFN at different time points post

infection (p.i.). The human alveolar epithelial cell line A549 was

infected with the influenza A virus strain A/Puerto-Rico/8/34

(H1N1) (PR8) (Figure 1A). Cells were subsequently stimulated

with IFNb at given time-points p.i. and STAT phosphorylation

was assessed in Western blots. Both STAT1 and STAT2 were

readily phosphorylated upon cytokine stimulation in uninfected

cells or in infected cells up to 4 h p.i. (Figure 1A). Furthermore,

virus infection alone resulted in a significant induction of STAT

phosphorylation 4–6 h p.i., presumably caused by virus-induced

IFN expression. However, at later time points (6–10 h p.i.), in

A549 cells both virus- and IFN-induced STAT1 and STAT2

phosphorylation was markedly reduced (Figure 1A). Similar

patterns were observed upon stimulation of cells with IFNa or

upon infection with other viruses, such as the human influenza

virus A/Victora/3/75 (H3N2) (data not shown). In addition,

this phenomenon could also be detected in other epithelial cells

such as the human embryonic kidney cell line HEK293

(Figure 2E) or the human umbilical vein endothelial cells

(HUVEC) (Figure S1B). Inhibition was not caused by indirect

disturbing effects on cellular metabolism or enzyme activities

due to ongoing virus replication, since IFNc-induced STAT1

phosphorylation was not affected at all (Figure 1C). Finally,

involvement of any auto- or paracrine action of virus-induced

type I IFN could be ruled out, as the inhibitory effect was also

observed in Vero cells lacking functional type I IFN genes

(Figure 1E).

Forced expression of influenza virus proteins does not
result in reduced STAT1 phosphorylation

With regard to the molecular basis of impaired IFNa/b-induced

STAT phosphorylation in infected cells it was striking that the

inhibitory effect correlated with the accumulation of viral proteins,

as monitored in PB1 Western blots (Figures 1A and 1E). Thus, the

question arose whether individual expression of viral proteins may

result in the interference with STAT1 phosphorylation. Out of the

11 viral proteins of PR8 we choose the nucleoprotein (NP), the

NS1 protein, the matrix protein (M1) (Figure 2A) and the subunits

of the viral polymerase, PA, PB1 and PB2 (Figure 2C), for a

representative experiment. These proteins are known to bind to

vRNA/RNPs or to interfere with the RNA-mediated innate

immune response. For efficient transfection of the expression

Author Summary

The type I interferon (IFN) system is one of the most
powerful innate defenses against viral pathogens. Most
RNA viruses are sensitive to the action of type I IFN.
Therefore, these pathogens have evolved strategies to
evade this response. For example, influenza viruses express
a viral protein, the non-structural protein 1 (NS1), that
suppresses production of IFNb by lowering cellular
sensitivity to viral nucleic acid as a pathogen pattern.
Here we present data indicating that influenza A viruses
are not only capable of suppressing production of the IFNb
gene but also inhibit action of this antiviral cytokine on
cells. This occurs by viral induction of a cellular protein, the
suppressor of cytokine signaling (SOCS)-3, a potent
endogenous inhibitor of IFN signaling. This is a novel
mechanism by which influenza viruses inhibit the antiviral
response of the host and paves the path to efficient virus
replication. This may be especially relevant for influenza
viruses that induce high cytokine responses (cytokine
burst), such as highly pathogenic avian influenza viruses of
the H5N1 subtype. Induction of SOCS-3 expression would
allow efficient replication despite high IFN and cytokine
levels.

Influenza A Virus Inhibits Type I IFN Signaling
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constructs we used the highly susceptible cell line HEK293 that

also exhibits impaired IFNb-induced STAT1 phosphorylation

at later stages of infection (Figure 2E). 24 h post transfection

cells were stimulated with IFNb and STAT phosphorylation was

monitored in Western blots (Figures 2A and C). Expression of

none of the viral proteins resulted in a significant decrease of

IFNb-induced STAT1 or STAT2 phosphorylation (Figures 2A

and 2C). Similar results were obtained in the human bronchial

epithelial cell line H1299 when expressing M1, NS1 or NP

alone or in different combinations (data not shown). Thus, we

concluded that viral proteins most likely do not play a

prominent role as blockers of IFNa/b-induced JAK/STAT

signaling.

Impaired STAT1 phosphorylation is not mediated by
virus-induced phosphatases

Decrease of STAT phosphorylation might also be due to the

action of virus-induced phosphatases. On the one hand these

enzymes may cause direct dephosphorylation of STAT proteins.

On the other hand phosphatases could act via an indirect

mechanism by dephosphorylation and inactivation of JAKs

resulting in an attenuated phosphorylation of STATs. Several

protein tyrosine phosphatases (PTPs) are known to mediate

dephosphorylation of both, JAKs and STATs [41]. In order to

investigate whether influenza A virus activates phosphatases that

subsequently target JAKs or STATs, we treated infected or

uninfected A549 cells with the well-known tyrosine phosphatase

inhibitor sodium vanadate [42,43]. Uninfected cells or cells

infected with PR8 for 10 h were incubated with increasing

amounts of this compound 10 min prior to stimulation with

IFNb. This time point of infection was chosen since we observed

considerable inhibition of IFN-induced STAT1 phosphorylation

in the course of infection (Figures 1A and 1E). Increasing

concentrations of vanadate lead to a gradual shift of the steady

state balance of phosphorylation/dephosphorylation. Accord-

ingly, a gradual increase of STAT1 phosphorylation was

observed that was similar in both infected and uninfected cells,

albeit starting from different basal levels of phospho-STAT1

(Figures 3A and B). This is illustrated by an almost identical

slope of the regression line in the graphical analysis of the band

intensities of the IFNb stimulated samples (Figure 3B). If the

blockade of IFNb-induced STAT1 phosphorylation would be

mediated by specific virus-activated phosphatases, a much

steeper slope for vanadate-treated infected cells would be

expected. However, the result in Figure 3B indicates that the

virus-induced suppression of phosphorylation is not compensat-

ed by phosphatase inhibition and consequently no virus-

activated phosphatase appears to be involved. In support of

these data, phosphatase assays revealed that the overall activity

of tyrosine phosphatases in infected cells was not elevated

compared to uninfected cells. This is indicated by constant levels

of free phosphates released from two different phospho-peptides

that represent common tyrosine phosphatase substrates

(Figure 3C). Thus, involvement of phosphatases in influenza

Figure 1. Influenza virus infection results in impaired IFNb-induced STAT1 and STAT2 phosphorylation. A549 (A, C) or Vero cells (E)
were infected with the human influenza virus PR8 (H1N1) (MOI = 5) for the indicated time points and were subsequently stimulated for 15 min with
either human IFNb at a concentration of 100 U/ml (A) or 500 U/ml (E) or human IFNc 500 U/ml (C). Cells were lysed and cell extracts were separated
by SDS-PAGE and blotted onto nitrocellulose membranes. Membranes were incubated with anti-phospho-STAT1, anti-STAT1, anti-phospho-STAT2
and anti-PB1 antibodies in Western blots. (B, D, F) Quantification of relative pSTAT1 and pSTAT2 band intensities in A, C and E using AIDA software
and 2D densitometry (Fuji).
doi:10.1371/journal.ppat.1000196.g001

Influenza A Virus Inhibits Type I IFN Signaling
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virus-induced alteration of STAT1 phosphorylation can be

greatly ruled out.

