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Abstract 27 

 28 

Specimens from wild and captive primates were collected, and searched for new members of the 29 

genus Lymphocryptovirus (subfamily Gammaherpesvirinae) utilising PCR for the DNA polymerase 30 

gene. Twenty-one new viruses were detected. Together with previous findings, more than 50 31 

distinct lymphocryptoviruses (LCVs) are now known, with hosts from six primate families 32 

(Hominidae, Hylobatidae, Cercopithecidae, Atelidae, Cebidae, Pitheciidae). Further work extended 33 

genomic sequences for 25 LCVs to 3.4-7.4 kbp. Phylogenetic trees were constructed, based on 34 

alignments of protein sequences inferred from the LCV genomic data. The LCVs fell into three 35 

major clades: Clade A, comprising New World viruses; Clade B, containing both Old World monkey 36 

viruses and hominoid viruses including Epstein-Barr virus (EBV); and Clade C, containing other 37 

hominoid viruses. By comparison with the primate tree, it was proposed that major elements of the 38 

LCV tree represented synchronous evolution with host lineages, with the earliest node in both 39 

trees being separation of Old and New World lines, but that some virus lineages originated by 40 

interspecies transfer. From comparisons of branch lengths, it was inferred that evolutionary 41 

substitution in Clade B has proceeded more slowly than elsewhere in the LCV tree. It was 42 

estimated that in Clade B a subclade containing EBV, a gorilla virus and two chimpanzee viruses 43 

derived from an Old World monkey LCV line approximately twelve million years ago, and another 44 

subclade containing an orang utan virus and a gibbon virus derived from a macaque LCV line 45 

approximately 1.2 million years ago. 46 

 47 
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Introduction 48 

This paper is concerned with relationships among viruses of the Lymphocryptovirus genus 49 

(subfamily Gammaherpesvirinae, family Herpesviridae, order Herpesvirales; Davison et al., 2009). 50 

Lymphocryptoviruses (LCVs) all have primate hosts, and Epstein-Barr virus (EBV) is the single 51 

known human LCV. Historically the Gammaherpesvirinae subfamily was treated as consisting of 52 

the gamma-1 and gamma-2 groups. The term gamma-1 group is now superseded in formal 53 

taxonomy by Lymphocryptovirus. Three genera are presently assigned to the gamma-2 group 54 

(Rhadinovirus, Percavirus and Macavirus) and there are additional gamma-2 lineages for which 55 

the taxonomy is not yet developed (Davison et al., 2009; Ehlers et al., 2008). Phylogenetic trees 56 

for the Herpesviridae, based on molecular sequences, display large scale features within each of 57 

the three subfamilies that have been interpreted as showing synchronous development of major 58 

viral lineages with the lineages of the mammalian hosts, and such cospeciation has evidently been 59 

a prominent mode in the evolution of this virus family (McGeoch et al., 2006, 2008). It is 60 

considered that in the Gammaherpesvirinae the gamma-1 branch originated cospeciationally with 61 

the primate lineage (McGeoch et al., 2006). 62 

EBV was the first gammaherpesvirus identified (Epstein et al., 1964), and was later classified 63 

as the type species of the genus Lymphocryptovirus. EBV causes infectious mononucleosis and is 64 

associated with various tumours in humans (Pagano, 1999). In Old World nonhuman primates, 65 

evidence for EBV-like LCVs was initially obtained by serological cross-reactivity to EBV, in 66 

chimpanzees (Landon et al., 1980), orangutans (Rasheed et al., 1977), gorillas (Neubauer et al., 67 

1979), baboons (Vasiljeva et al., 1974), and diverse macaque species (Fujimoto et al., 1990; 68 

Hayashi et al., 1999; Rangan et al., 1986; Rivadeneira et al., 1999). More recently, PCR based 69 

methods have been used to detect LCVs in Old World and New World primates (Ramer et al., 70 

2000; Cho et al., 2001; Ehlers et al., 2003; Prepens et al., 2007), and to date about 30 different 71 

LCVs are known.  72 

In a previous study, we amplified partial sequences for DNA polymerase (DPOL; BALF5 in 73 

EBV) genes of 26 novel LCVs and analysed them phylogenetically. Three major clusters of LCVs 74 

were separated in the phylogenetic tree, one comprising LCVs of New World monkeys, the other 75 

two comprising LCVs of hominoids. One of them (Genogroup 1) was highly populated and 76 

contained beside hominoid LCVs, including EBV, also those of several Old World monkeys. The 77 

other group (Genogroup 2) was small and contained viruses of apes, but no monkey LCVs. Gorilla 78 

viruses were present in both groups. From these findings (in particular the last) we proposed that 79 

two lineages of Old World primate LCVs might exist, each with representatives in most primate 80 

species (Ehlers et al., 2003). 81 

In the present study, we followed two experimental lines to reassess this hypothesis. First, 82 

we searched for additional LCVs of Genogroup 2, particularly in chimpanzees and Old World 83 

monkeys. Second, we set out to extend the short DPOL sequences, which were the only available 84 
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data for most of the described LCVs, by a bigenic PCR approach targeting also the glycoprotein B 85 

(gB; BALF4 in EBV) gene. For a subset of these viruses, we determined sequences that spanned 86 

up to four genes. With this much larger data set we have performed phylogenetic analyses, and 87 

have revised our interpretation of LCV evolution. 88 

 89 

 90 

Results  91 

 92 

Multigenic de novo detection of novel LCV 93 

Over six years, blood, tissue and faeces samples (n=502) were collected from live or deceased 94 

individuals of 49 primate species (apes, Old World monkeys, New World monkeys and prosimians) 95 

as described in the Methods section. LCV DPOL gene sequences were successfully amplified from 96 

50% of the samples (n=251) with pan-herpes DPOL PCR. Sequences identical to some of these 97 

were detected previously (Ehlers et al., 2003), but most came from 21 novel putative LCVs. They 98 

were listed with their names, abbreviations, hosts and GenBank accession numbers in Table 2. 99 

Combined with the 26 species detected previously (Ehlers et al., 2003), a total of 47 LCVs were 100 

discovered. The LCV-positive primate hosts originated from seven African, Asian and European 101 

countries, and were members of six different primate families, three of the Catarrhini (Hominidae, 102 

