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Abstract
Syndromic surveillance systems are used to monitor public health and enable a timely outbreak
detection. Emergency department (ED) data can serve as an important data source for
syndromic surveillance, but a high amount of missing diagnosis codes can make analyses
relying on this information impossible. This study aims at enhancing an ED dataset from a
piloted syndromic surveillance system in Germany to enable the monitoring of an influenza-like
illness (ILI) syndrome.

Routinely collected data from one ED containing mixed-type variables are analysed and
two different approaches are implemented to deal with the missing data. Within the first
approach, the missing diagnosis codes are imputed by predicting them from the remaining
variables, using a multi-class naive Bayes classifier and a deep learning imputation package. In
the second approach, a logistic regression model and a binary naive Bayes classifier are used to
predict the ILI syndrome from all variables except the diagnosis code. The resulting ILI cases
are evaluated on time series level with regard to seasonal patterns.

The diagnosis codes were predicted from mixed-type input variables with sufficient precision
(34.37% F1-measure in the best model). By taking into account the hierarchical structure of
the ICD-10 codes, the performance was improved. Predicting the ILI syndrome independent
of the diagnosis code from the remaining variables worked well (39.63% F1-measure in the
best model) and the predictions showed medical similarity with the ILI syndrome. The models
differed in their sensitivity of including cases, which can be adjusted by changing the threshold
of the classifiers. The resulting ILI cases from all models were positively correlated with the
reference cases on a time series basis (r = 0.865 for best model) and were comparable with an
external data source, a surveillance of severe acute respiratory infections (SARI) (r = 0.867
for best model).

The present study showed that the ED dataset can be enhanced to enable the syndromic
surveillance of an ILI syndrome based on the diagnosis codes, even if this variable is missing.
Additionally, a flexible case definition for an ILI syndrome was developed that is independent
of the diagnosis code and the underlying generic method can be applied to other syndromes
as well.
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Zusammenfassung
Syndromische Surveillance Systeme werden verwendet, um die öffentliche Gesundheit zu über-
wachen und ermöglichen eine frühzeitige Ausbruchserkennung. Notaufnahmedaten können ei-
ne wichtige Datenquelle für syndromische Surveillance bieten, jedoch kann eine hohe Zahl an
fehlenden Diagnosecodes Analysen unmöglich machen, die auf diese Information angewiesen
sind. Diese Studie zielt darauf ab, einen Notaufnahme-Datensatz aus einem pilotierten syn-
dromischen Surveillance System für Deutschland zu verbessern, um die Überwachung eines
Influenza-like Illness (ILI) Syndroms zu ermöglichen.

Routinemäßig gesammelte Daten aus einer Notaufnahme, die Variablen unterschiedlichen
Datentyps enthalten, werden analysiert und zwei verschiedene Ansätze zum Umgang mit den
fehlenden Daten implementiert. In dem ersten Ansatz werden die fehlenden Diagnosecodes
imputiert, indem sie aus den übrigen Variablen vorhergesagt werden. Dafür wird ein Multi-
class naive Bayes Modell und ein Deep Learning Imputations Package verwendet. In dem
zweiten Ansatz werden ein logistisches Regressionsmodell und ein binäres naive Bayes Modell
verwendet, um das ILI Syndrom aus allen Variablen außer dem Diagnosecode vorherzusagen.
Die resultierenden ILI Fälle werden auf Zeitreihenebene in Bezug auf saisonale Muster evaluiert.

Die Diagnosecodes konnten aus den verschiedenen Variablen mit ausreichender Präzision
vorhergesagt werden (34.37% F1-Wert im besten Modell). Durch Berücksichtigung der hier-
archischen Struktur der ICD-10 Codes konnte das Ergebnis verbessert werden. Die Vorhersage
des ILI Syndroms unabhängig von dem Diagnosecode aus den restlichen Variablen funktionierte
gut (39.63% F1-Wert im besten Modell) und die vorhergesagten Fälle wiesen eine medizinische
Ähnlichkeit zu dem ILI Syndrom auf. Die Modelle unterschieden sich in ihrer Sensitivität, mit
der ILI Fälle eingeschlossen werden. Diese kann angepasst werden, indem der Schwellenwert
der Klassifikationsmodelle geändert wird. Die resultierenden ILI Fälle aller Modelle waren posi-
tiv mit den Referenzfällen auf Zeitreihenebene korreliert (r = 0.865 für das beste Modell) und
ähnelten einer externen Datenquelle, einer Surveillance von schweren akuten respiratorischen
Infektionen (SARI) (r = 0.867 für das beste Modell).

Mit dieser Studie wurde gezeigt, dass der Notaufnahme-Datensatz verbessert werden konn-
te, sodass eine syndromische Surveillance von einem ILI Syndrom auf Basis von Diagnosecodes
möglich ist, selbst wenn diese Variable fehlt. Zusätzlich wurde eine flexible Falldefinition für
ein ILI Syndrom entwickelt, die unabhängig von dem Diagnosecode ist und dessen zugrunde-
liegende generische Methode auch auf andere Syndrome angewendet werden kann.
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1 Introduction and motivation
Emergency department data enable a near real-time surveillance of possible public health
threats like natural disease outbreaks (Stoto et al., 2006; Henning, 2004). If they are available
in electronic form, they can help to detect potential events earlier than would be possible
with conventional surveillance systems. This is why emergency department data serve as an
important data source for syndromic surveillance.

A real-time syndromic surveillance system is being piloted for Germany right now. As
the main data source, emergency department (ED) data is routinely collected from several
hospitals all over Germany. This dataset suffers from missing values in some variables, most
importantly in the clinical diagnosis. The diagnosis, in turn, is a crucial basis for numerous
analyses (e. g. outbreak detection) and needs to be available at a very early time point to
enable the surveillance of diseases or other public health threats on hourly basis. Syndromes
that are monitored in syndromic surveillance are usually based on expert case definitions that
in turn are based on diagnosis codes.

Therefore, this work explores and evaluates two approaches of dealing with missing values
in the diagnosis variable. It will thereby enhance the emergency department dataset and enable
the surveillance of syndromes in a timely manner. An influenza-like illness syndrome will be
used as an example throughout the analysis. The first approach will explore two methods
to impute and predict missing diagnosis codes from the remaining mixed type variables in
the dataset. In the second approach, two classification models are trained to predict the
influenza-like illness syndrome without relying on the diagnosis variable.

In the introduction, the concepts of syndromic surveillance, influenza-like-illness and the
existing surveillance systems in Germany are briefly presented. This is followed by an overview
of related work on automatic coding systems that also try to predict diagnosis codes and on
automatically finding case definitions for syndromes. Following this, the precise goals of the
thesis are defined.

1.1 Syndromic surveillance
Syndromic surveillance (SyS) can be described as the systematic collection, analysis, and re-
porting of real-time health-related data in order to enable public health action (Triple S Project,
2011). Syndromic surveillance can make use of various data sources, including diagnostic as
well as pre-diagnostic information, such as preliminary diagnoses or symptoms (Katz, May,
Baker, & Test, 2011). It can serve different use cases, such as early warning and outbreak
detection of diseases, monitoring of health as well as communicable and non-communicable
diseases, or the evaluation of public health interventions. Syndromic surveillance systems have
been successfully implemented in several countries with different goals. In the United King-
dom the system uses information from emergency departments, general practitioners (GPs)
and a health service hotline to monitor seasonal respiratory infections (H. Hughes et al., 2016),
evaluate a vaccination program (Bawa et al., 2015), and monitor non-communicable diseases
in relation to extreme weather events like cold weather or heatwaves (Elliot et al., 2014;
H. Hughes et al., 2014).1 In Italy, a system using police reports together with health data
was used to assess the impact of road traffic injuries (Chini et al., 2009). Zheng, Aitken,
Muscatello, and Churches (2007) report the successful use of ED data to monitor influenza in
Australia. In France, a syndromic surveillance was established in 2004, which uses data from
emergency departments, general practitioners and mortality information to monitor the public

1For more details see ReSST (Real-time Syndromic Surveillance Team).

https://www.gov.uk/government/collections/syndromic-surveillance-systems-and-analyses
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Glossary3

Diagnosis
the identification of a disease or injury made by a doctor
can be coded according to the International Classification of Diseases (ICD) manual
e.g. J22 ("Acute lower respiratory infection")

Symptom
an indication of a disorder or disease
e.g. pain, cough, fever

Syndrome
a group of symptoms that collectively indicate or characterize a disease
e.g. Influenza

Case definition
the rule or pattern defining whether or not a patient has a syndrome
e.g. ICD-diagnosis code is one of J09 - J22

health on a national and regional level (Caserio-Schönemann, Bousquet, Fouillet, & Henry,
2014).2

At the Robert Koch Institute (RKI), a real-time syndromic surveillance system is currently
being piloted for Germany. Routinely collected emergency department data from several hos-
pitals all over Germany serve as the main data source. They are available retrospectively
from 2012 and the integration of new data on an hourly basis is currently implemented. The
information included in the data is demographics of the patient, hospital administrative and
health-related information (e.g. preliminary diagnoses, patient chief complaints, and vital pa-
rameters). With this new syndromic surveillance system being established in Germany, a further
system can be used to detect potential public health threats. It can complement conventional
established surveillance systems like lab-confirmed cases (as described in Section 1.2), and can
furthermore enable an even earlier detection of public health threats than possible with the
conventional systems.