Influenza virus infection results in the induction of SOCS-
3 mRNA expression

Phosphorylation of STATs in the IFNb signaling cascade may

not only be counter-regulated by phosphatases but also by other

cellular factors, such as proteins of the suppressors of cytokine

signaling (SOCS) family. Action of these proteins is mainly

controlled on the level of transcriptional activation. SOCS proteins

are described to have high affinity for JAK and STAT proteins

and to inhibit the transmission of IFNa and IFNb induced

signaling [44,45]. To examine whether expression of SOCS genes

is induced in influenza virus infected cells, A549 cells were infected

with PR8 for different time points. Subsequently total RNA was

analyzed for the amount of SOCS-1 and SOCS-3 mRNA by

means of quantitative real time-PCR (qRT-PCR). The mRNA

Figure 2. Forced expression of influenza viral proteins does not result in impaired IFNb-induced STAT1 and STAT2
phosphorylation. HEK293 cells were transfected with 500 ng plasmid DNA for expression of viral NP, M, NS, (A) PA, PB1 and PB2 (C) genes
(see Table 1 for accession numbers of viral genes) using L2000 according to manufacturer’s instructions. Note that the Pol II constructs in use also
give rise to expression of second reading frames in the NS, M and PB1 genes (NS2, M2, PB1-F2). 48 h post transfection cells were stimulated with
human IFNb (500 U/ml) for 15 minutes. Total protein lysates were subjected to Western blot analysis using anti-phospho-STAT1, anti-phospho-
STAT2, anti-STAT1 antibodies. Expression of influenza viral proteins was monitored with antibodies against NP, M1, NS1, PA, PB1 or PB2. (E) HEK293
cells were infected with the human influenza virus PR8 (H1N1) (MOI = 5) for the indicated time points and were subsequently stimulated for 15 min
with either human IFNb at a concentration of 100 U/ml. Cell lysates were subjected to Western blots as described. (B, D, F) Quantification of relative
pSTAT1 and pSTAT2 band intensities in A, C and E using AIDA software and 2D densitometry (Fuji).
doi:10.1371/journal.ppat.1000196.g002

Influenza A Virus Inhibits Type I IFN Signaling
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levels of SOCS-1 and SOCS-3 differed notably in the time course

(Figure 4A). While SOCS-3 mRNA is strongly and transiently

elevated in the early phases of infection, SOCS-1 gene transcription

is only significantly induced 15 h p.i.. Elevated SOCS-3 mRNA

levels were also observed in other host cell types, such as HUVEC

starting 3 h p.i. (Figure S1A). Although elevation of SOCS-3 mRNA

levels in infected cells was rather transient, there appears to be a

robust induction on protein level (Figure 4C). First detected at 4 h

p.i., SOCS-3 protein levels increased and stayed on a high level

throughout the observation period. Strikingly, expression kinetics of

the SOCS-3 protein perfectly matched the kinetics of virus-induced

inhibition of STAT1 phosphorylation (Figure 4C), indicating that

both processes are functionally linked.

Early induction of SOCS-3 gene transcription is not
indirectly mediated by IFNb

Virus mediated SOCS-3 gene induction at early stages of infection

(Figures 4A, 4C and S1A) appeared to occur concomitant with an

immediate and strong induction of IFNb (Figures 4B and S1D). This

prompted us to analyze whether SOCS-3 transcription might be

induced due to an auto- or paracrine action of IFNb expressed during

infection. A549 cells were stimulated with IFNb for different time

points and SOCS-3 gene induction was measured by qRT-PCR

(Figure 4D). As a control we monitored expression of 29, 59 -

oligoadenylate synthetase (OAS1) and MxA, genes that are typically

induced by IFNb. While OAS1 and MxA mRNAs were readily

upregulated upon IFNb treatment SOCS-3 mRNA was not

significantly elevated (Figure 4D). Similar results were obtained from

HUVEC stimulated with IFNb (Figure S1E). To further confirm these

results we knocked down the IFNAR in A549-cells by an siRNA

approach. Although the knock down was efficient and leads to more

than 60% inhibition of IFNb induced STAT1 phosphorylation

(Figure 4E), the induction of SOCS-3 expression was not impaired

(Figure 4F). SOCS-3 levels in the knock down cells were similar

compared to wild type cells and even higher than in the vector control

(Figure 4F). These results are consistent with data gained from previous

experiments in Vero cells (Figure 1E) and indicate that neither

induction of SOCS-3 mRNA nor inhibition of STAT phosphorylation

is dependent on virus-induced type I IFN expression.

Viral 59 triphosphate RNA is the major inducer of SOCS-3
gene transcription and causes reduced STAT1
phosphorylation

Since accumulation of viral RNA in infected cells is a potent

inducer of antiviral gene expression we investigated its ability to

induce SOCS-3 gene transcription. As a source for viral RNA,

Figure 3. Phosphatases do not mediate inhibition of IFNb-induced STAT1 phosphorylation in infected cells. (A) Vero cells were infected
for 10 h with PR8 (MOI = 5) or left uninfected. Prior stimulation with human IFNb (500 U/ml for 15 min), cells were treated for 10 min with sodium
vanadate at concentrations indicated. Cells were harvested and protein lysates were subjected to Western blot analysis using anti-phospho-STAT1
and anti-STAT1 antibody. H2O2: was used as a control for solvent conditions. (B) Quantification of band intensities in (A). To visualize the effect of
sodium vanadate on the STAT1 phosphorylation in infected and uninfected cells, band intensities of IFNb stimulated samples were determined
relative to background. Linear regression was calculated using the Excel software (Microsoft) (s = slope of the regression line). (C) Phosphatase activity
in A549 cells infected wit PR8 (MOI = 5) was determined using tyrosine phosphatase assay (Promega) according to manufacturers instructions. For
measurement of newly generated free phosphate two different phosphorylated pseudosubstrates (peptide 1 and peptide 2) were used.
doi:10.1371/journal.ppat.1000196.g003

