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Abstract

DegP.

periplasmic folding of many newly translocated proteins.

Background: The inner membrane-anchored periplasmic folding factor PpiD is described as a parvulin-like peptidyl
prolyl isomerase (PPlase) that assists in the maturation of the major beta-barrel outer membrane proteins (OMPs) of
Escherichia coli. More recent work however, calls these findings into question. Here, we re-examined the role of
PpiD in the E. coli periplasm by analyzing its functional interplay with other folding factors that influence OMP
maturation as well as general protein folding in the periplasmic compartment of the cell, such as SurA, Skp, and

Results: The analysis of the effects of both deletion and overexpression of ppiD on cell envelope phenotypes
revealed that PpiD in contrast to prior observations plays only a minor role, if any, in the maturation of OMPs and
cannot compensate for the lack of SurA in the periplasm. On the other hand, our results show that overproduction
of PpiD rescues a surA skp double mutant from lethality. In the presence of increased PpiD levels surA skp cells
show reduced activities of both the SigmaE-dependent and the Cpx envelope stress responses, and contain
increased amounts of folded species of the major OMP OmpA. These effects require the anchoring of PpiD in the
inner membrane but are independent of its parvulin-like PPlase domain. Moreover, a PpiD protein lacking the
PPlase domain also complements the growth defects of an fkpA ppiD surA triple PPlase mutant and exhibits
chaperone activity in vitro. In addition, PpiD appears to collaborate with DegP, as deletion of ppiD confers a
temperature-dependent conditional synthetic phenotype in a degP mutant.

Conclusions: This study provides first direct evidence that PpiD functions as a chaperone and contributes to the
network of periplasmic chaperone activities without being specifically involved in OMP maturation. Consistent with
previous work, our data support a model in which the chaperone function of PpiD is used to aid in the early

Background

It is well established that numerous chaperones, folding
catalysts and proteases exist in the periplasm of E. coli
and cooperate in protein folding and protein quality
control in this cellular compartment of the cell. At least
three of these factors, SurA, Skp and DegP, assist in the
maturation of integral B-barrel outer membrane proteins
(OMPs), a major class of proteins in the E. coli outer
membrane, and are thought to be responsible for the
transport of OMP folding intermediates through the
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periplasm to the OMP assembly site, a multi-protein
complex in the outer membrane [1].

The chaperone and peptidyl-prolyl isomerase (PPlase)
SurA is specialized for the biogenesis of OMPs. SurA
preferentially interacts with newly-synthesized OMPs in
vitro [2] by specifically recognizing and binding to pep-
tide sequences that are characteristic of OMPs [3,4].
Only a subset of OMPs however, appears to directly
depend on SurA for maturation [5]. The two biochem-
ical activities of SurA reside in distinct regions of the
protein [2]. The PPIase activity is carried in the second
of two iterative parvulin-like domains (domain I and
domain II) located in the C-terminal half of the protein
[2,6]. The chaperone activity, which is required and suf-
ficient for the so far known biological role of SurA, is
contained in a module formed by its N-terminal region
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and a short C-terminal sequence [2]. Lack of SurA gives
phenotypes that are indicative of disturbances in OMP
biogenesis and of a defective cell envelope. Such pheno-
types are reduced levels of the major OMPs OmpA,
LamB, and OmpC in the outer membranes of the cells,
increased sensitivity to hydrophobic agents, such as
SDS/EDTA, bile salts, and the antibiotic novobiocin,
and a constitutively induced c*-dependent envelope
stress response [6-8]. The 6" pathway together with the
Cpx signal transduction pathway monitors and controls
the protein folding state in the cell envelope [9].

The small periplasmic chaperone Skp and the pro-
tease-chaperone DegP affect general protein folding in
the periplasm and assist in the biogenesis of OMPs. A
skp mutant shows phenotypes that are similar to but
less severe than those of a surA mutant [7]. Moreover,
deletion of skp confers synthetic lethality in a surA
mutant, as does deletion of degP [2,10]. degP skp double
mutants on the other hand are viable. It has therefore
been proposed that DegP and Skp act together in one
pathway of OMP maturation whereas SurA acts in a
separate parallel pathway [5,10]. Skp has been shown to
interact with early OMP folding intermediates at the
periplasmic side of the inner membrane [11,12] and to
keep immature OMPs in a soluble state [13,14]. DegP
on the other hand, was found to bind to and stabilize
folded OMP monomers [15] and thus appears to act
downstream of Skp in the proposed Skp/DegP pathway
for OMP maturation.

Conflicting results have been reported regarding the
involvement of the periplasmic PpiD protein in the bio-
genesis of OMPs. PpiD is anchored to the inner mem-
brane by an N-terminal transmembrane segment and
consists of a single parvulin domain flanked by large
N- and C-terminal protein regions. The N-terminal
region shares sequence similarity with the N-terminal
region of SurA, which comprises the major part of the
SurA chaperone module ([16-19]; see additional file 1).
Several previous findings suggested that PpiD and SurA
have overlapping functions in OMP biogenesis [18].
First, a ppiD mutant was documented to have pheno-
types that are similar to those of a surA mutant and are
suppressed by multicopy surA. Second, the simultaneous
deletion of ppiD and surA was reported to cause lethal-
ity. More recently however, surA ppiD mutants were
shown to display no visible growth defects [20]. Finally
and most importantly, ppiD was isolated as a multicopy
suppressor in a surA mutant. Remarkably however,
whereas the surA phenotypes result from loss of chaper-
one function [2], a high PPlase activity of PpiD was
identified as the complementing biochemical activity
[18]. Most recently, this result was disputed by the find-
ing that the isolated parvulin domain of PpiD is devoid
of detectable PPlase activity [19]. Here, we analyzed the
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functional interplay of PpiD with SurA, Skp, and DegP
to define its role in the E. coli periplasm.

Results

Re-examination of PpiD function in the biogenesis of
OMPs

To resurvey the role of PpiD in OMP maturation we
analyzed the physiological consequences of both inacti-
vation and overexpression of ppiD in wild-type cells and
in the surA and skp mutants, respectively, using pheno-
types known to report on OMP biogenesis and outer
membrane integrity, such as ¢© activity, resistance of
the cells to SDS/EDTA and to the antibiotic novobiocin,
as well as the levels of major OMPs in their outer mem-
branes. In contrast to previous work [18] we found that
expression of multicopy ppiD from the IPTG-inducible
P, promoter does not suppress the surA mutant phe-
notypes but rather interferes with cell growth (data not
shown). We therefore used a plasmid (pPpiD) that car-
ries ppiD under control of its natural promoter, which
is positively regulated by the classical cytoplasmic
c*?-dependent heat-shock response and by the Cpx
two-component system [18,21].

Consistent with recent observations [20], the inactiva-
tion of ppiD in a surA strain did not cause lethality.
Also, neither the inactivation nor the overexpression of
ppiD in the tested strains had major effects on the activ-
ity of c* (Figure 1), on the plating efficiencies on 0.5%
SDS/0.5 mM EDTA (Table 1), on the sensitivities of the
cells to novobiocin, or on the levels of major OMPs in
their outer membranes (data not shown). However, as is
also the case for strains lacking Skp, PpiD-deficient
strains showed slightly retarded growth on plates con-
taining 0.5% SDS and 0.5 mM EDTA. At increased con-
centrations of SDS (2%) a ppiD skp double mutant even
revealed a small (3-to 4-fold) plating defect (Table 1),
but showed no major changes in the activity of c* and
in the amounts of OMPs in the outer membranes of the
cells relative to the Askp single mutant (Figure 1 and
data not shown). Thus, loss of PpiD appears to slightly
interfere with outer membrane integrity without notably
affecting the assembly of OMPs. Together these results
suggest that PpiD plays only a minor role, if any, in the
biogenesis of OMPs in the strain background used here.