To detect potential cases of certain diseases in SyS, one can either use diagnostic informa-
tion like diagnosis codes or predefined groups of symptoms (i. e. syndromes) that are probably
related to the manifestation of the diseases of interest. These variables differ in their availabil-
ity in an ED setting. Whereas symptoms are most of the time available at a very early stage,
diagnosis codes might be only available at the end of a stay or even missing completely. This
can be due to several reasons. Symptoms have to be reported within the initial admission and
triaging process, but diagnoses are mostly given at the end of a stay in the ED in order to
conclude the case. They can be missing completely, if for example a patient is revisiting the
ED for a change of dressing or consultation and is not getting assigned a new diagnosis. A
diagnosis might also be missing if a case is not concluded, or because it has been forgotten to
assign a clinical diagnosis.

Relying solely on the diagnosis code for detecting diseases or public health threats might
therefore be impractical, especially when a large amount of diagnosis codes are missing or
if the codes are not available at an early time point. Symptoms on the other hand can
be available at a very early time point and can be used to assign visits to syndromes. For

2Information in French: SurSaUD (Surveillance Sanitaire des Urgences et des Décès).
3American Heritage R© Dictionary of the English Language, Fifth Edition. (2011). Retrieved April 4 2020

from https://www.thefreedictionary.com/.

https://www.santepubliquefrance.fr/docs/le-systeme-francais-de-surveillance-sanitaire-des-urgences-et-des-deces-sursaud-R2
https://www.thefreedictionary.com/
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some surveillance objectives like infectious disease outbreaks, it has been shown that the
surveillance of syndromes makes the detection of these events possible at an earlier stage
(Stoto et al., 2006). Therefore, symptoms seem to be a suitable pre-diagnostic information
to detect potential cases of a certain disease or syndrome. This is why in the present work
symptoms are considered as the main informative source for predicting the health outcome
syndrome, additional to diagnosis codes.

As an example for a syndrome that has to be monitored this work uses seasonal influenza
(or more specific, an influenza-like illness syndrome). It was chosen because for this syndrome
established case definitions and multiple surveillance systems already exist, which might serve
as external sources of validation. The next section provides a brief overview of seasonal
influenza, its surveillance and influenza-like illness.

1.2 Influenza and influenza-like illness
Seasonal influenza is an acute respiratory infection caused by influenza viruses (World Health
Organization, 2018). Symptoms include the sudden onset of fever, cough, headache, muscle
and joint pain, feeling unwell, sore throat and a runny nose. It is transmitted via infectious
droplets and can cause severe illness or death for people at risk (World Health Organization,
2018). Seasonal epidemics occur mainly during the months January to March and can infect
a large part of the population, causing high mortality with up to 72000 deaths a year in the
European Region (WHO Regional Office for Europe, 2020).

A broader group of illnesses with the above mentioned symptoms are collectively called
influenza-like illness (ILI). Infections caused by other respiratory viruses can cause the same
symptoms and with influenza lacking specific symptoms, this can complicate the differentiation
of influenza from other pathogens. But for some surveillance tasks the broader definition of
ILI is used. The exact case definition of ILI varies across countries (Kalimeri et al., 2019;
Casalegno et al., 2017; Aguilera et al., 2003; Jiang et al., 2015). To make a definitive
diagnosis of influenza, a laboratory diagnostic test is required.

In Germany, the RKI, together with the Federal Ministry of Health and local health au-
thorities, is responsible for the public health surveillance. The Infection Protection Act (Infek-
tionsschutzgesetz (IfSG)) regulates the notification of specific infectious diseases, which have
to be reported to the health authorities by physicians and laboratories (Bundesamt für Justiz,
2000). These cases build the basis for a nationwide surveillance of infectious diseases, but
only represent the laboratory confirmed cases. Several additional surveillance systems are used
to complement this data basis and also capture less severe cases. They are more sensitive be-
cause they are not dependent on the confirmation by laboratories and therefore capture more
cases. The Working Group Influenza (Arbeitsgemeinschaft Influenza) uses data from general
practitioners for a nationwide surveillance of acute respiratory infections leading to a visit to
the doctor (Robert Koch-Institut, 2020a). And the weekly online survey GrippeWeb provides
a self-reporting tool for any voluntary participant to also include cases that are not necessarily
accompanied by consulting a doctor (Robert Koch-Institut, 2020b). Additionally, the sentinel
hospital surveillance ICOSARI uses information on hospitalised cases with influenza diagnoses
from about 80 hospitals all over Germany to assess the seriousness of acute respiratory infec-
tions. This system also captures more severe cases, but does not require the diagnosis to be
lab-confirmed (Buda, Tolksdorf, Schuler, Kuhlen, & Haas, 2017). At last, as a first electronic
surveillance system of acute respiratory illnesses (ARI), the SEEDARE system uses electronically
transmitted ARI cases by 70 sentinel practitioners (Köpke, Prahm, Buda, & Haas, 2016).

All of these systems lack in a certain timeliness. Some of them are paper-based and take 1-2
days up to two weeks for the data to be available at the RKI. The additional surveillance systems
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are limited to only one disease and each of the systems monitors a slightly different group
of diseases. The resulting case numbers are therefore not easily comparable. A syndromic
surveillance system as proposed earlier would tackle these shortcomings in two ways. First,
by providing information on real-time basis, a timely monitoring is possible. Second, with
the data not being selected solely for one purpose and therefore pre-selected to a specific use
case, any health indicator can be monitored. Researchers can define their own syndromes and
different data sources can be combined.

As mentioned earlier, different systems use different types of syndrome case definitions
due to different use cases. For instance, some case definitions are simple rule based decisions
that use ICD codes or symptoms to define whether a case has the monitored syndrome or not
(e.g. the discharge diagnosis has to be one of J09 - J22, as in the SARI-surveillance described
by Buda et al. (2017)). Others try to automatically define the syndrome, either supervised
(Olszewski, 2003; Espino et al., 2006) or unsupervised (Kalimeri et al., 2019), in which case
they are often based on symptoms.

To define case definitions for the ED data, we have to consider that the final clinical diag-
nosis is often only available at a later time point or is missing completely, whereas symptoms
are usually available right after admission (Krey, 2016). Thus, using rule based case definitions
(e.g. for ILI) that heavily depend on the existence of ICD codes will not work well on the
real-time data, because the cases with a missing diagnoses can not be categorised into the syn-
drome. To avoid losing significant information when creating case definitions, two approaches
are presented in this thesis: first, imputing the missing diagnosis from the other available
information and using the rule based definition to find ILI cases; and second, predicting an ILI
syndrome based on the remaining information using a classification model that does not rely
on the ICD code. Some work has been done in both of the fields which will be presented in
the next two sections.

1.3 Automatic prediction of clinical diagnoses
Clinical diagnoses can be classified according to the International Classification of Diseases
(ICD), published by the World Health Organization (2020). The current 10th version is avail-
able in a national German version and physicians and psychotherapists are obliged to code
their diagnoses according to this system by law (Bundesamt für Justiz, 1988). The cod-
ing system has a mono-hierarchical structure that divides the diseases into chapters, groups,
categories and subcategories. See Table 1.1 for an overview of all chapters. A code is alphanu-
merical and can have up to seven characters. The first character is a letter, indicating the
chapter. The second two characters are numeric, indicating the category (or block). This is
followed by a decimal point with the last digits giving more detailed information on the disease.

Example: J01.1
J: Diseases of the respiratory system (chapter/letter)
J00 - J06: Acute upper respiratory infections (group)
J01: Acute sinusitis (category/block)
J01.1: Acute frontal sinusitis (subcategory)

There is a large field of research on automatically predicting a clinical diagnosis code. The
task is usually to use unstructured textual data (e.g. patient notes, discharge summaries,
radiology reports) and some structured data (e.g. vital parameters, demographic information)
to predict a diagnosis code (Stanfill, Williams, Fenton, Jenders, & Hersh, 2010; Scheurwegs,
Cule, Luyckx, Luyten, & Daelemans, 2017). Because this can be seen as a (text) classifica-
tion problem, the underlying methods are usually classification methods like support vector
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Chapter Letter Block Title

I A, B A00–B99 Certain infectious and parasitic diseases
II C, D C00–D48 Neoplasms
III D D50–D89 Diseases of the blood and blood-forming organs

and certain disorders involving the immune mech-
anism

IV E E00–E90 Endocrine, nutritional and metabolic diseases
V F F00–F99 Mental and behavioural disorders
VI G G00–G99 Diseases of the nervous system
VII H H00–H59 Diseases of the eye and adnexa
VIII H H60–H95 Diseases of the ear and mastoid process
IX I I00–I99 Diseases of the circulatory system
X J J00–J99 Diseases of the respiratory system
XI K K00–K93 Diseases of the digestive system
XII L L00–L99 Diseases of the skin and subcutaneous tissue
XIII M M00–M99 Diseases of the musculoskeletal system and con-

nective tissue
XIV N N00–N99 Diseases of the genitourinary system
XV O O00–O99 Pregnancy, childbirth and the puerperium
XVI P P00–P96 Certain conditions originating in the perinatal pe-

riod
XVII Q Q00–Q99 Congenital malformations, deformations and chro-

mosomal abnormalities
XVIII R R00–R99 Symptoms, signs and abnormal clinical and labo-

ratory findings, not elsewhere classified
XIX S, T S00–T98 Injury, poisoning and certain other consequences

of external causes
XX V, W, X, Y V01–Y98 External causes of morbidity and mortality
XXI Z Z00–Z99 Factors influencing health status and contact with

health services
XXII U U00–U99 Codes for special purposes

Table 1.1: ICD-10 chapters. For each chapter, the number, the corresponding letter,
the block (code range) and the title from the international version of the ICD-10 is shown.
Adapted from World Health Organization (2020).
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machines (SVM) (Baumel, Nassour-Kassis, Cohen, Elhadad, & Elhadad, 2018; Perotte et
al., 2014), naive Bayes (Pakhomov, Buntrock, & Chute, 2006; Scheurwegs et al., 2017),
or random forest (Scheurwegs et al., 2017). The resulting systems can help medical staff
to assign codes by making suggestions in a computer-assisted coding way (Pakhomov et al.,
2006; Larkey & Croft, 1995), therefore automating a usually expensive and inefficient coding
process (Stanfill et al., 2010).