Hylobatidae, Cercopithecidae) and three of the Platyrrhini (Atelidae, Cebidae, Pitheciidae). No 103 

prosimian LCVs were detected. 104 

For amplification of the major DNA binding protein (MDBP; BALF2 in EBV) gene and gB 105 

gene sequences, nested deg/dI primer sets (BALF2A and BALF4A, respectively) were derived 106 

from known LCV sequences (CalHV-3 BALF2 and PtroLCV-1 BALF4) and the primer binding sites 107 

placed within regions of high gammaherpesvirus conservation. With BALF2A and BALF4A sets we 108 

amplified MDBP and gB gene sequences from most of the 47 LCV species. Amplification of 109 

GgorLCV-2 and SsynLCV-1 with BALF2A and BALF4A yielded incorrect sequences or failed, since 110 

many GgorLCV-2 and all SsynLCV-1 positive samples were double-infected with GgorLCV-1 and 111 

SsynLCV-2, respectively. We therefore used PpygLCV-1 sequences – once determined - to design 112 

the alternative primer sets BALF2B and BALF4B. For 25 LCVs, the gB sequences could be 113 

connected to the corresponding DPOL sequences with Long-Distance (LD)-PCR using virus-114 

specific gB-sense primers and DPOL-antisense primers. Contiguous sequences of 3.4 kbp 115 

spanning the 3´-part of the gB gene and the 5´-part of the DPOL gene were obtained (Table 2). For 116 

eleven out of 25 LCVs, MDBP sequences could be connected to gB with a second LD-PCR, and 117 

contiguous sequences of up to 7.5 kbp were determined, spanning two-thirds of the DPOL gene 118 

and the complete gB gene, and in some cases also the complete BALF3 gene (Figure 1). 119 

Preliminary phylogenetic analysis showed that of the novel LCVs found in the present study, 120 

only one belonged to Genogroup 2 (HmueLCV-1) with all others in either Genogroup 1 or a clade 121 
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of New World monkey viruses. To search further for LCVs belonging to Genogroup 2, we designed 122 

a set of nested deg/dI primers based on the gB gene of GgorLCV-2 and therefore biased towards 123 

detection of Genogroup 2 LCVs (primer set BALF4C). With this set, we tested samples of 124 

chimpanzees and macaques, with gorilla samples as controls. Variants of the gB genes of 125 

GgorLCV-2 and PtroLCV-1 were detected but no chimpanzee or macaque LCV members of 126 

Genogroup 2. In addition, we designed a set of nested deg/dI primers based on the DPOL gene of 127 

GgorLCV-2 and with a 3´-base that was present in all DPOL gene sequences of Genogroup 2, but 128 

not of Genogroup 1 (primers not listed). With this set, the LCVs of Genogroup 2 were detected (in 129 

gorillas, orang utans and gibbons), but chimpanzee and macaque specimens tested negative. 130 

 131 

Phylogenetic relationships in the genus Lymphocryptovirus 132 

The 25 LCV gB to DPOL sequences determined in this study plus the homologous sequences of 133 

EBV, CalHV-3 and CeHV-15 were subjected to phylogenetic analysis. First, a phylogenetic tree 134 

based on gB sequences of 58 viruses from all three subfamilies of the Herpesviridae was 135 

constructed, and is shown in summary form in Fig. 2a, to provide an overview of the context of the 136 

gamma-1 lineage. This tree shows that all the LCVs fall into three major clades (designated A, B 137 

and C), and that the gamma-2 group can be utilised as an outgroup of related species to place the 138 

root of the gamma-1 tree. A tree for the BALF3 gene computed with Bayesian analysis utilising 139 

Monte Carlo Markov chains (BMCMC), and based on an alignment of 634 amino acid residues for 140 

twelve LCVs, displayed the same three clades (not shown). Fig. 2b shows a detailed gamma-1 141 

tree, based on a 946 residue alignment of gB and DPOL amino acid sequences for 28 LCVs plus 142 

11 gamma-2 primate viruses, and derived by BMCMC. The data for this tree represent the largest 143 

set of sequences and longest alignment available to give a robustly rooted gamma-1 phylogeny. 144 

The three major clades and their contents are labelled. Clade A contains all the LCVs of New 145 

World monkeys and no other viruses. Clade B contains all the LCVs of Old World monkeys plus 146 

some viruses of hominoids, including EBV. Clade C contains only hominoid viruses. Clades B and 147 

C correspond to Genogroups 1 and 2 respectively. On the basis of the clade contents and 148 

branching pattern we hypothesized that at the level of these major clades, the tree structure 149 

reflects synchronicity with that of the host lineages, in that divergence of New World and Old World 150 

lineages was the earliest branching event for both hosts and viruses, followed by divergence of Old 151 

World monkey and hominoid lineages. This interpretation is straightforward for Clades A and C, 152 

corresponding to New World monkey and hominoid hosts respectively, while Clade B was taken to 153 

correspond to Old World monkey hosts, leaving aside at this point the issue of hominoid viruses in 154 

Clade B.  155 

The extent of correspondences between host and LCV lineages was then examined in detail. 156 

Fig. 3a displays a primate phylogenetic tree containing host species for all the LCVs whose 157 

sequences were included in our analyses and Fig. 3b shows a molecular clock version of the LCV 158 
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tree of Fig. 2b. The data for Fig. 3a were extracted from the large study of mammalian phylogeny 159 

of Bininda-Emonds et al. (2007), and the figure shows the timescale derived by those authors. The 160 

two trees in Fig. 3 were drawn to have the same size across the page from root to branch tips in 161 

order to facilitate comparisons between them, taking divergence of Old and New World primate 162 

LCV lineages as synchronous with divergence of the equivalent host lineages. In Clade C the 163 

arrangement of branches for LCVs of gibbon species, orang utan (P. pygmaeus) and gorilla (G. 164 

gorilla) matches with the host tree, as do the depths of branches except for those of the two gibbon 165 

viruses. In Clade A there are four deep branches, three of which match arrangement and 166 

approximate depth with the host tree while that for CalHV-3 and CpenLCV-1 is incongruent with 167 

the corresponding host locus. Overall, then, Clades A and C, together with the deeper portion of 168 

the LCV tree, present as mostly consistent with cospeciational development in terms of patterns 169 

and proportions of branches. 170 

Clade B is more complicated, in several respects: it is the most populous of the three major 171 

clades; the overall depth of branch lengths is less than in Clades A and C; some loci are poorly or 172 

incompletely resolved; and hominoid viruses appear at two loci among the majority Old World 173 

monkey viruses. In all, Clade B presented the main challenges for interpretation of the LCV tree. A 174 

tree specific to the 28 LCVs was therefore constructed, to provide the best achievable resolution of 175 

