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Abstract  1 

Phospholipases are a diverse class of enzymes produced both by eukaryotic hosts as well as 2 

their pathogens. Major insights into action pathways of bacterial phospholipases have been 3 

provided during the last years which on the one hand act as potent membrane destructors and 4 

on the other hand manipulate and initiate host signalling paths, such as chemokine expression 5 

or the inflammatory cascade. Reaction products of bacterial phospholipases may potentially 6 

influence many more host cell processes, such as cell respreading, lamellopodia formation, 7 

cell migration and membrane traffic. A pathogenic bacterium where phospholipases play a 8 

dominant role is the lung pathogen Legionella pneumophila. Here so far 15 different 9 

phospholipase A enzymes are encoded in the genome dividing into three major groups, the 10 

GDSL, the patatin-like and the plaB-like enzymes. The first two lipase families are also found 11 

in higher plants (such as flowering plants) and the second family shows similarities to 12 

eukaryotic cytosolic phospholipases A, therefore when those enzymes are injected or secreted 13 

by the bacterium into the host cell they may mimic eukaryotic phospholipases. The current 14 

knowledge on the Legionella pneumophila phospholipases is summarised here with emphasis 15 

on their activity, mode of secretion, localisation, expression and importance for host cell 16 

infections. 17 

 18 
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Introduction on bacterial phospholipases and their manifold impacts on host cells 1 

 2 

Phospholipases are ubiquitous and diverse enzymes that mediate various cellular functions, 3 

including membrane synthesis, alteration in membrane compositions, cellular turnover, the 4 

generation of second messengers and inflammatory responses (Vadas et al., 1993; Granata et 5 

al., 2003). They are classified into four major groups (A, B, C, D) based on the position at 6 

which they cleave within a phospholipid. On the one hand, phospholipases A (PLA) 7 

hydrolyse the carboxylester bonds at sn-1 or sn-2 position and thereby release fatty acids 8 

together with a lysophospholipid and phospholipases B act on both fatty acid residues. If only 9 

one fatty acid is targeted, a lysophospholipid is generated and may be further cleaved by a 10 

lysophospholipase A (LPLA), thus liberating the remaining fatty acid from the glycerol 11 

backbone. On the other hand, phospholipases C (PLC) and phospholipases D (PLD) 12 

hydrolyse either the glycerol-oriented or the alcohol-oriented phosphodiester bond, 13 

respectively. Substrates of phospholipases have an amphipathic nature and are assembled into 14 

bilayers or monolayers, of which the most common in mammalian cells are 15 

phosphatidylethanolalamine (PE), phosphatidylcholine (PC), phosphatidylserine and 16 

phosphatidylinositol (PI) (Schmiel and Miller, 1999). The resulting cleavage products of these 17 

substrates participate in multiple signaling pathways and can act as precursors of potent 18 

mediators in the host cell (see Fig. 1).  19 

 20 

There are many ways by which bacterial phospholipases contribute to the development of 21 

disease (Songer, 1997; Schmiel and Miller, 1999; Sitkiewicz et al., 2006; Hyrley and 22 

McCormick, 2008). Direct effects of phospholipases resulting from the hydrolysis of 23 

phospholipids are the depletion of integral structural lipids or the generation of lytic reaction 24 

products both leading to loss of membrane integrity and cytotoxicity. For example, the food-25 

borne bacterial pathogen Listeria monocytogenes secretes a phosphatidylinositol-specific PLC 26 

(PI-PLC) and a broad-range phosphatidylcholine-specific PLC (PC-PLC) (Camilli et al., 27 

1991; Mengaud et al., 1991; Goldfine and Knob, 1992; Smith at al., 1995). Both PI-PLC and 28 

listeriolysin O, a pore-former, are required for bacterial escape from the pathogen-containing 29 

vacuole into the cytosol, whereas PC-PLC contributes to disruption of the double-membrane 30 

vacuole during cell to cell spread (Goldfine et al., 1995; Smith et al., 1995; Poussin and 31 

Goldfine, 2005; Wei et al., 2005; Alberti-Segui et al., 2007). Further, the lung pathogen 32 

Pseudomonas aeruginosa injects the effector protein ExoU with PLA2 activity directly into 33 

host cells by means of a type III secretion system (Finck-Barbancon et al., 1997; Hauser et al., 34 
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1998; Sato et al., 2003; Phillips et al., 2003; Sato and Frank, 2004; Sato et al., 2005). By 1 

lysing cell membranes, it contributes to the ability of Pseudomonas to disseminate rapidly 2 

from lung tissue to the bloodstream. Also, the generation of lysophosphatidylcholine (LPC) 3 

contributes to increasing the permeability of cell membranes (Weltzien, 1979).  4 

 5 

LPC is derived from PC as a result of PLA2 enzymatic action and possesses a variety of 6 

functions within the eukaryotic cell. For example, extracellular application of LPC activates 7 

RhoA in a protein kinase C α (PKCα)-sensitive manner and impairs endothelial barrier 8 

function (Huang et al., 2005). Further, LPC induces oxidant production through activation of 9 

the NADH / NADPH oxidase system (Takeshita et al., 2000) and increases the expression of 10 

chemokines such as monocyte chemoattractant protein-1 and IL-8 (Murugesan et al., 2003). 11 

