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Abstract
Background: The exact role of the lymphoreticular system in the spread of peripheral prion
infections to the central nervous system still needs further elucidation. Against this background, the
influence of the regional lymph node (Ln. popliteus) on the pathogenesis of scrapie was monitored
in a hamster model of prion infection via the footpad.

Methods: Surgical lymphadenectomy was carried out at different time points after infection, or
prior to inoculation, in order to elucidate the impact of the lymph node on lethal neuroinvasion.

Results: The Ln. popliteus did not show an influence on pathogenesis when a high dose of infectivity
was administered. However, it was found to modulate the interval of time until the development
of terminal scrapie in a subset of animals lymphadenectomized after low-dose infection. In additon,
lymphadenectomy performed four weeks before inoculation prevented cerebral PrPTSE deposition
and development of disease during the period of observation (314 days) in the majority of hamsters
challenged with a very low dose of scrapie agent.

Conclusion: Our findings suggest the regional lymph node as a potentially facilitating or even
essential factor for invasion of the brain after peripheral challenge with low doses of infectious
scrapie agent. The invasive in vivo approach pursued in this study may be applied also to other animal
species for further elucidating the involvement of lymphoid tissue in the pathogenesis of
experimental and natural TSEs.

Background
Transmissible spongiform encephalopathies (TSEs) are
fatal neurodegenerative disorders of the central nervous
system in humans and animals [1]. The most widely
accepted hypothesis holds that the disease-causing event
for naturally acquired TSEs is a peripheral infection with
an "infectious" protease-resistant isoform of the prion
protein (PrP) that initiates the conversion of the host's cel-
lular PrP into a pathologically misfolded and/or aggre-
gated form, referred to as PrPSc [2-4] or PrPTSE [5]. The

presence of PrPTSE is linked with infectivity and has been
established as a reliable biochemical marker for TSE
agents in scrapie-infected hamsters as well as in other ani-
mal species and humans [6].

The pathophysiology of the spread of TSE agents through
the body of peripherally infected individuals has been
examined in a variety of host species by monitoring the
PrPTSE status in various tissues at different stages of incu-
bation and clinical disease. Depending on the site of
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peripheral infection, the host species, its genetic PrP back-
ground, and the dose and strain of agent, PrPTSE could be
detected early in mobile immune cells, e.g. dendritic cells
[7], in follicular dendritic cells [8] of the lymphoreticular
system (LRS) [9,10], in nerves and ganglia of the periph-
eral nervous system (PNS), and in areas of the central
nervous system (CNS) to or from where early infected
PNS components project [6,11-14]. Taken together, these
findings, and data from further bioassay studies, implicate
that lymphoreticular and neural tissues are involved in
the centripetal invasion of the CNS upon a peripheral
infection with TSE agents.

However, whereas neurally mediated propagation of
infection to the brain and spinal cord appears to be a com-
mon hallmark of the pathophysiology of peripherally
acquired TSEs, findings on the role of the lymphoreticular
system in neuroinvasion are less uniform. In sheep carry-
ing a PrPVRQ/ARR genotype, scrapie invasion of the CNS was
reported to occur without prior infection of lymphoid tis-
sue [15], and in cattle affected with bovine spongiform
encephalopathy (BSE) the distribution of PrPTSE and
infectivity in the LRS is strikingly limited [6,16]. On the
other hand, functional studies in mice that were infected
via different peripheral routes with or without splenec-
tomy clearly demonstrated the relevance of the spleen for
the centripetal propagation of infection in these murine
models [17,18]. Genetically modified mice with a reduced
number of Peyer's patches in the small intestine showed a
high resistance to infection upon a peroral challenge with
scrapie [19], and neuroinvasion of scrapie agent was
impaired after skin scarification in lymphotoxin deficient
mice lacking lymph nodes draining the skin [20].

In a previous study, we monitored propagation of PrPTSE

deposition along the sciatic nerve of Syrian hamsters
infected with scrapie via the footpad [21]. Here, in the
same hamster model of footpad-infection, we examined
the status of PrPTSE in the draining lymph node of the foot
and performed surgical regional lymphadenectomy. The
experiments were carried out in order to elucidate the
influence of the draining lymph node on the pathogenesis
of scrapie, and to establish whether lethal neuroinvasion
can be prevented by post- or pre-exposure lymphadenec-
tomy in our non-murine rodent model of peripheral
scrapie infection.

