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Abstract  The aim of this study was to give some insights into the prevalence, serovars, phage types 16 

and antibiotic resistances of Salmonella from animal origin in the United Arab Emirates. Data on 17 

diagnostic samples from animals (n= 20871) examined for Salmonella between 1996 and 2009 were 18 

extracted from the databases of the Central Veterinary Research Laboratory in Dubai and from typed 19 

strains (n= 1052) from the Robert Koch Institute, Wernigerode Branch in Germany and analysed for 20 

general and animal specific trends. Salmonella were isolated from 1928 (9%) of the 20871 samples 21 

examined. Among the 1052 typed strains, most were from camels (n= 232), falcons (n= 166), bustards 22 

(n= 101) antelopes (n= 66) and horses (n= 63). The predominant serovars were S. Typhimurium 23 

(25%), S. Kentucky (8%), followed by S. Frintrop (7%) and S. Hindmarsh (5%). When analysed by 24 

animal species the most frequent serovars in camels were S. Frintrop (28%) and S. Hinmarsh (21%), in 25 

falcons S. Typhimurium (32%), in bustards S. Kentucky (19%), in antelopes S. Typhimurium (9%) 26 
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and in horses S. Typhimurium (17%) and S. Kentucky (16%). Resistance of all typed Salmonella 27 

strains (n= 1052) was most often seen to tetracycline (23%), streptomycin (22%), nalidixic acid (18%) 28 

and ampicillin (15%). These data show trends in the epidemiology of Salmonella in different animal 29 

species which can be used as a base for future prevention, control and therapy strategies.  30 

 31 

Keywords  Salmonella, serovars, phage types, antibiotic susceptibility, animal, UAE 32 

 33 

Introduction 34 

Salmonellae are one of the most important pathogens in both humans and animals worldwide, as 35 

they cause gastrointestinal infections or septicaemia (Khakhria 1997). Over 2600 Salmonella serovars 36 

are known (Guibourdenche et al. 2010) with a different host adaption and virulence (Rolle and Mayr 37 

2007). Generally, the Salmonella prevalence differs between animal species (Goppee et al. 2000). 38 

Many studies reported a high Salmonella prevalence in healthy and diseased wild and captive reptiles 39 

(Dimow 1966; Hidalgo-Vila et al. 2007; Geue and Löschner 2002; Briones et al. 2004) and it is 40 

thought that they are an important Salmonella reservoir. The epidemiology of salmonellosis is quite 41 

complex since there are many routes of infection, for example from feed to animal, from animal to 42 

animal (same or different species) or from human to animal (Williams 1975). For that reason, the 43 

surveillance of Salmonella serovars and phage types is important for identifying outbreaks, for 44 

discovering infection sources, and to carry out adequate prevention and control measures (Van 45 

Duijkeren et al. 2002).  46 

Although a large number of Salmonella serovars exist, most infections are only caused by a few 47 

emerging serovars and phage types (Helms et al. 2005). Various authors have reported S. 48 

Typhimurium as one of the most prevalent serovars in animals globally (Basu et al. 1965; Nabbut and 49 

Jamal, 1970; Molla et al. 2002; Oolya et al. 2007; Institute of Medical and Veterinary Science, 2008; 50 

Friedrich et al. 2010; Kidamemariam et al. 2010). For that reason and since it has a broad host 51 

spectrum, the serovar Typhimurium is further subdivided by phage typing to identify its different 52 
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clones. In the last two decades, multidrug resistant S. Typhimurium DT 104 which has usually a 53 

chromosomal encoded pentaresistance against ampicillin, chloramphenicol, streptomycin, 54 

sulphonamides and tetracyclines spread internationally (Helms et al. 2005; Ridley and Threlfall 1998). 55 

However, recently in Europe, DT193 was the most common found in humans with salmonellosis in 56 

2007 (European Food Safety Authority 2009) and was also isolated from diagnostic samples isolated 57 

from pigs and broiler chicken in Germany and Australia (Bundesinstitut für Risikobewertung 2011; 58 

Institute of Medical and Veterinary Science 2009).  59 

Apart from causing severe illness, there are concerns about the emergence of MDR Salmonella 60 

strains (Oloya et al. 2007) because they reduce treatment options and can lead to treatment failures and 61 

more severe illness in both animals and humans (Threlfall et al. 2003). Moreover, they are potential 62 

donors of resistance genes to other pathogens or commensals in the gastrointestinal tract (McEwen and 63 

Fedorka-Cray 2002). It is believed that the development of MDR bacteria was promoted by the use of 64 

antimicrobial drugs in food animals (Rabsch et al. 2001). Fluoroquinolones and third generation 65 

cephalosporins are drugs of choice in human invasive salmonellosis (World Health Organization 66 

2005). Nevertheless, fluoroquinolones are also used for many indications in veterinary medicine. 67 

Rotimi et al. (2008) reported the emergence of reduced susceptibility of ciprofloxacin (CIP) in 68 

Salmonella isolates from diseased humans in the United Arab Emirates (UAE). Salmonella serovars 69 

that have been associated with a high rate of ciprofloxacin resistant are S. Typhimurium, S. 70 

Choleraesuis and S. Schwarzengrund (Olsen et al. 2001; Chiu et al. 2002, Casin et al. 2003). Recently, 71 

the first CIP resistant S. Kentucky strain has been isolated from the stool of a French tourist with 72 

gastroenteritis returning from Egypt, and later it emerged in different countries in Africa and Middle 73 

East (Weill et al. 2006; Le Hello et al. 2011). As the CIP resistant S. Kentucky was detected in chicken 74 

from Ethiopia, Morocco and Togo, it is believed that poultry is the reservoir of this strain (Le Hello et 75 

al. 2011).  76 

The United Arab Emirates are located in the southeast of Asia and have combined the 77 

characteristics of both developed and developing countries (Rotimi et al. 2008). They are importing 78 

domestic and exotic animals for food production, private wildlife collections or sport competitions as 79 
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well as, animal feed from Africa, Asia and Europe (Bailey et al. 2000a; Wernery and Wernery 2004). 80 

Subsequently, that might play an important role as potential source for Salmonella infections for 81 

humans and animals (D'Aoust 1994; Helms et al. 2005). Hence, the data from the UAE may have a 82 

worldwide significance in the context of the distribution of Salmonella serovars, phage types, and 83 

antimicrobial resistances in different animal species.  84 

So far there have been only a few epidemiological studies about Salmonella infections in captive 85 

falcons (Wernery et al. 1998; Gierse 2001), camels (Wernery and Makarem 1996; Wernery 1992; 86 

Moore et al. 2002) and captive bustards (Bailey et al. 2000b) in the UAE but the actual situation of 87 