Effects of inactivation and overexpression of ppiD on the
Cpx envelope stress response

The " signal transduction pathway partially overlaps
with the CpxA/R pathway in sensing and responding to
folding stress in the cell envelope [9]. Since ppiD is a
member of the Cpx regulon [18] we asked whether the
Cpx system would respond to inactivation or increased
expression of ppiD. As shown in Figure 1B, inactivation
of ppiD had no significant effect on Cpx activity in any
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Figure 1 Response of the t-dependent and the CpxA/R-regulated envelope stress pathways to inactivation and overexpression of
ppiD. Es® (A) and Cpx (B) activities in the indicated strains carrying SurA (light gray bars), PpiD (dark gray bars), and Skp (black bars) encoding
plasmids or an empty vector (pASK75; white bars) were assayed by monitoring the accumulation of B-galactosidase resulting from c-dependent
rpoHP3:lacZ and from Cpx-meditated cpxP-lacZ reporter expression, respectively. Cells were grown in LB (%) or in LB buffered at pH 7.0 (Cpx) at
37°C and B-galactosidase activities were determined as described in Methods and compared to that of wild-type cells. Results represent the
average of at least two independent experiments (*P < 0.05; **P < 0.01 Student’s t-test). Qualitatively similar results were obtained from cells
grown at 30°C (data not shown). (C) Western blot analysis of crude extracts derived from cells with (+) and without (-) pPpiD. A volume of
sample equivalent to 4 x 107 cells was loaded onto each lane. The anti-PpiD antiserum showed a weak unspecific cross-reaction with a similar
sized unknown protein. The intensity of the PpiD signal relative to that in the wild-type strain (rel. Int) was calculated using MalE as the internal
standard for each lane.
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Table 1 Plating efficiencies on SDS/EDTA

Strain Plasmid Efficiency of plating® on 0.5 mM EDTA
+ 0.5% SDS + 2% SDS

wild-type None 0.90 0.54 + 0.146
pASK75 093 + 0.061

SUrA pASK75b 8.0, 0.028, and 0.011 [x 107
pSurA 1.0+ 013
pPpiD® 58, 0011, and 0.032 [x 107

ppiD:Tn10 None 066 £ 0.156
PASK75 0.96 + 0.087

ppiD:kan None 042 +0.184
PASK75 081 + 0.067

surA ppiD:Tn10 pASK75b 26, 7.2, and 0.66 [x 107]
pSurA 0.7 £ 0.02
pPpiD® 41,26, and 025 [x 107]

lskp None 087 + 0.02 057 + 0.042
pQE6O 1.04

Askp ppiD:zkan  none 1.01 £ 0.06 0.17 £ 0.042
pQE6D 1.0

Values are the averages of at least three independent experiments.

PThe plating efficiencies of three independent experiments are shown, as the
wide range of variation did not allow averaging. Larger variations in the
efficiencies of plating were observed only for strains showing strongly
increased SDS/EDTA sensitivity and likely result from minor fluctuations in the
concentration of these membrane perturbants in the different batches of
medium (prepared freshly for each experiment).

of the tested strains, indicating that PpiD is not specifi-
cally involved in cell envelope functions that are moni-
tored by the Cpx stress response pathway. In contrast,
lack of SurA induced the Cpx response ~4-fold, as is
consistent with the involvement of SurA in OMP and
pilus biogenesis [20] and with misfolding pilus subunits
being sensed by the Cpx signaling system [22]. The pre-
sence of ppiD in multicopy led to an about 2-fold induc-
tion of the Cpx response in all strains but the surA
single and the surA ppiD double mutants. In the surA
ppiD double mutant increased expression of ppiD from
pPpiD slightly reduced Cpx activity, whereas it showed
no significant effect on Cpx activity in the surA single
mutant.

ppiD is a multicopy suppressor of the lethal surA skp
phenotype

We also asked whether ppiD in multicopy would suppress
the synthetic lethality of a surA skp mutant. SurA-deple-
tion strains were constructed by placing the chromosomal
surA gene under the control of the IPTG-inducible pro-
moter P, 07 [23], so that expression of surA could be
shut off in the absence of IPTG. As expected, Py 01"
surA Askp cells grew poorly without IPTG but normal
growth was restored by providing copies of either surA or
skp on a plasmid (Figure 2B). Unexpectedly, growth in the
absence of IPTG was also restored by ppiD in multicopy
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(pPpiD), although the colonies grew up slower and
remained smaller than those grown in the presence of
IPTG. The growth-promoting effect of pPpiD was abol-
ished by the introduction of a frameshift mutation that
results in a premature stop at codon 173 of the plasmid-
borne ppiD gene (pPpiDfs601). Thus, suppression of surA
skp lethality elicited by pPpiD requires the intact ppiD
gene. Multicopy ppiD also restored viability of surA skp
cells in liquid media (Figure 2C). The Py, .o;-surA Askp
strain ceased growth approximately 3.5 h after transfer
into non-permissive media (LB without IPTG) but contin-
ued to grow when it carried pPpiD, although with slower
rates during the mid- to late logarithmic phase. Western
blot analysis indicated that PpiD is present in these cells at
levels greater than that of chromosomally encoded PpiD
(Figure 2D, lane 3 versus lanes 1 and 2). Thus, increased
production of PpiD restores viability of surA skp cells but
it does not completely compensate for the growth defect
caused by the simultaneous lack of the SurA and Skp
chaperones.

Suppression of surA skp lethality does not require the
parvulin domain but the membrane-localization of PpiD
The lethal phenotype of surA skp cells has been suggested
to result from loss of periplasmic chaperone activity [10].
Consistent with this assumption, we found that the cha-
perone module of SurA (SurAN-Ct), which is devoid of
any PPlase activity [2], is sufficient to fully complement
the growth defect of the Py, o;-surA Askp strain in the
absence of IPTG (Figure 2B). To also dissect the activities
and regions of PpiD required for complementation of
surA skp lethality, we substituted amino acids G347 and
1350 in its parvulin domain with alanine, generating the
proteins PpiD%**”# and PpiD"*%4, respectively. These
mutations had originally been reported to effectively elimi-
nate PPlIase activity of PpiD and to result in the loss of its
reported surA complementing function [18]. In addition,
we completely deleted the parvulin domain from the pro-
tein, resulting in PpiDAParv (Figure 2A). Only most
recently, while this manuscript was in preparation, PpiD
and its isolated parvulin domain have been shown to be
devoid of PPIase activity [19]. However, because G347 and
1350 are located at the peptide binding site of the parvulin
domain, it was suggested that substrate binding to this
domain is important for the in vivo function of PpiD.

Both mutant proteins, PpiD**”* and PpiD"*°*, com-
plemented the growth defect of surA skp cells just as
well as wild-type PpiD, whereas PpiDAParv complemen-
ted slightly less well in these assays (Figure 2B and 2C).
Western blot analysis indicated however, that PpiDA-
Parv was present in the cells at significant lower levels
than plasmid-encoded wild-type PpiD (Figure 2D, lane 5
versus lane 3), suggesting that the protein is less stable.
We have confirmed that all three mutant PpiD proteins
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Figure 2 Suppression of the lethal phenotype of surA skp cells by multicopy ppiD. (A) Schematic representation of PpiD and its variants
used in this study, with amino acid residues numbered as in the full-length PpiD polypeptide. Diagonally striped box: transmembrane segment;
white box: N-terminal region; Gray box: parvulin domain, with alanine substitutions indicated by black bars. PpiDATM was preceded by the SurA
signal peptide so that it would be secreted into the periplasm (see Methods). (B) Growth of the SurA-depletion strain P juc.0r-SurA Askp (SB44452)
carrying pASK75 (empty vector), pSurA, pSkp, and pPpiD, respectively. Cells were grown overnight in the presence of IPTG, after dilution spotted
on LB plates + IPTG, and incubated at 37°C for 16-24 h. (C) Growth of the strains Pyjc.0-SurA (SB44454) and Py juc.0i-SurA Askp (SB44452) at 37°C
in liquid LB with (solid lines) and without (dotted lines) IPTG, resulting in the indicated “genotypes” wild-type (WT), surA, skp, and surA skp. The
asterisk marks the point of sub-culturing (see Methods). Within the framed interval samples were taken for further analysis. Note that the Askp
surA strain containing pASK75 or pPpiDATM resumed growth after ~360-minute cultivation without IPTG. Western blotting revealed that at this
point the cells also resumed production of SurA (see additional file 3). In contrast, SurA levels remained low in Askp surA pPpiD cells during the
entire course of growth, indicating that increased PpiD levels compensate for the simultaneous lack of SurA and Skp. (D) PpiD proteins in Py
or-SurA Askp cells after 240-minute growth in LB without IPTG. Extracts from 4 x 107 cells were loaded in each lane and analyzed by western
blotting. Lane 8 shows lane 6 after prolonged development of the blot to visualize the protein. Cytoplasmic Hsc66 served as a loading control.

also restore growth of a ppiD skp surA triple mutant
(additional file 2), demonstrating that the surA skp com-
plementing activity does not depend on some residual
function provided by chromosomally encoded wild-type
PpiD. Together, these results show that the parvulin
domain is not required for PpiD to function in rescuing
surA skp cells from lethality. Unfortunately, we were
unable to assess meaningfully if the N-terminal region
of PpiD which shows sequence similarity to a substantial

portion of the chaperone domain of SurA ([16-18]
and additional file 1) contributes to this function, as a
protein lacking the respective region (PpiDA69-201,
Figure 3A) was present in the cells at even lower levels
than PpiDAParv (Figure 3D, lanes 7 and 8).