Obviously, phospholipase reaction products can also act as second messengers and aid the 12 

pathogen in manipulation of host signaling events. As an example, arachidonic acid or 1,2-13 

diacylglycerol (1,2-DG) freed from a phospholipid molecule by PLA2 or PLC, respectively, 14 

are involved in cellular signaling. This is the case for ExoU from P. aeruginosa, which 15 

triggers an arachidonic acid-dependent inflammatory cascade in vivo and activates several 16 

transcription factors that control proliferation responses and proinflammatory cytokine 17 

production (Sitkiewitz et al., 2007; Saliba et al., 2005). 1,2-DG, for example is generated by 18 

Clostridium perfingens α-toxin, one of the most toxic PLCs characterised to date (Flores-Diaz 19 

and Alape-Giron, 2003). Incubation of neutrophils with alpha-toxin leads to the production of 20 

1,2-DG and in addition to release of phosphatidic acid (PA) (Sakurai et al., 2004). This 21 

triggers various signal transduction pathways, leads to uncontrolled generation of several 22 

intercellular mediators (Bryant and Stevens, 1996; Titball et al., 1999) and induces processes, 23 

like the adhesion of neutrophils to fibrinogen and fibronectin, as well as the production of O2
- 24 

(Ochi et al., 2002). 1,2-DG has further been shown to activate protein kinase C, which is 25 

known to modulate a variety of cellular processes and growth including activation of 26 

neutrophils and macrophages (Nishizuka, 1992).   27 

 28 

An additional product, which can be generated by various phospholipase pathways, like 29 

particularly PLD-mediated degradation of LPC or PLA2-dependend hydrolysis of PA, is 30 

lysophosphatidic acid (LPA). LPA is a lipid mediator with many possible biological actions, 31 

particularly as an inducer of cell proliferation, migration and survival. LPA binds to specific 32 

G-protein-coupled receptors and thereby activates multiple signal transduction pathways, 33 

including those initiated by the small GTPases Ras, Rho and Rac (Moolenaar, 1995; 34 
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Moolenar et al., 1997; Moolenaar et al., 2004). Exogenous PLD from Streptomyces 1 

chromofuscus triggers Ca2+ mobilization, membrane depolarization, Rho-mediated neurite 2 

retraction and is acting on cognate G-protein-coupled LPA receptors via the production of 3 

LPA (Van Dijk et al., 1998). LPA also promotes cell respreading (adhesion and extension of 4 

eukaryotic cells after debonding from the matrix), lamellopodia formation and cell migration 5 

by activating the Rac GTPase through a Gi-mediated pathway (Van Leeuwen et al., 2003). 6 

These data indicate that products of phospholipases are also significantly involved in the 7 

rearrangement of the cytoskeleton and of cellular movement. But phospholipases not only 8 

modify the host cell membranes they can also facilitate the regulation of bacteria-induced 9 

membrane extensions.  10 

 11 

Salmonella enterica serovar Typhimurium (S. Typhimurium) has the fascinating ability to 12 

form tubular structures known as Salmonella-induced filaments (Sifs) in host cells. To 13 

regulate the level of Sifs, Salmonella Typhimurium injects the effector protein SseJ into the 14 

host cell cytoplasm showing PLA and glycerophospholipid:cholesterol acyltransferase 15 

(GCAT) activities  (Lossi et al., 2008, Nawabi et al., 2008). Upon secretion, SseJ localizes to 16 

the Salmonella-containing vacuole membrane and to Sifs and antagonises the stimulatory 17 

effect of SifA, which is essential for Sif formation (Ruiz-Albert et al., 2002).  18 

 19 

Another potential substrate of phospholipases is PI. The phosphorylated variants of PI, called 20 

phosphoinositides, are an important class of signaling lipids. Their hydrolysis yields second 21 

messengers that transmit downstream signals (Di Paolo and de Camilli, 2006), they play a 22 

role in the regulation of receptor-mediated endocytosis and phagocytosis (Yeung et al., 2006) 23 

and some of them are involved in the recruitment of cytoskeleton elements (Scott et al., 24 

2005). Pathogens have evolved strategies to subvert phosphoinositide metabolism to affect 25 

either the uptake process or phagosomal maturation (Weber et al., 2009, Steinberg and 26 

Grinstein, 2008). In this background bacterial phospholipases, in particular PLC, could 27 

interfere or influence phosphoinositide signaling by PI hydrolysis followed by emission of 28 

different inositolphosphates and 1,2-DG as second messengers.  29 

 30 

In the following, the bacterial lung pathogen L. pneumophila and its manifold PLA enzymes 31 

are introduced and especially their action onto host cells is described. 32 

 33 

34 
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Legionella and its multitude of phospholipases. 1 

 2 

Legionella bacteria are characterised by their biphasic lifestyle. On the one hand, they thrive 3 

within different kinds of protozoa present in aqueous habitates and on the other hand, when 4 

inhaled with or without protozoa, Legionella causes a potentially severe pneumonia in 5 

humans, termed Legionnaires’ disease. The genus Legionella comprises about 50 different 6 

species; however only one species, L. pneumophila, is responsible for more than 90% of the 7 

disease cases (Hilbi et al., 2010; Fields, 1996; Winn and Myerowitz, 1981). Therefore, L. 8 

pneumophila-specific proteins which are not produced by or which are not equipped with 9 

comparable functional properties in non-pneumophila species are of special interest. 10 