Some approaches try to incorporate the hierarchical structure of the classification system
into their models or evaluation metrics. Perotte et al. (2014), for example, use the tree-like
hierarchy of ICD-9 codes in the training of several SVM classifiers, with one classifier for each
code.4 In the training, only those cases are included where the parent node for this code
is positive. In testing, the classifiers are applied downwards from the root until one child is
predicted negative, resulting in a subtree of multi-label predictions for a given case (Perotte
et al., 2014). They also define alternative evaluation metrics that consider the hierarchical
nature of predictions and may give a better evaluation of this task. Taking into account the
hierarchical structure improved the performance from 27.6% to 39.5% in F-measure (Perotte
et al., 2014).

It can be seen that some approaches exist for predicting diagnosis codes from structured
and unstructured data to help making decisions for single cases. Taking into account the
hierarchical structure of the used diagnosis system can improve the performance (Perotte et
al., 2014). Most of the systems described here are designed to suggest potential diagnosis
codes for a specific single case, with a medical trained person having to make the final decision.
In this work, the initial data differ slightly from those used in the described studies, because
for example patient records are not available. Therefore, the focus is on imputing diagnoses to
have a better overall impression and not to make the best prediction for a single case. Once
the diagnoses codes are predicted, further analyses are possible.

1.4 Syndrome prediction and unsupervised learning of case defini-
tions

Some work has been done on predicting a syndrome and automatically finding a case defini-
tion without relying on the diagnosis code. Kalimeri et al. (2019) propose an unsupervised
framework where they use non-negative matrix factorisation to find clusters of symptoms in a
time series of self-reported symptoms, which can explain the presence of ILI. The advantage
of this data-driven approach is that relevant symptoms do not need to be defined before-
hand but result from the data. This enhances the flexibility of case definitions and allows the
consideration of country-specific characteristics. At the same time this might complicate the
comparison between different data sources. Moreover, self-reported symptoms can be biased
by the reporting behaviour of the participants or suffer from self-selection.

Other works use patient chief complaints that are reported in emergency departments to
develop syndromes for syndromic surveillance. Sniegoski (2004) proposes an approach, where
chief complaints in textual form are automatically classified into syndrome groups and therefore
replace a time consuming manual classification. The work of Espino et al. (2006) resembles
this approach, they also use chief complaints in textual form to first predict specific symptoms
and in a next step classify them into syndromes. Olszewski (2003) compared the predictive
use of textual symptoms against categorical ICD-based symptom codes for classifying patients
into syndromes. Here the free-text symptoms were better predictors than ICD-9 symptom
codes.

4ICD-9 codes have a hierarchical structure as well, consisting of 3 to 5 digits. See DIMDI: ICD-9 -
Internationale Klassifikation der Krankheiten for more details.

https://www.dimdi.de/dynamic/de/klassifikationen/icd/icd-10-who/historie/icd-vorgaenger/icd-9/
https://www.dimdi.de/dynamic/de/klassifikationen/icd/icd-10-who/historie/icd-vorgaenger/icd-9/
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Apart from the unsupervised approach by Kalimeri et al. (2019) all of the studies used
predefined syndromes with manually labelled training data based on more or less clear rules.
While this might lead to more comprehensible models, it still involves a great amount of human
input with hundred thousands of visits that need to be classified by hand before. Therefore, it
could be less expensive to use an unsupervised approach, or to use already existing syndrome
definitions based on clearly defined rules as a label, to then train a model which subsequently
is able to automatically classify the syndrome for new unseen data.

1.5 Goals of this thesis
This thesis is aimed at enhancing emergency department data to enable a near real-time
syndromic surveillance. As a use case for this work, the prediction of an influenza-like illness
syndrome is investigated. The so far standard to find cases that might have an ILI syndrome
is to use a rule-based definition that is developed by epidemiologists. This definition mainly
relies on the existence of ICD-10 diagnosis codes. However, this data suffers from missing
values in the clinical diagnosis variable. In about 16% of the visits this information is missing.
The reasons for this can vary and are explained in Section 1.1. When the diagnosis code is
missing, the expert-defined rule is not applicable and the estimated amount of relevant cases
with the syndrome is likely to be incomplete. Additionally, for a time range of about four
years (2012 - 2016), no diagnosis codes are available at all due to a system error. This makes
analyses based on ICD codes within the above time interval impossible. Because in the future
more emergency departments will be included in this new syndromic surveillance system, it
can be expected that they will suffer from missing values in this variable as well, possibly also
to a higher extend.

Therefore, the present study investigates two approaches for dealing with the missing values
in the diagnosis variable. As a use case, the goal is to classify the existence of an influenza-like
illness syndrome for a given ED visit. Cases that might have the ILI syndrome ought to be
detected without relying on the diagnosis code but solely on other information available.

As shown in Section 1.3, there is substantial evidence in the literature that clinical diagnoses
can be predicted from other health related data, as is available in a dataset of emergency
department data. Therefore, the first approach explores two methods to impute and predict
missing diagnosis codes based on the information from the other variables in the dataset.
These imputed diagnosis codes can then be used to apply the rule-based definition of the ILI
syndrome. Subsequently, the quantity and seasonality of this syndrome in the given time frame
can be assessed. The two methods that are compared in their performance of predicting ICD-10
diagnosis codes are: a multi-class naive Bayes classifier and a machine learning approach, that
extracts information from categorical, numeric and textual variables to impute missing values.
Additionally, a naive Bayes model is implemented that takes into account the hierarchical
structure of ICD-10 codes.

In the second approach, the health outcome influenza-like illness is predicted directly from
the data, therefore obviating the need for a predefined set of rules. The works presented
in Section 1.4 suggest that syndromes, which are generally used in syndromic surveillance
or triaging situations, can be automatically generated from symptom variables. The goal
is to extend human-made rule sets by learning from data (as in the unsupervised approach
by Kalimeri et al. (2019)) and replace the time consuming manual classification. To label
the training data, the already existing expert case definition of the ILI syndrome is used.
The classification model will then be based solely on the symptom variables and all other
information available in the dataset, except for the diagnosis code. This way, a case definition
is automatically created that is independent of the existence of the clinical diagnosis. For this
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binary classification task, a logistic regression model is compared to a naive Bayes classifier.
Because case definitions are usually rule based (combinations of diagnoses and symptoms),

it will be important to provide explanations for the new definitions that are based on statistical
models in order for epidemiologists to accept this approach. This work therefore aims at
making the decision mechanisms of the models comprehensible.

The quality of the imputation of diagnoses as well as of the prediction of the syndrome is
evaluated for each model. It is mainly of interest whether the models detect as many ILI cases
as the rule based definition and how the predictions differ from those cases resulting from the
expert rule. A good model should find as many ILI cases as possible from the originally present
ILI cases. As a last step, the models are evaluated on a time series level. For this, the resulting
ILI cases are aggregated on a weekly basis and compared to each other in terms of seasonal
peaks and total amount of cases. Additionally, they are compared to an external data source
that approximately shows the same scenario of seasonal ILI cases.

The thesis is divided into the following parts. First, the dataset used in this work is described
in detail. This includes the description of the variables and their missingness, a description of
the preprocessing steps, an exploratory data analysis and the implementation of the expert case
definition of the ILI syndrome. Additionally, several external data sources are compared to find
a suitable validation set. This is followed by a methodological introduction to the concepts
of imputation and classification and a description of the models and evaluation metrics used
in this work. Following this, the analysis procedure is derived and its implementation is
described in detail. The results for all experiments are presented and evaluated, starting with
the imputation of the diagnosis codes, followed by the prediction of the ILI syndrome and
eventually the evaluation on time series basis. Last, the results of the analysis are discussed.
The limitations of this work are considered and a conclusion is drawn.
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2 Description of the dataset
In this section, the dataset used in this work is presented in detail. After explaining the origin
of the data, the variables in the dataset are presented and the preprocessing steps explained.
Within the exploratory data analysis, the problem of missing values in the diagnosis variable
and in other variables becomes visible. The frequencies and distributions of the variables used
in the analyses are shown and described. At last, the expert definition of the ILI syndrome is
explained, which is used as the internal reference throughout the analyses, and an additional
data source is chosen as the external reference in the analysis.

2.1 Data source
Within the ESEG project (Erkennung und Sicherung epidemischer Gefahrenlagen)5 a group
of emergency departments provide retrospective data. In the future, near real-time data will
be made available additionally. For this analysis, data from only one ED is used. It contains
routinely collected information on all patient visits between February 2012 and June 2019,
a total of n = 384021 visits. Because the data is anonymised, one patient visiting the ED
multiple times can not be identified as the same patient. Therefore each observation represents
a visit and not a patient.