Finally, we asked if PpiD must be anchored to the inner
membrane to function in vivo. Neither production of
soluble N-terminally Hise-tagged PpiD (PpiDATM) at a
level similar to that of PpiDAParv nor its production



Matern et al. BMC Microbiology 2010, 10:251
http://www.biomedcentral.com/1471-2180/10/251

A
>’40"
s 35 4 1o
'§ H Cpx
o 301
©
o 251
@
e 20
)
S 151
A,
v 10
=
o
01 L]
WT surA skp {,_\03 Q‘§ Q@V Q(bé {7\@
PASK7S & Q § & §
Q éZQ Q\ 8
| = |
surA skp
B
i PLiac-o1-SUrA ,
I 1
. Askp |
I 2 é |
S I
Q 9 . v
R RRR
+ - + - - - - - PTG
[ e e e e —— | Hsc66
P s -
- ol - e

1.0 1.59 1.49 2.831.74 1.612.02 2.95 rel. Int.

e e | SurA

1.0 0.79 1.52 0.800.86 0.66 0.77 0.75 rel. Int.
1 2 3 4 5 6 7 8

Figure 3 Increased PpiD levels reduce ot and Cpx activity in
surA skp cells. (A) SurA-depletion strains carrying either the
chromosomal o-dependent rpoHP3:lacZ or the Cpx-regulated cpxP-
lacZ reporter fusions were cultivated at 37°C in LB buffered at pH
7.0 + IPTG as described in Methods. Once growth of P, j,c.0-SurA
Askp cells ceased in the absence of IPTG, samples were taken and
assayed for & and Cpx activities, respectively, by determining p-
galactosidase activity. The strains contained either an empty vector
(pASK75) or a plasmid encoding wild-type PpiD, PpiD"**,
PpiDAParv, and PpiDATM (soluble Hisg-PpiD), respectively. The data
shown are representative of at least two independent experiments.
(B) Western blot detection of SurA and of DegP in crude extracts of
cells after 240-minute growth at 37°C in LB £ IPTG. A volume of
extracts equivalent to 4 x 107 cells was loaded onto each lane.
Signal intensities were calculated using Hsc66 as the internal
standard for each lane and are shown relative to those in the wild-
type strain (rel. Int). Western analysis was performed a minimum of
two times for each ot and Cpx reporter assay, and data for one
representative experiment are shown.
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from pASKssPpiD at different inducer concentrations
restored growth of surA skp cells (Figure 2, and data not
shown). pASKssPpiD has also been used to produce and
purify soluble Hisg-PpiD from the periplasmic fraction
of E. coli, thus confirming the periplasmic location of
the protein. As soluble Hisg-PpiD is functional in vitro
(see below and [24]), these results suggest that the func-
tion of PpiD in vivo requires the protein to be anchored
in the inner membrane.

Overproduction of PpiD lowers folding stress in the cell
envelope of surA skp cells
Previous studies suggested that the lethal phenotype of a
surA skp mutant is caused by severe protein folding
stress in the periplasmic compartment of the cells
[10,25]. To determine whether increased PpiD levels
restore viability of surA skp cells by counteracting fold-
ing stress in the cell envelope, we monitored the activ-
ities of the 6™ and Cpx stress pathways over time once
growth of P, o;-surA Askp cells had leveled off in the
absence of IPTG (time interval indicated in Figure 2C).
At this time point, SurA was hardly detectable in the
cells (Figure 3B), indicating that SurA had efficiently
been depleted from the cells. During the course of the
depletion of SurA in Askp cells both the Cpx pathway
and, as also reported previously [26], the c"-dependent
pathway were strongly induced (Figure 3A). The ¢* and
Cpx activities were 4- to 6-fold increased in SurA-
depleted Askp cells (surA skp pASK75) relative to those
of SurA-depleted wild-type cells (surA pASK75). This is
also reflected in further increased levels of DegP (Figure
3B, lane 4 versus lane 2), whose gene is positively con-
trolled by the o* and Cpx stress responses [27,28]. In
Askp cells that overproduced PpiD during the course of
SurA depletion, " and Cpx activities were significantly
lower, being only 1.5- to 3-fold induced relative to the
respective activities in surA cells. Consistent herewith,
the level of DegP was lower in these cells than in surA
skp cells that not overproduced PpiD but slightly higher
than the DegP level in surA cells (Figure 3B, lane 5 ver-
sus lanes 4 and 2, respectively). Production of PpiDA-
Parv during the course of SurA depletion in Askp cells
reduced the c* and Cpx activities slightly less effectively
and production of soluble Hisg-PpiD (PpiDATM), which
does not rescue surA skp cells from lethality, further
induced both stress responses (Figure 3A). Thus, only
increased levels of membrane-anchored PpiD proteins
dampen the strong response of the ¢ and the Cpx
envelope stress signal transduction pathways to the
simultaneous loss of SurA and Skp chaperone activity.
Taking advantage of the fact that overproduction of the
outer membrane lipoprotein NIpE specifically induces
the Cpx response [29] and that the Cpx pathway
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negatively controls expression of the ¥ regulatory com-
ponents [30] we also asked whether down-regulation of
c" activity alone would be sufficient to restore growth of
surA skp cells. Indeed, the presence of multicopy nlpE
during the course of SurA depletion in Askp cells led to a
further induction of the Cpx response and down-regu-
lated 6 activity to a similar extent as overproduction of
PpiD (see additional files 3 and 4). Overexpression of
nlpE even slightly improved cell growth in liquid media
but it did not restore growth of surA skp cells on solid
plates. Thus, Cpx-mediated repression of ¢ alone is not
sufficient to restore surA skp cell viability.

