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ABSTRACT: Over the past decade, confocal Raman microspectroscopic (CRM) imaging has 

matured into a useful analytical tool to obtain spatially-resolved chemical information on 

molecular composition of biological samples and found its way into histopathology, cytology 

and microbiology. A CRM imaging dataset is a hyperspectral image in which Raman intensities 

are represented as a function of three coordinates: a spectral coordinate  encoding the 

wavelength and two spatial coordinates x and y. Understanding CRM imaging data is 
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challenging because of its complexity, size, and moderate signal-to-noise-ratio. Spatial 

segmentation of a CRM imaging data is a way to reveal regions of interest and is traditionally 

performed using non-supervised clustering which relies on spectral domain-only information. 

Their main drawback is the high sensitivity to noise. We present a new pipeline for spatial 

segmentation of CRM imaging data which includes pre-processing in the spectral and spatial 

domains, and k-means clustering. Its core is the pre-processing routine in the spatial domain, 

edge-preserving denoising (EPD), which exploits the spatial relationships between Raman 

intensities acquired at neighboring pixels. Additionally, we propose to use spatial correlation to 

identify Raman spectral features co-localized with defined spatial regions and confidence maps 

to assess the quality of spatial segmentation. For CRM data acquired from a mid-saggital Syrian 

hamster (Mesocricetus auratus) brain cryosections, we show how our pipeline benefits from the 

complex spatial-spectral relationships inherent in the CRM imaging data. EPD significantly 

improves the quality of spatial segmentation that allows us to extract the underlying structural 

and compositional information contained in the Raman microspectra. 

INTRODUCTION 

The last decade has witnessed an astonishing progress in the field of spectroscopic and 

spectrometric imaging. Among the optical techniques, vibrational spectroscopic methods like 

infrared (IR) [1-5] and confocal Raman microspectroscopic (CRM) imaging [4, 6, 7] have seen 

significant advancements in terms of technology, functionality and spectral quality. Both IR and 

Raman microspectroscopic imaging provide spatially resolved structural and compositional 

information on the basis of the vibrational properties of the samples under study and represent in 

combination with imaging methods a great promise for biomedical applications [6, 8, 9], in 
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particular for digital staining of histological samples [10] as well as for other applications in 

microbiology [11, 12], food industry [13], and pharmacy [5, 14-16].  

Vibrational spectroscopic imaging methodologies have in common that hyperspectral images 

(HSI) are produced. These images constitute true 3-dimensional data sets in which the 

experimental parameter, usually a Raman intensity, or an IR absorbance value, is measured as a 

function of three independent variables: two spatial coordinates (x,y) and a spectral coordinate, 

typically the wavelength . A HSI can be considered either as a set of spatially resolved spectra, 

or alternatively as a stack of images in which each image corresponds to a specific wavelength 

[15-17]. These different views have important implications when developing computational 

methods for analysis of HSI, since spectral analysis methods as well as image analysis methods 

are applicable. 

Depending on the instrumentation, vibrational hyperspectral imaging experiments can be 

carried out in different ways [18]. The simplest method is scanning with a single detector system 

across the surface of a sample in a rasterized manner thus providing a spectrum for each 

individual spatial (x,y) point. Another method is by using of multi-element detectors such as 

focal plane array (FPA) detectors. FPA detectors are available for the near and mid-infrared 

wavelength region and allow parallel acquisition of spectra that significantly reduces the 

acquisition time. Although the term FPA includes also one-dimensional (“linear”) arrays, it is 

mostly used to describe two-dimensional (2D) detector arrays [19]. 

The most obvious difference between hyperspectral, multispectral and color images is the 

number of wavelength channels. While fluorescence or color images often contain only a limited 

number of images at discrete “bands” or wavelengths (e.g. three wavelengths in red-green-blue 
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images), HSI data sets may be composed of up to several thousands of different wavelength 

images. This advantage is, however, often (but not necessarily) achieved at the expenses of the 

information content in the spatial domain. The amount of pixels in a spectroscopic dataset 

usually varies between 10.000 and 100.000 that is significantly less compared to 5-50 

megapixels of a state-of-the-art photographic color image.  

