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Abstract

Human Ficolin-2 (L-ficolins) encoded by FCN2 gene is a soluble serum protein that plays an important role in innate
immunity and is mainly expressed in the liver. Ficolin-2 serum levels and FCN2 single nucleotide polymorphisms were
associated to several infectious diseases. We initially screened the complete FCN2 gene in 48 healthy individuals of
Vietnamese ethnicity. We genotyped a Vietnamese cohort comprising of 423 clinically classified hepatitis B virus patients
and 303 controls for functional single nucleotide polymorphisms in the promoter region (-986G.A, -602G.A, -4A.G) and
in exon 8 (+6424G.T) by real-time PCR and investigated the contribution of FCN2 genotypes and haplotypes to serum
Ficolin-2 levels, viral load and liver enzyme levels. Haplotypes differed significantly between patients and controls (P = 0.002)
and the haplotype AGGG was found frequently in controls in comparison to patients with hepatitis B virus and
hepatocellular carcinoma (P = 0.0002 and P,0.0001) conferring a protective effect. Ficolin-2 levels differed significantly
between patients and controls (p,0.0001). Patients with acute hepatitis B had higher serum Ficolin-2 levels compared to
other patient groups and controls.The viral load was observed to be significantly distributed among the haplotypes
(P = 0.04) and the AAAG haplotype contributed to higher Ficolin-2 levels and to viral load. Four novel single nucleotide
polymorphisms in introns (-941G.T, -310G.A, +2363G.A, +4882G.A) and one synonymous mutation in exon 8
(+6485G.T) was observed. Strong linkage was found between the variant -986G.A and -4A.G. The very first study on
Vietnamese cohort associates both Ficolin-2 serum levels and FCN2 haplotypes to hepatitis B virus infection and subsequent
disease progression.
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Introduction

Hepatitis caused by hepatitis B virus (HBV) is one of the most

serious global health problems. HBV infects more than 350

million people worldwide and remains the major cause for acute

and chronic hepatitis, liver cirrhosis and for hepatocellular

carcinoma (HCC). HBV related deaths constitute approx a million

people worldwide [1]. In Vietnam where HBV is epidemic,

individuals with chronic HBV infection were estimated around 8.4

million cases with 23,300 registered deaths in 2005 [2]. Studies

have well documented that genetic and other environmental

factors influences the HBV predisposition.

Genetic susceptibility to hepatitis has been investigated in

IFNA2b, IFNAR1, HLA loci and in many interleukin related genes

[3–6]. Our previous study reported the functional role of

Mannose-binding lectin (MBL) gene polymorphisms to HBV

disease outcome [7]. Similar to MBL, ficolins are pattern-

recognition proteins involved in innate immunity that binds to

specific pathogen-associated molecular patterns on the microbial

surface and trigger the immune response either by binding to

collectin receptors or by initiating the complement lectin pathway.

Three ficolins were identified in humans: ficolin-1 (M-Ficolin),

ficolin-2 (L-Ficolin) and ficolin-3 (H-Ficolin) and are encoded by

the ficolin genes FCN1, FCN2 and FCN3 respectively [8]. The

three different proteins have divergent function and are being

expressed in different cells and tissues. FCN2 gene, located on

chromosome 9q34 consists of eight exons and is expressed

primarily in liver cells [9]. Single nucleotide polymorphisms

(SNPs) in the FCN2 gene had been studied in different populations

and was demonstrated that SNPs at positions -986G.A,

-602G.A and -4A.G in the promoter region and at

+6424G.T in exon 8 were significantly associated with varying

serum Ficolin-2 levels and contribute towards susceptibility on

many clinical infectious diseases [10–12].

Low Ficolin-2 serum levels and FCN2 gene polymorphisms were

associated to several infectious diseases such as respiratory

infections in children and invasive pneumococcal disease in adults

[13–15]. We had earlier investigated the possible associations

between FCN2 genotypes and haplotypes to Ficolin-2 levels in

rheumatic fever, rheumatic heart disease, leprosy and in malaria

[16–18]. Ficolin-2 is mainly expressed in the liver where hepatitis

B viruses invade, replicate and finally damage liver cells. The
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functional role of Ficolin-2 in HBV-infections yet remains unclear

and is presumed that Ficolin-2 may possibly play role in clearance

of viral particles thereby protecting the liver cells from HBV

infection. A recent study has reported the functional role of L-

ficolins in recognition and binding of HCV envelope glycoprotein

and demonstrated serum Ficolin-2 levels were associated to HCV

outcome [19]. However, to the best of our knowledge, no studies

had investigated the contribution of Ficolin-2 serum levels and

FCN2 gene polymorphisms in HBV outcome. In this study, we aim

to demonstrate the functional role of Ficolin-2 during hepatitis and

investigate any possible contribution of FCN2 gene polymorphisms

towards clinical progression of the HBV infection.