Clade B with the available data. This utilised a 1042 residue alignment of gB and DPOL amino acid 176 

sequences and was inferred by BMCMC. Fig. 4a shows only Clade B from this tree, with the root 177 

position provided by Clades A and C, and with branch lengths drawn at a larger scale than in the 178 

earlier figures. Four nodes in the tree presented in Fig. 4a have low posterior probabilities, and 179 

these were reduced to multifurcations before computing a molecular clock version. Two additional 180 

LCVs (CateLCV-1 and SsynLCV-2), for which less extensive sequence data were available, were 181 

then interpolated into the molecular clock tree, as shown in Fig. 4b. For HmueLCV-1 (Clade C) and 182 

17 Clade B viruses only short sequences of 175 bp to 430 bp were available, and these were not 183 

included in the molecular clock tree. For discussion, seven clades comprising the tree were 184 

designated as B1 to B7, and the multifurcated node from which five of these clades descend was 185 

designated the ‘major multifurcation’ (MMF). 186 

Considering only the monkey viruses in Clade B in the first instance, some aspects of the 187 

branching pattern can be seen to correspond with that of the host tree, while others do not. Thus, 188 

the branching relationships among SentLCV-1, EpatLCV-1, the two PhamLCVs (subclade B5) and 189 

macaque LCVs in subclade B6 are congruent with the host tree. Short branch lengths and 190 

branching uncertainties among the macaque LCVs limit the detail of comparisons for this grouping. 191 

The loci of MsphLCV-1, CgueLCV-1, PbadLCV-1 and CnegLCV-1 do not fit into this cospeciational 192 

scheme. Turning to the six hominoid viruses in Clade B, we note that these occur at two distinct 193 

loci. Subclade B3 (comprising EBV, GgorLCV-1, PpanLCV-1 and PtroLCV-1) originates in the 194 

midst of the monkey LCV lineages, and branching pattern within this grouping is partly but not 195 
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completely compatible with cospeciational development (in agreement with the earlier observations 196 

of Gerner et al., 2004). PpygLCV-2 and SsynLCV-2 appear together within the predominantly 197 

macaque virus B6 subclade, and are readily rationalised as late transfers from a macaque host. 198 

With respect to the possible Old World monkey cospeciational components of Clade B noted 199 

above, the branch lengths in Figs 3b and 4b are markedly shorter than would be expected from 200 

comparison with those in Fig. 3 of Clades A and C, and of the host tree, so that a cospeciational 201 

rationale for Clade B would imply that lineages in that clade have been changing more slowly than 202 

those in Clades A and C. The most straightforward way to assign a local cospeciational timeframe 203 

for Clade B is to take the node at which the SentLCV-1 lineage (B1 subclade) diverges from the 204 

other subclades as corresponding to that in the host tree (Fig. 3a) at which the lineage of the host 205 

species for SentLCV-1, S. entellus, diverges from lineages leading to Macaca, Papio, etc. These 206 

nodes are the earliest in Clade B and in the Old World monkey clade, respectively. The timescale 207 

shown in Fig. 4b is based on this assignment, and represents a relative substitution rate of 0.6 208 

times that proposed for the whole gamma-1 tree in Fig. 3b.  209 

The MMF node is a central feature of the tree in Fig. 4b, and was also observed in trees 210 

based on subsets of the available amino acid sequences and in trees for Old World primate LCVs 211 

based on DNA sequences (not shown). We take the MMF feature to be a result of the available 212 

sequence data being inadequate to resolve several closely spaced nodes. We note that the 213 

posterior probability support for subclade B2 branching from an earlier node than the MMF, as 214 

presented in Fig. 4b, is marginal. If we consider just the monkey virus lineages descending from 215 

the MMF, evidently both the Papio LCV line (B5) and the Macaca LCV line (in B6) are in 216 

cospeciation compatible loci, and the locus of the CateLCV-1 line (B7) could result from lack of 217 

resolution for placing that virus with the Papio viruses as the host species are in Fig. 3a.  218 

Of the lineages originating directly from the MMF, this leaves only the hominid virus lineage 219 

B3 and the PbadLCV-1 line (B4) requiring transfer between host species to account for their 220 

placing. The Clade B local timescale of Fig. 4b dates the MMF node to about 12 millions of years 221 

before present (MYA), and we thus interpret these features to indicate that the hominid LCV 222 

lineage B3 arose from a monkey LCV lineage within the last 12 million years. Because the 223 

branching order of the hominid LCVs in B3 does not match that of their hosts (Fig. 3a), 224 

development of B3 must have involved minimally two transfer events: one from a monkey to a 225 

hominid host, and the other either also from a monkey to a hominid host or between distinct 226 

hominid lineages. The precise origin of the B3 lineage is obscured by the MMF, but in principle the 227 

line could have arisen from the single lineage immediately ancestral to other, unresolved 228 

branchings covered by the MMF, or from within unresolved branchings of the MMF, or from an 229 

early point in a monkey LCV lineage descendant from the MMF (not necessarily one of those 230 

visible as B4 to B7). The first of these scenarios is weakly supported in the tree of Fig. 4a. Turning 231 

to subclade B6 and the three non-macaque viruses therein (CnegLCV-1, PpygLCV-2 and 232 
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SsynLCV-2), these all lie in one tightly delimited clade with MfasLCV-1. Notably, MfasLCV-1 and 233 

the two hominoid viruses all have hosts from South East Asia, but the host of CnegLCV-1 is 234 

African. The multifurcated node giving rise to these viruses has an estimated date of 1.2 MYA. 235 

 236 

Discussion  237 

Two experimental lines were followed in the present study to improve our understanding of LCV 238 

evolution. First, we searched for additional viruses belonging to Genogroup 2. In this study, >500 239 

specimens were collected from live or deceased individuals of 49 primate species (hominoids, Old 240 

World monkeys, New World monkeys, prosimians) from three continents. In a previous survey 241 

(Ehlers et al., 2003), >600 specimens were analysed. From both studies, covering a total of >1100 242 

specimens, sequences were detected from 47 distinct novel LCVs. Among these there were no 243 