These facts often predetermine the way how hyperspectral images are analyzed. Instead of 

classical image analysis methods such as spatial filtering (e.g. sharpening, denoising), edge 

detection, segmentation and object recognition, HSI analysis methods currently rely 

predominantly on operations originally developed for point spectroscopy [20]. Vibrational 

hyperspectral imaging segmentation in biomedical applications is usually conducted via 

unsupervised spectral clustering [8, 21], spectral unmixing [22-24], or supervised spectra 

classification [2, 25]. Although these spectra-based methods have been shown to provide insights 

into the spectral characteristics of spatial regions (e.g. via cluster mean spectra or spectral 

endmembers), the information contained in the spatial domain is often disregarded. Another 

drawback of a purely spectra-based segmentation approach is the enhanced sensitivity to noise. 

Noise may strongly distort signals and diminish the quality the quality of segmentation. For 

example, we have observed that the signal-to-noise ratio (SNR) strongly affects the results of 

segmentation: segmentation of noisy HSI may result in spatial cluster segments which are 

characterized by a high level of granularity with only limited spatial continuity.  

The latter observation is important when analyzing Raman imaging data. Compared to IR 

spectroscopy, Raman spectra exhibit more evident noise. This is a consequence of the fact that 

Raman spectroscopy relies on a relatively weak optical effect. With cross sections between 10-25 

and 10-30 cm2 per molecule [26], Raman inelastic scattering is comparatively weak. Furthermore, 
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the amount of sample that can be investigated using cutting-edge confocal Raman 

microspectroscopic instrumentation is at the order of only a few hundred picograms which is 

about three orders of magnitude less sample amount required for IR microspectroscopic 

investigations. Both aspects are important to understand why despite new technological 

advancements such as bright monochromatic laser sources, efficient notch or edge filters, or 

sensitive CCD detectors, Raman microspectroscopy is often hampered by an only moderate 

SNR.  

We evaluate the proposed pipeline by analyzing the confocal Raman microspectroscopy 

imaging data of a brain cryosection from a Syrian hamster (Mesocricetus auratus). The pipeline 

makes use of the spectral/spatial relationships present in Raman HSI datasets by combining 

spatial and spectral processing algorithms. We show that our pipeline significantly outperforms 

the straightforward spectral domain-only HSI segmentation. The pipeline is based on the 

approach previously developed for imaging mass spectrometry [27] where it demonstrated 

excellent image segmentation results. Moreover, we propose methods for interpretation of the 

produced segmentation maps. First, we propose an approach to identify specific wavelengths 

showing a high correlation with prominent spatial regions detected by segmentation. Secondly, 

we propose confidence maps to assess and verify the validity of segmentation maps. 

MATERIALS AND METHODS 

Tissue from the central nervous system was selected as an ideal test sample for the following 

reasons. Firstly, the brain anatomy is well-understood. Secondly, brain tissue exhibits a high 

spectral contrast between the individual anatomical structures, in particular between gray and 

white matter of the brain and brainstem. 
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Sample preparation:  

The hamster brain sample originated from a female Syrian hamster (Mesocricetus auratus). 

For confocal Raman spectroscopic measurements a mid-saggital section was produced by cryo-

sectioning and thaw-mounting onto a CaF2 window of 1 mm thickness (Korth GmbH, 

Altenförde, Germany). Sectioning was carried out by a cryostat (Leica Microsystems, 

Nussloch/Germany). The cutting temperature was -22 °C and the thickness of the brain slice was 

8 µm. To preserve the samples’ structural and compositional integrity, freezing water was used 

as the embedding medium. No organic solvents like xylol or ethanol were used for sample 

rinsing or washing. The specimens required no further fixation and were kept over weeks in a 

dry environment at room temperature. 

Confocal Raman spectroscopy:  

Confocal Raman measurements were carried out in WITec’s application laboratory (WITec 

GmbH, Ulm Germany) by means of a WITec alpha 300R Raman microspectrometer. The 

instrument incorporated a 300 mm focal length spectrograph (UHTS300 spectrograph) and a 600 

lines/mm grating giving a spectral resolution of approx. 4 cm-1. The system was equipped with a 

frequency-doubled Nd:YAG laser operating at 532 nm. In the exploited Raman 

microspectrometer, the Rayleigh-scattered light is blocked by an edge filter. Raman back-

scattered radiation was focused onto a 100 µm multimode fiber which guided the scattered light 

to a thermoelectric cooled, back-illuminated CCD detector with 1024×128 pixels from Andor 