Influenza A Virus Inhibits Type I IFN Signaling
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A549 cells were infected with influenza A virus for 10 h and total

RNA from these cells was isolated. RNA from uninfected A549

cells served as a negative control. Different amounts of these RNAs

were used for stimulation of A549 cells for 3 h (Figures 5A, 5B and

5C). Transfection of RNA from uninfected cells did not result in

an increase of SOCS-1 or SOCS-3 gene transcription (Figure 5A)

or IFNb induction as a control (Figure 5B). However, transfection

of RNA from virally infected cells led to strongly elevated SOCS-3

mRNA amounts while SOCS-1 mRNA is only induced weakly

(Figure 5A). This dose dependent induction of SOCS-3 by

stimulation with increasing amounts of RNA from infected cells

corresponds with a gradual decrease in the ability of this RNA to

induce or potentiate STAT1/2 phosphorylation (Figure 5C).

In contrast to cellular RNA, influenza viral RNA carries a

triphosphate group at its 59 terminus that was previously shown to be

a major pathogen pattern that triggers cellular signaling [46]. To

verify that indeed the viral 59 triphosphate RNA in the pool of RNAs

from infected cells is the major trigger for induction of SOCS-3

expression, RNA from infected or uninfected cells was treated with

phosphatase to remove the 59 triphosphate termini prior to

stimulation of A549 cells (Figure 5E and 5F). The dephosphorylated

viral RNA was only poorly capable to induce SOCS-3 (Figure 5E) or

IFNb (Figure 5F) mRNA expression. In addition, poly(I:C) was

transfected to mimic action of double-stranded (ds) RNA (Figure 5E

and 5F, right bars). However, the dsRNA analog showed surprisingly

little effects on SOCS-3 and IFNb mRNA induction.

SinceviralRNA isable to induce IFNbgene transcription (Figure5B

and 5F) we again wanted to rule out that induction of SOCS-3 by viral

59 triphosphate RNA is mediated by auto- or paracrine action of de novo

synthesized IFNb. In order to do so, cells were stimulated with viral

RNA after treatment with the protein synthesis inhibitor anisomycin at

two different concentrations (Figure 5G). SOCS-3 mRNA was still

induced to the same extent in the presence of the protein synthesis

inhibitor, providing the ultimate proof that de novo protein synthesis is

not required for SOCS-3 induction.

SOCS-3 gene transcription involves the NF-kB signaling
pathway

So far, our data suggest that influenza virus-induced transcrip-

tional upregulation of the SOCS-3 gene is not mediated by the

Figure 4. Influenza A virus results in early SOCS-3 gene induction in an IFNb-independent manner. A549 cells were infected with PR8
(MOI = 5) (A, B, C) or stimulated with 100 U/ml human IFNb (D) for the indicated time points. (F) A549 cells stably expressing IFNAR II-1 mRNA specific
shRNA or control empty vector were infected with PR8 (MOI = 5) for 3 hours. Cells were lysed and RNA was subjected to reverse transcription. cDNA
was analyzed in quantitative real time PCR to assess mRNA amounts of IFNb (B), SOCS-1 (A), SOCS-3, (A, D, F), OAS1 (D) or MxA (D). Equivalent mRNA
amounts were normalized to GAPDH mRNA levels and calculated as n-fold of the levels of untreated cells that were arbitrarily set as 1. To detect
SOCS-3 protein expression (C) cells were infected for time points indicated or left uninfected. Total cell lysate was subjected to Western blot analysis
using anti-SOCS-3 antibody. To allow better comparison of SOCS-3 protein expression and STAT1 phosphorylation phospho-STAT1 and STAT1
Western blots from figure 1A are shown again here. (E) To functionally test effective knock down of the IFNAR, A459 wild type, A549 vector control
cells or A549 cells stably expressing IFNAR II-1specific shRNA were stimulated with human IFNb (100 U/ml) for 15 min. Subsequently cells were lysed
and levels of phospho-STAT1 were determined by Western blotting using specific antibodies. In addition, the relative pSTAT1 band intensities were
quantified.
doi:10.1371/journal.ppat.1000196.g004

Influenza A Virus Inhibits Type I IFN Signaling
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autoregulatory action of type I IFNs (Figure 4D and 4F) but is

directly induced through accumulation of viral RNA during

infection. This raises the question, which RNA-induced signaling

pathways are responsible for SOCS-3 expression. The MKK/p38

mitogen activated protein kinase (MAPK) pathway [47–49] as well

as the IkB kinase (IKK)/nuclear factor of kB (NF-kB) cascade

[50–52] are both known to be activated by RNA or influenza virus

infection and to be involved in the control of SOCS-3 expression.

To assess whether the MKK6/p38- or the IKK/NF-kB-module is

required for SOCS-3 gene induction, we generated A549 cell lines

expressing dominant negative forms of either MKK6 (MKK6Ala)

or IKK2 (IKK2KD) (Figure 6A to 6D). These mutants have been

previously shown to efficiently block p38 or NF-kB signaling,

respectively [52–54]. To monitor SOCS-3 gene induction, wild

type, vector or mutant expressing cell lines were infected with PR8

(Figure 6A) or stimulated with RNA from virally infected or

uninfected A549 cells (Figure 6C). Induction of IFNb mRNA was

monitored as a control (Figure 6B and 6D). While MKK6Ala

expression did not result in significant reduction of SOCS-3 in

either infected (Figure 6A) or RNA-stimulated cells (Figure 6C),

transcription is markedly reduced in IKK2KD expressing cell

lines. To obtain independent evidence for NF-kB dependence of

SOCS-3 gene transcription, A549 wild type cells were incubated

with the NF-kB specific inhibitor BAY 11-7085 prior to

stimulation with RNA from virally infected or uninfected A549

cells (Figure 6E). Again, IFNb mRNA levels were assessed for

control purposes (Figure 6F). Both, SOCS-3 and IFNb mRNA

levels were strongly reduced in BAY 11-7085 treated cells. This

indicates that virus-induced SOCS-3 expression strongly depends

on IKK2 and NF-kB activation, while the MKK6/p38 appears

not to play a prominent role.