2.2 Variables and preprocessing
The dataset consists of 16 different variables which can be grouped into three different do-
mains. The first domain contains demographic information on the patient like age and gender.
The second domain contains administrative details like time and date, referral (whether a
patient was send to the ED by a general practitioner, came by himself or with an ambulance
etc.) and the department involved in the case. The third domain contains information on the
disease like the chief complaints and diagnosis values as well as some vital parameters (heart
rate, temperature, systolic blood pressure, respiratory rate and oxygen saturation). Some other
variables are also available but were excluded from the analysis because of a high amount of
missing values or because they were irrelevant for the task (e.g. vaccination status, postal
code). All variables that were originally included in the dataset together with their amount
of missing values can be found in Table A.1 in Appendix A. Note that the variable names are
given in English, but their values are recorded in German only.

Complaint (group) Complaint (value)

Collapsed adult recent problem (< 7 days)
Falls recent light pain (VAS 1-3, < 7 days)
Falls uncontrolled small bleeding
Back pain moderate pain (VAS 4-7)

Table 2.1: Examples for the variables complaint group
and complaint value.

Patient chief complaints are encoded using the Manchester Triage System (Krey, 2016),
a coding system that has a hierarchical structure. The first applicable and most severe con-
dition is taken as the major complaint, consisting of both a complaint group (51 possible
categories) and a value (191 possible indicators). Therefore, the two categorical variables

5See RKI: Detection and Protection of epidemic situations (ESEG) for more details.

https://www.rki.de/EN/Content/infections/epidemiology/ESEG/ESEG_node.html
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complaint group and complaint value form the chief complaint of a visit. Several group-value
pairs can be present in one visit due to updates after re-triaging of the patient, so the last
recorded value is seen as the most valid one and therefore chosen for the analysis. Examples
for complaint group and value pairs are shown in Table 2.1.

Additionally to the MTS patient chief complaints, clinical diagnosis codes are assigned
for a visit. They are encoded by the ICD-10-GM (German version) (World Health Organization,
2020). Four different diagnosis categories are possible: G (Gesichert, verified), V (Verdacht,
suspected), A (Ausschluss, excluded) and Z (Zustand nach, condition after). Only the verified
"G" diagnosis is used in the analyses. One visit can get assigned several diagnosis codes.
Unlike in the MTS complaints, where only the last value is likely to be the valid one, several
diagnosis codes can be valid. Because we do not know which diagnoses are most relevant for
one visit, only the first recorded diagnosis code is used for the analysis. It has to be taken
into consideration that this might not be the most relevant diagnosis or that others might be
equally relevant. Nevertheless this first diagnosis is considered as the reference value for the
rest of the analysis and used as the target for the classification tasks.

As described in Section 1.3, an ICD-10 diagnosis code consists of up to five digits. Due
to anonymisation of the dataset, the second decimal point (last digit) is already deleted
before the data transfer. In this analysis, two simplified versions of the ICD diagnosis code
were extracted to reduce the amount of possible classes. This procedure follows the work of
Subotin and Davis (2014) and Baumel et al. (2018) on classification of ICD codes, who also
use truncated versions of the diagnosis codes. Because of the hierarchical nature of ICD-10
codes (as described in Section 1.3), the higher level can be extracted easily. In this case, from
a given diagnosis (e.g. A09.0), the category (or block) was saved as diagnosis (block) (e.g.
A09) and the overall chapter (first letter only, e.g. A) was saved as diagnosis (letter). This
resulted in 1135 possible diagnosis codes instead of 3741 for diagnosis (block).

The variable department can also take on several values for one visit, so the first value
was selected for analysis as well. Gender, age and referral could be used without further
preprocessing. For all vital parameters, which can take on several values for one visit, the
median of all occurring values for one visit was computed and used in the analysis. Other
forms of feature extraction are possible as well and can be considered in follow-up work. From
the date and time information, corresponding weekdays and months are extracted and are
used as a feature in the analysis as well.

This preprocessing resulted in a dataset with one row per visit and maximum one value
per variable per visit in accordance with the tidy data framework by Wickham (2014). The
reduction of the dataset due to missing values in some of the variables is described in the next
section.

2.3 Exploratory data analysis
During the initial exploration of the dataset and especially when examining the amount of
missing values, the following characteristic became visible: The variable diagnosis, which is
relevant for all of the planned analyses, is missing completely in the first half of the dataset,
up until 2016-03-16. Figure 2.1 gives an impression of this pattern, which only occurs for this
variable. After this date, the variable is missing with a moderate but still substantial amount.

Therefore the dataset was split in two parts, the first half including cases that occurred
before 2016-03-16, the second part starting from this date up until June 2019. All analyses
were conducted with the second half of the dataset. For a detailed description of dataset sizes
see Table 3.1 in Section 3.3.1. The following descriptive statistics refer to the second half.
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Figure 2.1: Absolute number of missing diagnosis codes vs. total cases per week. Both are
shown for the whole dataset, from 2012 to 2019. Notice that in the first half both are exactly the
same, showing that diagnosis codes are missing in all cases.
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Figure 2.2: Percentage of missing values in each variable. The grey bars show the absolute
number and the labels at the end of each bar the percentages of missing values for each variable in
the second half of the dataset.

Missingness Figure 2.2 shows the total and relative amount of missing values in every
variable. There are no missings in the date and hour variables, due to the fact that they are
set by the ED system automatically. Gender, age, referral and complaints are available for
almost all visits, missing only in less than 5% of the visits. Table A.3 in Appendix A shows the
abbreviations used in the variable referral. The diagnosis variable is missing in 16.14% of the
visits, the reasons for this were discussed in detail in Section 1. The department is missing in
37.36% of the visits. Vital values are missing in about half of the visits, except for respiratory
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rate, which is missing in 10.7%.
To get a dataset that contains no missing values in order to train models (that can not deal

with missing values), the second half of the dataset was reduced again and all rows containing
at least one missing value in a variable except the diagnosis variable were deleted (complete-
case analysis). The resulting dataset has a size of n = 47088. The following description of
the dataset is based on this reduced dataset with no missing values.
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Figure 2.3: Binned frequencies and probability density of all metric variables. Shown for the
variables age, temperature (median), systolic bloodpressure (median), oxygensaturation (median),
heart rate (median) and respiratory rate (median) (from top left to bottom right).

Descriptive statistics 50.97% of the visits are female and the age mean is 56.32 years (SD
= 22.49). Having a closer look at the first plot in Figure 2.3 we can see that it is more the
elderly that are admitted at the ED.

Figure 2.4 shows frequencies for all categorical variables. The letter (chapter) "R" of
diagnosis (letter) which is "Symptoms, signs and abnormal clinical and laboratory findings, not
elsewhere classified" is the most frequent class in the ED. This chapter contains symptoms
rather than diagnoses, that physicians can use if no specific diagnosis can be assigned, but a
code is needed for administrative purposes. The second most frequent diagnosis (letter) is "I"
("Diseases of the circulatory system"). The most frequent involved departments are internal
medicine, neurology, surgery and pediatrics. Most patients are not referred to the ED by a
physician (NPHYS), meaning that they come by themselves. Some arrive with the ambulance
(RD) and some are send by a general practitioner (VAP). The visits follow a regular daily
pattern with the most patients arriving in daytime, with a peak in the morning and less people
coming in at night. Regarding the weekday only a slight increase in visits can be observed for
Mondays and Thursdays and the fewest visits on weekends. Over the time of the year, peaks
are visible in May, June and March and less cases in autumn.
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Figure 2.4: Frequencies for all categorical variables. Absolute number of occurrences are dis-
played for the variables diagnosis (letter), department, referral, time of admission, weekday and
month (from top left to bottom right).
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Figure 2.3 shows binned frequencies of the metric variables together with the densities.
Body temperature has a mean of 36.80◦C and SD = 0.92◦C. Systolic blood pressure follows a
normal distribution with a mean of 139.50 mmHg and SD = 23.95 mmHg. Oxygen saturation
as well follows a normal distribution with a cut at 100% (mean = 97.07%, SD = 3.15%).
Heart rate has a positive skew with mean = 85.61 bpm and SD = 23.00 bpm. Respiratory
rate has a mean of 13.23 brpm and SD = 6.30 brpm, with a few cases having a respiratory
rate of 0. This can be due to a stop of breathing, the death of a person or a reporting or
system error.

A comparison of the mean and standard deviation of the metric variables for the different
datasets is shown in Table A.2 in Appendix A. It can be seen that the vital parameters do
not change much in the different datasets, but the dataset containing only complete cases
(dataset (e)) has less younger people and therefore a higher mean age (56.32 years versus
45.51 in the whole set). This might be an indicator that variables like department, referral
or vital parameters are missing more in children. The proportion of male and female patients
is almost the same for all datasets, with the last dataset having slightly more females. A
comparison of the categorical variables showed that the most frequent diagnosis codes (letter)
are S ("Injury, poisoning and certain other consequences of external causes") and R for the
whole dataset compared to R and I in the reduced dataset. Additionally, there are two peaks of
visits in the course of a day in the whole dataset, one in the morning and one in the afternoon.
In the reduced dataset, there is only one peak in the morning. These findings might indicate
that values are missing more in certain conditions and have to be considered when generalising
the results of the models.