Materials and Methods

Ethics statement
The study was approved by the institutional review board of the

Tran Hung Dao Hospital, Hanoi. Informed written consent was

given by all participants.

Patients and controls
Four hundred and twenty three (n = 423) Vietnamese HBV-

infected patients were enrolled for this study. We classified the

HBV patients into five different groups based on clinical,

biochemical and serological diagnosis. The clinically classified

groups were acute hepatitis B (AHB; n = 50), chronic hepatitis B

(CHB; n = 75), liver cirrhosis (LC; n = 120), hepatocellular

carcinoma (HCC; n = 123) and asymptomatic HBV carriers

(ASYM; n = 55). All patients were confirmed positive for HBsAg,

negative for antibody against hepatitis C virus (anti-HCV) and

negative for human immunodeficiency virus (anti-HIV). Patients

were clinically classified based on their prodromal symptoms, liver

biochemical tests, serology for HBV and by diagnostic tests for

HCC and LC as described from our previous studies [7,20]. The

patients representing asymptomatic HBV carrier group were

healthy during sampling procedure, with normal liver enzyme

levels and no serologic evidence for any co-infection with hepatitis

C or with HIV. Neither of these individuals had a history of

alcohol or drug use nor received any antiviral or immunosup-

pressive therapy before or during the course of this study. The

characteristics such as age, gender, and clinical data such as liver

biochemical tests, viral load for all 423 patients and 303 control

individuals are summarized in Table 1. All patients were enrolled

from 2000 to 2002 at Tran Hung Dao hospital, Bach Mai hospital,

103 Military Hospital, Hanoi, Vietnam. As for control group, we

recruited 303 Vietnamese blood donors. All control individuals

were confirmed negative for HBsAg, anti-HCV and anti-HIV by

routine serological procedures. The serum was separated from the

blood and subsequently aliquots were transferred to a fresh

polypropylene tube and were stored at 270uC until use.

DNA extraction
Genomic DNA was isolated from peripheral whole blood

samples obtained from patients and control individuals using the

commercially available QIAamp Blood mini kit (Qiagen GmbH,

Hilden, Germany) following the manufacturer’s instructions.

FCN2 genotyping
The promoter and coding regions of the FCN2 gene (exon 1

to exon 8) were sequenced in 48 control individuals. PCR

amplifications were carried out in 25 ml volume of reaction

mixture containing 1X PCR buffer (20 mM Tris pH 8.8, 10 mM

KCl, 1.5 mM MgCl2 and 0.1% Triton X-100), 0.2 mM dNTPs,

1 mM MgCl2, 0.15 mM of each primer, 1 unit of Taq polymerase

(Qiagen) and 50 ng of genomic DNA. The cycling conditions were

performed as following: denaturation at 95uC for 5 minutes

followed by 40 cycles of 94uC for 30 sec denaturation, temperature

specific annealing for 30 sec (56uC for promoter and exon1,

exon4+6, exon7+8; 64uC for exon2+3), followed by an extension

at 72uC for 45 sec and a final extension of 72uC for 5 minutes. All

the PCR products were purified by using PCR DNA Purification

Kit (GE Healthcare Europe GmbH) and 1 ml of the purified

product were directly used as templates for sequencing, using the

BigDye terminator v. 2.0 cycle sequencing kit (Applied Biosystems,

USA) on an ABI 3100 DNA sequencer, according to the

manufacturer’s instructions. DNA polymorphisms were identified

when assembled with the reference sequence of FCN2 gene

obtained from NCBI database [http://www.ncbi.nlm.nih.gov/]

using the BioEdit http://www.mbio.ncsu.edu/BioEdit/bioedit.

html] and Vector NTI (Invitrogen) program and were reconfirmed

visually from their respective electropherograms. The primers used

for amplification and sequencing are listed in Table 2.

Table 1. Characteristics of Vietnamese HBV patients and control individuals.