(iDUS DV401A-BV, Andor Technology Plc, Belfast, Ireland). Raman spectra were recorded in 

the so-called single spectra acquisition mode (no continuous movement of the microscope stage 

during spectra acquisition) in the spectral range between 349.1 and 3791.9 cm-1. The xyz-scan 
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stage of the confocal Raman microscope permitted to collect 100 × 200 Raman spectra 

consecutively from a sample area of 9249 × 18247 µm. The step width in x and y-direction was 

approx. 9.2 µm and the sampling time per Raman spectrum was 3.1 s. An Olympus 50× 

LMPLFLN objective with a numerical aperture (N.A.) of 0.5 and a working distance of 10.6 mm 

focused the laser light onto the sample. 

 

Spectral pre-processing:  

Confocal Raman microspectra were pre-processed by means of the 64-bit version of the 

CytoSpec software package (http://www.cytospec.com, version August 15, 2012) which 

operated as a pcode toolbox under Matlab R2011a (The Mathworks, Natick, MA). Hyperspectral 

Raman imaging data in the spectral range of 449–3500 cm-1 were imported into CytoSpec. The 

import function included an interpolation routine for converting the dispersive Raman spectra 

into vectors with an equidistant point spacing of 3.8425 cm-1 (i). Spectra were subjected to a 

quality check (ii) which based on pre-defined thresholds of integrated Raman intensities in the 

spectral range between 900 and 1750 cm-1. Spectra which did pass the quality check were 

subsequently subjected to a (iii) cosmic ray removal procedure, (iv) Savitzki-Golay (SG) 

derivative/smoothing filtering (second derivatives with 5 or 9 smoothing points) and (v) vector-

normalization using the spectral region between 700–1800 cm-1. 

Within the context of this study we refer to “raw” spectra as Raman spectra which were pre-

processed by steps (i)-(iii), whereas spectrally pre-processed data were additionally subjected to 

processing steps (iv) and (v). 
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Spatial pre-processing using edge-preserving denoising:  

After spectral pre-processing, the Raman hyperspectral imaging data were subjected to a 

spatial pre-processing routine, edge-preserving denoising (EPD), which was recently proposed in 

the context of analysis of hyperspectral MALDI imaging mass spectrometry data [27]. EPD is an 

operation in the image domain and plays a crucial role in the proposed spatial segmentation 

pipeline. The aim of EPD is to reduce noise-related pixel-to-pixel variation often unavoidable in 

Raman microspectroscopic imaging at the same time preserving small spatial features of the 

wavelength images. Note that the pixel-to-pixel variation is amplified when using the second 

derivative Raman spectra. For EPD, we used the locally-adaptive edge-preserving image 

denoising algorithm based on minimizing the total variation (TV) of an image [28]. Informally 

speaking, TV of a gray-scale image is the sum of absolute differences of intensities at 

neighboring pixels [29]. Noise increases TV significantly. Penalizing TV when performing 

denoising obtained recognition for edge-preserving image denosing [30]. Given a gray-scale 

image, a TV-penalizing algorithm searches for an approximation of this image by simultaneously 

minimizing its TV. We used the TV-penalizing algorithm which automatically adjusts the local 

level of denoising [28] implemented as custom Matlab scripts (courtesy Markus Grasmair) with 

one essential parameter θ encoding the level of denoising taking the values from 0 (no denoising) 

to 1 (maximal denoising). We applied this algorithm to each wavelength image, thus reducing 

the noise-related pixel-to-pixel variation of the full Raman HSI dataset. 

Cluster analysis for spatial segmentation:  

After channel-wise EPD in the image domain, the pre-processed Raman spectra were grouped 

according to their spectral similarity by means of k-means cluster analysis [31] (KMC); see data 
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analysis workflow in Supporting figure S1. KMC is a well-known multivariate crisp clustering 

technique which has shown its usefulness in analysis of Raman or IR microspectroscopic 

imaging data [21, 32, 33]. The results of spectra clustering were converted into a false-color 

spatial segmentation map which visualizes clustering assignments of all pixels by coloring them 

so that the pixels of spectra from the same cluster have the same color. Note that spatially 

disconnected regions may have the same color. We systematically calculated spatial 

segmentation maps for numbers of clusters ranging from two to ten and selected those with the 

best agreement with the anatomy of the brain. For KMC-based spatial segmentation, in-house 

developed Matlab scripts were employed. 