2.4 Expert case definition of the ILI syndrome
As an initial definition of the ILI syndrome, the expert case definition made by an epidemiologist
at the RKI is used. Even though other definitions might be possible and every definition will
result in slightly different groups of cases, this one is used as the reference inside this work.
It uses simple rules based on ICD-10 diagnosis codes, MTS complaints as well as the body
temperature measured for the patient to define whether the patient might have ILI. An example
rule, based solely on diagnosis codes, is

diagnosis = ’J09’ OR diagnosis = ’J10’ OR diagnosis = ’J11’.

Another rule, that is based on MTS complaints and body temperature is given by

temperature >= 38 AND
((complaint_group = ’Atemnot bei Erwachsenen AND

complaint_value = ’Infektion der Atemwege’) OR
(complaint_group = ’Atemnot bei Kindern’ AND
complaint_value = ’Infektion der Atemwege’)).

The case definitions vary in their specificity and sensitivity. They can be chosen depending
on the use case and will result in different amount of cases. In this work, a sensitive case
definition was chosen, in order to obtain many positive examples for training. To achieve this,
the different expert rules were combined in a way that if at least one rule applies to a case, it
is labelled with ILI. This labelling results in an additional column in the dataset, syndrome ILI,
indicating if a visit might have the ILI syndrome according to the expert rules or not (type:
logical).

Some of the rules are based on the original 4-digit diagnosis (e.g. J09.0). Because only the
3-digit diagnosis (block) is used in this analysis, it had to be ruled out that this would change



2.5 Comparison with external data sources 15

the meaning of the definitions. A consultation with the epidemiologists revealed that only a
few 4-digit diagnosis categories exist, that would falsely be labelled as ILI. A descriptive analysis
showed that this does concern 12 cases in this dataset (NILI = 1401 vs. NILI_block = 1413),
which was considered a negligible amount of cases. Therefore the ILI-expert rule was applied
to the 3-digit version (diagnosis (block)), but it has to be kept in mind that this procedure
might not be transferable to another dataset or case definition.

2.5 Comparison with external data sources
Several other surveillance systems for influenza, influenza-like illness or acute respiratory in-
fection were introduced in Section 1.2. Some of them were considered to serve as an external
reference for validating the models, but each of them uses a different case definition for the
monitored health outcome. Figure 2.5 shows the amount of cases of each external data source
(relative to its maximum value) compared to the influenza-like illness cases obtained by the
expert rule described in the last section (dark blue line), which serves as the internal reference
for all models in this work.

The cases from the traditional surveillance (IfSG-Meldedaten) contain only laboratory con-
firmed influenza cases. They are shown for the same federal state that the hospital of this
study lies in (yellow line) and for the same district (grey line). The lab-confirmed cases are a
very specific case definition of influenza and therefore result in very distinctive peaks within
the influenza season, with almost no cases outside. Nevertheless, influenza cases can occur
also in other times of the year, but the amount of testing is higher during the seasons (and
varies over the years). The IfSG-data have correlations of r = 0.660 (p < 0.001, federal state)
and 0.691 (p < 0.001, district) with the internal reference.

The sentinel surveillance data of acute respiratory infections (SEEDARE) contains cases
reported by sentinel general practitioners, that got assigned a diagnosis code of either J00 -
J22, J44.0 or B34.9 (Köpke et al., 2016). This includes not only influenza cases, but all acute
respiratory infection cases, therefore resulting in a wider time series of weekly cases (see the
light blue line in Figure 2.5, called ARE). It has a correlation of r = 0.729 (p < 0.001) with
the internal reference, but diverges in the off-season. This might also be due to the restriction
of the dataset in this study, which uses only data from one emergency department.

More severe acute respiratory illness cases are monitored via the ICOSARI system, using
cases provided by sentinel hospitals about hospitalised cases with the diagnosis J09 - J22
(Buda et al., 2017). The resulting time series of weekly cases resembles the ARE cases, but
has less deviations in between the seasonal peaks (see the red line in Figure 2.5). These cases
have a correlation of r = 0.786 (p < 0.001) with the internal reference, which is the highest
correlation of an external data source with the ILI cases from this study. The sentinel SARI
cases were therefore chosen as the external reference, and it can also be assumed that the
case definition resembles the one used in this study most.

In the first half of the dataset, no diagnosis codes are available. Therefore, the ILI case
definition from this study can not be applied to obtain ILI cases. To still be able to assess the
performance of the models developed in this study, they can be compared to the ICOSARI
data in the first half. It is assumed that this external data source might provide an appropriate
source of reference in this case, because it resembles the internal reference well in the second
half of the dataset. For a plot with both the internal and external reference cases for the whole
time frame, see Figure A.1 in the Appendix A.
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Figure 2.5: Comparison of time series from different external data sources. For several
influenza and acute respiratory illness surveillance systems the relative amount of weekly aggregated
cases are shown. To make the different data sources comparable, the cases are scaled to the maximum
of each timeseries. Additionally, the expert defined ILI cases (internal reference) are shown (dark
blue line).
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3 Methods and implementation
This section presents the methods used in this work and their implementation in order to answer
the research questions. In the first part of the work, the focus lies on imputing missing values.
An introduction to the problem of missing values and the most commonly used methods is
given. The methods used in this work are derived and explained.

The second part of this work focuses on predicting the ILI syndrome. Therefore a short
introduction to the classification setting is given, followed by an explanation of the naive Bayes
classifier and logistic regression. The problem of imbalanced datasets is addressed and up-
and downsampling solutions are presented. It is explained how a classification method can be
evaluated and the metrics used in this work are shown.

At last, the analysis procedure is explained in detail. The implementation of the different
approaches is explained and the packages used for data analysis are named.

3.1 Imputation of missing data
When missing values occur in one or more variables, several approaches exist for dealing with
them. Following the work of Little and Rubin (2019), the most common methods and their
characteristics are shortly presented. The two approaches explored in this work are derived
and explained.

3.1.1 Introduction to common imputation methods

The easiest solution for dealing with missing values in a variable is to assign a special symbol
(e.g. "not answered") for a missing value in order to get a pipeline running. Most statistical
methods will still need the user to exclude these cases from the analysis, but the information
of how many cases are missing is preserved. If there is just a small amount of missing data,
one can omit all rows with missing values (i.e. complete-case analysis, listwise deletion) and
apply their methods. While this might be an easy and convenient solution for situations with
very small amounts of missing data, it might lead to biases if a large part of the data has
to be excluded or if the data is missing not at random. Then drawing inferences about the
target population might not be appropriate anymore. The third option would be to impute the
missing values, i.e. replacing the missing value in one variable for a given case with a probable
other value for this variable and case.

Imputation methods that are commonly used are presented shortly. In hot deck and cold
deck imputation, missing values are replaced with a constant value that was observed in similar
responding cases in the same sample (hot deck) or an external source (cold deck). In mean
imputation, missing values are replaced with the mean of observed values in the same variable
(and the mode for non-numerical variables). Lastly, in regression imputation missing values in
one variable are replaced with a predicted value from a regression of the missing variable on
other variables that were observed for this case (e.g. MICE, Buuren and Groothuis-Oudshoorn
(2010)). In all imputation methods, single and multiple imputations are possible. Multiple
imputations result in more than one prediction for the imputed value and is therefore taking
into account the uncertainty of this prediction, but it also results in higher computational
efforts (Donders, Van Der Heijden, Stijnen, & Moons, 2006; Little & Rubin, 2019).

The mechanism that leads to missing data can have an impact on the performance of the
different methods. In the best case, the missingness is independent of the data values, so
the cases are missing completely at random (MCAR). If the missingness only depends on the
other observed values and not on the values in the variable itself, the cases are missing at
random (MAR). In the latter case, regression imputation was shown to still lead to unbiased
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estimations (Donders et al., 2006). The last case is the one where the distribution of the
missing values depends on the missing values themselves (not missing at random, NMAR)
(Little & Rubin, 2019).

Most of the work on imputation methods has been done for imputing numerical values
(Sentas & Angelis, 2006), but the variable that has to be imputed in this work (diagnosis)
is categorical. When values are missing in categorical variables, a simple solution is to use
the mode to impute the values, but this might lead to unsatisfying results. Another solution
is to use a method in the consecutive analysis that is able to deal with missing data, like
random forest or naive Bayes classification. Kalousis and Hilario (2000) for example compared
several machine learning methods with regard to their tolerance of incomplete data and a naive
Bayes classifier showed to be the most tolerant in their study. But this imputation problem
can also be seen as a classification task and a classification model can be used to predict
categorical missing data. Sentas and Angelis (2006) compared several imputation methods
for categorical software data and found that multinomial logistic regression as a classification
approach outperformed the other methods (listwise deletion, mean imputation, expectation
maximization and regression imputation), even with a high number of values and at different
missing mechanisms (MCAR, MAR and NIM (non-ignorable missingness)).

3.1.2 Classification approach

With this particular dataset, the to be imputed variable (diagnosis code) is categorical and the
remaining input variables are numeric and categorical. Because the target variable (diagnosis)
has to be existent for each case for further analyses, a complete-case analysis is not the right
approach here. And with mode or hot deck imputation the highly differentiated variable would
loose their informative power. Because other studies have shown that systems exist for pre-
dicting the diagnosis variable from other health related data (see Section 1.3), a classification
approach could be used for imputing the missing diagnosis codes. The naive Bayes classifier
(which will be presented in detail in Section 3.2.2) has proven to be well suited for categorical
and numerical input data (Pakhomov et al., 2006; Scheurwegs et al., 2017) and has been
used for the imputation of categorical data as well (Zhang, Kambhampati, Davis, Goode, &
Cleland, 2012; Garcia & Hruschka, 2005). For this reason, it was used as a classification
method for predicting the diagnosis codes in this work.