Characteristics AHB (n = 50) ASYM (n = 55) CHB (n = 75) LC (n = 120) HCC (n = 123)
Healthy controls
(n = 303)

Age (years) 35 [17–70] 46 [21–57] 40 [19–78] 50.5 [17–78] 52 [15–77] 36 [19–48]

Gender (M/F) 39/11 46/9 56/19 98/22 98/25 215/88

ALT* (IU/l) 923 [115.5–4593] ,30 122 [11.8–2637] 48 [9–591] 43 [3–219] ,30

AST* (IU/l) 867 [182–4425] ,30 137 [17.2–1782] 74.5 [12–720] 56 [16–513] ,30

Total bilirubin* (mg/dl) 129.75 [15–558] ,17 38.05 [4.14–788] 28.3 [1.2–752] 14.1 [1.9–290] ,17

Direct bilirubin* (mg/dl) 109.8 [5.75–512] ND 16.9 [2.5–472] 15.75 [0.9–450] 6.7 [1–212] NA

Prothrombin* (% of standard) 88 [25–120] .90 68 [38–100] 47 [20–100] 70 [25–100] .90

HBV Viral load* (copies/ml) 13092[3502–
4.99x106]

23506 [1260–
3.78x106]

26719 [543–
4.04x106]

4620
[210–2.34x106]

12449
[410–3.14x106]

NA

Alpha-feto protein (AFP)*
(mg/L)

NA NA NA 9.29 [1.2–1050] 77.77 [1.26–3260] NA

AHB = acute hepatitis B; CHB = chronic hepatitis B; LC = liver cirrhosis; HCC = hepatocellular carcinoma;
AST and ALT = aspartate and alanine amino transferase; IU = international units; NA = Not available. Values given are medians.
*P,0.001 significantly different among patient groups.
doi:10.1371/journal.pone.0028113.t001
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For the patients and controls cohort, three SNPs including

-986G.A (rs3124952), -602G.A (rs3124953), and -4A.G

(rs17514136) in the promoter region and one SNP, +6424G.T

(rs7851696) in exon 8 were genotyped using real-time polymerase

chain reaction (RT- PCR) based on the allelic discrimination

principle and fluorescence resonance energy transfer (FRET). The

HybProbe including anchor and sensor probes were labeled with

either fluorescein or cyanine dye. The SNP specific sensor probes

were designed one nucleotide apart from the anchor probe to

facilitate the energy transfer between the two fluorescent dyes

(reporter and quencher) in proximity. In the melting phase,

gradual increase in temperature decreases the fluorescence

intensity as one of the probes melt off leaving the two fluorescent

dyes apart. The sensor probe with a clear match with target DNA

melts off at a higher temperature contrary to the mismatch that

melts off at a lower melting temperature. Therefore, the difference

in the melting temperature remains as a basis to differentiate the

genotypes. Primers and probes used in this study were summarized

in Table 2. In brief: an asymmetrical PCR was carried out as a two

step procedure in the Rotor Gene 3000 (Corbett, Sydney,

Australia). The PCR was performed in a 20 ml reaction volume

containing 50ng of genomic DNA, 1X of QuantiTect Multiplex

PCR NoRox Master Mix (Qiagen, Hilden, Germany), 0.2 mM of

the hybridization probes, 0.05 mM of the primer (either forward or

reverse) and 0.5 mM of (either reverse or forward). The thermal

cycling parameters for first step: an initial denaturation at 95uC for

15 min, followed by 40 cycles of denaturation at 94uC for 1 min

followed by annealing and extension at 60uC for 1 min.

Subsequently for the second step: denaturation at 95uC for

1 min, cooling to 40uC for 1 min, increasing the temperature up

to 90uC by rising each 1 degree and hold for 2 seconds with a final

cooling to 40uC for 60 sec. A negative and positive control was

included for all PCR. All genotypes were validated by their

melting temperature (Tm) of the probes using the Rotor-Gene

ver.6.1.81 Software (Corbett, Sydney, Australia).

Ficolin-2 ELISA
The Ficolin-2 serum levels were measured in sera from patient

groups (AHB, ASYM, CHB, HCC, and LC) and in controls.

Ficolin-2 serum levels were measured in the serum using the

human Ficolin-2 ELISA kit (Hycult Biotech, Uden, Netherlands)

following manufacturer’s instructions.

Statistical analysis
Data had been analysed by StatView (http://www.statview.

com) and the level of significance was set to P,0.05. One way

ANOVA and Kruskal-Wallis tests were employed to analyze the

association between serum Ficolin-2 levels and genotypes,

haplotype in different clinical groups. Chi-square and Fisher exact

tests were executed to determine the differences in allele

frequencies and genotype distributions in clinical sub groups.