LCVs of chimpanzees or Old World monkeys in Clade C. We have also searched for possible 244 

human LCVs in Clade C but found only known variants of EBV, belonging to Clade B (data not 245 

shown). Based on these combined data, we conclude that the existence of two distinct and 246 

complete Old World primate LCV lineages as previously proposed (Ehlers et al., 2003) is less 247 

likely. In a second step, we extended the amounts of sequence information for LCVs by up to 7-248 

fold. This was successful for 25 viruses but failed for the remainder, most likely because of 249 

genome copy numbers being too low for LD-PCR. With this much larger data set we re-examined 250 

LCV phylogeny, extending and refining the phylogenetic analysis published earlier (Ehlers et al., 251 

2003). In particular, the LCV phylogeny could now be compared with host phylogeny with 252 

adequate precision, and the topology of Clade B could be analysed with higher resolution. 253 

Interpretation of the Lymphocryptovirus tree as reflecting long term synchronous 254 

development with primate host lineages accounts well for the pattern of major branches, and is in 255 

harmony with features in other parts of the Herpesviridae tree (McGeoch et al., 2006, 2008). 256 

However, to account for aspects of relative branch lengths, it is then necessary to propose differing 257 

rates of evolutionary change for different regions within the Lymphocryptovirus tree. In this 258 

connection, we note that phylogenetic analyses typically show a markedly lower rate of change in 259 

the whole gamma-1 lineage than in the gamma-2 (for instance, see branch lengths in fig. 2a; also, 260 

McGeoch et al., 2006, 2008). We modelled the rate difference proposed between Clade B and 261 

other parts of the Lymphocryptovirus tree by applying a single decreased rate from the earliest 262 

node in Clade B. We regard this as a simple and justified device, while emphasizing that its ad hoc 263 

nature urges caution in applying the resulting Clade B timeframe. While we have no data on 264 

underlying causes of decreased rates of change, both in gamma-1 lineages relative to gamma-2 265 

and in Clade B relative to other parts of gamma-1, it is interesting to speculate: perhaps these 266 

phenomena reflect stages in elaboration of the mode of virus existence and latency exemplified by 267 

EBV (Young & Rickinson, 2004). 268 
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In summary, elements of both cospeciation and horizontal transmission were observed in 269 

LCV evolution with the present study. From the perspective of human virology, it is of interest that 270 

EBV belongs to a lineage that arose by interspecies transfer from a line of Old World monkey 271 

viruses. However, transfer events from monkey to hominid host lineages appear to belong to an 272 

era that lies far back in the evolutionary development of humans and great apes: EBV could not be 273 

regarded as an agent that is novel to its present day host species. On our interpretation, Clade C 274 

(Genogroup 2) contains hominoid virus lines that have developed in long term synchrony with 275 

evolution of their host species. Surprisingly, we have not detected any chimpanzee viruses in this 276 

group, and neither is any human virus known. No obvious reason is apparent for these absences, 277 

although extinction might be a possible scenario. In this context, it should be noted that the two 278 

known types of EBV are closely related strains that both belong in Clade B (McGeoch & Gatherer, 279 

2007). 280 

The evolutionary history of EBV, and the observation that EBV can also be experimentally 281 

transmitted to foreign primate hosts (Frank et al., 1976; Cleary et al., 1985), indicates that the 282 

species specificity of LCVs is not absolute. Rather, LCV, may be horizontally and zoonotically 283 

transmittable. The most recent transmissions evidently occurred about 1 MYA from macaques to 284 

hominoids (orang utans and gibbons) in Indonesia, resulting in the emergence of PpygLCV2 and 285 

SsynLCV2. In the wider picture of the mammalian herpesviruses, horizontal transmissions (either 286 

observed in vivo or deduced from evolutionary studies) are not a rare phenomenon. A well known 287 

example is the herpes B virus: in its natural host (macaques) it is benign but upon transmission to 288 

humans it is associated with high mortality (Palmer, 1987). Also the human Herpes simplex virus 289 

can be transferred to nonhuman primates thereby occasionally killing complete groups of captive 290 

individuals (Mätz-Rensing et al., 2003). Pseudorabies virus which naturally infects pigs can 291 

transmit to dogs, cats and other carnivores with rabies-like symptoms (Mettenleiter 2008). The 292 

gamma-2 herpesviruses Alcelaphine herpesvirus 1 and Ovine herpesvirus 2 are both 293 

asymptomatic in their hosts (wildebeest and sheep, respectively) but cause malignant catarrhal 294 

fever (MCF), an often fatal disease, in cattle (Ackermann, 2006). Ovine herpesvirus 2 also causes 295 

an MCF-like disease in pigs (Albini et al., 2003). Several other indications for herpesvirus 296 

transmission to foreign hosts have been published (Leendertz et al., 2009; Ehlers et al., 2008; 297 

Richman et al., 1999; Huang et al., 1978; Melendez et al., 1969). Taken together, this knowledge 298 

indicates a zoonotic potential for herpesviruses, and our present results show that this is also the 299 

case for LCVs. Herpesviruses appear not to break the species barrier as often and readily as some 300 

RNA viruses. However, as exemplified by the emergence of human immunodeficiency viruses from 301 

origins in various simian immunodeficiency viruses (Hahn, 2000), in countries with populations of 302 

nonhuman primates, the frequent handling of primates, their meat and organs might facilitate the 303 

zoonotic transmission of herpesviruses from monkeys and apes to humans. 304 
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Methods 305 

 306 

Sample collection and processing, PCR methods and sequence analysis  307 

Over six years, blood, tissue and faeces samples (n=502) were collected from live or deceased 308 

individuals of 49 primate species (apes, Old World monkeys, New World monkeys and prosimians) 309 

in the Taï National Park of Côte d´Ivoire (Leendertz et al., 2006), Cameroon, Republic of Congo, 310 

Democratic Republic of Congo, Uganda, Indonesia and Vietnam. Samples were also collected 311 

from live or deceased individuals in several German zoological gardens and primate facilities. The 312 

primate species that yielded herpesvirus sequence data are listed in Table 1, and details of the 313 

samples are available on request. DNA was prepared with the QiaAmp tissue kit according to the 314 

manufacturer’s instructions. 315 

For universal detection of herpesviruses, pan-herpes DPOL PCR for amplification of 160-181 316 

bp (excluding primer-binding sites) of the DPOL gene was carried out as described previously 317 