3.1.3 DataWig approach

As a second approach for imputing the missing diagnosis codes the package DataWig by
Biessmann, Salinas, Schelter, Schmidt, and Lange (2018) is explored. They propose an end-
to-end framework to impute missing values from numeric, categorical and sequential input
variables. Biessmann et al. (2018) developed this package to enable the simple usage of their
complex imputation models for different data types and with different neural network classifiers.
For a given dataset with both numeric, categorical and sequential data, the user defines which
variable is to be imputed and which are the possibly relevant input variables. The data
type of the input variables can be determined by the algorithm using heuristics or explicitly
stated by the user. The model itself proceeds with first encoding the data into numerical
representations, then extracting relevant features and third learning classification models. At
first the non-numerical data is encoded into a numerical representation. Categorical data is
one-hot encoded (= transformation into dummy variables) and sequential data is transformed
into a numerical vector (for details see Biessmann et al. (2018)). Depending on the type
of each column, different featurizers are used in the next step to extract features from the
numerical representations. For categorical columns, a one-hot encoded embedding layer is used
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(see Biessmann et al. (2018)), for sequential columns either n-gram representations (i.e. bag
of words approach) or long short-term memory neural networks can be used (LSTM approach,
see Hochreiter and Schmidhuber (1997), Biessmann et al. (2018)). The extracted features
are used together with the observed y values in the target column to learn to predict the target
values in a supervised learning manner. Hyperparameter optimisation (finding a set of optimal
hyperparameters for the algorithm) is done automatically by the model. Once the model is
trained, it takes the input columns to make a prediction of the to be imputed class for every
observation. The result is a likelihood for each possible y value in the target column given the
input columns and the imputation model for every observation. The most likely value is taken
as the imputed value.

The DataWig package was chosen as one of the imputation approaches because it is an
already developed method that deals flexibly with mixed data types and enables the use of
sequential variables as input columns. Because it can be assumed that the variable complaint
contains the most information for the prediction of the diagnosis code, the focus when using
the DataWig package will be on applying the different encoding and featurizing methods to
this variable and compare the results. Here the variable complaint is in fact a categorical
variable, because a predefined and limited number of answers are possible. But they can also
be seen as textual descriptions of the complaint because they often appear as several words.
They may therefore contain even more information for the prediction of the diagnosis code
than when taking them as nominal. If similar complaints can be represented near to each other
in the feature space because of a similar wording, this feature representation might contain
more information than the categorical version of the complaints. Additionally, less frequent
complaints might be better representable when they are close to other similar complaints,
therefore enabling a better use of these complaints as well. Therefore, the encoding and fea-
turizing methods designed for sequential variables are used as well. They are applied to the
complaint variable to explore whether additional predictive accuracy will be gained. Further-
more, it might be possible that additional data sources will be available in future, possibly
also containing free-text variables. Then this package would enable the inclusion of these
additional variables in the model without developing a new imputation approach including
text-classification methods.

3.2 Binary and multi-class classification
In this section, a brief introduction to the classification setting with binary and multi-class
outcomes is given. The two classifiers, naive Bayes and logistic regression, that are used in
this work, are shortly presented. The problem of unbalanced classes is addressed and the
measures used for evaluating the models are described.

3.2.1 The classification setting

In a classification setting a categorical output variable Y and one or more input variables
(or predictors) X1, ..., Xp are observed. For an assumed relationship Y = f(X) + ε, with ε
being an error term, f is estimated on the basis of training observations (x1, y1), ..., (xn, yn),
where y1, ..., yn are qualitative (James, Witten, Hastie, & Tibshirani, 2013). The quality of
this estimate can be quantified by the training error rate, as measured by the accuracy value
( tp+tn

tp+tn+fp+fn ), which equals to the proportion of correctly classified cases to all cases when the
model is used to predict the training observations.6 To compare several models and to assess
how well the model performs on unseen data, the model is applied to a test set of unseen data

6For an explanation of tp, tn, fp and fn see Figure 3.1.
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and the predicted class labels are compared to the actual labels, thus computing an error rate.
This test error should be small for a classification model to be good (James et al., 2013).

In classification, the target variable can be binary, having two possible classes, or it can
be a multi-class variable. In the multi-class setting, one can distinguish between a multi-label
and a multinomial approach. In the former, each observation is assigned one or more labels,
e.g. a probability for each possible label. In the latter, the classes are mutually exclusive and
each observation gets assigned exactly one class.

Two classifiers that can be used when the predictors contain both numeric and categorical
variables are logistic regression and the naive Bayes classifier. Both of them also provide an
easily interpretable model and thus give insights to how the predictions are derived. They are
shortly presented in the next two sections.

3.2.2 Naive Bayes

Given an input vector x, the naive Bayes classifier returns from all possible output classes
y ∈ Y the class ŷ that has the maximum a posteriori probability given the input.

ŷ = arg max
y∈Y

P (y|x) (3.1)

Applying the Bayes rule and the simplifying assumption, that the probabilities P (xi|y) are
independent given the class y, the following term results, describing the naive Bayes classifier:

cNB = ŷ = arg max
y∈Y

P (y)
∏
x∈X

P (x|y) (3.2)

The prior probability P (y) of a given class y can be estimated easily by the frequency with
which each output value yc occurs in the training data. The likelihood is estimated using
a multinomial approach and for metric input variables an underlying normal distribution is
assumed. To prevent probabilities of exactly 0 (if a class and a feature never occur together
in the training data), a Laplace smoothing can be used, which adds a small-sample correction
of 1 so that no probability is ever exactly zero.

Even though the simplifying assumption of conditional independence is often not met,
the naive Bayes classifier proves to still work well and even compete with more sophisticated
models (Rish, 2001). It can be used both for binary as well as multi-class target variables and
will therefore be used as a baseline approach for both tasks (imputation of diagnosis codes
and prediction of an ILI syndrome) in this work.

3.2.3 Logistic regression

When the outcome variable of a prediction setting is binary, a logistic regression model can
be used to model the relation. It models the probability that Y belongs to a certain category
(James et al., 2013). The model formula can be written as

log

(
p(X)

1− p(X)

)
= β0 + β1X1 + ...+ βpXp, (3.3)

where X = (X1, ..., Xp) are the p predictors. (3.3) can be rewritten as

p(X) = eβ0+β1X1+...+βpXp

1 + eβ0+β1X1+...+βpXp
(3.4)
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This leads to the interpretation, that an increase of one unit in X1 will change the log odds
(the left-hand side in (3.3)) by β1. The estimates for a logistic regression are obtained by
maximum likelihood. A logistic regression model can take both numeric as well as categorical
predictors, latter will be treated as dummy variables.

3.2.4 Imbalancedness

In many classification settings, the class one wants to detect is naturally under-represented
(e.g. predicting spam vs. non-spam e-mails). A classifier that is always predicting the majority
class will have a high accuracy, but will be poor at detecting the under-represented class. One
solution is the up- or downsampling of the training dataset with regard to the class of interest.
In upsampling a random sample is drawn from the observations of the minority class and
added to the training set. On the other hand, in downsampling of the majority class, a
random subsample of the majority class smaller than the original set is used for training. A
more sophisticated method is proposed by Chawla, Bowyer, Hall, and Kegelmeyer (2002) and
has shown better classification performance compared to the simple approaches. It is called
Synthetic Minority Over-sampling Technique (SMOTE) and is implemented in R (Chawla et
al., 2002). This approach uses a combination of downsampling the majority class and the
synthetic creation of new instances of the minority class. The model takes the difference
between an observation and its nearest neighbours, multiplies this difference by a random
number between 0 and 1 and adds it to the feature vector. This will create a new random
observation between two observed points. For nominal variables, the feature is given the value
that occurred in the majority of the nearest neighbours.

3.2.5 Evaluation measures

To evaluate the predictions made by a classifier, several evaluation metrics can be used. To
compute them, the model is applied to a new set of previously unseen data and predictions
are obtained. These are compared with a reference or true label. This results in a contingency
table or confusion matrix as depicted in Figure 3.1.

reference labels

reference
positive

reference
negative

model
output
labels

model
positive true positive false positive precision = !"

!"#$"

model
negative false negative true negative

recall = !"
!"#$% accuracy = !"#!%

!"#$"#!%#$%

Figure 3.1: Confusion matrix. Contingency table of possible outcomes with the metrics recall,
precision and accuracy explained. Abbreviations: tp = true positive, fp = false positive, fn = false
negative, tn = true negative. Adapted from Jurafsky and Martin (2019), p. 66.

See (3.5) for an overview of evaluation metrics. Each of the measures captures a different
aspect of the classification result of a model. The accuracy is the proportion of correctly
labelled observations. This measure has to be interpreted carefully when the classes are
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unbalanced, because a classifier that predicts always the majority class will still have a very high
accuracy. Recall and precision instead concentrate on the true positives. Recall (or sensitivity)
is the proportion of correctly identified positives out of all truly positive observations. Precision
is the proportion of correctly labelled positives out of all observations labelled as positive.
Specificity instead depicts the proportion of correctly identified negatives of all truly negative
observations. In a multi-class classification setting, the confusion matrix for one class considers
this class as the positive class and all other classes as the negative classes. This leads to an
inflated measure of specificity because the number of true negatives increase.