 11 

Since phospholipases are classical virulence factors of pathogenic bacteria, including both 12 

extracellular (such as C. perfringens or P. aeruginosa) and intracellular pathogens (such as L. 13 

monocytogenes), we aimed to investigate the importance of such enzymes for L. pneumophila 14 

belonging to the intracellular bacteria (Sitkiewicz et al., 2006; Istivan and Coloe, 2006; 15 

Schmiel and Miller, 1999; Titball, 1998). Especially here, phospholipases may fulfil a variety 16 

of the above mentioned functions for nutrition, adhesion, invasion, modulation of the host 17 

(including its signalling) allowing intracellular establishment and also escape from the 18 

phagosome and the host cell to subsequently infect another host cell. Surely, one important 19 

function of those enzymes may include to mimic or substitute host cell phospholipases to 20 

drive processes beneficial for the invader. This is potentially relevant for enzymes injected 21 

into the host cell cytosol or the phagosomal membrane via the L. pneumophila type IVB 22 

secretion system Dot/Icm, a secretion system which transports a multitude of effector proteins 23 

(at least 140) and strongly promotes L. pneumophila virulence (Hubber and Roy, 2010; Isberg 24 

et al., 2009; Ensminger and Isberg, 2009; Franco et al., 2009; Ninio and Roy, 2007; Vogel et 25 

al., 1998; Segal et al., 1998). But also other established and putative secretion systems for 26 

transport through (at least) the outer membrane have been described for L. pneumophila 27 

strains, such as a type I Lss, a type II Lsp, several type IVA systems (for example Lvh, Trb-1, 28 

Trb-2), and a potential type V autotransporter protein (Schroeder et al., 2010; Glöckner et al., 29 

2008; Albert-Weissenberger et al., 2007; Brassinga et al., 2003; Jacobi and Heuner, 2003; 30 

Rossier and Cianciotto, 2001; Segal et al., 1999). So far only the Lsp system exporting more 31 

than 20 proteins and, in the absence of the Dot/Icm system, the Lvh system, have been 32 

described as additional virulence determinants (Cianciotto, 2009; Bandyopadhyay et al., 33 

2007; DebRoy et al., 2006; Rossier et al., 2004).  34 
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During life within a host cell but also during growth in laboratory media, L. pneumophila 1 

exhibits two different phases which are on the one hand the replicative phase where the 2 

bacteria do not show cytotoxicity but instead the expression program is focused on the usage 3 

of present nutrients. On the other hand, when the nutrient supply ceases, the bacteria switch to 4 

the cytotoxic phase where the expression program favours production of factors facilitating 5 

acquisition of new nutrient sources and bacterial exit from the spent host cell (Byrne et al., 6 

1998; Molofsky and Swanson, 2004; Brüggemann et al., 2006). It seems plausible that some 7 

of the Legionella phospholipases might support firstly intraphagosomal nutrient acquisition 8 

(impact on signalling to hijack host cargo?) and catabolism as well as suppression of host 9 

defence in the replicative phase, while others might serve to release bacteria from the host in 10 

the cytotoxic phase. Therefore, it makes sense that an intracellular pathogen could engage 11 

several kinds of phospholipases at different stages for its benefit. 12 

 13 

To assess the impact of Legionella phospholipases on bacterial pathogenicity and also 14 

characterise their substrate specificity and their mode of secretion, about ten years ago, we 15 

started to identify the proteins and genes responsible. At that time, we never thought that our 16 

bacterium of interest would hide an unexpected variety of lipolytic enzymes comprising a 17 

multifaceted redundancy, which we now know is a very characteristic feature of L. 18 

pneumophila. This actually might not be surprising for a bacterium which has been shown to 19 

infect many different kinds of protozoa (Fields, 1996). Today we know that the genomes of 20 

several L. pneumophila strains contain at least 15 genes coding for potential PLAs which 21 

classify into three different families, the GDSL family, the patatin-like protein (PLP) family, 22 

and the PlaB-like family (Fig. 2, Table 1; Banerji et al., 2008). In principal, paralogs of many 23 

of those are also found in other Legionella species, such as L. longbeachae and L. drancourtii, 24 

however the panel of genes present is not absolutely identical (see Table 1). There are surely 25 

more lipolytic enzymes in addition to the PLAs included in the genome, for example also 26 

classical lipases and potential phospholipases C (Aragon et al., 2002). In the following 27 

paragraphs, the current knowledge on the L. pneumophila phospholipases A will be 28 

summarised and especially their substrate specificities, mode of secretion, expression and 29 

impact on the host cell will be addressed. 30 

 31 

 32 

 33 

 34 
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Legionella GDSL lipase family 1 

 2 

The GDSL enzyme family, a sub-family of the SGNH hydrolases, comprises enzymes with 3 

PLA, LPLA, lipase, haemolytic, and GCAT activities mostly of plant or bacterial origin 4 

(Molgaard et al., 2000; Upton and Buckley, 1995; Brick et al., 1995). GDSL proteins possess 5 

the GDSL signature motif encompassing the putative catalytic nucleophile Ser located in 6 

amino acid homology block I and the putative catalytic triad members, Asp and His, in block 7 