Genotype or haplotype frequencies were determined by simple

Table 2. Primers and probes used for genotyping and sequencing.

Position/Fragment Primers/Probes Primer and probe sequences

-986G.A (rs3124952) Forward 59-GGGTCACAGTTTAAAATCCTTCTACT-39

Reverse 59-CGTATACCTAAAGCCCCCAGA-39

Anchor 59-CCTCCCACTACCACCACCGCACCC--FL

Sensor CY5-GCCACCTGCCGCCATCG--PH

-602G.A (rs3124953) Forward 59-CAAGGTCTCCCCTTCAGATG-39

Reverse 59-CATGAGCAGACTTGGGACT-39

Sensor 59-CCTCCTGTTCATGTGCCCC--FL

Anchor CY5-GTGCTCTACATACTGCCCCAGGAAACAG--PH

-4A.G (rs17514136) Forward 59-GGAAGCGGCTGTCACTC-39

Reverse 59-CCCTTACCTGGACAGGTGT-39

Sensor 59-AGCAAAGACCAGAAGAGATGGA--FL

Anchor CY5-CTGGACAGAGCTGTGGGGGTC--PH

+6424G.T(Ala258Ser) (rs7851696) Forward 59-TGCCTGTAACGATGCTCA-39

Reverse 59-TGTATCCTTTCCCCGACTT-39

Sensor 59-GAAACATCACAGCACAATTTCC--FL

Anchor CY5-GTGTTAAGATCATTGTCCTGGTCTTTGGT--PH

Promoter and Exon 1 Forward 59-ATT GAA GGA AAA TCC GAT GGG-39

Reverse 59-GAA GCC ACC AAT CAC GAA G-39

Exon 2+3 Forward 59-AGA TGG CAG ATG CCT TTC AG-39

Reverse 59-GTT CCT CTG CAG CCA GGT C-39

Exon 4+6 Forward 59-AGG CCC AGA AAA TGG TGT C-39

Reverse 59-AGG CTC TTG TGT TCC AGG C-39

Exon 5 Forward 59-ATA CAG ACG CCT ATG GCC C-39 (*)

Exon 7+8 Forward 59-CCA GCT CCC ATG TCT AAA GG-39

Reverse 59-TTA CAA ACC GTA GGG CCA AG-39

FL: Fluorescein; Cy5: Cyanine 5.18; PH: Phosphate group; (*): sequencing primers.
doi:10.1371/journal.pone.0028113.t002

Association of FCN2 and HBV Infection
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gene counting and by using the expectation-maximum (EM)

algorithm. The significance of deviations from Hardy-Weinberg

equilibrium was tested using the random-permutation procedure

as implemented in the Arlequin v. 3.5.1.2 software. (http://lgb.

unige.ch/arlequin). Linkage disequilibrium (LD) analysis was

performed using Haploview v. 3.2 program.

Results

Characterization of FCN2 gene variants
Initial characterization of 48 Vietnamese controls revealed four

novel single nucleotide polymorphisms (-941G.T, -310G.A in

the promoter, +2363G.A, +4882G.A in the introns) and one

synonymous mutation (+6485G.T in exon 8) was observed

Table 3. Linkage disequilibrium analysis revealed strong allelic

combinations at positions -986G.A and -4A.G, -557A.G and

-171C.T, -557A.G and -64A.C as well as in -171C.T and

-64A.C (Figure 1).

FCN2 gene polymorphisms and HBV infection
Both genotype and allele frequencies for all analysed SNP

variants (-986G.A, -602G.A, -4A.G, +6424G.T) in controls

and patients were in Hardy-Weinberg equilibrium. No significant

differences were observed either in genotype or in allelic

distributions between patients and controls or among patients

groups (P.0.05), (data not shown). Four common haplotypes -

986/-602/-4/+6424 GGAG, GGAT, AAAG and AGGG were

observed. The haplotypes and their respective frequencies in

controls and patients were summarized in Table 4. Haplotype

GGAG was observed in higher frequency followed by haplotypes

GGAT, AAAG and AGGG. A significant distribution among

haplotypes were observed between patients with HCC and

controls (x2 = 21.9; P,0.0001) and also in total HBV patients

and controls (x2 = 14.75, P = 0.002). The AGGG haplotype was

observed significantly more in controls than in patient groups

(AHB vs. Controls: OR: 0.2, 95%CI: 0.02–0.8, P = 0.02; HCC vs.