Effect of PpiD overproduction in surA skp cells on OMP
biogenesis

The reduction of ¢ activity in surA skp cells elicited by
higher levels of PpiD suggests that PpiD in these cells
directly or indirectly affects OMP biogenesis. 6* posi-
tively controls the production of small non-coding RNAs,
which down-regulate OMP synthesis by translational
repression [31], and decreased levels of OMPs in SurA-
deficient cells therefore reflect defects in both OMP
synthesis and assembly [6]. We asked if conversely, the
decrease in 6* activity in PpiD overproducing surA skp
cells correlated with increased levels of the major OMP
OmpA. Western blot analysis of crude cell extracts con-
firmed a slight increase in the level of OmpA in these
cells as compared to surA skp cells (Figure 4A lane 5 ver-
sus lanes 4 and 6, respectively), suggesting that in the
absence of SurA and Skp increased levels of PpiD stimu-
late OmpA synthesis and/or stability. To substantiate this
result and to explore a possible influence of PpiD on
OmpA folding in surA skp cells, we examined the conse-
quence of PpiD overproduction on the OmpA folding
state during the course of SurA depletion in Askp cells.
The OmpA folding state can be conveniently followed by
a shift in the apparent mass on SDS polyacrylamide gels.
The folded B-barrel domain of OmpA is stable in 2%
SDS and migrates faster than unfolded OmpA if not
heat-denatured prior to electrophoresis [32]. OMPs were
prepared by gentle lysis to preserve their native confor-
mation [33] and OmpA folding intermediates were
detected by western blotting (Figure 4B). In contrast to
previous work showing that unfolded OmpA accumu-
lates in surA skp double null cells [26], we found the con-
ditional surA skp mutant to contain significantly reduced
levels of both, folded and unfolded forms of OmpA
(lanes 4 and 5). This difference may reflect the use of a
different SurA depletion strategy or the presence of
higher levels of DegP protease activity in the strain used
here, or both. In any case, the amount of folded OmpA
was clearly increased in surA skp cells that overproduced
PpiD (lane 3) and was almost as high as that in surA cells
(lane 1). Thus, in surA skp cells both synthesis and
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Figure 4 Overproduction of PpiD in surA skp cells stimulates
synthesis and folding of OmpA. The SurA-depletion strains Py
o1-SUrA (SB44454) and Py jc.01-SurA Askp (SB44452; Askp) were grown
at 37°C in LB buffered at pH 7.0 supplemented with 0.2% maltose
+of IPTG. Cells contained either pPpiD (+) or the empty vector
pASK75 (-). The data shown are representative for a minimum of
two independent experiments. (A) Total cellular levels of SurA and
of OmpA in SurA-depletion strains grown for 240 min as described
above. Extracts corresponding to 8 x 107 cells were loaded onto
each lane and analyzed by western blotting. Signal intensities were
calculated using cytoplasmic Hsc66 as the internal standard for each
lane and are shown relative to those in the SurA-depleted P juc.01-
surA strain (rel. Int). (B) Levels of unfolded OmpA (u-OmpA) and
folded OmpA (f-OmpA) species in SurA-depletion strains grown as
described above. Culture samples corresponding to an equal
number of cells were taken at the indicated time points and cell
extracts prepared by gentle lysis. Samples of cell extracts
corresponding to 1.3 x 10° cells were loaded onto each lane and
analyzed by western blotting. Relative signal intensities (rel. Int,) for
u-OmpA (u) and f-OmpA (f) were calculated as in A.
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folding of OmpA is stimulated by increased PpiD levels.
Together, these results suggest that in the absence of
both chaperones, SurA and Skp, overproduction of PpiD
can, at least in part, counteract the defects in the biogen-
esis of OmpA and possibly of other OMPs.

PpiD has in vitro chaperone activity

The above findings suggest that suppression of the lethal
surA skp phenotype by overproduction of PpiD does not
simply result from regulatory events in response to
increased PpiD levels but rather from functional com-
plementation of the surA skp caused deficiency. As the
defects of the surA skp double mutant are thought to
result from lack of periplasmic chaperone activity [10],
we asked whether the PpiD and PpiDAParv proteins
provide such an activity by examining their capability to
prevent aggregation of thermally denatured citrate
synthase, a classic in vitro assay for chaperone function
[34]. SurA had previously been shown to possesses this
activity [2] and was used as a control. When citrate
synthase was thermally denatured in the presence of an
8-fold molar excess of SurA (based on citrate synthase
monomer) aggregation was significantly reduced (Figure
5). Chymotrypsinogen A, which served as a negative
control, showed no or only minor effects at this concen-
tration. In contrast, an 8-fold excess of PpiD reduced
aggregation of citrate synthase significantly, although
less effectively than SurA, requiring 2-fold higher con-
centrations to have roughly the same effect. PpiDAParv
finally, which lacks the PPIase domain (Figure 2A), pro-
tected citrate synthase about 2-fold more effectively
from aggregation than intact PpiD, being almost as
effective as SurA. The observed chaperone effects are

= 100 3 4 buffer control ++++++

T 0ie 12 pM Chymotrypsinogen A ++'H' o

; 80 1o 1.2 uMSurA o ..0‘0

§ 7010 12uMPpD ++" *

= ® 2.4 uMPpiD +:.+o"'

5 8034 12uMPpiDAParv +o8
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Figure 5 The PpiD and PpiDAParv proteins exhibit chaperone

activity in vitro. Thermal aggregation of citrate synthase (0.15 uM

monomer) at 43°C in the presence of SurA (positive control),

Chymotrypsinogen A (negative control), and the soluble PpiD and

PpiDAParv proteins was observed by light scattering at 500 nm.
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not caused by protease contamination, as the same
amount of citrate synthase was present in samples taken
throughout a 1200 s incubation period with a 16-fold
excess of PpiD proteins (as judged by SDS-PAGE and
silver stain; data not shown). Thus, PpiD exhibits a
chaperone activity that is carried in the non-PPlase
regions of the protein. The finding that PpiDAParv com-
plements the growth defect of a surA skp mutant less
well than full-length PpiD (Figure 2C) although it exhi-
bits stronger in vitro chaperone activity (Figure 5) likely
relates to the presence of lower levels of PpiDAParv
than of plasmid-encoded intact PpiD in these cells (Fig-
ure 2D). The overall chaperone activity provided by
PpiDAParv in the cells may thus be weaker than that
provided by the overproduced intact PpiD.

PpiDAParv complements the growth defect of an fkpA
ppiD surA triple mutant

To provide further in vivo evidence for the existence of
a chaperone activity of PpiD we took advantage of a
phenotype that has previously been shown to be asso-
ciated with inactivation of ppiD. Such a phenotype is
exhibited by an fkpA ppiD surA triple mutant, which
displays growth defects during mid- to late exponential
phase in liquid culture, while all double mutant combi-
nations including these genes grow normally [20]. The
fkpA gene codes for the periplasmic folding factor FkpA,
which like SurA exhibits PPlase and chaperone activity
[35,36]. Our complementation analysis showed that both
the SurAN-Ct protein, which only exhibits chaperone
activity [2], and PpiDAParv restore growth of the fkpA
ppiD surA mutant as well as intact PpiD (Figure 6).
This demonstrates that the growth phenotype of the tri-
ple PPIase mutant is not due to loss of PPlase activity
but to loss of chaperone function. It also shows that
PpiD shares this function with SurA and FkpA. As in
SurA, the chaperone activity is carried solely in the non-
parvulin regions of the protein (PpiDAParv).

Lack of PpiD confers increased temperature-sensitivity in
a degP mutant

The periplasmic protease DegP also acts as a chaperone
[15,37] and the simultaneous lack of DegP and SurA
gives a synthetically lethal phenotype [10]. We therefore
asked whether similarly a chaperone function of PpiD
may be disclosed by the combined deletion of ppiD and
degP. DegP-deficient strains display a temperature-
sensitive phenotype at temperatures above 37°C [38].
Accordingly, we compared the growth of degP and ppiD
single mutants with that of a degP ppiD double mutant
at 30, 37, and 42°C (Figure 7). As expected, lack of
DegP compromised cell growth above 37°C. In contrast,
the ppiD single mutant showed wild-type growth at all
temperatures. However, the degP ppiD double mutant
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Figure 6 Growth complementation of an fkpA ppiD surA triple

mutant. Growth of the fkpA ppiD surA (SB11116; triple), fkpA surA

(SB11114), and surA (CAG24029) PPlase mutants and of wild-type

(CAG16037) in LB at 37°C was assayed by monitoring the ODgoo

during shaking culture.

was more temperature sensitive than the degP single
mutant and grew normally only at 30°C. Thus, degP
ppiD mutants show a synthetic conditional phenotype at
temperatures greater than 30°C.

Discussion

PpiD is a SurA-like multidomain chaperone

To date, four representatives of the three major families
of PPIases are known to exist in the periplasm of E. coli:
the cyclophilin PpiA [39], the FKBP-like protein FkpA
[35], and the parvulin-like proteins PpiD [18] and SurA
[6-8]. In addition to PPIase activity, SurA and FkpA also
exhibit prolyl isomerase-independent chaperone activity
[2,36] and the major function of SurA in the maturation
of the integral B-barrel OMPs actually is that of a cha-
perone [2]. While PpiD has also been implicated in
OMP biogenesis, the biochemical activity required for
this function was reported to be a PPlase activity carried

degP

: degP ppiD
10"6 4 2 0 6 420 6 4 2 0x4cells

Figure 7 Inactivation of ppiD confers increased temperature
sensitivity in a degP mutant. Growth analysis of wild-type
(CAG16037), degP:kan (SB44964), ppiD:Tn10 (SB44741), and degP:kan
ppiD:Tn10 (SB44970) cells. Cells were grown overnight at 30°C and
after dilution spotted on LB plates. Plates were incubated overnight
at the indicated temperature.