V (Brick et al., 1995; Upton and Buckley, 1995). The prototype of a bacterial GDSL enzyme 8 

is the GCAT SatA of Aeromonas salmonicida also showing PLA, LPLA and lipase activities 9 

(Buckley et al., 1982). SatA is an important virulence factor and also other GDSL enzymes 10 

contribute to the establishment of the pathogen within the host, such as SseJ, a GCAT of S. 11 

Typhimurium, by fulfilling a function in biogenesis of the Salmonella-containing vacuole by 12 

cholesterol acylation (Lossi et al., 2008; Nawabi et al., 2008; Ohlson et al., 2005; Ruiz-Albert 13 

et al., 2002; Lee and Ellis, 1990).  14 

 15 

Enzymes and activities 16 

The species L. pneumophila (currently represented by five sequenced strains: Philadelphia-1, 17 

Corby, Lens, Paris, and Alcoy) possesses three different GDSL enzymes with distinct 18 

activities, PlaA, PlaC, and PlaD, sharing the five typical blocks of amino acid homology 19 

(Table 1; D’Auria et al., 2010; Banerji et al., 2008; Glöckner et al., 2008; Cazalet et al., 2004; 20 

Chien et al., 2004; Flieger et al., 2002). A screen of the recently sequenced genomes of the 21 

non-pneumophila species L. longbeachae (strains D-4968 and NSW150) and L. drancourtii 22 

(strain LLAP12) uncovered that those are coding for orthologs of all three proteins (Cazalet et 23 

al., 2010; Kozak et al., 2010; Moliner et al., 2009). Interestingly, in L. drancourtii PlaA and 24 

PlaD seem to have two close relatives each and the L. longbeachae strains even contain two 25 

to three PlaD paralogs (Table 1).  26 

 27 

PlaA was originally identified via biochemical purification and N-terminal sequencing from 28 

L. pneumophila culture supernatant and was found to be the major secreted LPLA with some 29 

additional PLA and lipase activities (Flieger et al., 2002; Flieger et al., 2001). The progression 30 

of the L. pneumophila genome projects allowed identification of the other homologs and 31 

subsequent experimental studies. PlaC exhibited some LPLA but majorly PLA and GCAT 32 

activities but PlaA interestingly did not show the latter activity (Banerji et al., 2005; Flieger et 33 

al., 2002). The GCAT activity of PlaC is via an unknown mechanism directly or indirectly 34 
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dependent on the secreted zinc metalloprotease ProA, and the putative activation process also 1 

leads to an increase of L. pneumophila secreted PLA compared to LPLA activity (Banerji et 2 

al., 2005; Flieger et al., 2002). For other bacterial GDSL enzymes, an activation procedure 3 

which obviously prevents the enzyme’s premature action is also described. A. salmonicida 4 

SatA is processed between two cysteine residues and S. Typhimurium SseJ even requires 5 

binding of eukaroytic RhoA (Christen et al., 2009; Lossi et al., 2008; Hilton et al., 1990). The 6 

host lipids PC and also phosphatidylglycerol (PG), the latter especially found in lung 7 

surfactant, are efficiently cleaved by the here described L. pneumophila PLA activities to the 8 

lysophospholipids and fatty acids are released. Subsequently, LPLA frees the remaining fatty 9 

acid and thereby degrades and detoxifies the pore-forming agent and signal transducer LPC 10 

(Murugesan et al., 2003; Prokazova et al., 1998; Kume et al., 1992; Niewoehner et al., 1987; 11 

Weltzien, 1979). The detoxifying function has been shown especially for PlaA supporting 12 

bacterial survival under LPC exposure (Flieger et al., 2002). Enzymatic activity of the third L. 13 

pneumophila GDSL hydrolase PlaD and further properties still remain to be comprehensively 14 

determined, but first results suggested presence of PLA and LPLA activities (Rastew, Lang, 15 

Flieger unpublished). 16 

 17 

Mode of secretion, localization, and expression  18 

Both PlaA and PlaC are secreted proteins because they are found in L. pneumophila culture 19 

supernatant.  plaA knock out mutants accordingly possess severely reduced secreted LPLA 20 

and to some extent diminished secreted PLA activity. Further, plaC knock out mutants show a 21 

complete loss of secreted GCAT and a marked reduction in PLA and LPLA activities 22 

(DebRoy et al., 2006; Banerji et al., 2005; Flieger et al., 2002). PlaC is not only found free in 23 

the L. pneumophila culture supernatant, but also is associated with outer membrane vesicles 24 

shed from the bacteria (Galka et al., 2008). PlaA and PlaC contain a predicted N-terminal 25 

signal sequence and secretion of both depends on the functional type II secretion system Lsp 26 

(DebRoy et al., 2006; Banerji et al., 2005; Flieger et al., 2002; Flieger et al., 2001; Rossier et 27 

al. and Cianciotto, 2001). Type II secreted proteins, such as the zinc metalloprotease ProA, 28 

are potentially secreted into the phagosome, and therefore, the presence of PlaA and PlaC 29 

within the lumen of the phagosome also is very likely (Rechnitzer et al., 1992). Since the type 30 

