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Abstract Population size estimation with discrete or nonparametric mixture models

is considered and reliable ways of construction of the nonparametric mixture model

estimator are reviewed and set into perspective. Construction of the maximum likeli-

hood estimator of the mixing distribution is done for any number of components up to

the global nonparametric maximum likelihood bound using the EM algorithm. In ad-

dition, the estimators of Chao and Zelterman are considered with some generalizations

of Zelterman’s estimator. All computations are done with CAMCR, a special software de-

veloped for population size estimation with mixture models. Several examples and data

sets are discussed and the estimators illustrated. Problems using the mixture model

based estimators are highlighted.

Keywords CAMCR · capture-recapture · Chao’s and Zelterman’s estimator of

population size · mixture of truncated Poisson distributions

1 Introduction

The estimation of the size of a specific population has become an important role in the

last decade. The population of interest could be a wildlife population in the biological

sciences or an illicit drug user population in the social sciences. In each population

an identifying mechanism is required. A police data base could be used as identifying

mechanism to estimate the number of car drivers without a licence. We restrict our-

selves in this contribution to a setting in which the identifying mechanism is based

upon counting repeated identifications of the same unit within a given time span. This

is usually referred as capture-recapture data in the form of frequencies of frequencies.
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Table 1 Data from the Bangkok heroin users capture–recapture study Böhning et al. (2004)

i 1 2 3 4 5 6 7 8 9 10
fi 2955 1186 803 611 416 338 278 180 125 74

i 11 12 13 14 15 16 17 18 19
fi 38 20 14 11 4 1 3 4 1

The objective of this paper is to introduce the theory and background of the software

CAMCR for Windows which we have developed for population size estimation based on

capture-recapture data and is freely available (http://www.personal.reading.ac.uk-

/∼sns05dab/Software.html). Before we come in more detail to CAMCR, we provide a

brief introduction of unobserved population size estimation using mixture models as

it is designed in CAMCR. For a more general introduction into the capture-recapture

methodology see Bunge and Fitzpatrick (1993). We will begin with an example to

illustrate the capture–recapture approach in form of frequencies of frequencies.

1.1 A capture–recapture study on illicit drug users in Bangkok

In this study the identifying mechanism are hospital registers. Included are all public

and private hospitals in the Bangkok metropolitan area which are delivering treatment

to drug users. More details of the study are provided in Böhning et al. (2004). Table

1 shows the frequencies f1, ..., f19 of the treatment episodes. For example, the table

means that f1 = 2955 of the n = 7048 heroin users had one treatment episode up to

one case with 19 treatment episodes (f19 = 1). The objective is to estimate the number

of drug users without observed treatment episode.

2 Estimation of population size

We will denote by f0, f1,..., fj , ... the frequency of those units identified exactly 0,

1,..., j times and let m denote the largest occurring count. Furthermore, we will denote

with p0, p1,..., pj , ... the probability of exactly 0, 1,..., j,... identifications. We have that

n = f1 + f2 + ... + fm and N = n + f0.

A general population size estimator for N is available by means of the well-known

Horwitz-Thompson estimator (Horvitz and Thompson, 1952)

N̂ =
n

(1− p0)
. (1)

However, p0 is usually unknown and an estimate will be required for practical use.

Several modelling strategies have been developed. In the next section we will introduce

in the modelling of the count distribution by means of mixture of Poissons as well as

the Zelterman estimator and the Chao estimator.

2.1 Modelling the count distribution as mixture of Poisson distributions

A simple count distribution is the Poisson distribution given as Po(j, λ) = e−λ λj

j! . The

Poisson density does often not provide enough flexibility to give an adequate fit. More
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flexible are discrete mixture models (Norris and Pollock, 1996, 1998; Mao and Lindsay,

2002, 2003) of the form

f(j, Qk) =

k∑

`=1

Po(j, λ`)q`, (2)

where the mixing distribution Qk is giving weight q` ≥ 0 to parameters λ` for ` =

1, ..., k, and k is the number of components in the mixture. Note that q1 + ... + qk = 1.