Interpretation of the spatial segmentation maps:  

In hyperspectral imaging, the interpretation of the results of clustering is usually carried out by 

means of spatial segmentation maps (cluster images) and cluster mean spectra. While spatial 

segmentation maps illustrate the spatial distribution of spectral patterns of a given hyperspectral 

image, cluster mean spectra are meaningful to demonstrate and interpret spectral differences 

found between clusters [21].  

We propose an alternative, correlation-based approach to extract spatial and/or spectral 

information from HSI. Given a cluster of spectra, one can define a spatial mask as an image with 

values of one for cluster member spectra and zero values for all other spectra. Calculation of 

Pearson’s correlation coefficients between such a spatial mask and all original wavelength 

images prior to EPD allows one to identify those Raman wavelengths (“features”) which are 

correlated, un-correlated or anti-correlated with the given cluster. Note that the degree of 
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correlation between a given cluster mask and wavelength images is independent on the Raman 

intensities and thus allows one to detect also Raman spectral features of low intensity.  

Additionally, to estimate the quality of the produced spatial segmentation map, we propose 

confidence maps. We propose to define “confidence” as a mean value of Pearson correlation 

between a given cluster mask and its three most correlated wavelength images. Visualization of 

the totality of confidence values on the segmentation map is the confidence map. A confidence 

map thus highlights clusters of high (or low) confidence, i.e. clusters for which correlated 

wavelength images exist (or do not exist). We found that this information is of particular 

importance for interpreting the segmentation map: the spectral information derived from clusters 

of low confidence should be interpreted with caution. Note that this approach be used for 

selecting an appropriate level of denoising by comparing confidence maps generated for 

segmentation maps with several possible levels of denoising. For correlation-based image 

analysis, in-house developed Matlab scripts were employed. 

RESULTS AND DISCUSSION 

The main goal of the present study was to develop and evaluate a pipeline for spatial 

segmentation of Raman hyperspectral images (HSI). The proposed pipeline is based on a 

combination of a classical image processing operation, edge-preserving denoising (EPD) applied 

to chemical images of Raman HSI, and unsupervised k-means clustering (KMC) for purely pixel 

based segmentation. Using this pipeline, we analyzed a confocal hyperspectral Raman imaging 

dataset collected from a mid-saggital cryosection of a hamster brain. Our data analysis workflow 

employed is illustrated in Supporting figure S1.  

[FIGURE 1] 
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Figure 1 shows the anatomy of the rodent brain and brainstem as a schematic mid-sagittal 

view. The major anatomical regions like the medulla oblongata, pons, hippocampus, thalamus, 

corpus callosum, or the cerebellum with the cerebellar structures arbor vitae and the cerebellar 

cortex have been labeled. White matter structures are depicted in red whereas gray matter 

structures are shown in blue. Examples of brain structures composed mainly of white matter are 

the corpus callosum, fornix, pons and large areas of the medulla oblongata. White matter forms 

also a tree-shaped structure inside of the cerebellum, called arbor vitae. Blue colored areas such 

as the cerebral cortex, the main olfactory bulb, the hippocampus, or the cerebellar cortex denote 

gray matter structures.  

White and gray matter are known to differ by their biochemical composition: whilst gray 

matter is mainly composed of neuronal bodies, glial cells, neuropil and both myelinated and 

unmyelinated axons, the cerebellar white matter is formed by lipid-rich components such as 

myelinated axons. 

Spectral differences between the white and gray matter:  

Raman spectroscopy can be used to differentiate between white and gray matter structures of 

the brain [34, 35]. These differences are primarily based on the well-known lipid composition 

which may vary significantly between different brain structures [36, 37].  