(Chmielewicz et al., 2003). For detection of the MDBP gene and the gB gene, LCV sequences 318 

were amplified with five degenerate, deoxyinosine-substituted primer sets in a nested format 319 

(Supplementary Table 1). These sets were based on the published CalHV-3 BALF2 gene (Rivailler 320 

et al., 2002) (primer set BALF2A) and the PtroLCV-1 gB gene (set BALF4A), or on the PpygLCV-1 321 

BALF2 gene (set BALF2B), the PpygLCV-1 BALF4 gene (set BALF4B) and the GgorLCV-2 BALF4 322 

gene (set BALF4C), as determined in this study. The primer binding sites were placed in regions 323 

conserved among the gammaherpesviruses. The primers were only minimally degenerate in order 324 

to avoid amplification of gamma-2 viruses. PCR was carried out at an annealing temperature of 325 

46oC under conditions used in pan-herpes DPOL PCR. LD-PCR was performed in a nested format 326 

with the TaKaRa-Ex PCR system (Takara Bio Inc.) according to the manufacturer’s instructions, 327 

using virus-specific primers (not listed). PCR products were purified by using the PCR purification 328 

kit (QIAgen) and directly sequenced with the Big Dye terminator cycle sequencing kit in a 377 DNA 329 

automated sequencer (Applied Biosystems). 330 

 331 

Provisional nomenclature, abbreviations and nucleotide sequence accession numbers of 332 

novel herpesviruses 333 

Names and abbreviations for newly detected LCVs were formed from the host species name and 334 

the genus to which the virus was tentatively assigned (example: Pan troglodytes 335 

lymphocryptovirus, PtroLCV), and are listed with GenBank accession numbers in Table 2. LCVs 336 

with published sequences that were used in the analyses and LCVs (Ehlers et al., 2003) from 337 

which additional sequences were generated for this study are also listed (Table 2). 338 

 339 
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Phylogenetic analysis 340 

Amino acid sequence alignments for sets of herpesvirus sequences were made using MAFFT 341 

(Katoh et al., 2002). Regions in alignments that were considered too variable to be confidently 342 

alignable, plus locations containing a gapping character in any sequence, were removed before 343 

using alignments for phylogenetic inference. The amino acid substitution table of Jones et al. 344 

(1992) was used in tree inference programs.  345 

Phylogenetic trees were inferred from alignments of amino acid sequences. Preliminary trees 346 

were derived by the neighbour-joining method using PROTDIST and NEIGHBOR (PHYLIP suite v 347 

3.63; Felsenstein, 1993). Phylogenetic relationships were investigated in depth by compute-348 

intensive Bayesian analysis with Monte Carlo Markov chains (BMCMC) (MrBayes v 3.1; Ronquist 349 

& Huelsenbeck, 2003). Default values for priors were used. For concatenated alignments of gB 350 

and DPOL sequences, the two datasets were treated in separate partitions. Substitution rates were 351 

modelled as a discrete gamma distribution of four classes plus one invariant class. MrBayes runs 352 

were for at least one million generations, and comprised two processes each of one unheated and 353 

three heated chains. Trees were sampled every 100 generations and a large burn-in (usually 5001 354 

trees) was applied. Majority rule consensus trees were obtained from the output.  355 

Molecular clock versions of previously derived trees were computed by maximum likelihood 356 

methods with CODEML (PAML suite v 4; Yang, 2007), with substitution rates modelled as a 357 

discrete gamma distribution of five classes. Timescales for molecular clock gammaherpesvirus 358 

trees were applied with a single calibration point proposed by reference to the phylogenetic tree of 359 

primate host lineages. The comprehensive study of Bininda-Emonds et al. (2007) was used as the 360 

reference for primate phylogeny and divergence dates. It should be noted that divergence dates 361 

from Bininda-Emonds et al. are generally older than those from earlier studies (Schneider, 2000; 362 

Raaum et al., 2005; Steiper & Young, 2006) which were used in our recent papers (McGeoch et 363 

al., 2006, 2008; Ehlers et al., 2008; Leendertz et al., 2009). 364 

Sequence alignments employed in this work are available, with inferred trees, on request to 365 

d.gatherer@mrcvu.gla.ac.uk. 366 

  367 

 368 
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Table 1   Primate hosts of lymphocryptoviruses 

Host Family, Subfamily, Genus Host species 

   
Catarrhini (Old world monkeys and apes)   
Family Hominidae    

Genus Gorilla Gorilla gorilla Gorilla  
Genus Pan Pan troglodytes 

Pan paniscus 
Chimpanzee 

Bonobo 
Genus Pongo Pongo pygmaeus Borneo orangutan 
   

Family Hylobatidae   
Genus Hylobates Hylobates lar 

Hylobates muelleri 
White-handed gibbon 

Mueller´s gibbon 
Genus Symphalangus Symphalangus syndactylus Siamang 

   
Family Cercopithecidae   

Subfamily Cercopithecinae    
Genus Cercocebus Cercocebus atys Sooty mangabey 
Genus Cercopithecus Cercopithecus hamlyni 

Cercopithecus cephus 

Cercopithecus neglectus 

Cercopithecus nictitans 

Owl-faced monkey 

Moustached guenon 

De Brazza´s monkey 

Greater spot-nosed guenon 
Genus Chlorocebus Chlorocebus aethiops Vervet monkey 
Genus Erythrocebus Erythrocebus patas Patas monkey 
Genus Lophocebus Lophocebus albigena 

Lophocebus aterrimus 
Grey-cheeked mangabey 

Black mangabey 
Genus Macaca Macaca fascicularis 

Macaca thibetana 

 

Macaca fuscata 

Macaca mulatta 

Long-tailed macaque 

Tibetan stump-tailed 

macaque 

Japanese macaque 

Rhesus monkey 

Genus Mandrillus Mandrillus sphinx Mandrill 
Genus Miopithecus Miopithecus talapoin Dwarf guenon 
Genus Papio Papio anubis 

Papio hamadryas  
Olive baboon 

Hamadryas baboon 
   

Subfamily Colobinae   
Genus Colobus 

  
Colobus guereza 

Colobus polykomos 
Black-and-white colobus 

King colobus 
Genus Piliocolobus Piliocolobus badius Red colobus 
Genus Semnopithecus Semnopithecus entellus Hanuman langur 
   