Controls: OR: 0.04, 95%CI: 0.001–0.25, P,0.0001 and Patients

vs. Controls: OR: 0.4, 95%CI: 0.28–0.7, P = 0.0002) Table 4.

Table 3. Distribution of FCN2 gene variants in Vietnamese individuals (n = 48).

Position Major allele Minor allele dbSNP Region
Amino acid
change

Minor allele
frequency

-986 G A rs3124952 Promoter 0.08

-941 G T ss341914071 Promoter 0.01

-902 C A rs3811143 Promoter 0.08

-602 G A rs3124953 Promoter 0.02

-557 A G rs3811140 Promoter 0.26

-310 G A ss341914072 Promoter 0.01

-171 C T rs3811139 Promoter 0.07

-64 A C rs28969369 Promoter 0.26

-4 A G rs17514136 Promoter 0.06

+1878 T C rs3124955 Intron 2 0.31

+2035 T C rs77862660 Intron 2 0.09

+2051 T C rs73565973 Intron 2 0.28

+2088 C T rs73565979 Intron 2 0.28

+2182 G A rs12344423 Intron 2 0.03

+2363 G A ss341914073 Intron 2 0.01

+2417 G A rs7024491 Intron 2 0.46

+2422 G A rs118122273 Intron 2 0.09

+2472 A G rs3128624 Intron 2 0.39

+2488 T C rs4520243 Exon 3 Arg74Arg 0.39

+2545 G A rs7037264 Intron 3 0.51

+4052 A T rs12685659 Intron 4 0.26

+4837 G A rs12684512 Intron 5 0.25

+4852 C T rs117241205 Intron 5 0.06

+4882 G A ss341914074 Intron 5 0.01

+5060 C T rs34789496 Exon 6 His181His 0.08

+6031 A G rs11103563 Intron 7 0.26

+6220 T G rs7872508 Intron 7 0.26

+6359 C T rs17549193 Exon 8 Thr236Met 0.07

+6424 G T rs7851696 Exon 8 Ala258Ser 0.26

+6485 G A ss341914075 Exon 8 Arg278Leu 0.01

doi:10.1371/journal.pone.0028113.t003
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PLoS ONE | www.plosone.org 4 November 2011 | Volume 6 | Issue 11 | e28113



Ficolin-2 serum levels and HBV infection
Ficolin-2 level from 213 controls varied from 0.2 to 7.0 mg/ml

with a median concentration of 3.6 mg/ml. Across patients,

Ficolin-2 serum levels were found with a median 5.44 mg/ml in

AHB, 3.8 mg/ml in ASYM, 3.3 mg/ml in CHB, 3.2 mg/ml in

HCC and 3.7 mg/ml in LC patients. Ficolin-2 serum levels differ

significantly among the patient groups (P,0.0001) (Figure 2A).

Ficolin-2 serum levels in AHB group were found significantly

higher than others and those in LC were found significantly lower.

When acute (AHB) and chronic stages (ASYM+CHB+HCC+LC)

were compared, we found that the median Ficolin-2 serum levels

were significantly higher in the acute stage than those in chronic

group (P,0.0001) Figure 2B. In contrast, the Ficolin-2 serum

levels in cancer group (HCC) and no cancer group (AHB+A-

SYMP+CHB+LC) were not statistically significant (P = 0.509)

Figure 2C.

FCN2 haplotypes and serum Ficolin-2 levels
The Ficolin-2 level were significantly distributed among the

three genotypes (986G.A, -602G.A, +6424 G.T) Figure 3. The

minor alleles in the promoter region (-986A, -602A, -4G)

contributed to an increased Ficolin-2 serum levels in contrast to

the minor allele in the coding region (+6424G.T) Figure 3. The

Ficolin-2 level were significantly distributed among different

haplotypes in patients (P = 0.008) and in controls (P,0.0001).

The AAAG haplotype had the highest Ficolin-2 levels whereas

GGAT revealed lower Ficolin-2 levels Figure 4.

FCN2 gene polymorphisms and HBV clinical attributes
The viral load (copies/ml) were observed to be significantly

distributed among -602G.A genotypes, P = 0.04 (data not shown)

and -602GA genotype was observed to have higher viral load in

comparison to -602GG genotypes (P = 0.03). At the very instance,

the viral load were observed to be significantly distributed among

the four major haplotypes AAAG, AGGG, GGAG and GGAT,

P = 0.04 Figure 5. Of which AAAG haplotype was observed to

have higher viral load in comparison to other haplotypes GGAG

and GGAT (P = 0.03 and P = 0.008 respectively). The level of liver

enzymes such as alanine transaminase (ALT), aspartate transam-

inase (AST), total bilirubin (TBIL) and direct bilirubin were not

significantly associated either to FCN2 genotypes or haplotypes.