The likelihood analysis focuses on the zero-truncated mixture log-likelihood

log L(Qk) =

m∑

j=1

fj log[f(j, Qk)]− n log[1− f(0, Qk)]. (3)

Equivalently, a log-likelihood based upon mixtures of zero-truncated Poissons could be

considered as in Böhning and Kuhnert (2006). In this situation the log-likelihood can

be maximised in the set of all discrete probability distributions, leading to the nonpara-

metric maximum likelihood estimate (NPMLE). A variety of numerical algorithms exist

to find the global maximum likelihood estimator, if it exists. The EM algorithm with

gradient function update is included in CAMCR. The EM algorithm (Dempster et al.,

1977) has become very popular in connection with mixture models, see McLachlan

and Krishnan (1997); McLachlan and Peel (2000). This algorithm has the additional

advantage of providing a maximum likelihood solution conditional upon the number of

mixture components k although there is no guarantee for a global solution. To proceed

in the EM context we need the complete data log-likelihood which is given in this case

as
m∑

j=1

fj

k∑

`=1

zj` log f+(j, λ`) +

m∑

j=1

fj

k∑

`=1

zj` log q` (4)

with

f+(j, λ`) =
Po(j, λ`)

1− exp(0; λ`)

f+(j, Q) =
∑

`

q`f+(j, λ`) (5)

and where the unobserved covariate zj` is 1 if j belongs to component ` and 0 otherwise.

The EM algorithm replaces in the E-step the unobserved indicator variates zj` by their

expected values conditional upon the observed data and current values of λ`, q`, ` =

1, ..., k leading to

ej` = E(zj`|fj ; q`, λ`, ` = 1, ...k) =
f+(j, λ`)q`∑k
i=1 f+(j, λi)qi

. (6)

In the M-step new values λ̂1, ...., λ̂k, q̂1, ...., q̂k are found by maximising the expected

version of (4) leading to

q̂` =
1

n

m∑

j=1

fjej`, for ` = 1, ...k (7)

as new estimates for the weights. The new estimates λ̂1, ...., λ̂k need to be found as

solutions of

λ̂` =

∑ν
j=1 j njej`∑ν
j=1 njej`

(1− e−λ̂`), for ` = 1, ...k. (8)
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Note that (8) does not provide a closed form solution for λ̂`, but rather suggests

an iterative solution of the form λ̂new
` =

∑m
j=1 j njej`∑m

j=1 njej`
(1 − e−λ̂old

` ) which needs to

be iterated until convergence. The benefit of working with a mixture model of zero-

truncated Poisson densities (4) (instead of using a zero-truncated mixture of Poisson

densities) can be seen in the fact that an existing global maximisation theory can be

used. This was developed by various authors including Simar (1976); Laird (1978);

Böhning (1982); Lindsay (1983); Leroux (1992); Böhning (2000), among others. The

log-likelihood with respect to f+(j; Q)

log L+(Q) =
∑

j

fj log (f+(j; Q))

is a concave functional on the set of all discrete probability distributions (though it

is not concave on the set of all discrete probability measures with exactly k support

points). This is the main reason for achieving the following global results. An im-

portant, analytical tool is the gradient function defined for any discrete distribution

Q =

(
λ1 ... λk

q1 ... qk

)
as

d(λ, Q) =
1

n

m∑

j=1

fj
f+(j, λ)

f+(j, Q)

where f+(j, Q) = q1f+(j, λ1)+q2f+(j, λ2)+...+qkf+(k, λk) . With the help of the gra-

dient function, the NPMLE can be characterized. The general mixture maximum likeli-

hood theorem (Lindsay, 1983; Böhning, 1982) states that the NPMLE Q̂ =

(
λ1 ... λk

q1 ... qk

)

can be uniquely characterised by an upper bound condition for the gradient function:

Q̂ is NPMLE ⇔ d(λ, Q̂) ≤ 1 for all λ > 0. (9)

In addition, d(λ, Q̂) = 1 for λ ∈ {λ̂1, ..., λ̂k}, the set of all support points of Q̂. The mix-

ture maximum likelihood theorem for count densities like the truncated Poisson can be

used to determine if a given mixture is or not is the NPMLE. This supplements simple

diagnostic techniques like overdispersion tests (Böhning, 1994) which can be used to

identify violations of homogeneity but are unable to give further characterizations of

heterogeneity that the mixture maximum likelihood theorem provides.