To further verify that influenza virus induces SOCS-3 via an

RNA sensory pathway and in an NF-kB dependent manner we

infected cells with the influenza A virus mutant deficient for NS1

Figure 5. Viral 59 triphosphate RNA efficiently induces SOCS-3 expression. Total RNA from infected or uninfected A549 cells was isolated
and used for transfection of native A549 cells with L2000 according to manufacturer’s instructions (A–G). Transfection of RNA from infected cells
(‘‘viral RNA’’) serves as a mimic for vRNA accumulation in infected cells while total cellular RNA from uninfected cells (‘‘cellular RNA’’) was used as a
control. In (E and F) different amounts of poly (I:C) or RNA from infected or uninfected cells treated with phosphatase (CIAP) as indicated were
transfected using L2000. In (G) viral RNA transfected cells were additionally treated with DMSO (solvent) or the protein synthesis inhibitor anisomycin
(aniso.) at the concentrations indicated. (A, B, E, F, G) Cells were lysed 3 h post transfection and total RNA was reverse transcribed. cDNA was analyzed
in quantitative real time PCR to assess amounts of SOCS-1 (A), SOCS-3 (A, E, G) and IFNb (B, F) mRNA levels. Equivalent amounts of mRNA were
normalized to GAPDH mRNA levels and calculated as n-fold of untreated cells, arbitrarily set as 1. In (C) cells were treated as in (A) and (B) and
monitored for phospho-STAT1 and phospho-STAT2 levels in Western blot analysis. (D) Quantification of relative phospho-STAT1 and phospho-STAT2
band intensities in (C).
doi:10.1371/journal.ppat.1000196.g005

Influenza A Virus Inhibits Type I IFN Signaling
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(DNS1) (Figure 6G and 6H). The NS1 protein is known to block

RNA dependent signaling and NFkB activation [55]. Accordingly,

infection of cells with the mutant virus resulted in a more

pronounced and sustained, albeit delayed induction of SOCS-3

(Figure 6G) if compared to infection with the isogenic wild type,

that is a very poor inducer of SOCS-3 but still reasonably well

induces IFNb. Noteworthy, this isogenic wild type strain differs

from the PR8 wild type virus used in the other experiments shown

here (see Materials and Methods for details).

To analyze whether NF-kB activation is sufficient for SOCS-3

gene induction we stimulated cells with IL-1b (Figure S2A) or

TNFa (Figure S2B) that are both strong activators of the

transcription factor. While mRNA levels of IL-6, a strictly NF-

kB dependent cytokine, are strongly elevated, SOCS-3 gene

transcription is not significantly induced. Under the assumption

that these cytokines do not additionally induce counteracting

processes one can conclude that NF-kB is required, yet not

sufficient for the induction of SOCS-3. Thus viral induction of

SOCS-3 may require additional factors that are only active in

virus-infected cells. Furthermore, these results rule out a potential

role of virus-induced IL-1b or TNFa in the induction of SOCS-3.

This is supported by the observation that neither expression of IL-

Figure 6. SOCS-3 mRNA transcription is induced in an NF-kB dependent manner. A549 wt cells or A549 cells stably transduced with empty
vector, dominant negative MKK6Ala or IKK2KD were either infected with PR8 for 3 hours (MOI = 5) (A and B) or with the influenza A virus mutant
DNS1 and the corresponding isogenic wild type virus (G and H) [74] or transfected for 3 hours with RNA from infected or uninfected A549 cells (C–F).
(E and F) A549 cells were treated with 40 mM of the NF-kB inhibitor BAY 11-7085 30 minutes prior transfection of RNA from infected (‘‘viral RNA’’) or
uninfected A549 wt cells (‘‘cellular RNA’’). In all experiments shown total RNA from target cells was isolated and reverse transcribed. cDNA was
subjected to quantitative real time PCR. mRNA levels of SOCS3 (A, C, E, G) or IFNb (B, D, F, H) were assed by specific primers.
doi:10.1371/journal.ppat.1000196.g006
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1b (Figure S2C) nor TNFa (not shown) is significantly induced

upon virus infection.

SOCS-3 knock out results in enhanced constitutive STAT1
phosphorylation, and enhanced virus-induced
expression of ISGs

To further assess a functional role of SOCS-3 in virus-induced

suppression of STAT1 phosphorylation we analyzed mouse cells

with a targeted deletion of the SOCS-3 gene [56]. Wild type and

SOCS-3 deficient mouse embryonic fibroblasts (MEF) were

infected for different time points with PR8. The time of infection

was prolonged in comparison to the infection of A549 cells

because the human PR8 replicates less efficiently in mouse than in

human cells. Following infection lysates of these cells were assessed

for STAT1 phosphorylation (Figure 7A). Both cell types showed

no phosphorylation of STAT1 in the uninfected state. In contrast,

infection of SOCS-3 knock out cells resulted in strongly elevated

phosphorylation of STAT1 in a sustained fashion. To rule out that

this STAT1 phosphorylation is due to altered secretion of IFNb or

Figure 7. Enhanced STAT1 phosphorylation in infected SOCS-3 deficient MEF correlates with elevated induction of IFNb-stimulated
genes. Wild type MEF and SOCS-3 knock out MEF were infected with PR8 (MOI = 5) for the indicated times. Subsequently, cell lysates were analyzed
for STAT1 phosphorylation (A). For control of productive virus replication, cell lysates were analyzed for viral protein PB1 expression. In (E, F, G) wild
type and knock out cells were lysed at indicated time-points of infection. Subsequently RNA was subjected to reverse transcription. cDNA was
analyzed in quantitative real time PCR to assess mRNA amounts of three prototype type I IFN-stimulated genes, SP110 (E), interferon regulatory
factor-1 (IRF-1) (F) and OAS1 (G). Equivalent mRNA amounts were normalized to GAPDH mRNA levels and calculated as n-fold of the levels of
untreated cells that were arbitrarily set as 1. In (C) wild type MEF and knock out MEF were infected with PR8 (MOI = 5) or left uninfected. Supernatants
were taken 6 p.i. and used for stimulation of wild type MEF for 15 minutes. As control wild type MEF were stimulated with 500 U/ml mouse IFNb for
15 minutes. Cells were harvested and analyzed for the amount of STAT1 and phospho-STAT1 in Western blot analysis by specific antibodies. In (B)
and (D) the relative band intensities of phospho-STAT1 of the blots in (A) and (C) were quantified as described.
doi:10.1371/journal.ppat.1000196.g007
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other STAT1-activating cytokines in SOCS-3 deficient cells, we

performed conditioned medium experiments (Figure 7C). MEF

wild type and MEF SOCS-3 deficient cells were infected for 6 h

and supernatants were subsequently harvested. Stimulation of

MEF wild type cells with these different supernatants for 15 min.

revealed no differences in STAT1 phosphorylation, indicating that

both infected cell types secrete similar amounts of IFNb and other

STAT1 activating cytokines. This is a strong indication that the

observed differences in virus-induced STAT phosphorylation are

directly due to the presence or absence of SOCS-3 in wild type

and knock out MEF, respectively. To answer the question whether

enhanced STAT phosphorylation in SOCS-3 deficient cells would

also lead to enhanced expression of ISGs, total RNA was isolated

at different time points p.i. from infected wild type and knock out

cells and monitored for induction of SP110, IRF-1 and OAS1

(Figure 7E, 7F and 7G). These genes are described as type I IFN-

induced genes [18]. Indeed mRNA levels of all three represen-

tative ISGs were elevated in SOCS-3 knock out versus wild type

cells at almost every time point during the course of infection. This

indicates that enhanced STAT1 phosphorylation and activation in

SOCS-3 deficient cells results in elevated expression of ISGs.