Typical Raman spectroscopic differences detected between white and gray matter structures of 

the hamster cerebellum are illustrated by figure 1. The red spectrum represents a mean Raman 

spectrum obtained by averaging several tens of manually selected point spectra from the arbor 

vitae region. To demonstrate the noise level of the raw data, one of the un-processed Raman 

spectra has been also exemplified (dark red trace). The inset in figure 1 provides an estimate of 
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the signal-to-noise-ratio (SNR) which has been obtained by calculating the ratio of the maximum 

Raman intensity in the C-H stretching region (2800 - 3050 cm-1) and the standard deviation of 

the intensities in the signal-free region between 1900 – 2400 cm-1. The mean spectrum and an 

exemplary raw Raman spectrum from the granular layer of the cerebellar cortex are shown in 

blue. Figure 1 demonstrates that both the general shape of the spectral profile and the intensities 

of lipid-associated Raman bands reflect the gross compositional differences between white and 

gray matter. The most significant dissimilarities are found in the C-H stretching region, i.e. 

between 2800 and 3050 cm-1 (see table 1 for band assignments). Relatively large differences 

were detected also in other regions of the Raman spectra: at 1445 cm-1 (C-H def.), 1068 cm-1 (C-

N and C-C str) and at another C-H deformation band near 1303 cm-1 (C-H def). Further typical 

changes were obtained at 548 cm-1 (cholesterol), 883 cm-1 (choline head group vibration), 1589 

cm-1 (C=C str) and at 3065 cm-1 (C-H str of -C=C-H groups, cf. table 1 for details of band 

assignments). Although some of the discriminatory Raman signals can be detected only in mean 

spectra - a consequence of the only moderate SNR of the raw data - the band assignments 

strongly suggest that the spectral differences are indeed associated with specific distribution 

patterns of important classes of brain lipids.  

[TABLE 1] 

[FIGURE 2] 

Spatial segmentation maps: Spatial segmentation maps with 7 clusters obtained on the basis of 

spectral-domain-only pre-processing and unsupervised k-means cluster (KMC) analysis are 

illustrated in figure 2A. Pre-processing included quality tests, cosmic ray rejection and the 

application of a second derivative SG smoothing/derivative filter with 5 smoothing points. Prior 
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to KMC-based image segmentation, filtered spectra were additionally vector-normalized using 

the Raman intensities in 700–1800 cm-1. According to figure 2A, the pixel based image 

segmentation procedure produced only incoherent cluster segments with no clear boundaries 

(possibly a result of noise amplification in the derivative spectra). Obviously, the segmentation 

using spectra-domain-only methods resulted in spatial masks of high granularity with no, or only 

limited, spatial continuity. The spatial segmentation maps improved dramatically after applying 

edge-preserving denoising (EPD) in the image domain, see figure 2B. The sequence and 

parameters of spectral pre-processing and image analysis procedures were kept fixed to ensure 

comparability with the instance of figure 2A. According to figure 2B, EPD at a moderate level – 

θ=0.65 is the recommended value, see [27] – significantly improved the interpretability of the 

segmentation map by reducing the granularity of the map and by generating coherent cluster 

regions with well-defined boundaries. Moreover, figure 2B also demonstrates that EPD has led 

to a better correspondence with the brain anatomy by allowing us to recognize important 

anatomical structures like the corpus callosum or cerebellar structures. 

[FIGURE 3] 

A second example that illustrates the influence of the EPD parameter θ on segmentation is 

given by figure 3. Apart from the parameter θ and the number of smoothing points of the SG 

filter function (9 instead of 5), all remaining processing parameters and analysis steps were kept 

identical. Figure 3 shows spatial segmentation maps constructed without EPD pre-processing 

(θ=0, figure 3A) as well as with EPD pre-processing using weak (θ=0.55, figure 3B), moderate 

(θ=0.65, figure 3C) and strong (θ=0.75, figure 3D) levels of denoising. 
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The first conclusion that can be drawn from the segmentation maps of figure 3 is that spatial 

segmentation on the basis of spectral domain-only pre-processing again resulted in a granular 

segmentation map with no, or only limited spatial continuity (see figure 3A). Secondly, the 

computationally increased SNR after stronger spectral smoothing (SG filter function with 9 

instead of 5 smoothing points) exerted no noticeable effect on the degree of correspondence 

between image segmentation and brain anatomy (cf. figures 2A and 3A). Thirdly, the 

segmentation maps obtained from spectrally and spatially pre-processed data have a higher 

degree of spatial coherence (see figure 3B-D). Unlike smoothing in the spectral domain, EPD has 

shown a marked effect on coherence, size and shape of the individual spatial masks: the larger 

the denoising level , the lower the granularity of the KMC spatial segmentation maps. 