Metrics that combine two other measures give a better picture of the classification per-
formance. Balanced Accuracy for example is the mean of sensitivity and specificity, and the
F1-measure is the harmonic mean of precision and recall. The F1-measure is a conserva-
tive measure, because the harmonic mean favours the lower of its two values, and it is an
appropriate measure also with unbalanced classes (Jurafsky & Martin, 2019).

In a multi-class setting (with exactly one label per observation), two ways of computing
the evaluation metrics are possible. In macro-averaging, the model is tested in a "one versus
all" way for every single class and the performances are averaged over classes. This way, all
classes are weighted equally. In micro-averaging, the predictions for all classes are collected
in one contingency table and the metrics are computed from this table. Here more frequent
classes will dominate the results.

The metrics used in this work are listed in (3.5). For multi-class predictions the macro-
averages are retrieved and reported.

Accuracy = tp + tn
tp + fn + fp + tn

Balanced Accuracy = (sensitivity + specificity)/2

Sensitivity (= Recall) = tp
tp + fn

Specificity = tn
fp + tn

Precision = tp
tp + fp

F1 = 2 ∗ precision ∗ recall
precision + recall

(3.5)

3.3 Implementation and procedure of data analysis
In this section a detailed overview of the steps of the analyses will be provided. All analyses
were conducted with R, version 3.6.1 by R Core Team (2019). Data handling was mainly done
using the data.table format (Dowle & Srinivasan, 2019) and functions of the tidyverse
(Wickham et al., 2019) and plots were created using the package ggplot2 (Wickham, 2016).
For the imputation of diagnosis codes with the deep learning approach by Biessmann et al.
(2018) the package DataWig was used, which is provided in Python. This part of the com-
putation was therefore conducted with Python version 3.7.4 (Van Rossum & Drake, 2009). A
complete list of the packages used in this work can be found in Table A.4 in Appendix A. The
procedure is additionally depicted in the flow chart in Figure 3.2.
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Figure 3.2: Procedure flow chart. For detailed descriptions of the procedures A - Preprocessing:
see Section 2.2; B - Imputation of diagnosis codes: see Section 3.3.2; C - Prediction of an ILI syn-
drome: see Section 3.3.3; D - Evaluation (metrics and time series): see Section 3.3.4. Furthermore,
for a description of the train-test-set partitioning see Section 3.3.1 and for a description of the up-
and downsampling methods see Section 3.3.3.
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Original dataset
Dataset N

(a) Whole set (2012 - 2019) with missings 384021
(b) First half (2012 - 2016) with missings 195531
(c) First half (2012 - 2016) without missings 18013
(d) Second half (2016 - 2019) with missings 188490
(e) Second half (2016 - 2019) without missings 47088

Train- and testsets
Dataset Ntrain Ntest

(f) Trainset based on diagnosis (block) 37976 9112
(g) Trainset based on diagnosis (letter) 37680 9408
(h) Trainset based on syndrome ILI 37671 9417

Table 3.1: Dataset sizes. Sizes of the original datasets (upper part of
the table) and the train- and testsets based on different target variables
(lower part of the table). "With missings" means that any of the variables
can include missing values. "Without missings" means that observations are
excluded that have missing values in any of the predictor variables (except
for diagnosis).

3.3.1 Train- and test datasets

After the preprocessing described in Section 2.2, the data was split in two parts, with the first
half containing cases from 2012 until 2016-03-16, and the second half containing cases from
this date up to 2019. After this, cases with missing values in either of the predictor variables
were removed, leaving a set of complete cases (A - Preprocessing in Figure 3.2). The sizes of
all datasets used in this work are listed in Table 3.1. All models were trained on the second
half of the whole dataset containing only cases with no missing values (as described in Section
2.3, (e) in Table 3.1). This is due to the fact that some models are not able to deal with
missing values in the dataset during training. In a further analysis one might impute these
missing values as well, prior to training the models. The reduced dataset was divided into a
train and a test set with a ratio of 80:20 (green boxes in parts B and C of Figure 3.2). Because
the classification tasks use different target variables (diagnosis (block), diagnosis (letter) or
syndrome ILI), the split leads to different train and test sets for each task. The partitioning
was implemented using the createDataPartition() function of the caret package in R,
which balances the train and test sets according to the target variable (Kuhn, 2020). The
remaining 20% of the dataset is used for testing the models and obtaining evaluation metrics
to estimate their behaviour on new datasets. The resulting train and test set sizes are depicted
in the lower part of Table 3.1.

The predictor variables for all tasks in this work are age (metric), gender (factor), time
(factor), weekday (factor), month (factor), department (factor), referral (factor), complaint
group (factor), complaint value (factor), body temperature (median, metric), systolic blood
pressure (median, metric), oxygen saturation (median, metric), heart rate (median, metric)
and respiratory rate (median, metric). All variables are described in detail in Section 2.2.

3.3.2 Imputation of missing diagnosis codes

The first goal of this thesis is to explore two approaches to impute missing values in the variable
diagnosis (B - Imputation of diagnosis code in Figure 3.2). The 3-digit diagnosis (block) was
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used as the target variable, resulting in 1135 possible classes. The flat naive Bayes classifier
and the DataWig models were trained on dataset (f) in Table 3.1.

As a baseline approach, a multi-class naive Bayes classifier was used. The model was
built using the naiveBayes() function in the package e1071 by Meyer, Dimitriadou, Hornik,
Weingessel, and Leisch (2019). To prevent probabilities of exactly 0, a Laplace smoothing
factor of α = 1 was applied.

As a second approach, the DataWig package by Biessmann et al. (2018) as described
in Section 3.1.3 was used. The package requires the user to specify the type of the target
and input variables and select the encoding and featurizer methods. Three different encoding
methods and featurizers for the complaint variables were compared. In the first version, the
complaint variables were considered as being categorical, thus a one hot encoding was used
by the model. In the second and third version, the complaint variables were considered as
being sequential. The second approach uses a bag-of-words featurizer and the third a LSTM
featurizer.

Additionally, a hierarchical approach was designed to factor in the structure of ICD-10
codes, following the work of Perotte et al. (2014). In a first step, a multi-class naive Bayes
classifier was trained to predict only the 1-digit diagnosis (letter), i.e. the higher level chapter
of the diagnosis (left part in box B of Figure 3.2). This model was used to get a prediction of
the diagnosis (letter) for every visit in the dataset. Subsequently, a second model was trained
to predict the 3-digit diagnosis (block) based on all variables plus the already predicted chapter
as an additional input variable.

To compare the models, they were applied to a test set of formerly unseen data and the
predicted labels were compared with the reference labels. These counts of correctly and falsely
classified cases are used to obtain macro-averaged metrics using the confusionMatrix()
function in the caret package in R (Kuhn, 2020). This is depicted in Figure 3.2 in part D -
Evaluation in the upper left part.

Because the overall goal is to use the imputed diagnosis codes for further analysis, e.g.
detecting the ILI syndrome, the models from this section were evaluated with regard to this
task as well. The models were used to get predictions of diagnosis codes for every case in
the whole dataset ((d) in Table 3.1). Then the expert case definition (see Section 2.4) was
applied to the predicted diagnosis codes and the resulting ILI cases were compared to those
that result from applying the expert rules to the original diagnosis codes. The results were
compared with the same evaluation metrics as before, with regard to the models’ abilities to
enable the detection of ILI cases (Part D - Evaluation of Figure 3.2, below the upper left box).

3.3.3 Classification of an ILI syndrome

The second goal of this thesis is to train a model that can automatically predict the ILI
syndrome for a given visit (C - Prediction of an ILI syndrome in Figure 3.2). The prediction
should be based on all available information in the data except for the diagnosis variable, to
make the model independent of the existence of this variable.

To get a labelled training dataset, the expert rule-based case definition (Section 2.4, which
is based on diagnosis (block), complaints and temperature) was applied to the dataset (see
A - Preprocessing in Figure 3.2). In the training set ((h) in Table 3.1) the diagnosis (block)
variable was removed and the models were trained on the remaining variables. The idea is
that the remaining variables will contain enough information on whether a case has ILI or not,
thus resulting in a model that can predict the ILI syndrome without relying on the diagnosis
variable.

Two models were compared: a binary naive Bayes classifier and a logistic regression. The
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binary naive Bayes model was trained using the naiveBayes() function in the package e1071
and a laplace smoothing factor of α = 1 was used (Meyer et al., 2019). The logistic regression
was performed with the train() function of the package caret by Kuhn (2020), with method
= "glm", family = binomial(link = "logit").

Resampling Because the two classes ILI versus not ILI are highly unbalanced in the dataset
(3.34% ILI cases), a classifier might not be able to detect the less prevalent class very precisely.
To make a classifier more sensitive to the minority class, different resampling methods can be
used. In this case, five different methods are compared to each other.

Simple Upsampling: A random sample with replacement of 20000 cases was drawn from
the minority class and added to the train set, resulting in a train set with n = 57671 cases of
which 36.86% are ILI cases.

Simple Downsampling: A random sample without replacement of 20000 cases was drawn
from the majority class and used together with the existing ILI cases to form a train set with
n = 21259 cases of which 5.92% are ILI cases.