Salmonella in above mentioned and other animal species is not known. Moreover, there is no 88 

published information on the endemic phage types of S. Typhimurium and S. Enteritidis and the 89 

epidemiology of antibiotic resistances in animals, except in bustards (Bailey et al. 1998). Therefore, 90 

the aim of this retrospective study was to provide insight into the prevalence, serovars, phage types, 91 

and antibiotic resistances of Salmonella in the UAE between 1996 and 2009. 92 

 93 

Materials and methods 94 

Study design 95 

We conducted a retrospective data analysis among 20871 diagnostic samples from over 80 different 96 

animal species from the UAE, which have been examined for Salmonella at the Central Veterinary 97 

Research Laboratory (CVRL) in Dubai from January 1996 to June 2009. The different animal species 98 

examined are shown in Supplement Table 1. The diagnostic materials examined were faeces and 99 

different organs (liver, spleen, mesenteric lymph nodes, small intestine, kidney and lung) from healthy 100 

and diseased animals. 1052 isolated Salmonella strains subtyped at the Robert Koch Institute (RKI), 101 

Wernigerode Branch, Germany.  102 

 103 

 104 
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Data acquisition  105 

Data on Salmonella serovars, phage types, and antimicrobial resistances from domestic and non 106 

domestic animals in the UAE were obtained from the database of the RKI. Additionally, the 107 

epidemiological data on Salmonella serovars was retrieved from the records of CVRL. 108 

Epidemiological data extracted included age, sex, date of submission, animal species, and residence of 109 

the animals. Furthermore, data on the total number of samples from different animal species, which 110 

were screened for Salmonella, and the number of Salmonella positive samples were extracted from the 111 

CVRL database. If there was a cluster (e.g., three or more Salmonella cases in the same animal species 112 

caused by the same Salmonella strain), only one of these cluster strains was included into this data 113 

analysis.  114 

 115 

Collection of samples and isolation of Salmonella  116 

Faecal specimens or swabs were sent to CVRL for microbiological diagnostic. Furthermore, at CVRL 117 

about 15 g of organ samples (liver, spleen, mesenteric lymph nodes, small intestine, kidney and lung) 118 

and 15 g faeces were taken during pathological examination of different animal species with sterile 119 

instruments and collected in sterile petri dishes. Afterwards, about 10 g of each organ sample was cut 120 

into small pieces with a sterile scalpel blade and put into 10 ml tetrathionate broth (Merck, Darmstadt, 121 

Germany). About 3 g of the faecal samples were added into 10 ml of tetrathionate broth (Merck) and 122 

incubated at 37 °C for 24 h. This was followed by spreading the enriched samples onto brilliant green-123 

phenol red-lactose-sucrose agar (Merck), MacConkey agar (Merck) and xylose-lysine-desoxycholate 124 

agar (Oxoid, Basingstoke, England). After incubation at 37 °C for 24 h, the plates were examined for 125 

the presence of Salmonella colonies. Salmonella-like colonies were tested biochemically with the API 126 

20 E System (BioMèrieux, Nürtingen, Germany). 1052 isolated Salmonella strains were sent to the 127 

RKI.  128 

 129 

Subspecies detection  130 

The subspecies were determined at the RKI. For that, the Salmonella were suspended in 10 ml 131 

nutrition broth (Difco, Detroit, USA). Afterwards 5 ml potassium cyanide (Merck), 5 ml lysine 132 
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(Merck, both layered with paraffin) and 5 ml malonate (Becton Dickinson, Heidelberg, Germany) 133 

have been inoculated with 5 µl of the Salmonella suspension. Furthermore, Kligler iron Agar (Kligler, 134 

1917; Heipha, Eppelheim, Germany) was inoculated and incubated together with the above nutrient 135 

broth and biochemical substances at 37 °C for 18 h. On the next day, the Indol test was performed by 136 

adding two drops of indol into the nutrition broth. All Salmonella strains were grouped into different 137 

subspecies according to their biochemical reaction as reported by Farmer (1985). 138 

 139 

Serotyping 140 

Serotyping of the Salmonella species was performed by using the slide agglutination test with 141 

polyvalent and monovalent antisera against the somatic (O-) and flagellar (H-) antigen (SIFIN, Berlin, 142 

Germany). The serovars were named according to the White-Kauffmann-LeMinor scheme (Grimont, 143 

2007). 144 

 145 

Phage typing  146 

Phage typing was done by using the standard technique as reported by Kühn (1973). Isolates which 147 

did not react with any of the typing phages were designated as untypable (ut). Strains showing 148 

untypical lysis pattern of any definitive type (DT) or provisional phage type (PTU) were named 149 

RDNC (react with phages but does not conform to definite or provisional types).  150 

S. Typhimurium strains were phage typed by the scheme of Anderson et al. (1977) with phages 151 

obtained from the National Salmonella Reference Laboratory (NSRL), London, England. S. Enteritidis 152 

phage typing was performed with the schemes from Ward et al. (1987) and Làszlo et al. (1985) with 153 

phages obtained from the NRSL and Veterinary Medical Research Institute of the Hungarian 154 

Academy of Sciences, Budapest, Hungary (Rabsch et al. 2007). 155 

 156 

Antimicrobial susceptibility testing  157 

Antimicrobial susceptibility testing was done by broth microdilution in agreement with document 158 

58940-8 of the Deutsches Institut für Normung (DIN) (Deutsches Institut für Normung, 2004). Strains 159 
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were categorised as resistant according to clinical breakpoints recommended in DIN 58940-4 160 

(Anonymus 2004).  161 

The breakpoints for nalidixic acid (≥32), streptomycin (≥32) and kanamycin (≥32) are suitable for 162 

epidemiological surveillance. The strain Escherichia coli ATCC
®
 25922 was used for quality 163 

control. The following antimicrobials grouped according to their classes were tested: β-lactams 164 

(penicillins): ampicillin (AMP), β-lactams (cephalosporins (2
nd

 generation)): cefotiam (CTM), 165 

cefoxitin (COX); β-lactams (cephalosporins (3
rd

 generation)): cefotaxime (CTX), ceftazidime (CAZ); 166 

quinolones: nalidixic acid (NAL), Fluroquinolones Ciprofloxacin (CIP), aminoglycosides 167 

streptomycin (STR), kanamycin (KAN), gentamycin (GEN); Tetracyclines: oxytetracycline (OTE); 168 

sulfonamides (SMZ); trimethoprim+sulfamethoxazole (SXT), Phenicols: chloramphenicol (CMP). 169 

Details of the breakpoints for the 13 antimicrobials are presented in Table 6.  170 

Multidrug resistance was defined as resistance to at least three or more antimicrobial classes (Centers 171 

for Disease Control and Prevention, 2010).  172 

 173 

Results 174 

As shown in Table 1, 1928 (9%) of the total 20871 diagnostic samples from different animal 175 

species were Salmonella positive. The animal species included camels, falcons, chicken, horses, 176 

antelopes, bustards, pigeons, sheep/goats, quails, rheas/ostriches, stone curlews, cheetahs, reptiles, and 177 

other animal species (Suppl. Table 1). Salmonella was most frequently detected in diagnostic samples 178 

from reptiles (36%), followed by rheas/ostriches (30%), pigeons (26%), cheetahs (19%) bustards 179 