Comparison of the spectral properties of spatial segments obtained with and without EPD: 

A major goal of this study was to elucidate how EPD applied in the spatial domain of Raman 

HSI affects the spectral information content of spatial segments. For this purpose, we calculated 

cluster mean spectra using the spatial masks obtained by KMC of spectral-domain-only pre-

processed, and of EPD-pre-processed data, respectively. Although these segments are composed 

by different spectra, we were able to match each cluster obtained without EPD with a cluster 

obtained with EPD (by comparing their mean spectra). Cluster mean spectra computed from 

these spatial masks on the basis of raw Raman spectra are provided in figure 4 and illustrate the 

Raman characteristics of cluster masks obtained without EPD (traces 1, =0) and EPD at a 

moderate level (traces 2, =0.65). For both approaches, the most significant Raman 

spectroscopic differences were found between clusters encoding the spatial masks given by the 

red (white matter) and yellow color (gray matter, note that the color scheme of figure 4 is 



 15

consistent with the schemes used in figures 2 and 3). Furthermore, a detailed comparison of the 

mean spectra provided in figure 4 was carried out by systematically calculating Euclidean 

distances between all possible pairs of mean spectra. These analyses revealed an average 

Euclidean distance of 23,309 (max: 56,004, min: 4,412) for the mean spectra labeled in figure 4 

by 1 (no EPD), and of 20,778 (max: 51,491, min: 4,139) for mean spectra obtained on the basis 

of KMC and EPD of a moderate level (labeled in figure 4 by 2). At the one hand these number 

suggest that EPD may be the cause of a slight reduction of the spectral distinctness of the spatial 

masks. On the other hand, as the general pattern of the cluster-specific Raman spectroscopic 

signatures remains surprisingly consistent (except for the blue cluster), it is even conceivable that 

these small changes are a result of other factors, such as random initialization of the KMC 

process. Although it is not possible to decide at the present stage whether the increase of the 

spectral similarity results from EPD or not, it is beyond any doubt that the suggested EPD-based 

pre-processing pipeline causes no substantial modifications of the spectral characteristics of 

spatial masks and thus of their underlying structural and compositional information.  

The influence of EPD on the Raman spectra: 

In the previous paragraph we have shown that the spectral properties of spatial masks obtained 

with and without spatial pre-processing (EPD) do not change much. However, we have not yet 

investigated the direct influence of EPD on the spectral contrast. For this purpose we have 

manually defined so-called regions of interest (ROIs) which were specified on the basis of the 

segmentation map from figure 3C. For each ROI, we computed mean, 5%, and 95% percentile 

spectra, respectively, from the raw Raman data and Raman spectra spatially pre-processed by 

weak, moderate or strong EPD (=0.55, 0.65 or 0.75, respectively). It is important to emphasize 

that contrary to the preceding example, the mean and the percentile spectra were obtained on the 
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basis of identical spatial masks. The results of our analysis are shown in Supporting figure S2. 

The main observations are as follows: (i) Mean spectra of the various ROI masks are different 

and exhibit distinct and ROI-specific Raman features. (ii) The effect of EPD onto mean spectra is 

not visible. (iii) The spectral variance within the ROI masks is largely affected by EPD: the 

smaller the level of EPD, the larger the spectral variance within the manually defined ROIs, see 

for example spectra in panel E of Supporting figure S2. In summary, Supporting figure S2 

demonstrates that EPD of HSI exerts only negligible effects on the average spectral 

characteristics of reasonably large region of HSI whereas the spectral variance within such 

regions is significantly reduced. 

 

[FIGURE 4] 

 

Interpretation of spatial segmentation maps:  

When analyzing and interpreting spatial segmentation maps, it is important to address the 

following points: (i) the question for the optimal number of clusters, (ii) the existence of a fair 

correlation between the reference (histology) and hyperspectral imaging technique, and (iii) 

which of the spectral features are specific for a given spatial mask. As for the first point, there is 

a large body of literature available that helps to determine the optimal number of clusters; see 

e.g. [38]. The second question can be answered based on an investigator’s experience in the 

reference technique, such as histology or microanatomy.  
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Below we introduce a correlation-based approach which can be used to address the third 

question. This technique is based on the calculation of Pearson’s correlation coefficients r 

between a given spatial mask and wavelength images allowing one to find specific wavelengths 

that are correlated with cluster masks, and therefore with anatomical regions.  