Methods
Inoculation and clinical monitoring of animals
The animal experiments complied with German legal reg-
ulations and were approved by the responsible authori-
ties. Adult male and female Syrian hamsters were infected
under anaesthesia by injection into the right footpad of 20
µl of a 2%, a 1%, a 0.1%, a 0.01% or a 0.001% (w/v) 263
K scrapie hamster brain homogenate from terminally ill

donor animals as described elsewhere [21]. 20 µl of the
1% inoculum contained approximately 2–6 × 105 50%
intracerebral lethal doses (LD50i.c.). Particular caution was
taken to avoid injury of blood vessels during the injection
of the inoculum. The hamsters were monitored at least
twice a week for the development of clinical signs of
scrapie. Hamsters diseased with 263K scrapie showed
head bobbing, ataxia of gait and generalized tremor. Such
animals were frequently and persistently in motion, easily
irritated by noise and touch, and had difficulties main-
taining balance and rising from a supine position. When
terminally affected with scrapie (a disease stage which is
accompanied by fully developed clinical symptoms and
indications that the animals become unable to take up
sufficient quantities of drinking water), at pre-defined
time points during the incubation period, or at 314 days
after infection at the latest, the hamsters were sacrificed by
CO2 asphyxiation.

Lymphadenectomy
For large scale lymphadenectomy, animals were anaesthe-
tized with a Ketamin/Xylazin mixture (100 and 5 mg/kg
body weight, respectively). After shaving and skin disin-
fection in the region of the popliteal fossa of the right
hind leg the Ln. popliteus was excavated and removed
using a thermo-coagulator to avoid bleeding and dissem-
ination of scrapie agent during the surgical intervention.
The skin was closed with Vicryl 5.0 suture. For sham-oper-
ation, animals were anaesthetised and skin suture was
accomplished at the level of the right popliteal fossa.

Experimental groups and tissue collection
PrPTSE detection in regional lymphoid tissue after footpad-infection
After sacrification of animals infected with 20 µl of the 2%
inoculum the ipsilateral and contralateral Ln. popliteus
were removed for detection of PrPTSE by Western blotting
(n = 2 for the following time points each: 2 days post
infection (dpi), 42-, 70-, 80-, 90- and 100 dpi).

Regional lymphadenectomy after footpad-infection
Subsequent to footpad-infection with a high dose or a low
dose of 263K scrapie brain homogenate (20 µl of the 1%
and 0.01% inoculum, respectively) hamsters were sub-
jected to ipsilateral lymphadenectomy at the following
time points after inoculation: 4 h; 24 h; 48 h and 6 dpi (n
= 6 for each combination of dose and time point, table 1).

Two control groups similarly infected via the footpad with
20 µl of the 1% and 0.01% inoculum (n = 6 each) were
sham-operated at 6 dpi. Four animals from different
groups challenged with the 0.01% inoculum died for rea-
sons unrelated to scrapie or surgical intervention.
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Table 1: Survival times of hamsters that underwent regional lymphadenectomy after scrapie infection

Sham operation 6 days after infection Ectomy 4 h after infection Ectomy 24 h after infection Ectomy 2 days after infection Ectomy 6 days after infection

individual survival mean ± SD individual survival mean ± SD individual survival mean ± SD individual survival mean ± SD individual survival; mean ± SD

Infectious dose:
20 µl 1%
263K-homogenate

108; 108;
121; 121;
121; 121

117 ± 7 111; 111;
108; 114;
114; 118

113 ± 3;
p ≤ 0.25

104; 108;
108; 111;
114; 114

110 ± 4
p ≤ 0.1

108; 111;
114; 114;
114; 118

113 ± 3
p ≤ 0.5

93; 108;
108; 111;
114; 118

109 ± 9;
p ≤ 0.1

Infectious dose:
20 µl 0.01%
263K-homogenate

108; 111;
115; 118

113 ± 4 100; 108;
111; 115;
118; 115

111 ± 7;
p ≤ 1.0

111; 115;
118; 121;

174

128 ± 26;
p ≤ 0.5

118; 118;
121;