(18%), and quails (15%). In contrast, the lowest prevalence was observed in falcon (6%), horses (4%), 180 

sheep/goats (3%) and poultry (2%; Table 1).  181 

1052 Salmonella isolates were typed, most were from camels (n=232), falcons (n=166), bustards 182 

(n=101), antelopes (n=66), horses (n=63) and pigeons (n=51; Table 2). In total, 104 different serovars 183 

were identified among all diagnostic Salmonella isolates. 98% were from Salmonella enterica 184 
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subspecies I and in total two percent belonged to the subspecies II, IIIa, IIIb and IV. However, among 185 

36 reptile isolates 64% belonged to subspecies I, 14% to subspecies IV, 11% to as well IIIa as IIIb.  186 

The ten most frequently detected Salmonella were S. Typhimurium (n=258), S. Kentucky (n=82), 187 

S. Frintrop (n=73), S. Hindmarsh (n=55), S. Enteritidis (n=36), S. Infantis (n=29), S. Newport (n=25), 188 

S. Agona (n=23), S. Anatum (n=21), S. Meleagridis (n=21), and S. Amsterdam (n=21; Table 2). For 189 

camels, the most important serovars were S. Frintrop (n=65), S. Hindmarsh (n=48) and S. 190 

Typhimurium (n=27); for falcons S. Typhimurium (n=53) and S. Enteritidis (n=13); for bustards S. 191 

Kentucky (n=19) and S. Typhimurium (n=14); for horses S. Typhimurium (n=11) and S. Kentucky 192 

(n=10); for pigeons S. Typhimurium (n=40); ostriches/nandus S. Typhimurium (n=23); for quails S. 193 

Typhimurium (n=12); and finally, for poultry S. Infantis (n=6) and S. Typhimurium (n=6). A 194 

comparison of serovars with the different animal species showed, that 90 % of all S. Frintrop isolates 195 

(n=73) and 87 % of all S. Hindmarsh isolates (n=55) were from camels. In contrast, a broad host 196 

spectrum was observed with S. Typhimurium and S. Kentucky isolates (Table 2 and Suppl. Table 1). 197 

Figure 1 presents the distribution of the four most common serovars during the 14 years of the study. 198 

Although the rate of isolation of S. Typhimurium decreased dramatically during the study, it still 199 

dominated in all years except 2004, 2006, and 2007. S. Hindmarsh was the most common serovar in 200 

2004 and 2006, and S. Kentucky in 2007. Serovar Kentucky isolates increased substantially between 201 

2004 and 2007. Interestingly, S. Frintrop was first isolated in the year 2000 and S. Hindmarsh in 2001.  202 

As presented in Table 3, S. Typhimurium was further analysed by phage typing. Among the 258 S. 203 

Typhimurium strains, 25 different types were isolated; however, 20 strains were ut and 70 were 204 

RDNC. The lyses patterns from the RDNC strains were heterogenic during the years of the study 205 

period. Therefore, no new phage types were defined. Most of the S. Typhimurium strains belonged to 206 

DT104 (n=29), DT193 (n=28), DT099 (n=27), and PTU (provisional type, untypable with the 34 basic 207 

types of the new Callow scheme (Anderson et al. 1977)) 302 (n=18). Table 3 also shows the 208 

distribution of S. Typhimurium phage types among the animal species. While comparing the phage 209 

types and the animal species, falcons (n=12) showed the highest number of different phage types and 210 

RDNC strains (n=14). In falcons, the primarily isolated phage types were DT104 (n=12) and PTU302 211 

 
 
 



9 

 

 

 

(n=6); in pigeons DT099 (n=10) and DT002 (n=5); in camels DT193 (n=8) and in horses DT099 212 

(n=5). From 1996-1999, S. Typhimurium phage type DT104 was frequently isolated but last found in 213 

2001 and 2003. In the year 2000, PTU302 was the most common serovar. In the following years the 214 

phage types DT193 and DT099 were most regularly detected.  215 

Distribution of the S. Enteritidis phage types is shown in Table 4. A total of 13 different phage 216 

types were detected among 36 S. Enteritidis isolates. The most frequently isolated types were 6a/3a 217 

(n=7), 4/6 (n=6) and 33/17 (n=4). In falcons, six different S. Enteritidis phage types were detected. 218 

The phage type 6a/3a (n=7) was only isolated in falcons between 1997 and 1999.  219 

The periodical rate of MDR Salmonella increased gradually until the period 2005-2007 (29%) and 220 

has since declined. Furthermore, the periodical rate of resistant Salmonella peaked in the period 1999-221 

2001 (20%) and declined in the periods thereafter. In contrast, the annual rate of susceptible strains 222 

decreased until its dip 1999-2001 (56%) and afterwards rose until the end of the study period. 223 

Among the 1052 isolates tested for antimicrobial susceptibility (Table 5), 16 % were resistant 224 

against one and two antimicrobial drug classes and 21 % were MDR. Table 5 also shows the resistance 225 

observed among Salmonella isolates from the different animal species. The highest rate of susceptible 226 

Salmonella strains was detected in reptiles (87%), followed by bovine (85%), antelopes (84%) and 227 

camels (77%). 30 % of all isolates from quails were resistant to one or two antimicrobial classes, 23 % 228 

from falcons, 23 % from stone curlews and 22 % from pigeons. The highest rate of MDR Salmonella 229 

strains was observed with poultry (61%), followed by quails (41%), stone curlews (35%), bustards 230 

(33%) and cheetahs (31%).  231 

Temporal changes in the percentage of resistance to 10 antimicrobial drugs were observed  (Figure 232 

2). Overall, the resistance rates to AMP, CIP, CMP, COX, GEN, KAN, NAL, and STR have been 233 

declining noticeably between the last two periods of the study. In contrast the resistance rate towards 234 

OTE remained stable and towards SXT increased. The periodical resistance rates of AMP, and GEN 235 

rose gradually until they peaked 2005-2007. Another important point to mention is that the resistant 236 

rates to COX (4%) and CIP (13%) increased drastically in the period 2005-2007. 237 
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Table 6 presents antimicrobial resistance phenotypes. Among the total 1052 investigated 238 

Salmonella strains, 23 % were resistant to OTE, STR 22 %, 18 % NAL, and 15 % to AMP. In contrast, 239 

the lowest resistances were observed against COX (2%), CIP (5%), GEN (5%), and SXT (6%) and no 240 

resistance against CTM, CTX and CAZ. When analysed by animal species, resistance to NAL was 241 

primarily observed in isolates from poultry (52%), stone curlew (38%) and quails (37%), and 242 

resistance to CIP in isolates from quails (15%), bustards (10%) and horses (11%). Salmonella strains 243 

from horses showed the highest resistance rate to GEN (13%), whereas camel and bustard isolates to 244 

KAN (both 13%). STR resistance was most common in Salmonella from bustards (32%). The highest 245 

resistance rate to SXT was observed in isolates from camels (10%) and horses (10%).  246 

As shown in Table 7, those isolates being most often MDR were S. Infantis (83%), S. Albany 247 