[FIGURE 5] 

Figure 5 gives an example of a correlation analysis. It shows the spatial mask of the cluster 

encoded by the red color of figure 2B that was associated with white matter structures of the 

medulla oblongata, corpus callosum, anterior commissure, and arbor vitae. The correlation 

analysis revealed high correlation coefficients between this cluster mask and the wavelength 

images at the following wavelengths: (i) 1442, (ii) 2852, (iii) 2883, (iv) 705, and (v) 1070 cm-1 

(sorted in descending order according to r). The wavelength images of these Raman intensity 

features are shown in figure 5B-F. The correlation coefficients range from 0.239 to 0.430 (see 

inset). Most of the identified Raman features apparently arise from C-H, or C-C vibrational 

modes. For example, the features at 2852 and 2883 cm-1 were previously assigned to the 

symmetric C-H stretching vibration of methylene groups [35, 39], and a Fermi resonance thereof 

[35]. In Raman spectra of biomedical samples the C-H stretching (2800–3050 cm-1) region is 

known to be dominated by contributions from fatty acids of membrane amphiphiles (e.g. 

phospholipids) and to less extent by amino acid side-chain vibrations [39]. Interestingly, the 

Raman band with the highest correlation (1442 cm-1) has been assigned to a vibrational mode of 

>CH2 (methylene) groups originating from C-H deformations [40]. Thus, the three most 

correlated Raman features can be associated to vibrations of one and the same functional group. 

The next two Raman features found by correlation analysis at 1070 cm-1 (C-N and C-C stretching 

vibrations, see table 1 for band assignments) and at 705 cm-1 (no band assignment available) 
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correspond to Raman bands of only weak intensities. The mean spectrum of the analyzed spatial 

mask (red color) is shown in figure 5G with the found top five correlated Raman features 

highlighted. It shows that these features are not only correlated with the white matter region but 

exhibit also certain Raman intensity. 

Confidence maps:  

To evaluate and interpret the spatial segmentation maps, we computed their confidence maps. 

The confidence map of the spatial segmentation map from figure 2B shows that white matter 

structures forming the red and the blue cluster (corpus callosum, arbor vitae, pons, medulla 

oblongata) exhibit Raman features with a good co-localization to these spatial masks (figure 5H). 

As the algorithm of obtaining confidence maps does not consider for the presence of anti-

correlated features, the gray matter structures often display only low confidence values.  

CONCLUSIONS 

We have proposed a new pipeline for analysis of confocal Raman microspectroscopy imaging 

data by means of spatial segmentation combining pre-processing methods in both the spectral 

and the spatial domains with unsupervised clustering. For a Raman HSI dataset of a mid-saggital 

hamster brain section, we could demonstrate that pre-processing in the spatial domain by edge-

preserving denoising (EPD) suppressed the pixel-to-pixel variation significantly and led to a 

superior correlation between brain anatomy and the results of Raman HSI segmentation. While 

pre-processing by spectral domain-only operations resulted in spatial masks of a high 

granularity, application of EPD significantly improved the quality of the spatial segmentation. 

The presented approach is not only valuable to produce coherent spatial segmentation maps, but 

also shows its strength in establishing true spatial-spectral relationships particularly in 
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applications where noise plays a major role. The proposed algorithm is considered to be valuable 

for segmentation of HSI data obtained by various vibrational microspectroscopic techniques such 

as confocal Raman microspectrosopic imaging, infrared imaging, terahertz imaging, as well as 

other HSI techniques. 
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Figure 1. Top panel: Anatomy of the hamster brain (mid-saggital view, see inset and text for 

details). Bottom panel: Raman spectra from the hamster cerebellum. Mean spectrum (red) and 

unprocessed single-pixel Raman spectrum (dark red) of white matter structures (arbor vitae). 

Mean (blue) and unprocessed single pixel (dark blue) Raman spectrum from the gray matter 

(granular layer of the cerebellar cortex). The spectra are shifted along the y-axis for clarity; for 

band assignments see table 1. 
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Figure 2. Comparison of HSI segmentation (k-means clustering with 7 clusters) carried out with 

and without edge-preserving denoising (EPD). (A) spectral domain-only pre-processing (no 

EPD, =0). (B) pre-processing in the spectral and spatial domain, (moderate EPD, =0.65). 