Efficiency of viral propagation is affected by SOCS-3
expression levels

The remaining question was, whether the elevated IFN-induced

gene response in knock out cells might also affect propagation of

influenza A viruses. Thus, both wild type and knock out cells were

infected with PR8 (Figure 8A) or the strain A/Victoria/3/75

(H3N2) (Figure 8B). Virus titers were assessed at different time

points post infection. Progeny virus titers from SOCS-3 knock out

cells were significantly reduced compared to titers from infected

Figure 8. Efficiency of influenza A virus replication is dependent on SOCS3 expression levels. Wild type MEF and SOCS-3 knock-out MEF
were infected with PR8 (MOI = 0.01) (A) or A/Victoria/3/75 (MOI = 0.001) (B) for the indicated times. In (C) A549 wt cells were transfected for 48 h with
150 nM human SOCS3 siRNA using Hiperfect according to manufacturers protocol and infected with PR8 (MOI = 0.001) for 9 h. In (D) the highly
susceptible cell line HEK293 was transfected with either pSUPER empty vector or pSUPER-mSOCS-3 for 48 h. Subsequently cells were infected with
PR8 (MOI = 0.001) for 9 h. For (A), (B), (C) and (D) progeny virus titers were determined from the supernatants of infected cells by means of plaque
assay. To determine the effect of over expressed SOCS-3 on STAT1 phosphorylation (E) A549 cells were treated as in (D) and infected with PR8
(MOI = 5) and/or stimulated with human IFNb (100 U/ml). Cells were lysed and cell extracts were analyzed for levels of phosphorylated STAT1 and
over expressed mSOCS-3 using anti phospho-STAT1 and anti flag-antibody in Western blots. Effective of SOCS-3 knock down was determined by
Western blot (C, right). Cells were treated as in (C, left) and total cells lysates were analyzed for endogenous SOCS-3 protein levels using anti-SOCS-3
antibody in Western blot. (F) Quantification of relative pSTAT1 band intensities in (E).
doi:10.1371/journal.ppat.1000196.g008
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wild type cells. To independently confirm these results and to

verify that the observed effects are really due to the lack of SOCS-

3, we used an siRNA approach to specifically knock down SOCS-

3 mRNA in A549 cells. Cells were transfected with 150 nM

siRNA for 48 h and SOCS-3 protein levels were compared to

control transfected samples (Figure 8C, right). Subsequently, cells

were infected and progeny virus titers were determined by plaque

assay (Figure 8C, left). Similar to the results gained from infected

knock out cells, knock down of SOCS-3 resulted in decreased virus

titers.

On the contrary, over-expression of SOCS-3 resulted in

elevated virus titers (Figure 8D) concomitant with an inhibition

of IFNb- or virus-induced STAT1 phosphorylation (Figure 8E).

Taken together the data indicate that in the absence of SOCS-

3, infection leads to a stronger activation of STAT1, resulting in

enhanced expression of ISGs and reduced virus titers. Vice versa,

over-expression of SOCS-3 leads to an inhibition of STAT1

activation and elevated virus titers, probably due to inhibited

expression of ISGs.

This highlights the important role of virus induced SOCS-3 to

limit the type I IFN-induced antiviral response program.

Discussion

The type I interferon (IFN) system is one of the most powerful

innate defenses of vertebrate cells, which limits replication and

spread of viral pathogens including avian and human influenza

viruses. Influenza virus propagation is sensitive to IFN activities

and therefore, like other viral pathogens, these viruses do not only

induce type I IFN but also antagonize the production and effects of

these cytokines at the same time [55]. For influenza A and B

viruses, this is accomplished through their non-structural NS1

proteins that are structurally related polypeptides of 26 kDa (A/

NS1) and 32 kDa (B/NS1), which are abundantly expressed in

infected cells [55]. NS1 proteins predominantly act on the level of

IFN gene induction in infected cells by obstructing RIG-I-

dependent signaling through interaction with cellular factor(s)

and/or sequestration of RNAs generated during virus replication

[1,2,57]. Some NS1 proteins were also described to inhibit the

maturation of cellular pre-mRNAs raising the possibility that this

activity additionally reduces production of IFNa/b in infected cells

[58,59]. While NS1 also interferes with the activity of some ISGs,

such as the dsRNA dependent kinase PKR [5,60], so far no type I

IFN antagonistic mechanism was described for influenza viruses

that act on the level of IFN signaling rather than gene induction.

Here we present data, showing that RNA-induced expression of

SOCS-3 in early phases of infection leads to a functional inhibition

of IFN-induced STAT activation and gene expression. This is a

novel mechanism by which influenza virus suppresses the antiviral

response of the host and paves the path to efficient virus

replication.

While it was reported in the literature that expression of SOCS

proteins can be induced upon stimulation with IFN [61] we could

not detect any significant gene induction by IFNb in A549 cells.

Instead we observed a significant up-regulation of SOCS-3 by viral

59 triphosphate RNA, indicating that gene induction occurs via

accumulation of vRNA during infection. This appears to occur

through the RNA-mediated activation of the IKK/NF-kB

pathway, most likely activated through engagement of the RNA

sensor RIG-I. At a first sight, this might appear controversial since

NF-kB activation is among the RIG-I-induced signaling responses

and NS1 was reported to inhibit this signaling pathway. However,

despite the action of NS1 it is well known that NF-kB is still

significantly activated upon influenza virus infection and many

NF-kB and IFNb dependent genes are still expressed. We

hypothesized previously that the incomplete inhibition conferred

by NS1 is an indication that the virus exploits the remaining

signaling activities for efficient replication [52,62,63]. The findings

described here, namely NF-kB dependent induction of SOCS-3

and limitation of type I IFN signaling responses, provide yet

another example how influenza viruses take advantage of NF-kB

activity.