(79%) and S. Kentucky (77%). 93 % of all S. Virchow strains and 90 % from both S. Kentucky and S. 248 

Typhimurium DT 104 showed resistance to at least one and more drugs. On the contrary, 100 % of S. 249 

Hindmarsh, S. Frintrop, S. Muenster and S. Cerro isolates were pan–susceptible to all tested 250 

antimicrobials. 251 

Resistant S. Kentucky strains were observed during the study (Figure 3). Before 2004 no resistant 252 

strain was observed, however from 2005 to 2009, between 7 and 25 S. Kentucky strains were detected 253 

annually. The occurrence of resistant strains peaked in 2007 due to the outbreak in one equine 254 

hospital. Overall 61 % of all S. Kentucky isolates (n=25) showed resistance to CIP. The first CIP 255 

resistant S. Kentucky was detected 2004 in a falcon and in a cheetah. MDR and CIP resistant S. 256 

Kentucky were isolated from different animal species including wallabies, camels, cheetahs, falcons, 257 

bustards, quails, rabbits, canines, antelopes, marmosets, and horses (data not shown). Furthermore, in 258 

2007, an outbreak with five diseased horses was due to CIP resistant S. Kentucky. The S. Kentucky 259 

outbreak occurred in Equine Hospital through a diseased horse from which only the third faecal 260 

sample was positive for S. Kentucky. By then the pathogen had infected 4 other horses in the vicinity 261 

of the first one. 262 
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 In addition, in a reproduction center for houbara bustards, an MDR CIP resistant S. Kentucky 263 

outbreak occurred with high mortality and morbidity among chicks, which was the result of CIP 264 

resistant  S. Kentucky positive mealworms of houbara bustard chick feed.  265 

 266 

Discussion 267 

As there is no coordinated Salmonella surveillance of humans or animals in the UAE, this study 268 

provides important information on the epidemiology of this pathogen. It also reveals trends in the 269 

prevalence of Salmonella serovars, phage types, and antibiotic resistance of strains collected from 270 

different animal species over 14 years.  271 

In this study, 176 samples from different wild and in zoos kept reptiles were examined and 36 % 272 

were Salmonella positive (Table 1). This finding is in agreement with other studies from different 273 

countries. In Bulgaria 83 % of 493 examined faecal samples from wild terrestrial turtles were 274 

Salmonella positive between 1959 and 1961 (Dimow 1966). Furthermore, in a recent Spanish study, 275 

16 terrestrial turtles have been examined and all were Salmonella positive (Hidalgo-Vila et al. 2007). 276 

Salmonellae were also isolated from 56 % out of 17 samples from wild living reptiles in Germany and 277 

Austria (Geue and Löschner 2002). Briones et al. (2004) reported a prevalence of 42 % in faecal 278 

samples from 94 different wild living reptiles in Spain. In Trinidad, 14 % of 173 samples from healthy 279 

and diseased reptiles of a zoo were Salmonella positive (Gopee et al. 2000). These findings indicate 280 

that reptiles have a high Salmonella prevalence, and they therefore could be an important Salmonella 281 

reservoir for both animals and humans.  282 

Despite the fact, that 104 different Salmonella serovars were detected among a total 1052 isolates, 283 

it was found that S. Typhimurium was responsible for most of the infections (25%; Table 2). This 284 

finding is in agreement with other studies from various countries (Basu et al. 1965; Nabbut and Jamal; 285 

1970; Molla et al. 2002; Oolya et al. 2007; Institute of Medical and Veterinary Science 2008; Friedrich 286 

et al. 2010; Kidamemariam et al. 2010). The reason for this could be the broad host spectrum of 287 

domestic and wild animals, which act as reservoir for new Salmonella infections. Furthermore, a 288 
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second factor could be virulence genes facilitating the spread. This hypothesis is supported by a 289 

previous study, which showed a higher enteropathogenicity in the bovine ileal loop model associated 290 

with presence of sopE1 gene, leading to the emergence of an epidemic cattle-associated S. 291 

Typhimurium strain (Bossi et al. 2003; Zhang et al. 2002). In addition, Saitoh et al. (2005) discovered 292 

in the genome of the global endemical S. Typhimurium DT104 strain phage transferred artAB genes, 293 

encoding a putative ADP-ribosyltransferase toxin in S. Typhimurium DT104. This virulence 294 

mechanism, as well as, a genomic encoded pentaresistance against AMP, CMP, STR, SMZ and OTE 295 

is believed to be the reason for the worldwide spread of S. Typhimurium DT104 (World Health 296 

Organization 2005)  297 

As falconry is a famous tradition in the UAE, falcons are very valuable for their owners. 298 

Salmonella were isolated from diseased and healthy falcons and it is believed that salmonellosis in 299 

falcons, concurrent with other infections could be fatal (Wernery et al. 1998). In this study, the 300 

incidence of S. Typhimurium in falcons was 31 % (53/166). This finding is in agreement with previous 301 

studies of healthy or diseased captive falcons in the UAE under the same conditions. Gierse (2001) 302 

found S. Typimurium in 38 % of a total 34 examined Salmonella strains. Moreover, in another study, 303 

57 % of 21 examined strains were S. Typhimurium positive (Wernery et al. 1998). These and our 304 

results indicate that S. Typhimurium is the most important serovar in falcons in the UAE. In our study, 305 

we showed the same S. Typhimurium phage types both in falcons and their prey (pigeons, quails, 306 

bustards and stone curlews; Table 3). This discovery indicates that the prey, especially, pigeons and 307 

quails, are the most important infection source for falcons. This hypothesis is supported by a previous 308 

study, which showed S. Typhimurium present in pigeons, quails, and bustards (Gierse 2001).  309 

Camels are a Salmonella reservoir and therefore food of camel origin could be a potential hazard 310 

for public health (Wernery and Kaaden 2002). In this study, S. Frintrop and S. Hindmarsh were the 311 

most common serovars in camels with 28 % and 21 % of all isolates (n=232), respectively. 312 

Furthermore, when compared to the total Salmonella incidence in all animals, 90 % and 87 %, 313 

respectively of all S. Hindmarsh (n=72) and S. Frintrop (n=55) were detected with camels (Table 2). In 314 

a previous study between 1987 and 1991, Wernery (1992) found S. Saintpaul (37%), S. Frintrop 315 
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(17%), and S. Hindmarsh (8%) were the most frequent of 187 Salmonella isolates from camels, under 316 

the same conditions as in this study. Moore et al. (2002) examined faecal samples from 67 diarrheic 317 

and healthy camel calves. In 10 samples, they detected Salmonella and all were S. Hindmarsh. The 318 

previous studies and our results indicate that S. Frintrop and S. Hindmarsh are the most important 319 

serovars and host adapted to camels.  320 

MDR Salmonellae are of worldwide interest because they reduce the therapy options in human and 321 

veterinary medicine (Threlfall et al. 2003). Our data show that MDR Salmonella were most common 322 

in poultry (61%), quails (41%), stone curlews (35%) and bustards (33%; Table 5). These findings 323 

indicate that the management system of poultry, quails, stone curlews and bustards promotes the 324 

spread of resistant pathogens. Our speculation is in agreement with McEwen and Fedorka-Cray (2002) 325 

who found that large numbers of animals in small stables enhance the spread of resistant bacteria.  326 