132; 178

133 ± 26;
p ≤ 0.25

115; 115;
125; 125;
128; 128

123 ± 6;
p ≤ 0.05*

Individual survival times, i. e. the interval of time between incoculation and the occurrence of terminal disease (days), mean survival times (days ± SD) and p-values (levels of significance as 
determined vs. the sham-operated control groups) of hamsters that underwent regional lymphadenectomy of the Ln. popliteus at the indicated time points following inoculation of a high or a low 
dose of 263K scrapie agent into the footpad. Sham operations were performed at 6 dpi. Asterisk indicates a statistically significant increase of the mean incubation time as compared to the sham-
operated control group (p = 0.05, Student's unpaired two-tailed t-Test).
Note: Individual incubation times until the onset of clinical symptoms (not shown) were approximately 8–14 days shorter than the reported survival times.
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Regional lymphadenectomy prior to footpad-infection
Four weeks before footpad-infection with a high dose, a
medium dose or a very low dose of 263K-scrapie brain
homogenate (20 µl of 2%, 0.1% or 0.001% inoculum,
respectively) hamsters were subjected to ipsilateral lym-
phadenectomy. Three control groups similarly infected via
the footpad with 20 µl of the 2%, 0.1% or 0.001% inocu-
lum were sham-operated four weeks before footpad-infec-
tion. The experimental groups consisted of 7–8 animals,
each (table 2). One control animal challenged with the
2% inoculum died for reasons unrelated to scrapie or sur-
gical intervention.

Extraction of PrPTSE and Western blotting
Tissue extraction of PrPTSE in the form of protease-resistant
PrP27–30 was started by collagenase digestion of samples
for one hour and subsequently performed as previously
published [22]. The extracts were subjected to polyacryla-
mide gelelectrophoresis and Western blotting using the
anti-PrP monoclonal antibody 3F4 [23] as described in
detail elsewhere [22,24].

Paraffin-embedded tissue (PET) blotting
PET blot analysis of PrPTSE deposition in coronal brain
slices representing four different cerebral locations (levels
I, II and III according to figure 1, and one region contain-
ing the red nucleus from which neural projections extend
to the sciatic nerve innervating the footpad) of hamsters
that were sham-operated and lymphadenectomized four
weeks before footpad infection with the 0.001% inocu-
lum was performed as described by Thomzig et al. [25].

Results
Western blot detection of PrPTSE in the regional lymph 
node after footpad- infection
A time course study by Western blot analysis of PrPTSE dep-
osition in the ipsilateral draining Ln. popliteus showed
early and ongoing accumulation of the pathological prion
protein after footpad-infection with the 2% scrapie inocu-
lum. Figure 2 shows representative findings from animals
at 2- (2), 42- (1), 70- (2), 80- (2), 90- (2) and 100 dpi (2)
(numbers in brackets: positive results found with 2 ani-
mals examined at each time point). However, in the con-
tralateral Ln. popliteus, PrPTSE could not be detected at any
time point (figure 2).

Effect of regional lymphadenectomy performed after 
footpad-infection
The minimal-invasive surgical intervention was well toler-
ated by all animals. Regional lymphadenectomy of the

Schematic representation of a hamster brain, top viewFigure 1
Schematic representation of a hamster brain, top view. Lev-
els of coronal brain slices (I, II and III) used for PET blot anal-
ysis of cerebral PrPTSE deposition in animals that were sham-
operated or lymphadenectomized four weeks before foot-
pad-infection with a 0.001% 263K scrapie brain homogenate.

Table 2: Survival times of hamsters that underwent regional lymphadenectomy before scrapie infection

Sham operation 4 weeks before infection Ectomy 4 weeks before infection

individual survival mean ± SD individual survival mean ± SD

Infectious dose:
20 µl 2%
263K-homogenate

105; 105;
108; 115;
115; 122

112 ± 7 108; 112;
112; 115;
115; 115

114 ± 4

Infectious dose: 20 µl 0.1%
263K-homogenate

131; 138;
168; 176
176; 182;
182; 200

169 ± 23 125; 127;
127; 131;
134; 168;
182; 218

155 ± 34

Infectious dose:
20 µl 0.001%
263K-homogenate

219; 247;
247; 288;
300; 308;