Platyrrhini (New world monkeys)   
Family Atelidae Ateles paniscus Black spider monkey 
Family Cebidae 

 
Callithrix penicillata 

Callithrix jacchus 

Leontopithecus rosalia 

Saimiri sciureus 

Black-pencilled marmoset 

Common marmoset 

Golden lion tamarin 

Common squirrel monkey 
Family Pitheciidae Pithecia pithecia White-faced saki 
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Table 2   Viruses, abbreviations and GenBank accession numbers 1 
Host species Origin of host Virus name Abbreviation Novel 

virus
# 

gB-DPOL 

Sequence
§
 

Accession 

number 

Viruses from this study       

Old World primates       

Sooty mangabey  Ivory coast Cercocebus atys 

lymphocryptovirus 1 

CatyLCV-1 x  GQ921921 

Owl-faced monkey  Germany 

 (Zool. Gardens) 

Cercopithecus hamlyni 

lymphocryptovirus 1 

ChamLCV-1 x  AY608706 

Moustached guenon Cameroon Cercopithecus cephus 

lymphocryptovirus 1 

CcepLCV-1 x  AY608711 

De Brazza´s monkey  Cameroon Cercopithecus neglectus 

lymphocryptovirus 1 

CnegLCV-1 x x AY728176 

De Brazza´s monkey  Cameroon Cercopithecus neglectus 

lymphocryptovirus 2 

CnegLCV-2 x  AY608712 

Greater spot-nosed guenon  Cameroon Cercopithecus nictitans 

lymphocryptovirus 1 

CnicLCV-1 x  AY608709 

Vervet monkey  Germany 

(Primate facility) 

Chlorocebus aethiops 

lymphocryptovirus 1 

CaetLCV-1 x  AY608702 

Vervet monkey  Germany Chlorocebus aethiops 

lymphocryptovirus 2 

CaetLCV-2 x  GQ921922 

Black-and-white colobus  Cameroon; 

Germany (Zool. Gardens; 

Primate facility) 

Colobus guereza 

lymphocryptovirus 1 

CgueLCV-1  x AF534219 

King colobus  Ivory coast Colobus polykomos 

lymphocryptovirus 1 

CpolLCV-1 x  GQ921923 

Patas monkey Cameroon; 

Germany (Primate facility) 

Erythrocebus patas 

lymphocryptovirus 1 

EpatLCV-1  x AY196148 

Gorilla  Congo; Cameroon; 

Germany, Belgium, USA (Zool. 

Gardens); Cell line 

Gorilla gorilla 

lymphocryptovirus 1 

GgorLCV-1  x AF534225 

Gorilla  Congo; Cameroon; 

Germany (Zool. Gardens) 

Gorilla gorilla 

lymphocryptovirus 2 

GgorLCV-2  x AY129395 

White-handed gibbon Germany 

 (Zool. Gardens) 

Hylobates lar 

lymphocryptovirus 1 

HlarLCV-1  x AY196147 

Mueller´s gibbon Germany 

 (Zool. Gardens) 

Hylobates muelleri 

lymphocryptovirus 1 

HmueLCV-1 x  AY273184 
 

Grey-cheeked mangabey  Cameroon Lophocebus albigena 

lymphocryptovirus 1 

LalbLCV-1 x  AY608710 

Black mangabey Germany 

(private husbandry) 

Lophocebus aterrimus 

lymphocryptovirus 1 

LateLCV-1  x AY174067 

Long-tailed macaque Germany (Primate facility, Zool. 

Gardens) 

Macaca fascicularis 

lymphocryptovirus 1 

MfasLCV-1  x AF534221 

Japanese macaque Germany 

(Primate facility) 

Macaca fuscata 

lymphocryptovirus 1 

MfusLCV-1  x AF534224 

Japanese macaque Germany 

(Primate facility) 

Macaca fuscata 

lymphocryptovirus 2 

MfusLCV-2  x AY172954 

Tibetan stump-tailed 

macaque 

Germany 

(Primate facility) 

Macaca tibetana  

lymphocryptovirus 2 

MtibLCV-2 x x GQ921925 

Mandrill Germany (Primate facility, Zool. 

Gardens) 

Mandrillus sphinx  

lymphocryptovirus 1 

MsphLCV-1  x AF534227 

Mandrill Cameroon; 

Germany (Zool. Garden) 

Mandrillus sphinx  

lymphocryptovirus 2 

MsphLCV-2 x  AY728172 

Dwarf Guenon Cameroon Miopithecus talapoin 

lymphocryptovirus 1 

MtalLCV-1 x  AY608708 

2 
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 2 

……..Table 2  continued 3 
Host species Origin of host Virus name Abbreviation Novel 

virus 

gB+DPOL 

Seq. 

Accession 

number 

Bonobo  South Africa; 

Germany (Zool. Gardens) 

Pan paniscus  

lymphocryptovirus 1 

PpanLCV-1  x AF534220 

Chimpanzee Ivory Coast; Uganda; Congo; South 

Africa; Germany (Primate facility; 

Zool. Garden); Cell line 

Pan troglodytes  

lymphocryptovirus 1 

PtroLCV-1  x AF534226 

Olive baboon Cameroon; Tanzania Papio anubis  

lymphocryptovirus 1 

PanuLCV-1 x  AY728174 

Hamadryas baboon Tanzania; 

Germany (Zool. Gardens) 

Papio hamadryas  

lymphocryptovirus 2 

PhamLCV-2  x AF534229 

Red colobus Ivory coast Piliocolobus badius  

lymphocryptovirus 1 

PbadLCV-1  x AF534228 

Red colobus Democratic Republic Congo Piliocolobus badius  

lymphocryptovirus 2 

PbadLCV-2 x  GQ921927 

Orang utan Indonesia; 

Germany (Zool. Gardens) 

Pongo pygmaeus  

lymphocryptovirus 1 

PpygLCV-1  x AY129398 

Orang utan Germany 

(Zool. Gardens) 

Pongo pygmaeus  

lymphocryptovirus 2 

PpygLCV-2 x x GQ921926 

Hanuman langur Germany 

(Zool. Gardens) 

Semnopithecus entellus 

lymphocryptovirus 1 

SentLCV-1  x AF534223 

Siamang Germany 

(Primate facility) 