Previous findings in the UAE have demonstrated that Salmonella isolated from captive houbara 327 

bustards were resistant against amoxicillin and OTC, but showed no resistance against CMP, GEN and 328 

the fluoroquinolone, enrofloxacin (Bailey et al. 1998). In our study however, we detected Salmonella 329 

in bustards being resistant against all tested antimicrobial classes (Table 6). This finding indicates that 330 

the development of antibiotic resistance could be facilitated due to the use of antimicrobial agents in 331 

veterinary medicine. This view is supported by Bailey et al. (1998) who reported that enrofloxacin, 332 

OTC, AMP, and GEN are used with captive bred houbara bustards. Moreover, a review by Rabsch et 333 

al. (2001) reported that the use of antimicrobial agents in farm animals was the reason for the 334 

development of antibiotic resistances. Since 18 % of all diagnostic samples from bustards were 335 

Salmonella positive (Table 1), and therapy options in bustards are highly reduced, strict control 336 

measures should be implicated. The Salmonella prevalence could be reduced from over 65 % to fewer 337 

than 5 % in broiler flocks between 1989 and 2001 and from over 7 % to fewer than 2 % in layer hen 338 

flocks in the period in Denmark from 1998 to 2001 using control programs (Wegener et al. 2003). 339 

Fluoroquinolones (e.g., ciprofloxacin) and cephalosporins (e.g., cefoxitin) are the drugs of choice 340 

for invasive salmonellosis in humans (World Health Organization 2005). Resistance to the quinolone 341 

NAL, correlates with decreased susceptibility to CIP and possible fluoroquinolone treatment failure 342 
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(CDC 2010). In present study, 18 % of all Salmonella isolates showed resistance against NAL, 5 % 343 

against CIP, and 2 % against COX (Table 6). In contrast, Zhao et al. (2007), who examined the 344 

antibiotic resistance of 380 Salmonella strains from diseased domestic animals between 2002 and 345 

2003 in the USA, detected only 4 % resistance against NAL and no resistance against CIP. 346 

Furthermore, in the UAE between 2003 and 2005, Rotimi et al. (2008) reported that 0.8 % of non 347 

typhoid Salmonella isolated from 122 hospitalized humans were resistant against CIP. Our data show 348 

that NAL and CIP resistance is quite high in animals in the UAE. This could be due to the use of NAL 349 

and CIP in veterinary medicine, which causes selection pressure on bacteria. This explanation is in 350 

agreement with previous studies showing that quinolone resistance due to point mutations leads to 351 

amino acid change in the gyrA gene (Hakanen et al. 2006; Piddock et al. 1993). However, quinolone 352 

resistance maybe also caused by decreased permeability or the presence of efflux pump systems 353 

without a mutation in the gyrA gene (Cebrian et al. 2005; Hakanen et al. 2006). These resistance 354 

mechanisms provide a selection advantage for Salmonella under the use of quinolones in both 355 

veterinary and human medicine. 356 

In our study, we detected an occurrence of S. Kentucky between 2004 and 2009 (Figure 3). This 357 

increase was primarily associated with the emergence of CIP resistant S. Kentucky strains which 358 

infected 51 animals. Such S. Kentucky have been first isolated in 2002 in French travelers with 359 

gastroenteritis returning from northeast and eastern Africa, and the number of these strains increased 360 

in the following years (Weill et al. 2006; Le Hello et al. 2011). Recent experiences have demonstrated 361 

that the endemic S. Kentucky strain had spread in different African and Middle Eastern countries and 362 

was isolated from chicken and turkey in Africa (Le Hello et al. 2011). We found CIP resistant S. 363 

Kentucky in different animal species including poultry, wallabies, camels, cheetahs, falcons, bustards, 364 

quails, rabbits, canines, antelopes, marmosets, and rheas. This result and the CIP resistant S. Kentucky 365 

outbreaks among horses and houbaras in the UAE, with high morbidity and mortality, suggest that 366 

MDR and CIP resistant S. Kentucky strains are spreading among the animal population in the UAE. 367 

Additionally, recent reports about S. Typhimurium DT104 showed the potential for national and 368 

international spread of MDR Salmonella (Helms et al. 2005). For that reason, measures to monitor and 369 
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limit the spread of CIP resistant S. Kentucky should be implemented to protect animal and human 370 

health.  371 

In conclusion, this data analysis gives an important insight into the epidemiology of Salmonella 372 

and their antibiotic resistance for animals in the Middle East. Furthermore, the high antibiotic 373 

resistances, especially against important antibiotics for human like fluoroquinolones and 374 

cephalosporins, implicate the necessity to establish a coordinated surveillance, monitoring, and control 375 

program for Salmonella in this area. Thus, the prevalence of Salmonella in livestock could be reduced 376 

and the development of resistance against antimicrobials better controlled.  377 
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Fig. 2   Resistance rate of different antimicrobial drugs 565 
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Fig. 3   Annual number of S. Kentucky isolates and the proportion of isolates resistant to Ciprofloxacin 571 
(2000 – 2009) 572 

 
 
 



Table 1  Distribution of diagnostic samples, Salmonella  positive samples and and percent positive by animal origin (1996-2009) 

Animal species  Diagnostic samples            

(n)

Salmonella positive              

(n)

Prevalence                     

(%)

Camel 3907 320 8

Falcon 3296 199 6

Poultry 2434 42 2

Horse 2042 73 4

Antelope 1646 115 7

Bustard 1265 225 18

Pigeon 865 222 26

Sheep/Goat 633 19 3

Quail 426 66 15

Rhea/Ostrich 364 108 30

Stone curlew 348 42 12

Cheetah 209 39 19

Bovine 85 20 24

Reptile 176 63 36

Other animals* 3175 375 12

Total 20871 1928** 9

* other animals see supplement Table 1

**  typed only 1052 see Table 2

Table
Click here to download Table: MuenchSalmonella_Tables and Figures.xls 

http://www.editorialmanager.com/trop/download.aspx?id=56350&guid=f250f859-d800-4bc3-a6d6-f2a88044ee42&scheme=1




Table 2  Top 20 serovars from different animal species (1996-2009)

Camel                           

(n= 232)

Falcon               

(n= 166)

Bustard            

(n= 101)

Antelope              

(n= 66)

Horse                

(n= 63)

Pigeon                

(n= 51)

Ostrich/Rhea    

(n= 44)

Cheetah                 

(n= 39)

Reptile**                   

(n= 38)

Quail          

(n= 27)

Stone curlew 

(n= 26)

Bovine              

(n= 20)

Poultry               

(n= 18)

Other animals*   

(n= 160)  

Total    

(n=1052)                           