While the data show that NF-kB is required for viral SOCS-3

induction, the factor appears not to be sufficient, since prototype

inducers of NF-kB, such as IL-1b or TNF-a would not induce

SOCS-3. Thus there seems to be the need of additional virus or

RNA-induced transcription factors. The most likely candidate

would be the constitutively expressed interferon regulatory factor 3

(IRF-3), that is known to be simultaneously activated with NF-kB

upon virus infection directly via the RIG-I RNA sensing pathway

without the need of type I IFN. Furthermore IRF-3 is a factor

suppressed by the NS1 protein.

Recently it was reported that IFN-induced gene expression

responses are potentiated in cells, which lack the NF-kB factors

p50 or p65 [64]. Although these authors described an inhibitory

binding of NF-kB transcription factors to some IFN-induced gene,

this mechanism might be cell type dependent since we could not

observe similar effects in the cell types used here (data not shown).

Thus, the underlying molecular mechanisms appear to be not fully

clear. It is striking that the effects described for p50 and p65 knock

out cells in these studies fully correlate with our observations in

SOCS-3 deficient cells. While in the latter case cells lack the IFNb
signaling inhibitor SOCS-3, the p50 and p65 knock out cells are

deficient for the factors required for SOCS-3 induction. Thus,

given the NF-kB dependent induction of SOCS-3 described in the

present manuscript, we provide an additional molecular mecha-

nism that may explain the phenomenon described by Wei et al.

[64].

First indications for beneficial effects of SOCS-3 gene

expression on viral replication came from studies using the HCV

core protein as a replacement for the influenza A viral NS1 in the

context of infections with a NS1 deficient influenza virus [33]. One

of the hallmark responses of HCV core expression is a rapid

induction of SOCS-3 expression. Given the role of SOCS-3

described here, it was not surprising that HCV core could partially

rescue growth of the NS1 deficient virus [33].

While this manuscript was in preparation it was demonstrated

by Pothlichet et al. that influenza A virus-induced SOCS-1 and

SOCS-3 upregulation requires a TLR-3-independent, RIG-I/

MAVS-dependent pathway [65]. Moreover, over-expression of

SOCS-1 and SOCS-3 in infected cells revealed that both

molecules inhibit antiviral responses. These studies are perfectly

complemented by our findings. Here we confirm involvement of

RIG-I/MAVS by showing that 59 triphosphate RNA, the ligand

for RIG-I, is a major inducer of SOCS-3. Furthermore, the

finding that dsRNA is only a weak inducer of SOCS-3 is also

consistent with the independence from the dsRNA sensor TLR-3.

The only discrepancy of this work and the study of Pothlichet et al.

is that they show a dependence on the type I IFN receptor. This

may be due to the different virus-strains and cell types used. It is

well known that the capability of type I IFNs to induce SOCS

proteins is strongly cell type specific [31]. While in some cell types

SOCS-3 expression appears to be type I IFN dependent (e.g. fetal

liver cells) [31] it is clearly independent of IFN in other cell types

[66]. Recently it was shown that SOCS-3 is not significantly

induced by IFNa in A549 cells [18], the major cell type used in

our study. Evidence that cell type specificities may be the cause of

discrepancy is additionally provided by the fact that Pothlichet et
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al. show identical induction kinetics of SOCS-1 and SOCS-3. In

contrast the kinetics of the two proteins differ clearly in the cells we

used, with SOCS-3 being induced much earlier than SOCS-1 on

mRNA and protein level.

Finally, it should be stated that regardless whether SOCS-3 is

additionally induced by type I IFNs at a later stage of infection, it

is important that it can be induced earlier and in parallel to IFNb
directly by vRNA accumulation. This is supported by the finding

that IFNb and SOCS-3 induction occurs in parallel kinetics

(Figure 4A and 4B) while IFN-induced genes such as OAS1 and

MxA are only up-regulated later in a delayed and more sustained

fashion (Figure 4D). This makes a qualitative difference since the

blocking effect of SOCS-3 on IFNb signaling already kicks-in

during the first wave of IFNb action.

Taken together we describe here for the first time that at least

some influenza A virus strains are able to suppress type I IFN

signaling by a mechanism involving NF-kB dependent activation

of SOCS-3 expression, which negatively affects STAT phosphor-

ylation. This adds a new aspect to our knowledge of the strategies

used by influenza A virus to antagonize type I IFN responses.

Materials and Methods

Cell culture, viruses and infection conditions
Human influenza A/Puerto-Rico/8/34 (H1N1) (PR8) (Giessen

variant) and A/Victora/3/75 (H3N2) (Victoria) were originally

taken from the strain collection of the Institute of Virology,

Giessen, Germany. The human NS1 deficient influenza virus

mutant DNS1 and its isogenic wild type variant were propagated

and used as described earlier [7,67]. It should be noted that this

isogenic wild type strain as described by Garcia-Sastre et al. [68] is

different from the PR8 (Giessen variant) used in the other

experiments and in many previous studies [52,67]. While both

variants are of the PR8 Mount Sinai type they exhibit different

replication properties. The human alveolar epithelial cell line

A549 and the corresponding A549 IFNAR II-1 shRNA and A549-

nt-pLKO.1-2 cells (generated at the RKI, Berlin, Germany), as

well as the human embryonic kidney (HEK) cell line HEK293, the

green monkey epithelial cell line Vero and mouse embryonic

fibroblasts (MEF) were grown in Dulbecco’s minimal essential

medium (D-MEM). Madin-Darby canine kidney (MDCK) cells

were grown in minimal essential medium (MEM). All growth

media contained 10% heat-inactivated fetal bovine serum and

antibiotics. Human umbilical vein embryonic cells (HUVEC) were

grown in endothelial growth medium (EGM, Lonza). For

infection, cells were washed and infected with the multiplicity of

infection (MOI) as indicated in the figure legends. For infection

PBS/BA [PBS containing 0.2% bovine serum albumin (BSA),

1 mM MgCl2, 0.9 mM CaCl2, 100 U/ml penicillin, 0.1 mg/ml

streptomycin] and virus were incubated for 30 minutes at 37uC.

The supernatant was aspirated and cells were incubated with

specific medium containing 0.2% BSA and antibiotics. To score

for production of viral plaques the overlay was stained for 1 h

using 1 ml neutral red in PBS per well [69].

Stimulation of cells with cytokines and /or treatment
with sodium vanadate

To trigger JAK/STAT signaling cells were stimulated using

human IFNa/b or c as well as mouse IFNb. For stimulation of

A549 cells or HUVECs 100 U/ml human IFNa or human IFNb
was used. For stimulation of the green monkey epithelial cell line

Vero or HEK 293 cells 500 U/ml human IFNb was applied.