Symphalangus syndactylus 

lymphocryptovirus 1 

SsynLCV-1  x AY608703 

Siamang Germany 

(Primate facility) 

Symphalangus syndactylus 

lymphocryptovirus 2 

SsynLCV-2 x x GQ921924 

New World primates       

Black spider monkey  Germany 

(Zool. Gardens) 

Ateles paniscus  

lymphocryptovirus 1 

ApanLCV-1  x AY139028 

Black-pencilled marmoset Germany 

(Primate facility) 

Callithrix penicillata  

lymphocryptovirus 1 

CpenLCV-1  x AY139026 

Golden-Lion tamarin  Germany 

(Primate facility) 

Leontopithecus rosalia 

lymphocryptovirus 1 

LrosLCV-1 x  AY608705 

White-faced saki Germany 

(Zool. Gardens) 

Pithecia pithecia  

lymphocryptovirus 1 

PpitLCV-1  x AY139025 

Common squirrel monkey French Guinea; 

Germany (Zool. Gardens) 

Saimiri sciureus  

lymphocryptovirus 2 

SsciLCV-2  x AY139024 

Common squirrel monkey Germany 

(Zool. Gardens) 

Saimiri sciureus  

lymphocryptovirus 3 

SsciLCV-3 x  AY854172 

Published viruses 

Complete genome 

      

Human  Epstein-Barr virus EBV = 

HHV-4 

  NC_007605 

Rhesus monkey 

(Macaca mulatta) 

 Rhesus monkey  

lymphocryptovirus  

RLV = 

CeHV-15 

  AY037858 

Marmoset 

(Callithrix jacchus) 

 Callitrichine 

herpesvirus 3 

CalHV-3   AF319782 

gB - DPOL sequence       

Hamadryas baboon Tanzania; Germany Papio hamadryas  

lymphocryptovirus 3 

PhamLCV-3   EU118146 

       

 4 
# The viruses which were discovered in the course of the present study are marked5 
§ The viruses for which we determined contiguous gB plus DPOL seuquences are marked6 
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Figure legends 

 

Figure 1. Map of amplified genes and diagrams of PCR strategies Figure 1.   

Degenerate nested primers were used to amplify part of the MDBP gene, the gB gene or the 

DPOL gene. The amplified fragments are represented by thin solid lines between the primer 

binding sites (black triangles). Long-distance nested PCR was performed with specific primers. 

The amplified fragments are represented by dashed lines between the primer binding sites (open 

triangles). The numbers of gB to DPOL and MDBP to DPOL sequences are specified, and their 

locations are depicted with thick solid lines. At the top of the figure, the genomic locus spanning 

ORF BALF2 (MDBP) to ORF BALF5 (DPOL) is depicted with black arrows. The arrowhead 

indicates the direction of transcription. The ORF designation is adapted from the ORF 

nomenclature of EBV. The start of the ruler corresponds with the first base of the ORF BALF2. 

 

Figure 2. Phylogenetic trees for the Herpesviridae family and the Lymphocryptovirus genus. 

(a) Overview tree based on a 641 residue alignment of gB amino acid sequences for 58 

herpesviruses (listed in Supplementary Table 2). The tree was obtained by the neighbour joining 

method and is midpoint rooted. The Alphaherpesvirinae and Betaherpesvirinae subfamilies’ 

branches are shown in summary form, with regions containing multiple branches reduced to single 

heavy lines. In the Gammaherpesvirinae, the Gamma-2 subgroup is also shown in summary form, 

and for the Gamma-1 subgroup the three major clades (A, B and C) are depicted. 

(b) BMCMC tree for the Lymphocryptovirus genus. A 946 residue alignment of concatenated 

partial gB and DPOL amino acid sequences for 28 LCVs plus 11 gamma-2 primate herpesviruses 

was constructed and analysed by BMCMC. The gamma-2 sequences (listed in Supplementary 

Table 3) served as an outgroup to locate the root for the LCV clade, and are not shown in the 

figure. The LCV tree is shown as a majority rule consensus tree. Branch labels for LCVs with New 

World monkey hosts are in black, for those with Old World monkey hosts are in red, and for those 

with ape or human hosts are in blue. The major clades (A, B and C) are labelled. There are three 

multifurcations in Clade B, which represent loci that were not resolved by the BMCMC process. All 

resolved nodes have posterior probability of 1.00, except for the three marked with filled black 

circles, which have posterior probabilities in the range 0.71 to 0.78. A scale indicating divergence, 

as substitutions per site, is at the foot. 

 

Figure 3. Comparison of phylogenetic trees for primate hosts and LCVs. 

(a) Tree for primate species that appear as hosts of LCVs in this paper. Data for this tree were 

extracted from the study of Bininda-Emonds et al. (2007). New World monkey species are listed in 

black, Old World monkey species in red, and apes plus humans in blue (C. aterrimus does not 
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feature as a host until Fig. 4b). A timescale is shown at the foot, as millions of years before present 

(MYA). 

(b) Molecular clock tree for LCVs. The tree shown was computed from the 39 LCVs tree of Fig. 2b, 

with imposition of a global molecular clock. The tree in panel b has been scaled to have the same 

size on the page for divergence of the Old and New World LCVs as that in panel a has for 

divergence of the Old and New World primates. The tentative timescale (in gray) for panel b is 

transferred from panel a; it assumes the same date for separation of Old and New World LCV 

lineages as for separation of Old and New World primate lineages. 

 

Figure 4. Phylogenetic tree for Clade B LCVs. 

(a) Best achievable BMCMC tree for Clade B LCVs. A 1042 residue alignment of concatenated 

partial gB and DPOL amino acid sequences for 28 LCVs was constructed and analysed by 

BMCMC. Clades A and C were used to provide a root for Clade B, and are not shown. The Clade 

B tree is shown as a majority-rule consensus tree, with one multifurcated locus. Resolved nodes 

had posterior probability of 1.00, except for six which had lower posterior probabilities; the 

posterior probability (as %) is shown to the right of each of these six nodes. LCV names are 

coloured as for Figs 2 and 3. A scale indicating divergence, as substitutions per site, is at the foot. 