S. Typhimurium 27 53 14 6 11 40 23 7 3 12 4 3 6 49 258

S. Kentucky 8 7 19 3 10 - 7 7 - 3 3 1 1 13 82

S. Frintrop 65 1 2 4 - - - - - - - - - 1 73

S. Hindmarsh 48 - 1 3 2 - - - - - - - - 1 55

S. Enteritidis 1 13 5 2 - - - 2 1 - - 1 1 10 36

S. Infantis 3 3 4 - 2 1 - 2 1 - 1 - 6 6 29

S. Newport 3 2 4 1 1 - 2 1 2 1 2 - 1 5 25

S. Agona 6 6 - 1 3 - - 2 - - - 1 1 3 23

S. Anatum 2 - - 2 7 1 2 1 - - - 1 - 5 21

S. Meleagridis 5 1 - 4 1 - 1 - - - 1 5 1 2 21

S. Amsterdam 5 2 4 1 2 1 1 1 - 1 - 1 - 2 21

S. Muenster 4 2 - 3 2 1 2 - - 1 1 1 - 1 18

S. Reading 3 2 4 5 - - - - - - - - - 2 16

S. Albany - 3 6 - 1 - - - - - 5 - - - 15

S. Adelaide - 1 2 - - - - 1 - - 5 - - 5 14

S. Virchow 2 6 1 1 - 1 - 2 1 - - - - - 14

S. Bovismorbificans 7 5 - - - - - - 1 - - - - - 13

S. Muenchen 4 1 1 - - - - 3 - - - - - 4 13

S. Cerro 1 1 1 4 - - 1 - - - - 2 - - 10

S. Hadar 2 5 1 - - - - - - 2 - - - - 10

Other serovars* 36 52 32 26 21 6 5 10 29 7 4 4 1 52 285

* other animals and other serovars  see suppl. Table 1

** serovar see suppl. Table 1

Serovar 
Animal origin (no. of isolates)



Table 3  Distribution of S.  Typhimurium phage types by animal origin (1996-2009)

Phage type n Animal origin                                                                             

(no. of  isolates)

DT104 29 falcon (12), quail (6), bustard (2), cat (2), poultry (2), 

ostrich/rhea (2), antelope (1), lion (1), horse (1) 

DT193 28 camel (8), falcon (4), pigeon (4), poultry  (3), antelope  (1),  

bustard (1), hare (1), partridge (1), quail (1), sable (1), sand 

grouse (1), silver phesant (1) stone curlew (1)

DT099 27 pigeon (10), horse (5), bustard (3), falcon (2), cheetah (1), 

saw-scaled viper (1), goat (1), ostrich/rhea (1), sand grouse 

(1), tiger (1), wild turckey (1)

PTU302 18 falcon (6), ostrich/rhea (3), pigeon (3), quail (2), flamingo (1), 

francolin (1), philby (1), starling (1)

DT185 10 falcon (4), parrot (4), camel (1) , cheetah (1)

DT120 8 bovine (3), camel (1), canine (1), caprine (1), cheetah (1), 

antelope (1)

DT001 7 camel (1), caracal (1), cheetah (1), gull (1), horse (1), squid 

(1), turtle (1)

DT002 7 pigeon (5), bustard  (1), deer (1)

DT126 5 bustard (1), falcon (1), duck egg (1), stone curlew (1), 

pheasant egg (1)

DT003 4 pigeon (3), owl (1) 

DT009 3 falcon (1), pigeon (1),  pheasant (1)

DT089 3 falcon (2), stone curlew (1) 

DT186 3 camel (1), horse (1), parrot (1)

DT 107 1 camel (1) 

DT010 2 falcon (1),  sheep (1)

DT160 2 falcon (2)

DT177 2 bustard (1), llama (1) 

DT192 2 quail (1), ostrich/rhea (1) 

DT013 1 horse (1) 

DT036 1 falcon (1) 

DT040 1 ostrich/rhea (1)

DT041 1 bustard (1) 

DT066 1 cheetah (1) 

DT080 1 storck (1)

U277 1 camel (1) 

RDNC* 70 falcon (14), ostrich/rhea (15), pigeon (13), camel (4), bustard 

(4), antelope (3), cheetah (2), horse (2),  dog (1), parrot (1),  

poultry (2), crane (1), finch (1), fox (1), sand grouse (1), 

scarlet ibis (1), secretary bird (1), wild turckey (1)

ut** 20 camel (9), falcon (4), quail (2), cat (1), crane (1), patridge (1), 

pigeon (1), hare (1)

* RDNC = React with phages but does not conform with definite or provisional types  

**ut = untypable, no reaction with phages 



Table 4  Distribution of S.  Enteritidis phage types by animal origin (1996-2009)

Phage type n Animal origin                                                                         

(no. of  isolates)

Year of isolation (no. Isolates)

6a/3a* 7 falcon (7) 1997 (2), 1998 (2), 1999 (3)

4/6 7 bustard (1), camel (1), antelope (1), cheetah (1),  

mamoset (1),  fox (1), sand cat (1)

1997 (1), 2000 (1), 2004 (2), 2005 (1), 2007 (1), 2008 (1) 

33/17 4 parrot (4) 2007 (1), 2008 (3)

14b/n.c.** 3 falcon (2), bustard (1) 1997 (1), 2004 (1), 2005 (1)

1/1 3 bustard (2), lizzard (1) 2001 (3)

6/6 2 falcon (1), cat (1) 1999 (1), 2003 (1) 

7/n.c. 2 falcon (1), bustard (1) 2000 (1) 

n.c./3a 2 falcon (1), antelope  (1) 2008 (1) 

6a/n.c. 2 falcon (1), bovine (1) 2003 (1), 2006 (1)

8/7 1 canine (1)  2006 (1)

13a/7 1 chicken (1)  2003 (1) 

42/n.c. 1 parrot (1)  2007 (1) 

15/n.c. 1 cheetah (1)  2008 (1) 

* typing scheme after Ward / Lalko and Laszlo

**n.c. = non characteristic



 

Table 5   Resistance among Salmonella  from different animal species  (1996-2009)

Susceptible                               

(0)

Resistant                                 

(1-2)

Multidrug-resistant                     

(≥ 3)

Camels (n= 232) 77 6 17

Falcons (n= 166) 55 23 22

Bustard (n= 101) 50 17 33

Antelope (n= 66) 84 7 9

Horse (n= 63) 63 17 19

Pigeon (n= 51) 69 22 10

Ostrich/Rhea (n= 44) 73 5 23

Cheetah (n= 39) 49 21 31

Reptile (n= 38) 87 8 5

Quail (n= 27) 30 30 41

Stone curlew (n= 26) 42 23 35

Bovine (n= 20) 85 10 5

Poultry (n= 18) 28 11 61

Other animals (n= 160) 52 24 24

Total (n= 1052) 63 16 21

Animal species                            

(no. of  isolates)

% of  resistant isolates                                                                                                                   

(no. of antimicrobial drug classes)



Table 6  Antimicrobial resistance phenotypes of Salmonella  from animals (1996-2009)

Resistant 

breakpoint 

(µg/ml)