Page 9 of 17

in its parvulin domain [40]. A chaperone activity has so
far not been demonstrated for either PpiD or PpiA.

In this study we for the first time directly demonstrate,
both in vitro and in vivo, that PpiD exhibits a PPlase-inde-
pendent chaperone activity that resides in the N- and/or
C-terminal regions of the protein. The parvulin domain of
PpiD is neither required for function in vivo nor for cha-
perone activity in vitro, as a PpiD protein lacking this
domain fully complements the growth defect of an fkpA
ppiD surA triple mutant and protects citrate synthase
from thermal aggregation even more effectively than wild-
type PpiD. In addition, these results show that a catalytic
prolyl isomerase activity plays no major role for the func-
tion of PpiD in vivo. This conflicts with previous results
[40] but is consistent with most recent data showing that
the parvulin domain of PpiD is devoid of detectable PPlase
activity in vitro [19].

The chaperone function of PpiD is most likely carried
in its N-terminal region, which shares sequence similar-
ity with the N-terminal region of SurA (see additional
file 1A; [16-18]) and thus with a substantial part of the
SurA chaperone module [2]. Model structures of this
region of PpiD generated by alignment based as well as
by automated three-dimensional homology modeling
(see additional file 1, C and D) show some deviation
from the crystal structure of the SurA chaperone mod-
ule mainly in the helix 1-helix 2 and the helix 3-helix 4
interconnecting loop regions. Interestingly, whereas the
chaperone module of SurA lacks sequence similarity
with the structurally homologous chaperone domain of
the E. coli cytosolic Trigger factor (TF) [41], the pre-
dicted helix 1-loop-helix 2 region of PpiD shows similar-
ity on the amino acid level with the corresponding
region of TF (24.1% identity between regions 43-121
and 295-371 of PpiD and TF, respectively; see additional
file 1, B and E).

The similarities in sequence and predicted structure
between PpiD, SurA and TF suggest that PpiD contains
a conserved SurA-like chaperone module. However, for
a complete chaperone active module the region of PpiD
that would correspond to the C-terminal helix of SurA
still needs to be identified. As an integral element of the
conserved module structure this helix is indispensable
for the stability and activity of SurA [2,42] and presum-
ably also of other members of this family of chaperones.
The C-terminal helix of SurA was originally identified as
the stabilizing region of the protein as it is very basic
(predicted isoelectric points of 10.5) as compared to the
rather acidic N-terminal region (predicted isoelectric
point 5.3) [2]. Similarly, the corresponding helix in the
chaperone domain of TF is rather basic as opposed to
the rest of the module (predicted isoelectric points of
8.4 and 4.7, respectively). Finally, the N-terminal region
of PpiD is acidic too (predicted isoelectric point of 4.7)
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and therefore the single basic region of the protein
which is located in the C-terminal domain (amino acids
511-560, predicted isoelectric point of 10) and is pre-
dicted to be rich in a-helical secondary structure, would
be a primary candidate for the stabilizing region. Taken
together, all indications are that PpiD is a membrane-
anchored SurA-like multidomain chaperone, which like
SurA combines a conserved chaperone module with an
inactive parvulin domain. Different from SurA however,
PpiD lacks a second active parvulin domain and instead
contains a C-terminal domain, whose function remains
to be determined.

Role of PpiD in the periplasm

PpiD was previously reported to be redundant in func-
tion with SurA in the maturation of OMPs [18]. Our
results however, establish that PpiD plays no major role
in the biogenesis of OMPs and that it cannot compensate
for lack of SurA in the periplasm. In addition, PpiD dif-
fers from SurA in that it requires to be anchored in the
inner membrane to function in vivo whereas SurA is
functional both in a soluble and in a membrane-anchored
state (S. Behrens-Kneip, unpublished results). Then
again, ppiD in multicopy suppresses the surA skp caused
deficiencies. The strong induction of the * and Cpx
stress pathways during the course of depletion of SurA
from Askp cells is significantly reduced by simultaneous
overproduction of PpiD. This suggests that increased
levels of PpiD rescue surA skp cells from lethality by
counteracting the severe folding stress in the cell envel-
ope which results from the loss of periplasmic chaperone
activity. We cannot formally eliminate the possibility that
the observed effects result from a response of (an)other
known or still to be identified regulatory pathway(s) to
increased levels of PpiD in the inner membrane. Such
regulatory mechanisms may, for instance, induce peri-
plasmic protease activity that reduces folding stress by
protein degradation. However, they would not readily
explain our observation that PpiD overproducing surA
skp cells contain higher levels of folded forms of OmpA
even though they lack two of three chaperones critical
for OMP folding. The third OMP chaperone, DegP,
appears to interact preferentially with OMPs that
already contain substantial levels of folded structure
[15] and would thus be expected to predominantly
assist in late steps of OMP folding. Moreover, since
DegP levels in surA skp cells are reduced by overpro-
duction of PpiD it seems implausible that DegP is
responsible for the observed effect on OmpA folding.
This, together with our finding that PpiD has chaper-
one activity in vitro leads us to suggest that PpiD,
when present at sufficient levels, is able to partially
compensate for the simultaneous loss of SurA and Skp
chaperone function.
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But why would PpiD promote the folding of OmpA in
a surA skp double mutant but have no discernable
impact on OMP folding in the respective surA and skp
single mutants? We believe that this effect is due to
overlapping substrate specificities but yet distinct roles
of these chaperones in the periplasm, as has also been
suggested for the SurA and Skp chaperones [5,26]. Both
SurA and Skp interact with unfolded major OMPs
[2,43] and facilitate their biogenesis, yet they cannot
functionally substitute one another in the cell (Figure 1
and our unpublished data) and are thought to act in
parallel pathways of OMP folding [5,26]. The peptide
binding specificity of PpiD has been shown to overlap
with that of SurA but to be less specific [44], suggesting
that PpiD is capable of interacting with a broader range
of substrates. Thus, while unfolded major OMPs
obviously are no preferred substrates of PpiD, they may
still effectively interact with PpiD for folding in the
absence of the competing chaperones SurA and Skp. In
this context it is important to mention, that overproduc-
tion of PpiD does not restore viability of a surA degP
double mutant (S. Behrens-Kneip, unpublished results).
This suggests that, when overproduced in surA skp cells,
PpiD compensates for the lack of Skp upstream of DegP
in the proposed Skp/DegP branch of protein folding
rather than for the lack of SurA. The magnitude of sup-
pression of the surA skp phenotypes elicited by multi-
copy ppiD and the additive phenotypes of the ppiD degP
and skp ppiD double mutants described in this work are
in support of this notion. Moreover, direct evidence for
partially overlapping functions of the membrane-
anchored PpiD and the soluble Skp comes from the
recent finding that both proteins interact with
OMP polypeptides very early during translocation and
promote their release from the SecYEG translocation
channel [12,14,24].

It has recently been proposed that PpiD is a periplas-
mic gatekeeper of the Sec translocon responsible for
newly translocated OMPs [24]. Our work agrees with
and refines this assumption, as it shows that PpiD exhi-
bits the requisite chaperone activity for such a function,
that this function is not preferentially directed at folding
of OMPs, and that PpiD cooperates with SurA, Skp,
FkpA and DegP in mediating protein folding in the peri-
plasmic compartment of the cell. We suggest that the
role of PpiD is to assist in the initial periplasmic folding
events of many newly secreted envelope proteins.