If a maximum likelihood estimator Q̂ has been identified (this might be the non-

parametric maximum likelihood estimator or the one for a mixture model with a spe-

cific number of components), then the population size is estimated as (Böhning and

Kuhnert (2006))

N̂ = n

k∑

`=1

q̂`

1− f(0, λ̂`)
.

2.2 Zelterman’s estimator

Zelterman (Zelterman, 1988) argued that the Poisson assumption might not be valid

over the range of possible values for the count variable Y taking values in the set of

integers {0, 1, 2, 3, ...}. Nevertheless the Poisson assumption might be valid for small

ranges of Y such as from j to j + 1, so that it would be meaningful to use only the
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frequencies fj and fj+1 in estimating λ. Zelterman derived the estimator using the

fact that for any j both, the truncated and the untruncated Poisson distribution, have

the property that
Po(j+1,λ)

Po(j,λ)
= λ

j+1 and
f+(j+1,λ)

f+(j,λ)
= λ

j+1 . Hence, λ can be written as

λ =
(j + 1)Po(j + 1, λ)

Po(j, λ)
=

(j + 1)f+(j + 1, λ)

f+(j, λ)
. (10)

An estimator for λ is obtained by replacing f+(j, λ) by the empirical frequency fj :

λ̂j =
(j + 1)fj+1

fj
. (11)

There are two reasons to take λ̂1. For one, λ̂1 is using frequencies in the vicinity of

f0 which is the target of prediction. And for two, in many application studies for

estimating f0, the majority of counts fall into f1 and f2. The counts larger than 2 do

not affect the estimator, a fact largely contributing to its robustness.

2.2.1 Generalizing the idea of Zelterman

The idea of Zelterman can be extended to the inclusion of higher counts by rewriting

λ as

λ = λ

1︷ ︸︸ ︷∑j
i=1 λi

∑j
i=1 λi

=

∑j
i=1(i + 1) λi+1

(i+1)!∑j
i=1

λi

i!

=

∑j
i=1(i + 1)Po(i + 1, λ)

∑j
i=1 Po(i, λ)

.

Replacing theoretical probabilities by sample frequencies we achieve the estimator

λ̂j =

∑j
i=1(i + 1)fi+1∑j

i=1 fi

and in particular for j = 1, ..., 4

λ̂1 =
2f2

f1
, λ̂2 =

2f2 + 3f3

f1 + f2
, λ̂3 =

2f2 + 3f3 + 4f4

f1 + f2 + f3
, λ̂4 =

2f2 + 3f3 + 4f4 + 5f5

f1 + f2 + f3 + f4

Notice that the form of these estimators, achieved by taking sums before ratios, will

provide some stability. Clearly there is a trade-off between bias and variance. If we

compare λ̂j with λ̂j+1 the latter will have the smaller variance, whereas the former

the smaller bias. Limited simulation studies show that a better mean squared error is

achieved by using λ̂2 or λ̂3. For larger values of j in λ̂j , the bias becomes large. In

CAMCR these four Zelterman estimators are provided.

2.3 Chao’s estimator

Another popular population size estimator that also only uses the counts f1 and f2 has

been proposed by Chao (1987, 1989). Chao suggested the estimator N̂C = n+
f2
1

2f2
. The

estimator is based upon the Cauchy-Schwartz inequality (Wilson and Collins, 1992) for

the nonparametric mixture of a Poisson, namely

(∫ ∞

0
λe−λdλ

)2

≤
∫ ∞

0
e−λdλ

∫ ∞

0
λ2e−λdλ
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where the inequality of Cauchy-Schwartz
(∫

uv
)2 ≤

(∫
u2

) (∫
v2

)
is used with u(λ) =

√
e−λ and v(λ) = λ

√
e−λ and leading to p2

1 ≤ p0 × 2p2, so that
f2
1

2f2
estimates a lower

bound for f0. Chao suggested to use this bound as an estimator if higher frequency

counts are small.