Camel 

(n= 232)

Falcon 

(n= 166)

Bustard 

(n= 101)

Antelope 

(n=66)

Horse 

(n= 63)

Pigeon 

(n= 51)

Ostrich/ 

Nandu          

(n= 44)

Cheetah 

(n= 39)

Reptile 

(n= 38)

Quail           

(n= 27)

Stone 

curlew 

(n= 26)

Bovine              

(n= 21)

Poultry              

(n= 18)

Other          

animals              

(n= 160)

Total                  

(n= 1052)

AMP ≥16 13 19 20 5 16 4 9 28 - 30 8 10 29 20 15

CTM ≥8 - - - - - - - - - - - - - - -

CTX ≥16 - - - - - - - - - - - - - - -

CAZ ≥32 - - - - - - - - - - - - - - -

COX* ≥32 - - 4 - 5 2 - - - - 4 - - - 2

CMP ≥16 6 6 8 3 6 8 9 10 3 22 4 - 52 13 8

CIP ≥4 3 2 10 5 11 - 2 8 - 15 8 5 5 7 5

GEN ≥8 3 4 4 3 13 0 5 10 0 11 8 - - 6 5

KAN ≥32 13 8 13 8 8 6 11 8 0 11 8 5 10 12 9

NAL ≥32 10 22 31 8 18 10 18 26 5 37 38 10 52 24 18

STR ≥32 16 25 32 9 19 24 14 28 16 33 31 10 52 26 22

OTE ≥8 17 22 25 9 19 18 20 33 8 37 50 - 71 32 23

SXT ≥32 10 2 5 3 10 4 - 10 3 4 - 0 19 6 6

AMP: ampicillin , CAZ: ceftazidim CTM: cefotiam, CTX: cefotaxime,  COX: cefoxitin, CMP: chloramphenicol,  CIP: ciprofloxacin,   

GEN: gentamicin, KAN: kanamycin, NAL: nalidixic acid,  STR: streptomycin, 

OTE: oxytetracylin, SXT: trimethoprime+sulfamethoxazole

* COX resistance was only found in S.  Infantis 

% of resistanceAntimicrobial 

agent



Susceptible                     

(0)

Resistant                      

(1-2)

Multidrug-resistant           

(≥3)

S. Typhimurium (258)** 49 28 23

    DT 104 (29) 10 38 52

    DT 193 (28) 85 15 0

    DT  99 (27) 33 26 41

    other DT (174)* 52 29 18

S. Kentucky (82) 13 10 77

S. Frintrop (72) 100 0 0

S. Hindmarsh (55) 100 0 0

S. Enteritidis (38) 69 25 6

S. Infantis (29) 10 7 83

S. Newport (25) 68 8 24

S. Agona (23) 52 26 22

S. Anatum (22) 67 19 14

S. Meleagridis (21) 86 10 5

S. Amsterdam (21) 76 19 5

S. Muenster (18) 100 0 0

S. Reading (16) 94 6 0

S. Albany (15) 21 0 79

S. Adelaide (14) 21 7 71

S. Virchow (14) 7 93 0

S. Bovismorbificans (13) 92 8 0

S. Muenchen (13) 85 15 0

S. Hadar (10) 30 40 30

S. Cerro (10) 100 0 0

Other Serovars (286) 75 12 13

* other phagetypes see Table 3

** includes all phage types 

Serovars                              

(no. of  isolates)

% of isolates                                                                                           

(no. antimibicrobial agent classes)

Table 7  Resistance among Salmonella serovars obtained from animals (1996-2009)
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Suppl. Table 1: Distribution of Salmonella  serovars from other animals including other serovars from camels, falcons, bustards and horses* 

birds n Serovar  (no. of  isolates) 

Falcon                    

(other serovars)

52 S. Poona (5), S. Tennessee (4), S. Schwarzengrund (3), S. Worthington (3), S. Chailey (2), 

S. Kiambu (2), S. Mbandaka (2), S. Altona (1), S. Blockley (1), S. Bredeney (1), S. Haifa (1), 

S. Stanley (1), S.  Sundsvall (1), S. London (1),  S. Montevideo (1), S .Indiana (1), Salmonella 

subsp. II 1,40:-:z39 (1), Salmonella subsp. IIIa 48:z4,z24:- (1), Salmonella subsp. I serological 

rough (20)

Bustard                 

(other serovars)

32 S. Weltevreden (3), S. Orion (3), S.Alachua (2), S. Eastbourne (2), S. Havana (2), S. Johannesburg 

(2), S. Mbandaka (2), Salmonella subsp. II 9:l,w:e,n,x (2), S. Altona (1), S. Chicago (1), 

S. Gaminara (1),S. Ituri (1), S. Kottbus (1), S. London (1),  S. Pomona (1), S. Richmond (1),  

S. Stanley (1), S. Sundsvall (1), S. Vitkin (1), Salmonella  subsp. I serological rough (3)

Parrot 14 S. Typhimurium (7), S. Enteritidis (5), S. Blockley (1), S. Meleagridis (1)

Pheasant 9 S. Adelaide (4), S. Typhimurium (2), S. Lexington (1), S. Newport (1), S. Typhimurium (egg) (1)

Quail                       

(other serovars)

7 S. Ruiru (2), S. Blockley (1), S. Kiambu (1), Salmonella  subsp. I serological rough (3)

Pigeon                  

(other serovars)

6  S. Blockley (2),  S. Brandenburg (1), S. Bredeney (1),  S. Livingstone (1), S. Oranienburg (1)

Ostrich/Rhea (other 

serovars)

5 S. Kiambu (1), S. Manhattan (1), S.  Ruiru (1), S.  Sundsvall (1), S. Tarshyne (1)  

Duck 5 S. Anatum (2), S. Infantis (1), S. Typhimurium (egg) (1), Salmonella  subsp. I 4,5:z10:- (1)

Partridge 5 S. Typhimurium (4), S. Infantis (1)

Eagle Owl 5 S. Stanley (2), S. Newport (1), S. Typhimurium (1), S. Vitkin (1)

Stone curlew  (other 

serovars)

4 S. Brandenburg (2), S. Johannesburg (1), S. Orion (1) 

Sand Grouse 4 S. Typhimurium (3), S. Amsterdam (1) 

Scarlet ibis 3 Salmonella  subsp. II 13,23:z:1,5 (2), S. Typhimurium (1)

Crane 2 S. Typhimurium (2)

Flamingo 2 S. Typhimurium (1), S. Meleagridis (1) 

Secretary bird 2 S. Altona (1), S. Typhimurium (1) 

Wild turkey 2 S. Typhimurium (2) 

Afrikan Stork 1 S.  Typhimruium (1) 

Barn owl 1 S. Stanley (1) 

Buderiou 1 S. Matopeni (1) 

Cockatoo 1 S. Poona (1) 

Egret 1 S. Kentucky (1)

Finch 1 S. Typhimurium (1) 

Francolin 1 S. Typhimurium (1) 

Ground Hornbill 1 S. Onderstepoort (1)