314*

268 ± 36 (without *) 308;
314*; 314*;
314*; 314*;
314*; 314*

Individual survival times (days) and mean survival times (days ± SD) of hamsters that underwent regional lymphadenectomy of the Ln. popliteus, or 
sham-operation, four weeks before footpad infection with a high, a low or a very low dose of 263K-scrapie agent. Asterisk indicates animals that did 
not show onset of scrapie symptoms until the termination of the experiment at 314 dpi.
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draining Ln. popliteus at different time points after foot-
pad-infection with a high dose of scrapie agent (1% inoc-
ulum) produced no statistically significant difference in
the mean survival time (i. e. the interval of time between
infection and the occurrence of terminal scrapie symp-
toms) as compared to the sham-operated control group
(table 1). However, as can be seen from table 1, the situa-
tion looks different after footpad-infection with the low-
dose (0.01%) inoculum. Here, one conspicuous outlier
each occurred when lymphadenectomy was performed at
24 h and 2 days after infection, with highly prolongated
survival times of 174 and 178 days, respectively. Further-
more, when lymphadenectomy was performed at 6 days
after the low-dose challenge, a statistically significant
increase in the mean survival time as compared to the
control group was found.

Effect of regional lymphadenectomy performed four 
weeks before footpad-infection
As compared to the respective control groups, survival
times remained virtually identical or did not show a statis-
tically relevant difference when the ipsilateral Ln. popliteus
was removed four weeks prior to footpad-infection with a
high (2% inoculum) or medium dose (0.1% inoculum)

of infectivity, respectively (table 2). However, a pro-
nounced effect could be observed when the footpad-infec-
tion was performed after lymphadenectomy with a very
low dose of agent, i. e. the 0.001% inoculum. Here 6 out
of 7 sham-operated control animals showed beginning or
terminal scrapie after 258 ± 39 days (incubation time) and
268 ± 36 dpi (survival time [mean ± SD], table 2), respec-
tively. Only one animal of this control group remained
free of scrapie symptoms until termination of the experi-
ment at 314 dpi. In contrast, 6 out of 7 lymphadenect-
omized hamsters stayed free of clinical scrapie until 314
dpi. A statistical analysis using a contingency table (table
3) and Fisher's exact test (Graphpad-Prism-Software)
revealed a low probability of only 2.91% that the
observed discrepancy between the lymphadenectomized
and control group was statistically irrelevant. This for-
mally confirms that sham-operated hamsters are at much
higher risk to develop scrapie during the period of obser-
vation than their lymphadenectomized counterparts.
Consistent with the results of the statistical analysis, PET
blot examination of the brains from symptom-free lym-
phadenectomized hamsters sacrificed at 314 dpi showed
absence of detectable cerebral PrPTSE deposition in five out
of six animals (figure 3, I–L). In contrast, all animals of

Western blot detection of PrP27–30, the Proteinase K-resistant core of PrPTSE, in lymphonodal tissue (Ln. popliteus) at different time points after infection of hamsters via the footpad with a 2% 263K-scrapie brain homogenateFigure 2
Western blot detection of PrP27–30, the Proteinase K-resistant core of PrPTSE, in lymphonodal tissue (Ln. popliteus) at different 
time points after infection of hamsters via the footpad with a 2% 263K-scrapie brain homogenate. The amount of tissue sub-
jected to testing is specified in brackets. A, left lane: blot control, 263K-scrapie hamster brain homogenate containing 10-6 g of 
brain tissue; right lane: 27kD marker; B, 2 dpi, left lane: contralateral Ln. (3.1 mg); right lane: ipsilateral Ln. (3.3 mg); C, 42 dpi, 
left lane: contralateral Ln. (2.9 mg); right lane: ipsilateral Ln.(4.8 mg); D, 70 dpi, left lane: contralateral Ln. (7.0 mg); right lane: 
ipsilateral Ln. (7.4 mg); E, 80 dpi, left lane: contralateral Ln. (7.9 mg); right lane: ipsilateral Ln. (4.7 mg); F, 90 dpi, left lane: con-
tralateral Ln. (4.1 mg); right lane: ipsilateral Ln. (4.3 mg); G, 100 dpi, left lane: contralateral Ln.(1.9 mg); right lane: ipsilateral 
Ln.(3.9 mg).

Table 3: Contingency table

Intervention (four weeks before infection) Development of clinical disease until 314 dpi Number of animals tested
Yes No

Sham operation 6 1 7
Lymphadenectomy 1 6 7

Table of contingency indicating the development of clinical disease in animals which underwent ipsilateral lymphadenectomy or sham operation four 
weeks before footpad infection with 0.001% scrapie-inoculum.
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the sham-operated group – including the hamster that did
not show scrapie symptoms until 314 dpi – displayed pro-
nounced cerebral PrPTSE deposition in the PET blots (fig-
ure 3, A–H).