3 Working with CAMCR

Existing statistical packages such as STATA, S-plus, MINITAB, or others do not in-

clude mixture modelling of zero-truncated Poisson densities as an option so that it

seemed appropriate to develop a separate piece of software. It was decided to use the

Microsoft Fortran Power Station to develop the software tool CAMCR (Computer Assisted

Mixture Model Analysis for Capture-Recapture Count Data). Very fast and efficient

computation of estimation problems requiring complex algirithmic solutiions is an ad-

vantage of FORTRAN (in comparison of developing a macro in one of the standard

packages). Nevertheless, limited possibilities are also available to create a user friendly

interface. A detailed description of CAMCR can be found on the web site:

http://www.personal.reading.ac.uk/∼sns05dab/Software.html
CAMCR provides three model selection criteria for modeling the count distribution; a)

NPMLE (Nonparametric Maximum Likelihood Estimator) b) BIC (Bayesian Informa-

tion Criterion) c) specific maximum number of mixed components. The NPMLE can

be verified by the gradient function criterion, see section 2.1 or Böhning (2000). If

the gradient function is bounded above by 1 over the full parameter space, then the

unique maximum of the log–likelihood function is obtained. The BIC criterion goes

back to Schwartz (1978) and penalizes the log–likelihood with a term representing

model complexity.

3.1 Analysis and results for the introductory drug user population in Bangkok

Table 2 shows the result of estimating the population size for the Bangkok heroin

user’s data (see also Böhning et al., 2004). The top of the table shows the results for

the analysis according to the nonparametric maximum likelihood estimation. The first

column gives the number of mixture components k. The first row contains the results

in the homogeneity case up to the fourth row with the results for the four-component

mixture model. The second and third column gives the λ and weight values of these

models. The fourth and fifth column show the values for the log-likelihood function and

the BIC, respectively. For the objective of the analysis the sixth and seventh column are

most interesting. They give the estimates for the hidden and for the total population

size. The last column gives the value of the maximum of the gradient function. For the

Bangkok heroin users data the NPMLE is given by four components with a population

size of 18367. In this case the BIC criterion chooses as well four components. In the lower

part of the table the Zelterman estimate and the Chao estimate are provided. Chao’s

estimate and the first two Zelterman-estimate as well as the two-component mixture

model are close togehter. Limited simulation studies have provided some evidence that

the higher Zelterman estimates are providing estimates that experience considerable

bias and might be better avoided. In addition, often the mixture model likelihood

(and the associated BIC value) are close for close component models (like in the case
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Table 2 Results from the Bangkok heroin users capture-recapture study Böhning et al. (2004)

k λ̂j q̂j Log-L BIC f̂0 N̂ maxλ d(λ, Q̂)

1 2.7507 1.0 -15462.4 30927.8 482 7544 >10000

2
0.8840
5.3955

0.6341
0.3659

-13214.0 26436.9 3164 10226 29.1

3
0.4001
2.9459
6.7876

0.4345
0.3882
0.1772

-13134.3 26283.3 6391 13453 3.9217

4

0.1894
2.0818
5.8254
12.157

0.3214
0.4114
0.2598
0.0073

-13120.4 26261.3 11305 18367 1.00

Zelterman
λ̂1=

2f2
f1

λ̂2=
2f2+3f3

f1+f2
λ̂3=

2f2+3f3+4f4
f1+f2+f3

λ̂4=
2f2+3f3+4f4+5f5

f1+f2+f3+f4

f̂0 5734 3250 2132 1628

N̂ 12796 10312 9194 8690

Chao f0 = f1×f1
2f2

f̂0 3681

N̂ 10743

of the 3 and 4 component model here). However, the estimated population sizes differ

considerably and experience instability. Hence, also caution must accompany the choice

of the mixture model here.

We now look at some other data sets.

3.2 Spinner dolphin data

Oremus (2005) tried to estimate the size of a small community of spinner dolphins which

are resident around the island of Moorea (near Tahiti). In 2002, using an interval of 8

months, skin samples were randomly taken and 12 microsatellite loci were genotyped

which makes miss-matching of dolphins very unlikely. f1 = 42 dolphins were sampled

only once, f2 = 7 dolphins were sampled exactly twice and f3 = 2 dolphins were

sampled exactly three times. This leads to n = 51 different dolphins that were observed

in the experiment.