Spectral pre-processing: quality test, cosmic ray removal, Savitzky-Golay (SG) filtering, vector-

normalization (SG 2nd derivative/smoothing filter with 5 smoothing points, normalization in the 

spectral range of 700 and 1800 cm-1) 
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Figure 3. The influence of the degree of EPD on the results of HSI segmentation (k-means 

clustering, 7 clusters). (A) pre-processing only in the spectral domain (no EPD, =0). (B) pre-

processing in the spectral and spatial domain (weak EPD, =0.55). (C) pre-processing in the 

spectral and spatial domain (moderate EPD, =0.65). (D) pre-processing in the spectral and 

spatial domain (strong EPD, =0.75). Spectral pre-processing: quality test, cosmic ray removal, 

Savitzky-Golay (SG) filtering, vector-normalization (SG 2nd derivative/smoothing filter with 9 

smoothing points, normalization in the spectral range of 700 and 1800 cm-1). 
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Figure 4. Mean spectra obtained from the spatial masks of figure 2 (note that the color scheme is 

consistent with the scheme used in figures 2-3). (1) mean cluster spectra obtained from the mask 

of figure 2A (=0, no EPD). (2) mean cluster spectra obtained from the mask of figure 2B 

(=0.65, moderate level of EPD) 
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Figure 5. (A) Spatial mask of cluster 2 (red region of figure 2B) obtained by KMC image 

segmentation (moderate level of EPD, =0.65). (B-F) Feature images showing a high correlation 

with the spatial mask of panel A. The inset of each image shows the wavenumber position of the 

Raman feature and Pearson’s correlation coefficient r. (G) Mean Raman spectrum of the spatial 

mask of the “red” cluster (red region of figure 2B, see also panel 5A). Spectral features with a 

high correlation to this mask are indicated. (H) Confidence map for the 7-cluster segmentation 

approach given by the example of figure 2B (moderate level of EPD, =0.65). 

 

 

 



 25

Table 1. Raman band assignments. Abbreviations: str = stretching, def = deformation, sy = 

symmetric, as = antisymmetric (adapted from [35, 39, 41]).  

Wavenumber positions [cm-1] Putative assignments 

548 Chol [35] 

720 C-H2 def, N+-(CH3)3 str (sym) [35] 

883 N+-(CH3)3 str (asym) [35] 

1006 ring breathing (phenylalanine) [39] 

1068 C-N and C-C str 

1088 PO2- str, C-O str  

1228 CH def  

1245 amide III [39] 

1310 C-H def 

1340 C-H2 def 

1444 C-H def [35, 39, 40] 

1589 C=C str 

1657, 1661 amide I [35, 39] 

1737 C=O str of esters [39, 40] 

2851 C-H str (sy) of >CH2 [35, 40] 

2884 C-H str (Fermi-Resonance) of >CH2 [35, 40] 

2933 C-H str (sy) of -CH3 [35, 39, 40] 

2960 C-H str (as) of -CH3 [35] 

3010 C-H str (sy) of =CH- [35] 

3065 C-H str of (C=C-H)(arom) [39] 
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Supporting Figure S1. Data analysis workflow for hyperspectral image (HSI) segmentation of 

confocal Raman microspectroscopic data on the basis of edge-preserving denoising (EPD) and k-

means cluster (KMC) analysis (see text for details). Blue rectangles denote the output of the EPD 

algorithm providing an improved interpretation of the Raman HSI dataset.  
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Supporting Figure S2. The influence of the degree of EPD on the Raman spectroscopic 

properties of manually defined regions of interest (ROIs).(A) Segmentation map according to 

Fig. 3C (moderate EPD, =0.65). (B-H) Mean, 5th and 95th percentile spectra obtained from 

confocal Raman spectra of 7 selected rectangular regions of the mid-saggital hamster brain 



 32

section (see inset of panel A). Confocal Raman spectra have been pre-processed in the spectral 

(quality test and cosmic ray removal, only) and spatial (for EPD level see inset) domains. The 

color coding is consistent with figures 2-4. Raman spectra were shifted along the y-axis for 

clarity. 
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