In the cytosol, the folding of newly synthesized pro-
teins is initiated by the ribosome-associated chaperone
TF [45,46]. Of note, PpiD and TF show some interesting
analogies. First, similar to PpiD TF is composed of three
domains: an N-terminal ribosome-binding domain, a
central FKBP-like PPlase domain, and a C-terminal cha-
perone module which is structurally homologous to the
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chaperone module of SurA [41,47] and, as outlined
above, shows sequence similarity with the N-terminal
putative chaperone region of PpiD. Second, TF associ-
ates with the ribosome to sequester and protect poly-
peptides just as they emerge from the peptide exit
tunnel [46] and this association is crucial for its in vivo
function [48]. PpiD on the other hand, is anchored in
the inner membrane and interacts with newly translo-
cated polypeptides that emerge from the periplasmic
exit site of the Sec translocon [24] and according to our
data, the anchoring of PpiD in the membrane is
required for its function in vivo. Third, TF is dispensable
for cell viability and a deletion of the tig gene confers a
discernable phenotype only in combination with a muta-
tion of the dnaK gene for the cytosolic chaperone DnaK
[45]. Likewise, lack of PpiD gives a discernable pheno-
type only in cells with already compromised periplasmic
chaperone activity, such as in the fkpA ppiD surA triple
mutant and in the degP ppiD and ppiD skp double
mutants. Finally, the amino acid sequence pattern of
known PpiD binding peptides [44] resembles that of the
peptide binding motifs identified for the cytosolic cha-
perones TF and Dnak, consisting of a central patch of
hydrophobic amino acids flanked by positively charged
amino acids [49]. Altogether, we speculate that PpiD
may represent the periplasmic counterpart of TF. Its
fixed localization in the inner membrane not necessarily
conflicts with such a function, as it may provide a local
enrichment of the binding partners but still allows PpiD
to dynamically interact with and cycle on and off its
interaction partners by lateral diffusion in the mem-
brane, just as it is the hallmark of TF function on trans-
lating ribosomes [50]. Further detailed studies on the
interaction of PpiD with both the Sec translocation
machinery and translocating polypeptides as well as the
analysis of the structure-function relationship in PpiD
are needed to ascertain its real function in the
periplasm.

Conclusions

This study for the first time directly demonstrates that
PpiD functions as a chaperone and that its previous
classification as a folding factor for OMPs must be
revised. PpiD appears to belong to the SurA-like family
of chaperones but different from SurA it plays no major
role in the maturation of OMPs. A biochemical capabil-
ity of PpiD to also assist the folding of OMPs becomes
relevant only in the absence of both chaperones for
unfolded OMPs, SurA and Skp. In addition, the role of
PpiD in the periplasm appears to be restricted to folding
events that take place in close proximity to the inner
membrane, as only membrane-anchored PpiD functions
in vivo. Taken together, our data are in line with the
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recently proposed role of PpiD as a periplasmic gate-
keeper of the Sec translocon [24], as they suggest that it
acts as a chaperone for initial folding events of many
newly exported proteins. We speculate that PpiD may
have a role at the periplasmic exit site of the Sec trans-
locon similar to that of TF at the exit site of the trans-
lating ribosome.

Methods

Media and growth conditions

Luria-Bertani (LB) media were prepared as described
[51]. Ampicillin (Ap), chloramphenicol (Cm), kanamycin
(Kan), spectinomycin (Spec), and tetracycline (Tc) were
used at final concentrations of 100, 20, 30, 50 and 10 pg
ml™, respectively. For assaying B-galactosidase activity in
cpxP-lacZ reporter strains the medium was buffered
with 100 mM sodium phosphate to a pH of 7.0, at
which ¢pxP transcription, which is affected by extracel-
lular alkaline pH, is induced to a medium level [57].
Strains were grown at 37°C with aeration unless noted
otherwise.

Strains

Strains used in this work are listed in Table 2. Mutant
alleles were moved into the appropriate strains either by
general transduction using phage T4-GT7 [52] or by P1
transduction [53]. The presence of the mutant alleles
in recombinants was verified by PCR. To generate
SurA-depletion strains the chromosomal surA gene was
placed under the control of the IPTG-inducible promo-
ter Prj,..0; [23] by gene replacement as described pre-
viously [54]. A ~3.1 kb DNA fragment bearing an Q::
spectinomycin-Pr;,..o; fusion flanked by approximately
500 bp of imp and surA sequence, respectively, was
obtained from pQSurA by cleavage with EcoRI and par-
tial digest with HindlIIL E. coli KM22 was electroporated
with the purified fragment. Recombinants were selected
on LB/Spec and used as donors for transduction of the
Q:spec-Pry,..07-surA locus into the appropriate strains.
The final Q::spec-Py,..0;-surA strains were transformed
with pPLT13 to provide the Lacl repressor protein.

Plasmids

Plasmids used in this study are listed in Table 3.
To make pQSurA, the sequences flanking the Q::spec-
P;y,c.0; cassette in plasmid pBA106 [55] were replaced
by portions of the imp-surA locus corresponding to
nucleotides -581 to -35 (imp3’, 497 bp) and nucleotides
-26 to 508 (surAN, 534 bp), respectively, relative to the
surA translational start codon. Fragment imp3’ was
amplified by PCR from purified MC1061 genomic DNA
using the primers 5-GGATTGCGTGGCGGAATT-
CAGTACG-3 and 5-
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Table 2 Strains used in this study
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Strain Genotype Source, reference, donor strain
CAG16037 MC1061 @AlrpoH P3:lacZ) [56]
CAG24029 CAG16037 surA:Tn10dCm [6]

CAG33398 MC1061 ARS88(cpxP-lac?)
CAG37057 CAG16037 Askp zae-502:Tn10

CA. Gross laboratory
C.A. Gross laboratory
(2]

This study; donor MC4100 ppiD:Tn10 (T.
Silhavy)

This study

This study; donor MC4100 ppiD:Tn10 (T.
Silhavy)

This study; donor CAG24029
This study; donor JW0431 [59]

This study; donor MC4100 ppiD:Tn10 (T.
Silhavy)

This study; donor JW3309 [59]
This study; donor JW3309 [59]
This study; donor JW0431 [59]
This study; donor CAG37057
This study

This study

This study

This study; donor MC4100 ppiD:Tn10 (T.

Silhavy)

This study; donor JW0431 [59]

This study; donor JW0431 [59]

This study; donor JW0431 [59]

This study; donor JW0157 [59]
7 159

This study; donor JW015

59

[
[59

CAG44102  MC4100 surA:Tn10dCm slyD1 zhg:Tn10; Cm® Tc"

KM22 argE3 his-4 leuB6 thr-1 ara-14 galk2 lacY1 mtl-1 xyl-5 thi-1 rpsL31 tsx-33 supE44 AfrecC ptr recB [54]
recD)::Pc-bet exo kan

SB10042  CAG24029 ppiD:Tn10

SB11019  CAG33398 (:spec-Pjge.0r-surA pPLT13

SB11067  CAG33398 ppiD:Tn10

SB11069  CAG33398 surA:Tn10dCm

SB11072  SB44080 ppiD:kan

SB11075  SB11069 ppiD:Tn10

SB11114  CAG24029 fkpA:kan

SB11116  SB10042 fkpA:zkan

SB11179  CAG33398 ppiD:kan

SB44080  CAG33398 Askp zae-502:Tn10

SB44451 CAG37057 Q:spec-Pyige-01-SUrA

SB44452  CAG37057 Q:spec-Pjjac.01-surA pPLT13

SB44454  CAG16037 Q:spec-Pjjac.01-surA pPLT13

SB44741  CAG16037 ppiD:Tn10

SB44913  CAG16037 ppiD:kan

SB44914  CAG37057 ppiD:kan

SB44961  SB44451 ppiD:kan pAClacl

SB44964  CAG16037 degP:kan

SB44970  SB44741 degP:kan

SB44997  CAGA44080 :spec-Pjac.0i-surA pPLT13

This study

ACCGCACTGCGGATCCCGTGGTAAATC-3". The
EcoRl/BamHI-cleaved product was ligated into the cor-
responding sites of pBA106. Subsequently, the surAN
fragment was obtained from pSurAN [2] by Ncol/Hin-
dIII cleavage and cloned into the corresponding sites
downstream of Q::spec-Pjj,..0; in the above intermedi-
ate. pASKSurAN-Ct was constructed by cloning a PstI/
BgllI fragment of pSurAN-Ct [2] into the corresponding
sites of pASKSurA [2]. To yield pPpiD, the ppiD gene
and its promoter region was PCR amplified from the
MC1061 chromosome using the primers 5-GTGCTGC-
CCATATGGGCCGCAACCCG-3and 5-TTTTGCGAG-
GAAGCTTCAGGA TTATTGC-3". The PCR fragment
was cleaved with Ndel/HindIIl and cloned into the Ndel
and HindlII sites of pTrc99a, thereby removing the plas-
mid encoded lacl? gene and P, promoter sequences.
Plasmids pPpiD**’# and pPpiD™*°* were created by
replacing the codons 347 and 350 of ppiD to codons
for alanine by QuikChange site directed mutagenesis
(Stratagene, La Jolla, CA) using the primer pair