Table 3 shows the results of all population estimators with CAMCR. The nonparamet-

ric likelihood estimator is provided for two components leading to a clearly spurious

estimate of 111,729. This example shows that the results based on the nonparametric

mixture maximum likelihood estimator should be considered with great caution. Evi-

dently, the one-component model is the right choice leading to an estimate of 153 for

the population size. The alternative estimators of Chao with 177 and Zelterman 180

are close and provide a consistent picture.
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Table 3 Analysis of the spinner dolphin data Oremus (2005)

k λ̂j q̂j Log-L BIC f̂0 N̂ maxλ d(λ, Q̂)

1 0.4042 1.0 -29.1 59.2 102 153 1.0149

2
0.6037
0.0002

0.6495
0.3505

-28.9 61.1 111678 111729 1.00

Zelterman
λ̂1=

2f2
f1

λ̂2=
2f2+3f3

f1+f2
λ̂3=

2f2+3f3+4f4
f1+f2+f3

λ̂4=
2f2+3f3+4f4+5f5

f1+f2+f3+f4

f̂0 129 101 106 106

N̂ 180 152 157 157

Chao f0 = f1×f1
2f2

f̂0 126

N̂ 177

Table 4 Analysis of illegal immigrants in the Netherlands

k λ̂j q̂j Log-L BIC f̂0 N̂ maxλ d(λ, Q̂)

1 0.3086 1.0 -902.0 1805.7 5200 7080 28.25

2
0.1308
1.2244

0.8570
0.1430

-872.2 1749.8 11638 13518 1.00

Zelterman
λ̂1=

2f2
f1

λ̂2=
2f2+3f3

f1+f2
λ̂3=

2f2+3f3+4f4
f1+f2+f3

λ̂4=
2f2+3f3+4f4+5f5

f1+f2+f3+f4

f̂0 7545 6306 5732 5716

N̂ 9425 8186 7612 7596

Chao f0 = f1×f1
2f2

f̂0 7394

N̂ 9274

3.3 The illegal immigrant’s study

In the next example the number of illegal immigrants in four cities in the Netherlands

is estimated from police records. The data have been analyzed previously by means of

the truncated Poisson regression model by van der Heijden et al. (2003). The analysis

focus on those illegal immigrants that, once apprehended, cannot be effectively expelled

by the police, for example because their home country does not cooperate in receiving

them back. In this case the police requested them to leave the country, but it is unlikely

that will abide by this request. Hence they can be apprehended multiple times. The

observed frequencies are f1 = 1645, f2 = 183, f3 = 37, f4 = 13, f5 = 1, f6 = 1.

Table 4 shows the results with CAMCR. By the illegal immigrants data the NPMLE

and the BIC is given by two components with a population size of 13518. This estimate

is considerably larger than those by Zelterman with 9425 and by Chao with 9274

indicating again that nonparametric mixture models need to be used with great caution

in population size estimation.
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4 Discussion and Conclusion

Discrete mixture models offer a wide and flexible modelling framework to cope with

heterogeneity in the parameters representing capture-recapture probabilities. They are

potentially the most suitable models for fitting recapture counts – as has been demon-

strated by many authors (Norris and Pollock, 1996, 1998; Mao and Lindsay, 2002,

2003; Bunge and Fitzpatrick, 1993; Chao, 1987, 1989). However, the computation of

the NPMLE for a discrete mixture model is not straightforward. Hence it seems helpful

to have software that can reliably (or more reliably than other software products) com-

pute the maximum likelihood estimator. In fact, CAMCR computes all mixture models

from one component to the largest number of possible components delivered by the

NPMLE. To ease choice of model the associated BIC–value is provided as well. The

BIC–criterion turned out to be the better choice in comparison with the AIC-criterion

when dealing with mixtures (see McLachlan and Peel, 2000). It is crucial to do model

selection since – as has been demonstrated in the examples – relatively small changes

in the likelihood can be accompanied by large changes in the population size estimates.

If there is doubt which one of two competing models to choose, it seems wise to choose

the one with fewer parameters. In any case, mixture model estimates should be seen

in the context to other estimators. For this reason, CAMCR provides also the estimators

of Chao and Zelterman which are simple to compute. Mixture model based estima-

tors should always be contemplated together with these simple estimators since Chao’s

estimator give a lower bound for the population size whereas Zelterman’s estimator

frequently provides an upper bound (both statements are correct up to random error).

More trust can be attached to situations where all estimators provide similar results

whereas doubt might remain for situations with vary different resulting estimators.
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