II secretion mutant still exhibits residual secreted PLA and also LPLA activities, it is expected 31 

that further lipolytic enzymes are secreted into the culture supernatant by another secretion 32 

mechanism (Flieger et al., 2001; Rossier and Cianciotto, 2001). Secreted lipolytic activity is 33 

most prominent in the late logarithmic growth phase (Flieger et al., 2000). Interestingly, L. 34 
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pneumophila GCAT activity was not found in the culture supernatant of mutants in the two 1 

component regulatory system LetA/S or RpoS, which are important for the switch from the 2 

replicative into the transmissive phase. Moreover, plaC mRNA was severely reduced in the 3 

mutants, and therefore, we conclude that those regulators directly or indirectly impact plaC 4 

expression (Broich et al., 2006). Further, secreted PLA activity was dramatically reduced and 5 

secreted LPLA activity was increased in the mutants, showing a further induction of a so far 6 

not known secreted PLA and further repression of a major LPLA, such as PlaA, respectively, 7 

by LetA/S and RpoS. 8 

GDSL enzyme gene expression profiles comparing the replicative with the transmissive 9 

growth phase during an amoeba infection by means of microarray analyses pointed out that 10 

expression of plaA and plaC was not significantly changed whereas plaD expression 11 

increased twice in the transmissive growth phase (Brüggemann et al., 2006). Those data 12 

suggested some importance of PlaD within the transmissive rather than the replicative growth 13 

phase, whereas the other two enzymes might be expressed at similar levels in the two phases.  14 

 15 

Importance for host cell infections 16 

Single knock out mutants in plaA and in plaC were tested for host cell infection in human 17 

macrophages and amoebae and the plaA mutant was also checked in a mouse model. 18 

However, the mutants were as virulent as the wild type bacteria (DebRoy et al., 2006; Banerji 19 

et al. 2005; Flieger et al., 2002). This suggests that the three enzymes may balance the loss of 20 

a specific lipase. Although they exhibit different major activities, they are mostly overlapping 21 

in their LPLA activities, which might be the most important activity under infection 22 

conditions. In general, the fine-tuning of GDSL protein enzymatic PLA and LPLA activities 23 

might not only support bacterial survival by detoxification of LPC, but at the same time also 24 

guarantee host cell survival and integrity until the end of the intracellular infection. Further, 25 

the release of fatty acids, their binding onto acceptors such as cholesterol and specific 26 

amounts of LPC might influence host cell signal transduction. Interestingly, PlaC is yet the 27 

only L. pneumophila enzyme contributing to cholesterol acylation, however currently it can 28 

not be excluded that under in vivo conditions also PlaA and PlaD may develop GCAT activity 29 

(e.g. by means of an eukaryotic factor). Such an activity may modify important cholesterol-30 

rich regions within mammalian cells and influence for example receptor presentation and 31 

membrane organisation. In the future, analysis of L. pneumophila double and triple GDSL 32 

protein mutants will shed light on the issue of GDSL protein redundancy.  33 

 34 
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Legionella patatin-like protein family 1 

 2 

Patatins are a family of plant proteins with acyl hydrolase activity fulfilling important 3 

functions in signal transduction processes and plant parasite defence. Some of the plant 4 

patatins are upregulated during colonization by bacteria or fungi (Holk et al., 2002; Strickland 5 

et al., 1995). More interestingly, the knock out of certain up regulated patatins renders the 6 

plant more resistant towards pathogen attacks, implying that the invader may just hijack the 7 

lipolytic activity for its own nutritional purposes (La Camara et al., 2005). Patatin-like 8 

proteins (PLP) have been found as well in bacteria and they are considered to be eukaryotic-9 

like phospholipases because they are more similar to the eukaryotic patatins than to any other 10 

family of bacterial lipases (Banerji and Flieger, 2004). Both bacterial PLPs and eukaryotic 11 

patatins are characterized by the following: 1) four blocks of amino acids homologous to the 12 

active site residues serine (GxSxG motif) and aspartate (DGx motif) in blocks II and IV, 13 

respectively, representing the catalytic dyade (instead of a more common serine-aspartate-14 

histidine triade) and 2) a stretch of glycines (mostly three) close to the N-terminus in block I 15 

(Banerji and Flieger, 2004; Rydel et al., 2003; Hirschberg et al., 2001; Schrag and Cygler, 16 

1997). Differences between the eukaryotic and bacterial proteins are also found, namely in 17 

block III, where a conserved proline is preceded by the distinct motifs, AAP and ASxxxP, 18 

respectively. Successive to block IV, an additional region involving a conserved serine is 19 

found only in eukaryotic patatins and the related eukaryotic cytosolic phospholipase A2 20 

(Banerji and Flieger, 2004; Hirschberg et al., 2001). At present about 4400 potential proteins 21 

containing the typical patatin domains are coded in the sequenced bacterial genomes 22 

(http://www.ebi.ac.uk/interpro) and currently only a minority of bacterial PLP (Pseudomonas 23 

aeruginosa ExoU and PlpD, B. subtilis YvdO, Rickettsia typhi RT0522, L. pneumophila 24 

VipD/PatA, VpdA/PatC, VpdB/PatG, VpdC/PatF, and PatD) have been characterised to some 25 

extent, which shows that there is a research need to understand the function of the bacterial 26 

PLP especially with respect to pathogenesis (Kato et al., 2010; Rahman et al., 2010; Salacha 27 

et al., 2010; Aurass et al., 2009; VanRheenen et al., 2006; Shohdy et al., 2005; Philipps et al., 28 