Discussion
Following a peripheral infection with TSE agents, initial
PrPTSE deposition and replication of infectivity within the
host was found to occur in components of the LRS and
PNS [6,9,26-29]. In the light of these findings, a two-
phase model has been suggested for prion neuroinvasion
after peripheral uptake of agent. This model postulates the
following sequence of events [30,31]: 1st) replication of
infectivity in the LRS, and 2nd) neuroinvasion by transfer
of prions to components of the LRS innervation. How-
ever, other findings suggest that direct infection of the
nervous system is possible independently of the LRS,
especially when the infection is caused by a high doses of
agent (for review see: [6]). Against this background, the
intention of our study was to further pinpoint the rele-
vance of draining lymphoid tissue for the spread of prions
from a peripheral site of inoculation to the CNS in a qual-
ified in vivo model using high and low doses of scrapie
agent for infection prior to, and after lymphadenectomy.

When we performed a unilateral footpad infection of
hamsters with scrapie in a previous study, PrPTSE could be
detected in the ipsilateral sciatic nerve at about 60 dpi,
before the onset of clinical symptoms. In the contralateral
sciatic nerve, however, detection of PrPTSE was possible
only at about 80 dpi or later [21]. This pointed to an ipsi-
laterally centripetal and subsequent contralaterally cen-
trifugal sciatic propagation of the infection. Here, we
extended our studies to the regional lymphoid tissue and
detected an accumulation of PrPTSE in the footpad-drain-
ing Ln. popliteus from the first time point of investigation,
i. e. 2 dpi, onwards (right lane in B of figure 2). In contrast,
the corresponding contralateral lymph node was consist-
ently negative for PrPTSE at all examined time-points (fig-
ure 2), showing that a systemic lymphonodal
generalisation of infection did not appear until the termi-
nal stage of the disease. In this context it should also be
noted that Western blot detection of PrPTSE in the spleens
of our animals was not possible before 60 dpi (data not
shown).

Bearing in mind the draining function of regional lymph
nodes at sites of peripheral infection, early accumulation
of PrPTSE in the ipsilateral Ln. popliteus of our footpad-
infected model animals is not surprising. Moreover, accu-
mulation of PrPTSE in the regional lymphonodal system

PET blot analysis of PrPTSE deposition in coronal brain slices of hamsters that were sham-operated or lymphadenectomized four weeks before footpad infection with the 0.001% inoculumFigure 3
PET blot analysis of PrPTSE deposition in coronal brain slices of hamsters that were sham-operated or lymphadenectomized 
four weeks before footpad infection with the 0.001% inoculum. Levels correspond to regions I-III as indicated in figure 1 (A-C, 
E-G, I-K), and to a region containing the red nucleus (from where neural projections extend to the sciatic nerve innervating the 
footpad [D, H, L]). A-D: Samples from a sham-operated hamster that developed terminal scrapie at 300 dpi. E-H: Samples from 
the sham-operated hamster that remained free of scrapie symptoms until 314 dpi. I-L: Samples from one animal representative 
for five lymphadenectomized hamsters that remained free of scrapie symptoms until 314 dpi.
Page 6 of 8
(page number not for citation purposes)



BMC Veterinary Research 2007, 3:22 http://www.biomedcentral.com/1746-6148/3/22
was demonstrated previously in different in vivo models,
e.g. in mice unilaterally exposed to scrapie agent via the
skin [32]. Also, hamsters perorally challenged with scrapie
accumulated PrPTSE within the first days after inoculation
in Peyer's patches [33].