(b) Molecular clock tree for Clade B LCVs. The tree shown in panel a was reduced to a 

multifurcated version at all nodes with posterior probability less than 0.91, and a molecular clock 

version computed (including Clades A and C). Two additional LCVs (CateLCV-1 and SsynLCV-2, 

for which lesser amounts of data were available) were interpolated into the molecular clock tree on 

the basis of additional tree building exercises, and are shown with their terminal branches as 

dashed lines. The node at the base of the major multifurcated clade (MMF) is marked with a heavy 

arrow. Subclades are annotated as B1 to B7. The tentative timescale (in gray) sets the node for 

divergence of the SentLCV-1 lineage from other Clade B LCVs as corresponding to the divergence 

of the S. entellus lineage from lineages leading to species of Macaca, Papio, etc. 
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Supplementary Table 1 

Degenerate primers for amplification of BALF2 and BALF4 sequences 

Primer-set abbreviation Targeted gene  Name of primer $  sequence 5´- 3´ 

BALF2A BALF2 2944-s TTCCCGGGGATCTGAT(n/i)AC(n/i)TAYGC 

  2944-as TTTGTCCAGGAAGTAGGTT(n/i)CTRTC(n/i)AC 

  2945-s ACTGTCCCAGCTAGGGA(n/i)TAYCC(n/i)CA 

  2945-as CTGTCTACCCACCTACCCATRAARTA(n/i)CC 

BALF2B BALF2 3055-s ACAACTACCACAAAGT(n/i)CT(n/i)TTyCC 

  3058-as GACCTGCAGCAGGTTyCTrTC(n/i)AC 

  3056-s TCTGTGGCATAATTTykC(n/i)AGG 

  3057-as CACCCCGGCCCATrAArTA(n/i)CC 

BALF4A BALF4 2753-s CCATCCAGATCCArTwyGC(n/i)TAyGA 

  2756-as TGGCTGCCAAGCG(n/i)(n/i)T(n/i)GG(n/i)GA 

  2754-s GATGTTCTGCGCCTGRWARTTRTAYTC 

  2755-as GATGTTCTGCGCCTRRWARTTRTA 

BALF4B BALF4 3033-s CATCGCCAG(S)GC(S)TGGTGC 

  3036-as TCGGCCGAAAC(R)GTCTT(R)A(M)GTG 

  3034-s GGAGCAGCGCAG(N/I)CA(R)AA(Y)ATGGT 

  3035-as CTTCCCCGACAG(R)AAGTAGT(R)CTG 

BALF4C BALF4 3951-s AGGGCACGGCyAGyTT(y/i)GT 

  3951-as GCCTCTGGTCCwGGCACCA 

  3952-s CGGAGGATTGTTrTTrGC(n/i)TGG 

  3952-as GCGCAACATCTGGTTrAT(y/i)TG 

#   I = Inosine; $  s=sense, as=antisense 



Supplementary Table 2 

Viruses and accession numbers for gB tree of 58 viruses (Fig. 2a) 
 
Alphaherpesvirinae  

Bovine herpesvirus 1 NC_001847 
Bovine herpesvirus 5 NC_005261 
Equine herpesvirus 1 NC_001491 
Equine herpesvirus 4 NC_001844 
Fibropapilloma-associated turtle herpesvirus AY644454 
Herpes simplex virus 1 NC_001806 
Herpes simplex virus 2 NC_001798 
Herpesvirus papio 2 NC_007653 
Herpesvirus of turkeys NC_002641 
Infectious laryngotracheitis virus NC_006623 
Marek’s disease virus 1 NC_002229 
Marek’s disease virus 2 NC_002577 
Psittacine herpesvirus NC_005264 
Pseudorabies virus NC_006151 
Simian agent 8 NC_006560 
Simian B virus NC_004812 
Simian varicella virus NC_002686 
Varicella-zoster virus NC_001348 

  
Betaherpesvirinae  

Aotine cytomegalovirus FJ483970 
Chimpanzee cytomegalovirus NC_003521 
Colburn cytomegalovirus FJ483969 
Guinea pig cytomegalovirus NC_011587 
Human cytomegalovirus NC_006273 
Human herpesvirus 6 NC_001664 
Human herpesvirus 7 NC_001716 
Murine cytomegalovirus NC_004065 
Rat cytomegalovirus NC_002512 
Rhesus cytomegalovirus NC_006150 
Simian cytomegalovirus FJ483968 
Squirrel monkey cytomegalovirus FJ483967 
Tupaia herpesvirus NC_002794 

  
Gammaherpesvirinae (gamma-1)  

Callitrichine herpesvirus 3 Genbank acc.-no. 
in Table 2 

Cercopithecine herpesvirus 12 “ 
Cercopithecine herpesvirus 15 “ 
Epstein-Barr virus “ 
GgorLCV-1 “ 
GgorLCV-2 “ 
HlarLCV-1 “ 
PhamLCV-2 “ 
PpanLCV-1 “ 
PpitLCV-1 “ 
PpygLCV-1 “ 
PpygLCV-2 “ 
PtroLCV-1 “ 
SsciLCV-2 “ 
SsynLCV-1 “ 

  
Gammaherpesvirinae (gamma-2)  

Alcelaphine herpesvirus 1 NC_002531 
Bovine herpesvirus 4 NC_002665 
Equine herpesvirus 2 NC_001650 
Human herpesvirus 8 NC_003409 
Herpesvirus ateles NC_001987 
Herpesvirus saimiri NC_001350 
M. fuscata rhadinovirus 1 AY528864 
M. mulatta (Rhesus) rhadinovirus 26-95 AF210726 
M. mulatta (Rhesus) rhadinovirus 17577 AF083501 
Murine herpesvirus 68 NC_001826 
Ovine herpesvirus 2 NC_007646 
Porcine lymphotropic herpesvirus 1 AF478169 

 



Supplementary Table 3 
Gamma-2 viruses and accession numbers used for outgroup to tree of Fig. 2b 

 
G. gorilla rhadinovirus 1 AY177144 
Human herpesvirus 8 Genbank acc.-no. in Supplementary Table 2 
Herpesvirus ateles “ 
Herpesvirus saimiri “ 
M. fascicularis rhadinovirus 1 AY138583 
M. fascicularis rhadinovirus 2 EU085377 
M. fuscata rhadinovirus 1 Genbank acc.-no. in Supplementary Table 2 
M. mulatta (Rhesus) rhadinovirus 26-95 “ 
P. troglodytes rhadinovirus 1 AY138585 
P. troglodytes rhadinovirus 2 EU085378 
S. sciureus gammaherpesvirus 2 AY138584 
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