IFNc was always used in the concentration of 500 U/ml. Mouse

embryonic fibroblasts (MEF) were incubated with 100 U/ml

mouse IFNb. The different IFN were diluted in infection medium.

For stimulation after infection, viral supernatants were aspirated

and diluted cytokine was incubated for 15 minutes at 37uC. To

investigate the potential of other cytokines to induced SOCS-3

gene expression A549 cells were stimulated with 100 U/ml IL1b
or 20 ng/ml TNFa at 37uC for times indicated. After stimulation

cells were lysed and subjected to immune blotting.

To block the activity of phosphatases after infection with

influenza virus, sodium vanadate was used. Dilutions were

prepared using infection medium. Sodium vanadate was added

to the virus-containing infection medium at the time points

indicated. After 10 minutes of incubation IFNb, diluted in

infection medium, was added to the medium containing virus

and sodium vanadate. The cells were stimulated with IFNb for

15 minutes. Incubation with sodium vanadate started 25 min

before cells were lysed and subjected to Western blotting as

described.

For conditioned medium experiments wild type and SOCS-3

knock out MEF were infected with PR8 (MOI = 5) for 10 h or left

uninfected. Supernatants were used for stimulation of MEF wild

type for 15 minutes. Cell lysates were subjected to Western blot

analysis.

Stimulation of cells with phosphorylated or
dephosphorylated viral or cellular RNA

To investigate the induction of SOCS-3 expression by viral

RNA, RNA isolated from infected or uninfected cells (control) was

used. A549 cells were infected with PR8 (MOI = 5) or left mock

infected. 10 h post infection RNA was isolated using the RNeasy

mini Kit from Qiagen according to manufacturer’s instructions.

To dephosphorylate viral 59 triphosphate RNA, calf intestine

alkaline phosphatase (CIAP) (Fermentas) was used. Briefly, RNA

was isolated using Trizol according to manufacturer’s instructions.

For dephosphorylation the reaction mix was set up in a 50 ml

volume with 50 mg RNA, 25 U CIAP and 80 U RiboLock RNase

inhibitor (Fermentas) and was incubated for 3 h at 42uC.

Thereafter the RNA was isolated using the RNeasy mini Kit

from Qiagen. RNAs used as control were mock-treated replacing

CIAP by glycerol.

For stimulation, the different RNA species and analogues were

transfected using Lipofectamine 2000 (L2000) according to

manufacturer’s instruction (Invitrogen). In brief, L2000 was

incubated with OPTI-MEM for 5 minutes at room temperature;

different amounts of RNA were added and incubated for

additional 15 minutes. For stimulation of cells with cellular or

viral RNA 400 ml RNA-L2000 mix were added to 2 ml serum-free

medium. Cells were stimulated for 3 hours and subjected to either

Western blot analysis or quantitative real time PCR.

siRNA mediated knock down of human SOCS-3
For silencing SOCS-3 mRNA, A549 cells were transfected with

150 nM human SOCS-3 siRNA 48 h before infection using

Hiperfect (Qiagen) according to manufacturer’s instructions. In

brief, 150 nM siRNA was added to a mixture of D-MEM without

FCS/antibiotics and Hiperfect and incubated for 10 min at room

temperature. For transfection 400 ml of this mixture were added to

the cells. Subsequently cells were subjected to plaque assay analysis

or Western blot analysis. Control siRNA was purchased from

Qiagen. The sequences for the human SOCS-3 siRNA in use are:

human SOCS-3 siRNA sense 59- CCA AGA ACC UGC GCA

UCC AdTdT-39, human SOCS-3 siRNA anti-sense 59 - UGG

AUG CGC AGG UUC UUG GdTdT-39 ) (see Table 1 for

accession number of the human SOCS-3 gene).
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Tyrosine phosphatase assay
To determine whether tyrosine phosphatases become activated

upon infection with influenza virus a phosphatase assay using the

Tyrosine Phosphatase Assay System (Promega) was performed.

A459 cells were infected for 10 h (MOI = 5) or left uninfected.

Cells were harvested in assay buffer (100 mM tris-HCl pH 5.2,

100 mM CaCl2, 100 mM MgCl2, 0.02% b-mercapto ethanol),

cracked by a single freeze/thaw step at 280uC and disrupted by

ultrasonic pulsing. Lysates were precleared from cell debris and

residual free phosphates according to the manufacturer’s instruc-

tion. Tyrosine phosphatase activity was measured by enzymatic

release of free phosphate of two given pseudosubstrates (phos-

phorylated peptides representing target sequences for the most

common tyrosine phosphatases). Quantification was performed in

comparison to a given standard according to the manufacturer’s

instruction.

Western blots
For Western blot analysis cells were lysed with RIPA [25 mM

Tris/HCl, pH 8.0, 137 mM NaCl, 10% Glycerol, 0.1% SDS,

0.5% NaDOC, 1% IgePal, 2 mM EDTA, pH 8.0, pyrophosphate

5 mg ml21 aprotinin; 5 mg ml21 leupeptin; 1 mM sodium vana-

date and 5 mM benzamidine] on ice for a minimum of

30 minutes. Supernatants were cleared by centrifugation in a

standard tabletop centrifuge (Eppendorf) at maximum speed.

Protein concentration was determined by Bradford assay.

The phosphorylated and unphosphorylated forms of STAT1

were detected using anti-STAT1 (Y701) antibody and anti-

STAT1 (BD Bioscience). An antibody directed against Y690 of

STAT2 was used for detection of the phosphorylated form of

STAT2 (Upstate). Antibodies to detect influenza viral proteins

were purchased from Serotec (NP, M1), Santa Cruz (PB1, PB2).

The anti-PA antibody was kindly provided by J. Ortin (Madrid/

Spain). A monoclonal antibody directed against the viral NS1 was

generated at the IMV, Muenster, Germany [70]. A monoclonal

anti-Myc-tag antibody to detect Myc-M1 was kindly provided by

Viktor Wixler. IMV, Muenster, Germany. All secondary antibod-

ies were purchased from Amersham and diluted 1:2500 in TBS-T.

Secondary antibodies were incubated for a minimum of

60 minutes at room temperature.

Reverse Transcription and quantitative real time PCR
To synthesize cDNA from cells, RNA was isolated using Qiagen

RNeasy mini kit according to manufacturer’s instruction. In brief,

cells were lysed in the presence of b-mercaptoethanol and lysates

were loaded to a column, washed and eluted in RNase- free water.

For reverse transcription 3 mg total RNA, 0.5 mg oligo dT primer

in a total volume of 12 ml were heated for 10 minutes at 70uC.