Despite the consistent detection of PrPTSE in the regional
Ln. popliteus of our model animals at 2 dpi and all follow-
ing time points, resection of this lymph node performed
at 4 h, 24 h, 2- or 6 days after administration of the high
dose of agent yielded no differences in the observed sur-
vival times or attack rates as compared to the control
groups. However, similar intervention at 24 h and 2 days
after low-dose infection produced substantially increased
incubation times in one out of 5 animals per group, each
(table 1). Such effect was never observed when animals
were inoculated with the high dose of agent and indicates
that the Ln. popliteus may influence pathogenetic events
following a low-dose challenge at least in a subset of ani-
mals. Furthermore, when lymphadenectomy was per-
formed at 6 days after low dose infection, a statistically
significant increase of the mean survival time of 10 days
was observed. The various effects of lymphadenectomy
performed at different time points may have resulted from
a possible reduction of the load of infectivity below a crit-
ical threshold or a variably efficient "transition-block"
before the agent had accomplished neuroinvasion. How-
ever, the interpretation of the data obtained when
regional lymphadenectomy had been performed after
footpad infection may be complicated by interfering
effects of the surgical intervention itself. Conspicuously,
the sham-operated animals that were inoculated with the
0.01% scrapie brain homogenate did show virtually the
same survival time as the sham-oparated hamsters chal-
lenged with 100 times more infectivity (table 1). Typi-
cally, the incubation period or survival time is indirectly
proportional to the administered dose of agent. The
absence of this well-established dose-response relation in
our experiment may have resulted from inflammatory
conditions that were present for a certain time at the site
of operation. Such inflammatory or other pathological
processes may have considerably accelerated the progress
of infection in the low-dose group, whereas the high-dose
challenge left less space for a further reduction of the incu-
bation or survival time by additional factors.

In order to avoid interfering effects from surgery, and in
order to broaden the range of infectious doses used for
footpad infections we resorted to a modified experimental
paradigm. In these follow-up experiments we investigated
the effect of regional lymphadenectomy performed four
weeks before footpad-infection with a 2%-, a 0.1%- and a
0.001% inoculum. In these animals inflammatory or
other pathological processes due to incomplete healing of
the operation wound should be absent, and, indeed, here

the survival times of the hamsters showed a normal
inverse relation to the three administered doses of agent
(table 2). The accelerating effect of surgical intervention
around the time point of infection as discussed above is
highlighted by the fact that hamsters which were sham-
operated at 6 days after footpad-infection with an 0.01%
inoculum showed a considerably shorter survival time
than hamsters which received a ten times higher dose of
agent (0.1% inoculum) four weeks after the sham-opera-
tion (113 ± 4, table 1, vs. 169 ± 23 days, table 2). In addi-
tion, with the 0.001% inoculum, a pronounced delaying
effect on the propagation of infection was observed when
lymphadenectomy had been performed four weeks prior
to footpad-infection. While six out of seven sham-oper-
ated controls showed onset of scrapie at 258 ± 39 dpi, and
one symptom-free animal of this group displayed distinct
PrPTSE deposition in the brain at 314 dpi (figure 3, E–H),
six out of seven lymphadenectomized hamsters remained
free of clinical symptoms until 314 dpi (when the experi-
ment was terminated), and the brains of five of these ani-
mals were free of detectable PrPTSE as revealed by PET
blotting (see representative example in figure 3, I–L).

Conclusion
Taken together, our interventional study did not show any
discernible pathogenetic influence of the regional lymph
node on preventing or mediating neuroinvasion of
scrapie agent when a relatively high dose (2%, 1%, or
0.1% inoculum) of scrapie agent was administered prior
to, or after lymphadenectomy. Indeed, recent studies
using the same hamster model and similar doses of agent
revealed the regional nerve (N. ischiadicus) as the prime
pathway for CNS invasion of the scrapie agent after foot-
pad-infection, as evidenced by a substantial prolongation
of survival after neurectomy (Kratzel et al., submitted for
publication).

However, findings from our first experimental series
reported here indicated that the Ln. popliteus may have
modulated the incubation time in a limited subset of ani-
mals upon low dose infection with the 0.01% inoculum
when lymphadenectomy was performed at different time
points after footpad-infection. In these experiments, our
findings suggested the regional lymph node as a poten-
tially facilitating factor contributing to neuroinvasion.
This conclusion was confirmed and expanded by the
results of our second set of experiments, when a very low
dose of agent (0.001% inoculum) was administered to
hamsters that were lymphadenectomized four weeks
before infection: Under these conditions lymphadenec-
tomy prevented detectable cerebral prion invasion – as
monitored by PET blotting – in a large proportion of ani-
mals (table 2 and figure 3).
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It has been well established that the lymphoid pathogen-
esis of acquired TSEs depends on a variety of parameters
such as the host species, the strain and dose of agent, or
the route of infection [6]. Contrary effects of splenectomy
have been observed in mice and hamsters [18,34], and
Glaysher and Mabbott [20] reported impaired neuroinva-
sion after scrapie infection via the skin of genetically mod-
ified mice lacking draining lymph nodes. We suggest the
application of our invasive in vivo model in mice and
other animal species to further elucidate the involvement
of lymphoid tissue in the pathogenesis of experimental
and natural TSEs.
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