2003; Sato et al., 2003).  29 

 30 

Enzymes and activities 31 

Most of the yet sequenced L. pneumophila strains encode 11 PLP and therefore L. 32 

pneumophila currently is the bacterium with the highest number of PLP and the highest 33 

genomic density of 3.7 PLP per 1000 genes, followed by Mycobacterium tuberculosis with 8 34 
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PLP and a density of 2.0 (Fig. 2, Table 1; Banerji et al., 2008). Since the mentioned two 1 

bacterial species and many others coding for PLP are important bacterial pathogens or 2 

symbionts, those in silico analyses suggest that PLP may influence their specific host cell-3 

associated life style. 4 

 5 

Enzymatic activity of L. pneumophila PLPs has so far just been published for PatD which is, 6 

comparable to PlaB, a cell-associated PLA and LPLA contributing to about 20% to the total 7 

cell-associated activity (Aurass et al., 2009). patD is organised in an operon together with 8 

bdhA which codes for a protein with significant full-length homology to Sinorhizobium sp. 3-9 

hydroxybutyrate (3-HB) dehydrogenase BdhA (Aurass et al., 2009; Aneja and Charles, 2005). 10 

3-HB dehydrogenases oxidise depolymerized polyhydroxybutyrate (PHB), an important 11 

storage lipid of bacteria, to acetoacetate, allowing metabolisation of the energy reserve (Aneja 12 

and Charles, 2005; Jendrossek and Handrick, 2002; Anderson and Drawes, 1990; Dawes and 13 

Senior, 1973). A L. pneumophila bdhA/patD mutant accordingly accumulates higher amounts 14 

of PHB granules compared to the wildtype, indeed suggesting a function of the operon in 15 

PHB usage. Currently, it is however not clear whether PatD directly contributes to PHB 16 

cleavage, for example as a PHB depolymerase, hydrolysing PHB into 3-HB monomers. A 17 

PHB depolymerase is not obviously encoded in the L. pneumophila genome sequence (Aurass 18 

et al., 2009).  19 

 20 

VanRheenen et al. were not able to detect enzymatic activity for VipD and its expression as a 21 

whole protein was relatively well tolerated in yeast contrasting the immediate cytotoxicity of 22 

P. aeruginosa ExoU (VanRheenen et al., 2006; Hauser et al., 1998; Finck-Barbancon et al., 23 

1997). Only upon overproduction in yeast, VipD slowed growth (VanRheenen et al., 2006) 24 

and interestingly, it was further found that VipD lacking the patatin domain perturbed the late 25 

secretory pathway more severe than the full length protein (Shohdy et al., 2005) whereas the 26 

main toxic effect of ExoU depended on its phospholipase domain. Those experiments show 27 

that there might be two different functional domains contained within the VipD protein, 28 

however their mode of cooperation and their protein or lipid target in the host cell still 29 

remains elusive.  30 

 31 

Mode of secretion, localization, and expression 32 

Some data are available on L. pneumophila PLP localisation and mode of secretion. Since 33 

PatD remains associated with the bacterial cell, it therefore seems important for processes 34 
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within the pathogen (Aurass et al., 2009). With respect to its likely involvement in storage 1 

lipid metabolism, PatD is expected to be present in the cytoplasm, within the inner bacterial 2 

membrane or rather at lipid inclusion membranes but it is certainly not directed towards the 3 

outside of the bacterium. VipD, VpdA and VpdB conversely are injected via the Dot/Icm type 4 

IVB secretion machinery directly into the host cell, but their target location within the host 5 

cell is currently not known (VanRheenen et al., 2006; Shohdy et al., 2005).  6 

Gene expression analysis during the infection of the environmental host amoeba 7 

Acanthamoeba castellanii has also shed light on the differential expression of multi member 8 

protein families in L. pneumophila, such as the 11 PLPs. Seven L. pneumophila PLP genes 9 

(vipD, patB, vpdA, patD, patE, patI and patK) are upregulated at least two-fold from the 10 

replicative towards the transmissive growth phase. Especially vipD, patD, patE, and patI 11 

expression increased 8-11 times showing that the respective proteins might be of major 12 

importance for survival (i.e. additional acquisition of nutrients at a phase when those become 13 

rare) or exit of the bacteria at late stages of intracellular growth, or their expression is required 14 

for the subsequent infection cycle in a new host cell (Brüggemann et al., 2006). 15 

 16 

Importance for host cell infections 17 

L. pneumophila seems to implement a huge variety of proteins to modulate host cell functions 18 

for its benefit. Already the number of Dot/Icm system-dependent injected effector proteins is 19 

exceeding 140 and there are other secretion systems, such as the Lsp machinery, which 20 

deliver proteins at least to the phagosomal space (Hubber and Roy, 2010; Cianciotto, 2009; 21 

Ensminger and Isberg, 2009; Franco et al., 2009). It is known that L. pneumophila produces 22 

protein families with a multitude of members, for example the PLPs, therefore work with 23 

single effector knock out mutants will very seldomly identify single genes with an essential 24 

importance in infection models. This is exactly the case for single knock out mutants in vipD, 25 

vpdA, vpdB, and vpdC, but also a knock out mutation in all four genes did not show any 26 

defect in a macrophage infection model or even resulted in a growth advantage in a 27 