Enzyme mix was prepared (56Enzyme Buffer (Fermentas), water

and 500 mM dNTPs) and pre-warmed at 42uC for 2 minutes

before adding 535 U/100 ml RevertAid H2 M-MuLV (Fermen-

tas).

Reverse transcription was performed at 42uC for 1 hour. The

enzyme was inactivated at 70uC for 10 minutes. Samples were

stored at 220uC or directly used in quantitative real-time PCR.

For analysis of gene expression relative quantification of the

DNA amount was applied. In order to do that gene expression of

the housekeeping gene GAPDH was determined. To ascertain

changes in expression of the gene of interest the differences

between expression of GAPDH and the gene of interest was

calculated using the 22DDCT method [71]. For quantitative real

time Brilliant QPCR SYBR Green Mastermix (Stratagene) was

used according to manufacturer’s instructions. The fragment of

interest was amplified in 40 cycles. The following primers were

used (see Table 1 for identity of the parental genes): human primer

pairs: GAPDH_fwd 59-GCA AAT TTC CAT GG CAC CGT39,

GAPDH_rev 59 - GCC CCA CTT GAT TTT GGA GG-39,

IFNb-fwd 59 - GGC CAT GAC CAA CAA GTG TCT CCT CC-

39, IFNb_rev 59 - GCG CTC AGT TTC GGA GGT AAC CTG

T-39, SOCS-1_fwd 59 - TTG CCT GGA ACC ATG TGG -39,

SOCS1_rev 59 - GGT CCT GGC CTCCAG ATA CAG -39,

SOCS-3_fwd 59 - GGA GTT CCT GGA CCA GTA CG-39,

SOCS-3_rev 59 - TTC TTG TGC TTG TGC CAT GT -39,

OAS1_fwd 59 - GAT CTC AGA AAT ACC CCA GCC A-3,

OAS-1_rev 59 - AGC TAC CTC GGA AGC ACC TT-39,

MxA_fwd 59 -GTT TCC GAA GTG GAC ATC GCA-3, MxA

rev 5-GAA GGG CAA CTC CTG ACA GT-3, IL1b_fwd 59 -

GCG GCC AGG ATA TTT TAA CTG ACT TC-3, IL1b_rev 59

-TCC ACA TTC AGC ACA GGA CTC TC-3, IL6_fwd 59 -

AGA GGC ACT GGC AGA AAA CAA C-3, IL6_rev 59 -AGG

CAA GTC TCC TCA TTG AAT CC-39 and murine primer

pairs: GAPDH_fwd 59 - ACA GCC GCA TCT TCT TGT GCA

GTG-39, GAPDH_rev 59 - GGC CTT GAC TGT GCC GTT

GAA TTT-3, SOCS-3_fwd 59 - GGG TGG CAA AGA AAA

GGA G-39, SOCS-3_rev 59 - GTT GAG CGT CAA GAC CCA

GT-3, IRF-1_fwd 59 - ATG CCA ATC ACT CGA ATG CG-39,

IRF-1_rev 59 - TTG TAT CGG CCT GTG TGA ATG-3,

SP110_fwd 59 - TAG GGA AGC ATC CAA AAC GAA TG-39,

SP110_rev 59 - CCT GGG GCT CTT GTT CAT CAC-39,

OAS1_fwd 59 - GTC AAT GTC GTG TGT GAT TT-39,

OAS1_rev 59 -CTC CCC GTC GGT TTA ACT GA-39.

Retroviral vectors and retroviral transduction
The pCFG5-EGZ retroviral vector used for transfection [72] as

well as the constructs to express dominant negative MKK6

(MKK6Ala) or IKK2 (IKK2KD) have been described earlier

[52,73]. The Phoenix amphotropic retroviral producer cells (a gift

Table 1. Accession numbers of human, murine and viral
genes used or analyzed in this study.

Accession numbers

Human

IFNb NM_002176.2

SOCS-3 NM_003955.3

GAPDH NM_002046.3

OAS1 isoform 3 NM_001032409.1

OAS1 isoform 2 NM_002534.2

OAS1 isoform 1 NM_016816.2

Murine

GAPDH NM_008084.2

OAS1b NM_001083925.1

IRF-1 NM_008390.1

SP110 NM_175397.4

Viral

NP CY009447

NS CY009448

M CY009445

PA CY009449

PB1 CY009450

PB2 CY009451

doi:10.1371/journal.ppat.1000196.t001
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from G. Nolan, Stanford, CA) [74] were cultured in Dulbecco’s

modified Eagle’s medium containing 10% fetal bovine serum, 100

units/ml penicillin and 100 mg/ml streptomycin. Generation of

MKK6Ala or IKKKD expressing producer cells as well as

transduction of A549 cells to stably express these transgenes was

performed as previously described [52,53].

Supporting Information

Figure S1 Infection of HUVEC results in inhibition of STAT1

phosphorylation and IFNb independent SOCS-3 gene transcrip-

tion. HUVEC were infected with PR8 (MOI = 5) (A, B, D) or

stimulated with 100 U/ml IFNb (E) for time points indicated. To

assess the mRNA levels of SOCS-3 (A, E), IFNb (B) and MxA (E)

RNA was reverse transcribed and cDNA was subjected to

quantitative real time PCR. Equivalent mRNA amounts were

normalized to endogenous GAPDH and calculated as n-fold of

untreated cells that were arbitrarily set as 1. To assess the amount

of phosphorylated STAT1 (B) A549 cells were infected with PR8

(MOI = 5) for time points indicated. Total cells lysate was

subjected to Western Blot analysis using anti-phospho-STAT1,

anti-STAT1 antibodies. To assess effective viral replication viral

NS1 was detected using an anti-NS1 antibody. (C) Quantification

of relative band intensities of (B) using AIDA software and 2D

densitometry (Fuji).

Found at: doi:10.1371/journal.ppat.1000196.s001 (1.22 MB TIF)

Figure S2 IL1b and TNFa do not affect induction of SOCS-3

gene transcription. A549 wt cells were stimulated with 100 U/ml

IL1b (A), 20 ng/ml TNFa (B) or infected with PR8 (MOI = 5) (C)

for time points indicated. Cells were lysed, and RNA was subjected

to reverse transcription. cDNA was analyzed in quantitative real

time PCR to assess mRNA amounts of SOCS-3 and IL6 (A and B)

or IL1b (C). Equivalent mRNA amounts were normalized to

GAPDH mRNA levels and calculated as n-fold of the levels of

untreated cells that were arbitrarily set as 1.

Found at: doi:10.1371/journal.ppat.1000196.s002 (4.87 MB TIF)
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