Discussion

In this study, we evaluated the contribution of FCN2 gene

polymorphisms and the Ficolin-2 serum levels in Vietnamese HBV

patients. Although several studies described associations in host

genes and susceptibility to the HBV infection, none had looked in

explicit on the contribution of FCN2 gene polymorphisms. Most of

the studies had focused mainly on immune system genes such as

interleukins and its receptors, major histocompatibility complex

(MHC) loci and human leukocyte antigen (HLA) loci to HBV

infection [3,21]. Our previous study on contribution of mannose-

binding lectin (MBL) gene has demonstrated the possible

association of the MBL gene variant to the HBV clinical outcome

[7]. Logically, Ficolin-2, a protein similar to MBL in immunolog-

ical functions, should possibly play a similar role to protect against

HBV infection. When examining the contributions of genotype

and allele frequencies to HBV infection, we could not find any

significant difference between the patient groups and controls.

Analysis at haplotype level had been shown to offer more power

and further insights on multifactorial disease studies [22].

Haplotypes reconstructed based on four SNP variants

Figure 1. Haploview plot illustrating the linkage disequilibrium of the FCN2 promoter region in Vietnamese individuals. At the top,
the SNPs are shown according to their succession from the start of the translation of the FCN2 gene. Open squares indicate a high degree of LD (LD
coefficient D’ = 1) between pairs of markers. Numbers indicate the D’ value expressed as a percentile. Red squares indicate pairs in strong LD with
LOD scores LD $3; pink squares, D’ = 1 with LOD #2; white squares, D’,1 with LOD #1.
doi:10.1371/journal.pone.0028113.g001
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(-986G.A, -602G.A, -4A.G and +6424G.T) suggested to

contribute to HBV infection (x2 = 14.75, P = 0.002) and a

decreased risk of HCC (x2 = 21.9, P,0.0001). The AGGG

haplotype was found in low frequency in all HBV-infected

subjects and especially in the AHB and HCC sub groups,

compared to controls. These results suggest that haplotype AGGG

contributes to protection against HBV infection and HCC.

Nevertheless, this particular AGGG haplotypes were observed in

lower frequencies in the Vietnamese population. The AAAG

haplotype that was observed to be associated with higher serum

Ficolin-2 levels were in lower frequency both in clinically classified

patients as well as in controls Table 4. Studies have shown that

polymorphisms in FCN2 reveal different geographical patterns

including Denmark, Mozambique, Ghana, Japan and Argentina

[11]. The frequency of the SNP variant -986G.A significantly

differ in various study groups. The variants -602G.A and -4A.G

were observed in lower frequencies in African and Japanese

populations respectively. In Vietnamese population, the minor

allele variants -986G.A, -602G.A and -4A.G were found in

frequencies 0.08, 0.02 and 0.06 respectively. Allele frequencies at

positions -986G.A and -4A.G were lower than those of

Caucasian and African populations. Low allele frequencies in

these positions may contribute to the decreased Ficolin-2 levels in

Vietnamese population (3.6 mg/ml) in comparison to Danish

Caucasians (3 mg/ml) and Gabonese (11.4 mg/ml) population

[11,12,16]. In addition, several new SNP variants in the promoter

region such as -941G.T, -310G.A and new SNP variants

+2363G.A, +4882G.A, +6485G.T in exon and intron regions

were discovered in Vietnamese population. However the func-

tional contribution of these novel variants is yet to be established.

Earlier studies have established that three promoter SNP

variants (-986A, -602A and -4G) were associated to increased

ficolin levels and the SNP variant in exon 8 (+6424T) to decreased

Ficolin-2 serum levels. Our results reconfirmed that these SNP

variants in the promoter region and in exon 8 contributed to

varying serum Ficolin-2 levels, which were well in accordance with

Table 4. Distribution of FCN2 haplotypes (-986/-602/-4/+6424) in hepatitis B patients and controls.