Dictyostelium discoideum which again highlights the redundancy issue for Legionella. But 28 

this does not mean that the PLP might not at all serve the bacterium in host modification. 29 

Many ways of bacterial PLP interactions are imaginable starting from mimicking host cell 30 

PLAs which are very important to drive membrane traffic through the secretory pathway and 31 

continuing with very dominant activities which might be rather important for bacterial release 32 

from the phagosome (Schmidt et al., 2010; Brown et al., 2003; Choukroun et al., 2000; de 33 

Figueiredo et al., 2000; Drecktrah and Brown, 1999). 34 
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Although redundancy might mask an essential role of at least four L. pneumophila PLPs for 1 

host cell infection, the bdhA/patD knock out mutant nevertheless exhibits a very severe 2 

infection defect both in a macrophage and an amoeba infection model (Aurass et al., 2009; 3 

VanRheenen et al., 2006). The infection defect is very comparable with a Dot/Icm secretion 4 

system mutant, suggesting that PHB metabolism is essential for the life style of L. 5 

pneumophila and intracellular propagation. One can now speculate that provision of energy 6 

by PHB cleavage is an essential determinant to efficiently energise the Dot/Icm secretion 7 

system or another essential component; however currently it is not known whether the mutant 8 

is defective in the export of effector proteins. 9 

 10 

Legionella PlaB 11 

 12 

A novel lipolytic enzyme was discovered by screening a L. pneumophila gene library 13 

expressed in E. coli for haemolytic clones. Since the clone also showed PLA and LPLA 14 

activities, the gene was designated plaB (Fig. 2, Table 1). PlaB did not exhibit significant 15 

protein homology to any characterised protein, but instead to a large number of 16 

uncharacterised and therefore under the category hypothetical annotated proteins of many 17 

(sea) water-associated bacteria, such as Psychromonas ingrahamii, Shewanella paleana, 18 

Marinobacter algicola, P. aeruginosa, and Persephonella marina. Very minor and actually 19 

not significant protein homology was found to the characterised secreted lipases LipB and 20 

weakly also LipA for which the cleavage of phospholipids substrates so far has not been 21 

shown (Flieger et al., 2004, Aragon et al., 2002).  22 

 23 

Enzymes and activities 24 

To further characterize the enzymatic profile of PlaB and its contribution to L. pneumophila 25 

total activity, a L. pneumophila knock out mutant was constructed and tested for changes in 26 

lipid hydrolysis. Here, no differences in the secreted PLA/LPLA/GCAT activities were found 27 

but instead a very dramatic loss of cell-associated PLA and LPLA activities. Those 28 

experiments showed that PlaB is the most prominent cell-associated PLA/LPLA, especially 29 

cleaving PG and PC as well as the respective lysophospholipids. Importantly, the detected 30 

PlaB-associated PLA activity exceeded ~100-times the lipolytic activities present in the 31 

culture supernatant of L. pneumophila (Flieger et al., 2004). Since PlaB seemed to be the first 32 

representative of this novel enzyme family, we wanted to define the residues essential for 33 

catalytic activity. In many lipase families a catalytic diade or triade, mostly combinations of a 34 
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serine together with an aspartate and a histidine, has been found to be essential. Also in PlaB, 1 

serine 85, aspartate 203 and histidine 251, embedded into the uncommon motifs THSTG, 2 

GSDGVV, and SHS, respectively, were determined as the catalytic triade (Bender et al., 3 

2009). Interestingly, other changes such as serine 129 and histidine 270 did to ~90% reduce 4 

cleavage of PC but not PG and resulting mutant proteins were not haemolytic, revealing that 5 

the specificity for PC hydrolysis is absolutely essential for PlaB haemolytic activity. 6 

Therefore, the fact whether an organism or a protein exhibits PLA activity is not sufficient to 7 

conclude on the potential activity towards eukaryotic cells. But rather an activity targeting 8 

typical major eukaryotic lipids, such as PC or PE, might be decisive host cell disintegration. 9 

This is also underlined by the investigation of PlaB from L. spiritensis, a Legionella species 10 

so far not involved in human disease cases (Muder and Yu, 2002; Fang et al., 1989). 11 

Compared to L. pneumophila PlaB, L. spiritensis PlaB showed a less prominent relative PC-12 

specific activity (~50%) when normalised to PG-hydrolysis which correlated to a lower 13 

potential (~50%) to lyse human blood cells (Bender et al., 2009). Therefore, the presence of 14 

an enzyme gene in a specific strain might not give sufficient information to explain virulence 15 

or avirulence. Instead, it is important to additionally include considerations on the time of 16 

gene expression and quantity as well as enzyme specificity, which is not easy to analyze, 17 

because single amino acid changes or alterations in the reaction habitat, such as temperature, 18 

pH, ion concentration, and others might severely influence enzyme activity and specificity. 19 

This is also illustrated by L. spiritensis PlaB showing all so far determined residues for 20 

catalytic activity (serine, aspartate, histidine triade and surroundings) or substrate specificity 21 