Guinea fowl 1 S. Weltevreden (1)

Gull 1 S. Typhimurium (1) 

Poultry                     

(other serovars)

1 S. Liverpool (feed) (1)

Starling 1 S. Typhimurium (1) 

Yellow billed stork 1 S. Saintpaul (1) 

mammals n Serovar (no. of  isolates) 

Camel                      

(other serovars)

36 S. Nchanga (7), S. Altona (3), S. Bahrenfeld (2), S. Gaminara (2), S. Saintpaul (2), S. Stanley (2), 

S. Give (1), S. Blockley (1), S. Schwarzengrund (1),  S. Bredeney (1), S. Chester (1), S. Manhattan 

(1), S. Djibouti (1), S. Panama (1), S. Vejle (1), Salmonella  subsp. I serological rough (9)

Antelope                  

(other serovars)

26  S. Oranienburg (5),  S. Hindmarsh (3),  S. Give (2), S. Johannesburg (2), S. Kedougou (2), 

Salmonella  subsp. I serological rough (2), S. Aberdeen (1),  S. Bahrenfeld (1), S. Brandenburg (1),  

S. Chester (1), S. Haifa (1),  S. Hull (1),  S. Kottbus (1), S. Magwa (1), S. Mbandaka (1),  

S. Saintpaul (1), S. Tarshyne (1),  Salmonella  subsp. II 13,213:z:1,5 (1), Salmonella  subsp. IIIb 

61:r:z53 (1)

Horse                       

(other serovars)

21 S. Give (6), S. Hvittingfoss (2), S. Poona (2), S. Weltevreden (2), S.Brandenburg (1), S. Haifa (1), 

S. Havana (1), S. Huettwilen (1), S. Kiambu (1), S. Montevide (1), S. Ruiru (1), S.S heffield (1), 

Salmonella subsp. I serological rough (1)

Canine 13 S. Kentucky (3), S. Typhimurium (2),  S. Agona (1), S. Enteritidis (1), S. Heidelberg (1), 

S. Hindmarsh (1), S. Kedougou (1),  S. Newport (1), S. Stanley (1),  Salmonella  subsp. IIIb 

65:z10:e,nx,z15 (1)

Sheep/Goat 11 S. Typhimurium (3), S. Altona (2), S. Anatum (1), S. Blockley (1), S. Colindale (1), S. Elomrane 

(1), S. Muenchen (1), S. Reading (1), 



Cheetah                 

(other serovars)

10 S. Kiambu (2),  S. Weltevreden (2),  S. Altona (1), S. Braenderup (1), S. Dublin (1), S. Haifa (1), 

S. Huettwilen (1), S. Ruiru (1)

Lion 6 S. Agona (1), S. Anatum (1), S. Frintrop (1), S. Havana (1), S. Newport (1), S. Typhimurium (1)

Tiger 6 S. Infantis (1), S. Kedougou (1), S. Kiambu (1), S. Kottbus (1), S. Ruiru (1), S. Typhimurium (1)

Cat 5 S. Typhimurium (3), S. Enteritidis (1), S. Miami (1) 

Mamoset 5 S. Kentucky (2), S. Adelaide (1), S. Enteritidis (1), S. Heidelberg (1)

Bovine                   

(other serovars)

4 S. Dublin (1), S. Elomrane (1),  S. Grumpensis (1), Salmonella  subsp. I serological rough (1)

Giraffe 4 S. Ibaragi (1), S. Urbana (1), S. Oranienburg (1), S. Muenchen (1)

Hare 4 S. Typhimurium (2), S .Blockley (1), S. Muenchen (1)

Leopard 4 S. Infantis (2), S. Anatum (1), S. Senftenberg (1)

Jaguar 3 S. Havana (1), S. Kedougou (1), S. Kentucky (1)

Wallaby 2 S. Kentucky (1), S. Muenster (1) 

Caracal 2 S. Tarshyne (1), S. Typhimurium (1)

Dear 2 S. Amsterdam (1), S. Typhimurium (1), S. Poona (1)

Fox 2 S. Typhimurium (1), S. Enteritidis (1), S. Kentucky (1) 

Llama 2 S. Newport (1), S. Typhimurium (1)

Arabian Leopard 1 S. Chester (1)

Arabian Toad 1 S. Uganda (1)

Arabian Wolf 1 S. Reading (1)

Badger 1 S. Muenchen (1)

Black Leopard 1 S. Havana (1)

Chimpanzee 1 S. Oakland (1)

Gerbels 1 S. Kiambu (1)

Grey Mangoose 1 S. Havana (1) 

Hyena 1 S. Kentucky (1)

Mouse 1 S. Infantis (1) 

Ocelot 1 S. Ruiru (1) 

Rabbit 1 S. Kentucky (1) 

Sable 1 S. London (1) 

Sand cat 1 S. Enteritidis (1) 

Serval 1 S. Miami (1)

Sugar Glider  1 Salmonella  subsp. IIIb 50:r:z (1) 

Zebra 1 S. Agona (1)

reptiles (all species) n Serovar (no. of  isolates) 

Turtle 9 S. Bovismorbificans (1), S. Gaminara (1), S. Havana (1), S. Johannesburg (1), S. Kottbus (1), 

S. Newport (1), S. Pomona (1), S. Salford (1), S. Typhimurium (1)

Snake 8 Salmonella  subsp. IIIa 41:z4z23:- (2),  S.  Haifa (1), S. Newport (1), S. Virchow (1),  Salmonella 

subsp. IIIa 44:z4,z24 (1), Salmonella  subspez. IIIa serological rough (1), Salmonella subspez. IV 

serological rough (1)

Green Turtle 5 S. Chailey (2), S. Ruiru (1), Salmonella  subsp. IIIb 60:r:z35 (1), Salmonella  subsp. IIIb 

65:z10:e,n,x,z15 (1)

Lizzard 3 Salmonella  subsp. IV serological rough (1), Salmonella  subsp. IV 48:l,v:1,5,7 (1) , Salmonella 

subsp. I serological rough (1)

Tegu lizzard 1 S. Cubana (1)

Chameleon 1 Salmonella  subsp. IV 44:z4,z32:- (1) 

Crocodile 1 S .Chailey (1) 

Dragon 1 S. Heidelberg (1) 

Saw-scaled viper 1 S. Typhimurium (1) 

Giant skink 1 Salmonella  subsp. IV 44:z4,z23:- (1) 

Hawksbill turtle 3 S. Typhimurium (1), S.  Weltevreden, Salmonella  subsp. I serological rough (1)

Komodo Dragon 1 S. Infantis (1) 

Phyton 1 Salmonella  subsp. IIIb 48:l,v:1,5,7 (1) 

Sand Snake 1 Salmonella  subsp. IIIb 48:k:z53 (1)

Spiny tailed lizzard 1 S. Enteritidis (1)

other species n Serovar (no. of  isolates) 

Meal worm 2 S. Kentucky (2)

squid 1 S. Typhimruium (1) 

* additionally to Table 2
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