Haplotype
-986/-602/-4/+6424 Cases (%) Controls (%) OR (95%CI) x2 P

AHB (n = 92) Controls (n = 606) NS

GGAG 64 (69.6) 411 (67.8) NA NS

GGAT 24 (26.1) 122 (20.1) NA NS

AAAG 2 (2.2) 15 (2.5) NA NS

AGGG 2 (2.2) 58 (9.6) 0.2 (0.02–0.8) 5.56 0.02

ASYM (n = 108) Controls (n = 606) NS

GGAG 74 (68.5) 411 (67.8) NA NS

GGAT 19 (17.6) 122 (20.1) NA NS

AAAG 6 (5.7) 15 (2.5) NA NS

AGGG 9 (8.3) 58 (9.6) NA NS

CHB (n = 133) Controls (n = 606) NS

GGAG 96 (72.2) 411 (67.8) NA NS

GGAT 22 (16.5) 122 (20.1) NA NS

AAAG 6 (4.5) 15 (2.5) NA NS

AGGG 9 (6.8) 58 (9.6) NA NS

HCC (n = 224) Controls (n = 606) 21.9 ,0.0001

GGAG 159 (71) 411 (67.8) NA NS

GGAT 56 (25) 122 (20.1) NA NS

AAAG 8 (3.6 15 (2.5) NA NS

AGGG 1 (0.4) 58 (9.6) 0.04 (0.001–0.25) ,0.0001

LC (n = 239) Controls (n = 606) NS

GGAG 168 (70.3) 411 (67.8) NA NS

GGAT 51 (21.3) 122 (20.1) NA NS

AAAG 5 (2.1) 15 (2.5) NA NS

AGGG 15 (6.3) 58 (9.6) NA NS

Patients (n = 796) Controls (n = 606) 14.75 0.002

GGAG 561 (70.5) 411 (67.8) NA NS

GGAT 172 (21.6) 122 (20.1) NA NS

AAAG 27 (3.4) 15 (2.5) NA NS

AGGG 36 (4.5) 58 (9.6) 0.4 (0.28–0.7) 14.02 0.0002

AHB: acute hepatitis B; ASYM: asymptomatic hepatitis B carriers; CHB: chronic hepatitis B; HCC: hepatocellular carcinoma; LC: liver cirrhosis. n = Number of
chromosomes; NA: not applicable; NS: not significant.
doi:10.1371/journal.pone.0028113.t004
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previous studies [10]. These results corroborate with previous

studies that described FCN2 genotypes association with varying

Ficolin-2 serum levels in a gene-dependent manner [10,12].

Serum Ficolin-2 serum levels has been shown to vary between 1 to

12 mg/ml in different populations [10,12,16,23,24]. Ficolin-2 can

recognize and bind to several specific carbohydrate structures such

as GlcNAc exposed on the surface of pathogens, activate the lectin

complement pathway through association with MASP [9]. More

importantly, one study has demonstrated that Ficolin-2 can

recognize DNA elements and participate in the clearance of dying

host cells [25]. Recent studies have described the binding of

Ficolin-2 to N-glycans on HCV envelope activate the lectin

complement pathway-mediated cytolytic activity in HCV-infected

hepatocytes [19]. Hypothetically, we can expect similar interaction

between Ficolin-2 and HBV antigens that can possibly trigger the

lectin mediated complement pathway. However, further studies

remains mandatory to confirm this interaction. Our results

demonstrated that Ficolin-2 serum levels were found in higher

patients with acute hepatitis B. During an acute stage, both innate

and adaptive immunity are activated leading to increased

production of cytokines and chemokines by cytotoxic T lympho-

cytes resulting in liver injury. Infected cells also can detect the

presence of viral components via specific molecules and produce

antiviral interferon as well as other pro-inflammatory cytokines

[26]. Liver is described as an immunological organ where 80 to

90% of complement components and secreted pattern-recognition

receptors of the innate immune system are synthesized [27,28].

The complement system plays a pivotal role in determining the

pathogenesis of liver diseases such as liver injury and repair, viral

hepatitis and liver cirrhosis [29]. It can hold true that complement

activators like MBL and Ficolin-2 also were increasingly produced

to activate complement system through the lectin pathway that

contribute to the clearance of virus infected cells. Moreover, HBV

is believed to be a stealth virus that does not modify gene

expression of the host liver during the early stage of infection and

does not elicit a strong innate immune response [30]. However,

our results demonstrate that Ficolin-2 serum levels remained

higher in acute phase than others stages, suggesting that Ficolin-2

may play a crucial role in direct HBV clearance or by removing

dying infected cells. Ficolin-2 serum levels were of the lowest

concentration in patients with liver cirrhosis. However, the reason

why ficolin-2 serum level in patients with liver cirrhosis is lower is

yet to be elucidated. Contrary to our results with Ficolin-2

measurements, one reported study inferred that serum Ficolin-2

levels in liver cirrhosis patients caused by hepatitis C virus (HCV)

were significantly higher than those in controls and other groups

including chronic inactive-HCV and active-HCV patients [25].