5-CAAATCTTCGGTCGCTTTCCTG-3"/5-CAGGA-
AAGCGACCGAAGATTTG-3" and 5-CGGTTTCCTG-
GCTGTACGTCTGG-3'/5-CCAGACGTACAGCCAGG-
AAACC-3’, respectively. Plasmid pPpiDA69-201 was
made by deletion of a Pvul/Hpal fragment from pPpiD.
pPpiDAParv was constructed as follows: a second EcoRV
site was introduced at nucleotides 1062-1068 of ppiD by
QuikChange mutagenesis of pPpiD using primers
5-GTCTGGACGATATCCAGCCAGCGAAAG-3 and
5-CTTTCGCTGGCTGGATATCGTCCAGAC-3'. In
the resulting plasmid, the parvulin domain encoding
sequence of ppiD was flanked by EcoRV sites. Deletion
of the EcoRV fragment resulted in pPpiDAParv. Plasmid
pPpiDfs601 was made by cleavage of pPpiD with Kpnl,
removal of the resulting 3’-overhangs with DNA poly-
merase I Klenow fragment, and subsequent ligation.
Plasmid pASKssPpiD for the production of a soluble
periplasmic N-terminally hexa-His-tagged PpiD protein
was constructed in three steps. First, a BamHI site was
introduced at codons 33-34 of ppiD by QuikChange
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Table 3 Plasmids used in this study
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Plasmid Genotype Source,
reference
pAClacl PACYC184 derivative with lacl’; Cm°® This study
pASK75 vector, P/Oy, tetR, ColEl ori; ApR [60]
PASKSuUrA? surA gene in pASK75; Ap® [2]
PASKSUrAN-Ct>  surAN-Ct fusion from pSurAN-Ct [2] in pASK75; Ap" This study
pASKssPpiD surA signal sequence-hisg-ppiD (codons 34-623) fusion in PASK75; Ap® This study
PASKssPpiDAPary  pASKssPpiDA252-355; Aph This study
pQSurA Qzspec-Pyacor surA in puUCT8; Ap®: Spec? This study
pMP1 skp gene region of E coli MC1061 (corresponding to nucleotides 199495-201937 of the E. coli MG1655 Gross laboratory
genome®) in pSU18; Cm"*
pPLT13 mini-F carrying lacl?; Kan® [61]
pPpiD ppiD gene and promoter of E. coli MC1061 (corresponding to nucleotides 460852-463020 of the E. coli MG1655  This study
genome®) in pTrc99A (lacl” and Py, sequences deleted); ApR
pPpID>0" pPpID carrying mutation 1350 to A; Ap® This study
pPpIDS3A pPpID carrying mutation G347 to A; Ap" This study
PPPIDA69-201  pPpiDA69-201; Ap” This study
pPpiDAParv pPpiDA252-355; Ap® This study
pPpiD(ATM) surA signal sequence-hisg-ppiD (codons 34-623) fusion in pPpiD; Ap® This study
pPpiDfs601 pPpiD with a frameshift mutation in ppiD that generates a stop at codon 173; Ap" This study
pQE60 C-Hisg fusion vector, Prs/Oj, ColEl ori; Ap? Qiagen
pSkp skp gene and skp promoter of E. coli MC1061 (corresponding to nucleotides 200073-201801 of the E. coli This study
MG1655 genome®) in pQEEO (Prs/Ojc deleted); Ap®
pTrc99a Expression vector, P, ColEl ori; ApR Amersham
Pharmacia

2bReferred to as pSurA and pSurAN-Ct, respectively, in the text.
“accession number NC_000913 [62].

mutagenesis of pPpiD using primers 5-GCGTGAGTG-
GATCCCTGATTGGCGGA-3’ and 5-TCCGCCAAT-
CAGGGATCCACTCACGC-3'. Second, the BamHI/
HindlII fragment of the resulting plasmid, encoding
PpiD without the transmembrane segment, was cloned
into the BamHI/HindlIlI sites of a pASKSurA plasmid
that carried a Sacl site at codons 22-23 of surA [2].
Third, the 5’-phosphorylated oligonucleotides 5-CCAT-
CACCATCACCATCACG-3 and 5-GATCCGTGATG-
GTGATGGTGATGGAGCT-3" were annealed and
cloned into Sacl/BamHI of the above intermediate,
thereby placing a hexa-His sequence between the signal
peptide sequence of surA and codons 34 to 623 of ppiD.
To make pASKssPpiDAParv, the Sphl/Pstl fragment of
pASKssPpiD bearing the parvulin domain encoding
sequence was replaced by a Sphl/Pstl fragment derived
from plasmid pPpiDAParv. To make pPpiDATM, a 1350
bp-fragment carrying the surA signal sequence-hiss-ppiD
fusion was PCR amplified from pASKssPpiD using pri-
mers 5-CATTGATAGAGTTACGTAACCACTCCC-3’
and 5’-CACTTTCTGCTGCAGCGCG-3'. The product
was cleaved with SnaBl/Pstl and cloned into the Stul
and Pstl sites of pPpiD. To create plasmid pSkp, a 1722
bp Xhol/Ndel fragment derived from plasmid pMP1 was

cloned into the corresponding sites of pQE60 thereby
removing the plasmid-encoded Prs/O,,. promoter/
operator sequences. All plasmid sequences were con-
firmed by DNA sequencing.

Assay of susceptibility to SDS/EDTA

The sensitivity of the strains to SDS/EDTA was deter-
mined in plating assays as previously described [2]. The
efficiency of plating was calculated from the colony count
after incubation at 37°C for 24-48 h. A minimum of three
experiments were performed for each strain and condition.

Spot dilution assays

SurA-depletion strains were freshly transformed with the
required plasmids and were grown overnight at 37°C in
selective LB containing 1 mM IPTG. Overnight cultures
were adjusted to an optical density at 600 nm (ODgqg) of
4.0 and 10-fold serially diluted with IPTG-free LB. Ten
microlitres of the 107!, 1073, 10, and 107 dilutions were
spotted on LB + 1 mM IPTG plates supplemented with
the appropriate antibiotics and incubated at 37°C for 16-
24 h. To test for temperature sensitivity, strains were
grown overnight at 30°C in LB and were diluted and
spotted on LB plates as described above.
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SurA depletion in vivo

SB44452 or SB44997 were freshly transformed with the
appropriate plasmids and grown overnight at 37°C in LB/
Ap/Kan/Spec (buffered at a pH of 7.0, if required) supple-
mented with 1 mM IPTG and 0.2% (w/v) maltose to
induce expression of the maltoporin LamB. Two milliliters
of each overnight culture were pelleted in a microcentri-
fuge and were washed three times in 2 ml of LB to remove
IPTG from the cells. The washed cultures were then
diluted to an ODgqq of 0.01 into 50 ml of LB/Ap/Kan + 1
mM IPTG. These pre-cultures were grown for 4-5 cell gen-
erations with shaking in a gyratory water bath at 37°C and
diluted into fresh LB/Ap/Kan + 1 mM IPTG to an ODgqq
of 0.005. Aliquots were sampled for f3-galactosidase assays,
for western blot analysis, and for the preparation of OmpA
folding intermediates at the indicated time points after the
second sub-culturing and processed as described below.