(additional critical serine and histidine) exactly as L. pneumophila PlaB. In the future, it will 22 

be very interesting to analyze additional protein examples of Legionella species other than L. 23 

pneumophila or further related enzymes in the context of substrate specificity and virulence 24 

potential. 25 

  26 

Mode of secretion, localization, and expression 27 

Differential centrifugation and separation of bacterial membranes from the cytosol showed 28 

presence of PlaB in the outer membrane of L. pneumophila. Also, PlaB-associated PLA 29 

activity was cleaved from the bacterial cell by an external proteinase K treatment and was 30 

then found in the culture supernatant (Schunder et al., 2010). Those data strongly suggest that 31 

the enzyme is embedded in the bacterial outer membrane and is exposed to the external 32 

environment, a precondition allowing a direct interaction of PlaB with host cell lipid targets. 33 

However, how PlaB localizes to the outer membrane remains to be determined; known 34 
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secretion systems (Dot/Icm, Lvh, Lss, Tat) did not play a role and even a signal peptide is not 1 

predicted for the enzyme (Schunder et al., 2010). plaB expression in L. pneumophila is most 2 

prominent during early logarithmic growth and in the following decreases, showing that plaB 3 

is expressed at a rather early bacterial life stage. Accordingly, PlaB-dependent lipolytic 4 

activity develops most prominently during L. pneumophila late exponential growth in broth 5 

medium (Schunder et al., 2010). Microarray analyses did not reveal significant changes of 6 

plaB expression comparing the replicative and transmissive phase during an amoeba 7 

infection, suggesting that mRNA production might be induced at the beginning of the 8 

replication cycle within the cells and might be kept at that level during the intracellular stage 9 

(Brüggemann et al., 2006). The determination of bacteria-specific PLA/LPLA activities 10 

during an amoeba or human cell infection indicates that PlaB is indeed produced and is the 11 

most prominent L. pneumophila PLA/LPLA during an infection (Bender et al., 2009). Since 12 

the bacteria-associated PLA/LPLA activity partially decreased in mutants of the regulators 13 

LetA/S and RpoS impacting the switch from the replicative into the trasmissive phase, PlaB 14 

activity directly or indirectly depends on these regulators (Broich et al., 2006). 15 

 16 

Importance for host cell infections 17 

Although PlaB activity was high during an in vitro host cell infection of human macrophages 18 

and amoebae, there was no difference in CFU isolated from wildtype L. pneumophila and a 19 

plaB knock out mutant in those infection models (Bender et al., 2009; Flieger et al., 2004). 20 

We then speculated on a possible function of PlaB within the in vivo setting of the lung and 21 

performed Guinea pig infection experiments. Here, the plaB mutant compared to the wildtype 22 

was indeed severely attenuated, illustrated by an about 400-fold increase of CFU in the lung 23 

after two days post infection for the wild type, compared with only 20-fold increase in CFU 24 

of the plaB mutant. Further, dissemination of the mutant from the lung to the spleen was 25 

severely inhibited. Prominent destruction of lung tissue, such as accumulated endothelial 26 

debris within the alveoli, and signs of inflammation were only observed for L. pneumophila 27 

wildtype infections but almost not apparent with the plaB mutant (Schunder et al., 2010). This 28 

shows that plaB is an important virulence factor of L. pneumophila and its role became 29 

apparent only after an in vivo infection. 30 

 31 

32 
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Conclusion 1 

Many phospholipases A are found in L. pneumophila bearing an enormous redundancy with 2 

respect to lipid acquisition and membrane modulation, highlighting their importance for the 3 

bacterium. These enzymes promote cell-destructing enzymatic activity of L. pneumophila and 4 

may also be important for modification of eukaryotic signalling by the pathogen. So far two 5 

(PatD and PlaB) of the 15 enzymes, all belonging to the class of serine esterases, have been 6 

shown to be essential for host cell and/or animal infection. Future studies are intended to 7 

identify the precise action mechanisms and cellular targets of the single enzymes. Important 8 

topics for future research are: 1) Further characterisation of PlaC which not only catalyses 9 

fatty acid release from phospholipids but also transfers the fatty acid to an important 10 

eukaryotic lipid, cholesterol. Where exactly in the host cell is cholesterol acylated by PlaC 11 

and what does that mean in terms of a host cell infection? May also PlaA and PlaD develop 12 

GCAT activity? 2) Is PatD essential for energising major virulence determinants, such as the 13 

Dot/Icm-dependent protein secretion? 3) How does PlaB support host infection, rather via 14 

signal transduction interference or “mere” tissue damage? 4) Importantly, for all mentioned 15 

enzymes no crystal structures are yet available. Those analysis might help to confirm 16 

genetically acquired data on catalytic residues and contribute to an understanding of the 17 

additional protein domains attached to the lipase domain of some here presented lipases, such 18 

as PlaD (last 170aa), VipD/PatA (last 120aa), VpdA/PatC (last 150aa), VpdC/PatF (first 240 19 

and last 300aa), VpdB/PatG (last 250aa) and PlaB (last 170aa). 20 
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Figure legends. 1 

 2 

Figure 1: The variety of possible impacts of phospholipases on host cells (Abbreviations: LPC = 3 

lysophosphatidylcholine; PKCα = protein kinase Cα). 4 

 5 

Figure 2: Overview of L. pneumophila phospholipases A modified from Banerji et al., 2008. Enzymes 6 

highlighted in grey have not been characterised yet. 7 
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