One possible reason for decreased Ficolin- 2 levels in patients with

liver cirrhosis is that during cirrhosis, the liver tissues are damaged

and the blood circulation in the organ may be blocked and

Figure 2. Ficolin-2 serum levels in HBV patients and controls. Box-plots illustrate medians with 25 and 75 percentiles with whiskers to 10 and
90 percentiles; P value was calculated by t-test. Panel (A): Ficolin-2 serum levels were segregated based on patient groups including acute hepatitis B
(AHB), asymptomatic HBV carriers (ASYM), chronic hepatitis B (CHB), hepatocellular carcinoma (HCC), liver cirrhosis (LC) and controls. Statistical
analysis was performed using contingency table analysis with one-way ANOVA and P-values were illustrated. Panel (B): Ficolin-2 serum levels in HBV-
infected patients with acute and chronic HBV (ASYM/CHB/HCC/LC). Panel (C): Ficolin-2 serum levels in HBV-infected patients with cancer (HCC) and
without cancer (AHB/ASYM/CHB/LC).
doi:10.1371/journal.pone.0028113.g002
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resulting in decreased Ficolin-2 production or a reduced secretion

in the peripheral blood. The contrary results in other studies for

Ficolin-2 serum level in liver cirrhosis patients may be due to the

different viral factors, the sample size or different utilized tests

employed in the study. Low serum mannose binding lectin (MBL)

has been described to associate with occurrence of cirrhosis as well

Figure 3. Association of Ficolin-2 serum levels and FCN2 genotypes. Box-plots illustrate medians with 25 and 75 percentiles with whiskers to
10 and 90 percentiles; Ficolin-2 serum levels were measured and segregated based on FCN2 SNP variants (-986G.A, -602G.A, -4A.G and
+6424G.T). P value was calculated by ANOVA, and figures in parenthesis represent the number of samples.
doi:10.1371/journal.pone.0028113.g003

Figure 4. Association of Ficolin-2 serum levels and FCN2 haplotypes. Box-plots illustrate medians with 25 and 75 percentiles with whiskers to
10 and 90 percentiles; Ficolin-2 serum level was segregated based on FCN2 haplotypes (-986G.A, -602G.A, -4A.G and +6424G.T). Panel (A): in
patients and Panel (B): in controls. The number in parenthesis indicates number of observed haplotypes. P values were calculated by ANOVA.
doi:10.1371/journal.pone.0028113.g004
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as HCC and MBL could bind to hepatitis B surface antigen

(HBsAg) in a dose-dependent manner and genotypes of MBL

influence recovery of HBV infection [31,32]. When examining the

correlation of viral load and Ficolin-2 serum levels, we observed

that Ficolin-2 serum levels were negatively correlated to HBV-

DNA viral load only in AHB group. However this correlation was

weak and remained statistically insignificant (Pearson’s r = -0.266,

P = 0.21) (data not shown). The plausible explanation for a non-

significant trend could be due to low sample size (n = 24). When

examining the correlation of viral load and Ficolin-2 haplotypes,

we observed that ficolin-2 serum levels were significantly higher in

AAAG haplotypes in comparison to other haplotypes. Further

studies about biological functions of Ficolin-2 in hepatitis B

infection need to be carried out to elucidate the associations of

Ficolin-2 and HBV infection. Overall, our data suggests that

Ficolin-2 not only play an important role in the pathogenesis of

HBV infection but also a functional role in other liver diseases

caused by HBV.

This current study provides the first insights on contribution of

the FCN2 gene polymorphisms and the Ficolin-2 serum levels to

HBV outcome in a Vietnamese cohort. The reconstructed AGGG

haplotype (-986G.A, -602G.A, -4A.G and +6424G.T) were

observed to confer protection against HBV infection. The AAAG

haplotypes was observed with higher Ficolin-2 levels and viral

load. The significant distribution of variable Ficolin-2 serum levels

observed across HBV patient groups imply that Ficolin-2 may play

an important role in innate immunity against HBV infection and

of disease prognosis. However, further studies are required to

elucidate and reconfirm these interactions between HBV and

Ficolin-2 proteins in the disease outcome.
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