B-galactosidase assays

Ec® and Cpx pathway activities were assayed by moni-
toring the B-galactosidase activity resulting from the
expression of the chromosomal - and Cpx-dependent
reporter fusions rpoHP3::lacZ [56] and cpxP-lacZ [57],
respectively, in cells growing in LB medium (buffered at
pH 7.0 for Cpx assays) at 37°C. Overnight cultures were
diluted to an ODggg of 0.005 into fresh media and
grown with shaking in a gyratory water bath at 37°C.
Duplicate samples (0.5 ml) were taken throughout the
early exponential phase of the growth curve (ODggyo =
0.08-0.4) and B-galactosidase activity was measured by
the standard assay [53]. Ec"® and Cpx activities shown in
Figure 1 were determined from the slope on the line of
a differential plot of B-galactosidase activity in 0.5 ml of
culture versus ODggo and normalized to the wild-type
case. In Figure 3, the average -galactosidase activity/
ODggo (Miller Units) was calculated and normalized to
that of wild-type. Statistical analysis was performed
using a Student’s ¢-test.

Western blot analysis

Whole cell extracts were prepared by resuspending cells
in urea protein sample buffer (8 M urea, 200 mM Tris-
Base, 200 mM DTT, 2% SDS, 0.02% bromphenol blue)
followed by short sonication and heating of the sample
to 95°C for 10 min. Extracts from equal numbers of
cells were run on SDS-polyacrylamide gels and trans-
ferred to nitrocellulose membranes. The membranes
were probed with dilutions of rabbit polyclonal antisera
raised against SurA (1:10 000), PpiD (1:10 000), DegP
(1:20 000), Hsc66 (1:20 000), LamB (1:3000), and with
mouse monoclonal antibodies raised against OmpA
(1:500), respectively. Alkaline phosphatase conjugated
goat anti-rabbit and anti-mouse IgGs (Sigma, 1.10 000
dilutions), respectively, served as secondary antibodies.
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They were visualized by incubating the blots in reaction
buffer (100 mM Tris-HCI, pH 8.8, 100 mM NacCl,
5 mM MgCl,, 37.5 pg/ml nitro blue tetrazolium, 150
pg/ml 5-bromo-4-chloro-3-indolyl phosphate). Signal
intensities were quantified using Image] software http://
rsb.info.nih.gov/ij/. Hsc66 and MalE were used as the
internal standard for each lane. Experiments were
repeated a minimum of two times for each strain and
condition, and data for one representative experiment
are shown.

Preparation of OmpA folding intermediates

During the course of SurA depletion, samples corre-
sponding to an equal number of cells were harvested by
centrifugation and immediately frozen in a dry ice/etha-
nol bath. Folded and unfolded OmpA folding intermedi-
ates were isolated by gentle lysis as previously described
[33]. Samples were mixed with protein sample buffer (3%
SDS, 10% glycerol, 5% B-mercaptoethanol in 70 mM
Tris, HCI, pH 6.8), heated to 37°C for 10 min and loaded
onto 12.5% SDS-polyacrylamide gels. Electrophoresis was
performed at 50 V and OmpA intermediates were
detected by Western blot analysis as described above.

Protein purification

N-terminally Hisc-tagged PpiD proteins and C-terminally
Hise-tagged SurA were produced in E. coli CAG44102
from pASKssPpiD, pASKssPpiDAParv and pASKSurA,
respectively, and purified from the periplasmic fraction
by affinity chromatography on Ni**-chelating sepharose
as previously described [2]. Protein concentrations were
determined by UV absorbance at 280 nm using absorp-
tion coefficients of 36 270 M™' cm™, 26 740 M™' cm™
and 29 450 M cm™ for Hise-PpiD, Hise-PpiDAParv and
SurA-Hisg, respectively, as calculated according to [58].

Analysis of chaperone function in vitro

Effects of PpiD proteins on the thermal aggregation
of citrate synthase were determined according to [34].
Aggregation was monitored on a Hitachi F-4500 spec-
trofluorometer with both excitation and emission wave-
lengths set to 500 nm at a spectral bandwidth of 2.5
nm. Data points were recorded every 0.5 s.

Additional material

Additional file 1: Similarity between the N-terminal region of PpiD
and the chaperone modules of SurA and Trigger factor (TF). (A and
B) The N-terminal region of PpiD shows sequence similarity with the

N- and C-terminal regions of SurA (A, 25.2% identity) and TF (B, 19.9%
identity), respectively. The sequence alignments were generated with
CLUSTALW?2 [63]. Gray shaded regions indicate the regions of high
similarity that were initially identified with LALIGN [64] (31.1% (A) and
24.1% (B) identity, respectively). Identical amino acid residues are
indicated by asterisks; conserved and semi-conserved residues are
marked with colons and dots, respectively. (C-E) Three-dimensional
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homology modeling suggests structural similarity of the N-terminal
region of PpiD with the chaperone modules of SurA and TF. All
structures were visualized in PyMol and are depicted in ribbon
representation. (C) Comparative model structure of the N-terminal region
of PpiD (red colored) and the N-Ct chaperone module of SurA (blue
colored) based on the sequence alignment shown in (A). The model was
generated in the Swiss-Model workspace [65] using the structure
coordinates of SurA (PDB 1m5y; [42]) as a template. Helices of the
N-terminal region of SurA are numbered. A region of PpiD that
corresponds to the C-terminal helix ("C helix”) of SurA has not yet been
identified. (D) Model structure of the N-terminal region of PpiD
generated by the automatic program 3D-JIGSAW [66]. (E) Fold of the
C-terminal chaperone domain of TF (PDB code 1w26; [41]). The region
that shares similarity with PpiD is highlighted in red (corresponding to
the gray shaded sequence in (B)).

Additional file 2: Complementation of the growth defect of ppiD
skp surA cells by wild-type PpiD and its PPlase domain mutants.
Growth of the SurA-depletion strain Py c.o5-surA Mskp ppiD:kan
(SB44961) carrying the empty vector pASK75 or plasmids encoding wild-
type proteins and variants of SurA, Skp, and PpiD, respectively. Cells were
grown overnight in the presence of IPTG and after dilution spotted on
LB plates = 1 mM IPTG. Plates were incubated at 37°C for 16-24 h.

Additional file 3: Effects of NIpE overproduction in surA skp cells.
(A) Growth of the SurA-depletion strains Pjjc-05-surA (SB11019) and
Priac.or-SurA Mskp (SB44997) at 37°C in buffered LB (pH 7.0) with (solid
lines) and without (dotted lines) IPTG, resulting in the indicated wild-type
(WT), surA, skp and surA skp "genotypes”. Strains carried pASK75 (empty
vector) or plasmids encoding PpiD and NIpE, respectively. (B) Within the
indicated interval (box in panel A) samples were taken and assayed for
the activities of oo™ and Cpx by monitoring pR-galactosidase activity
resulting from chromosomal rpoHP3:lacZ and cpxP-lacZ reporter fusions,
respectively (see Methods). Results represent the average of at least two
independent experiments. (C) Western blot detection of SurA in Pyaco:-
surA strains after 265- and 360-minute growth as described in A. Extracts
from 4 x 107 cells were loaded onto each lane. Signal intensities were
calculated using Hsc66 as the internal standard for each lane and are
shown relative to those in the wild-type strain (rel. Int). Pjac-0s-SUrA
Mskp cells that carried pASK75 or pNIpE resumed production of SurA
after 265-minute growth without IPTG. At about the same time, these
cultures also resumed growth (see panel A). The onset of regained SurA
production and revived growth varied between growth experiments
(data not shown), suggesting that the cultures contained a small
population of the cells that was still capable of producing SurA, possibly
due to a promoter mutation, and that eventually outgrew the SurA-
depleted Mskp cell population. In contrast, SurA was hardly detectable
during the entire course of growth of PpiD overproducing surA AMskp
cells. (D) Growth of the strain Pyuc.o5-surA Mskp (SB44997) carrying
PASK75 or plasmids encoding SurA, PpiD, and NIpE, respectively. Cells
were grown overnight in the presence of IPTG, after dilution spotted on
LB plates = 1 mM IPTG, and incubated at 37°C for 16-24 h.

Additional file 4: Effects of ppiD and niIpE overexpression on the
surA skp growth and stress response phenotypes. Table summarizing
the levels of suppression of the growth defect and the oof and Cpx
phenotypes of surA skp cells caused by multicopy ppiD and nipk,
respectively.
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