Up- and Downsampling: The random sample of 20000 cases from the minority class
was combined with the random sample of 20000 cases from the majority class, resulting in a
train set with n = 40000 cases of which 50% are ILI cases.

SMOTE: The SMOTE() function in package DMwR by Torgo (2010) was used to simulta-
neously create a synthetic sample of new minority cases and delete some of the majority class
cases in order to get a more balanced dataset. This resulted in a train set with n = 57914
cases of which 41.30% are ILI cases.

Original dataset: The original train set has a size of n = 37671 cases ((h) in Table 3.1)
with 3.34% being ILI cases.

Five individual models for each classification method are compared to each other (green
boxes in part C of Figure 3.2). The models were applied to the test set and the predicted
labels are compared to the reference labels to obtain evaluation metrics (upper right part of
box D in Figure 3.2).

Variable importance One goal of this work was to make the decisions made by the models
comprehensible for users like epidemiologists and thus increase acceptance for this approach.
For the two models used here, logistic regression and naive Bayes, the model output already
gives a good insight on how the models come to a conclusion. For the logistic regression
model, the z-values of the regression coefficients can be interpreted as the importance of each
variable for the prediction of the model. The z-value is the regression coefficient divided by its
standard error. If this value is significantly different from 0, it indicates that the corresponding
predictor is relevant for the prediction. The direction of the deviation (positive or negative)
corresponds to the direction of the predictors influence. The 20 most important (= largest z-
values) predictors from all five logistic regression models were extracted and their corresponding
z-values reported.

The naive Bayes models contain the posterior conditional probabilities for each predictor,
which can be used to reconstruct the models’ decisions. Since there is no simple method of
visualizing them at this point of time (for an implementation in Orange see Možina, Demšar,
Kattan, and Zupan (2004)), reporting them would go beyond the scope of this results section.
For interested readers the results can be provided nevertheless.
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3.3.4 Evaluation of weekly aggregated cases

In the third step, the two approaches (B and C in Figure 3.2) to deal with missing diagnosis
codes are evaluated with respect to the task of predicting the ILI syndrome. The resulting
weekly aggregated ILI cases are compared (bottom part of box D - Evaluation (metrics and
time series) in Figure 3.2). The dataset used for this evaluation step is the second half ((d)
in Table 3.1) with all originally available data. Because there are no diagnosis codes available
for all cases and because the ILI case definition used in this study can not be considered
"gold-standard", no real ground truth is available for comparisons. Instead it is assumed that
the ILI cases that result from applying the rule-based case definition on the dataset (even
if diagnosis codes are missing) represent the ground truth and these cases are considered as
"internal reference" in the further analysis. The detected ILI cases are aggregated on a weekly
basis, resulting in time series of frequencies for all approaches and models. As a metric for
comparison the Pearson correlation between the time series is reported.

Selection of the best models In a final step, those models have to be selected that are
best suited to find ILI cases when the diagnosis code is missing. Selection criteria derived from
the introductory and methods parts are the following: A good model

1. should be able to find as many ILI cases as the original rule-based definition as possible
(as is reflected by the sensitivity (recall) in an evaluation on syndrome basis);

2. while still having a reasonable precision (as reflected in the aggregated F1-measure);
3. should preferably predict more ILI cases instead of less than the original approach (be-

cause the internal reference ILI cases might not be a perfect ground truth, it is tolerable
if the models result in more ILI cases);

4. should follow the same seasonal pattern as the original ILI cases;
5. should be positively correlated with the original ILI cases at a weekly aggregated level;
6. should be easy to interpret and offer a comprehensible decision making process;
7. and should be positively correlated with the external data source (hospital SARI cases).

The different models are evaluated with regard to the first five of these criteria and the
best models for each approach (diagnosis imputation, syndrome prediction) are selected. The
final evaluation steps are performed only on these models.

Evaluation of false classifications The models will most likely have false predictions,
meaning that they will predict a case to have ILI even if the expert rule says it does not (false
positive) or predict a case to not have ILI even if the expert rule says it does (false negative).
These false classifications might help to evaluate the appropriateness of the models. Therefore
they are examined on a medical level to estimate the degree of the model being wrong. The
diagnosis codes from the false positives (fp) and false negatives (fn) are categorized by a
medical expert regarding their likeliness to be an ILI case. If the diagnosis originally belonged
to the expert definition, the case was labelled with "ILI yes". If the diagnosis of a fp or a fn
is not in the original expert rule, but might been given in an ILI case as well, it was labelled
"ILI possible". Only if it can be ruled out that this diagnosis is not related to ILI in any
way, the case is labelled "ILI no".7The false positives and false negatives of the best models
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are evaluated on this first medical level, and secondly the distribution of the diagnosis codes
themselves into the ICD chapters are examined.

7An example for "ILI yes" is the code J10 (Influenza with pneumonia, seasonal influenza virus identified).
A case with this code is very likely to have ILI. An example code for "ILI possible" is J20 (Acute bronchitis).
This code does not belong to the original ILI definition in this study, but is closely related to ILI and may be
given to a case with similar symptoms. An example for "ILI no" is the code J15 (Bacterial pneumonia, not
elsewhere classified), which does involve the respiratory system, but was ruled out to be related to influenza
by the medical expert. Another example is A08 (Viral and other specified intestinal infections), which involves
an infectious disease as well, but is not related to influenza.
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4 Results and evaluation
This section is divided into three parts. First, the results of imputing the diagnosis codes
are shown. This is followed by the results of the classification of the ILI syndrome. Last, all
models are evaluated on a time series basis and the best models are selected.

4.1 Imputation of missing diagnosis codes
In this section, the results for imputing the ICD-10 diagnosis codes will be presented. They
were obtained using a flat naive Bayes classifier, the DataWig package and a hierarchical naive
Bayes model. All evaluation metrics can be found in Table 4.1.

4.1.1 Evaluation of imputed diagnosis codes

The naive Bayes classifier predicting the diagnosis (block) yielded a F1-measure of 28.75%,
22.82% precision and 7.17% recall. The balanced accuracy was 53.53%. Of the three DataWig
models using different preprocessing and feature extraction methods, the one using a bag-of-
words approach yielded the best results. It had a F1-measure of 34.37%, 32.32% precision
and 11.07% recall. The balanced accuracy was 55.46%. Both other DataWig approaches
had comparable results and all of them were better in predicting the correct ICD codes than
the naive Bayes model (block). The hierarchical naive Bayes model showed an improved
performance compared to the flat naive Bayes model (30.33% F1-measure, 25.68% precision,
8.71% recall and 54.29% balanced accuracy). The auxiliary naive Bayes model predicting the
diagnosis (letter), that is then used by hierarchical naive Bayes model, had a F1-measure of
38.80%, 25.68% precision, 42.12% recall and 69.71% balanced accuracy.

Model Balanced
Accuracya

Sensitivity
(Recall)a Specificitya Precisiona F1a

Naive Bayes
Block 0.5353 0.0717 0.9986 0.2282 0.2875
Hierarchical 0.5429 0.0871 0.9986 0.2568 0.3033
Letterb 0.6971 0.4212 0.9730 0.3934 0.3870

DataWig
Categorical 0.5483 0.0980 0.9985 0.2981 0.3360
Bag of words 0.5546 0.1107 0.9986 0.3232 0.3437
LSTM 0.5490 0.0994 0.9985 0.3108 0.3093

a Macro-averaged metrics (all classes weighted equally).
b Auxiliary model for NB Hierarchical.

Table 4.1: Evaluation metrics for the models imputing the ICD diagno-
sis codes. Macro-averaged metrics are shown for the flat and the hierarchical
naive Bayes classifier, the auxiliary naive Bayes classifier predicting the diag-
nosis (letter), and the DataWig models. The highest value of each metric is
highlighted for each group of models.

4.1.2 Evaluation of the syndrome cases based on imputed diagnosis codes

To evaluate the use of the imputation models for finding ILI cases, imputed diagnosis codes
were used to obtain ILI cases by the expert case definition. These cases were compared to
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Model Balanced
Accuracy

Sensitivity
(Recall) Specificity Precision F1 tp + fpa

Naive Bayes
Block 0.6108 0.2256 0.9961 0.6380 0.3333 1805
Hierarchical 0.6162 0.2371 0.9953 0.6038 0.3404 2025

DataWig
Categorical 0.6592 0.3333 0.9850 0.4045 0.3655 4399
Bag of Words 0.6699 0.3518 0.9880 0.4714 0.4029 3905
LSTM 0.6730 0.3595 0.9865 0.4483 0.3990 4333

a tp + fp = total amount of predicted cases. Dataset size: n = 188490; tp + fn = 4704 (total
amount of reference ILI cases).

Table 4.2: Evaluation metrics resulting for diagnosis models on syndrome level. The ILI cases
are compared to those that result when the expert rule is applied to the imputed diagnosis codes by
each imputation model. The highest value of each metric is highlighted for each group of models.

the internal reference cases, which result from the original diagnoses. This was done for the
whole dataset of the second half, including cases with missing values (dataset (d) in Table
3.1). The models showed varying results as can be seen in Table 4.2. F1-measure was best
for the DataWig bag-of-words approach (40.29%), recall and balanced accuracy were best in
the DataWig LSTM model (35.95% and 67.30% respectively) and precision was best in the
flat naive Bayes model (63.80%). Apart from precision and specificity, the hierarchical naive
Bayes model yielded better results than the flat naive Bayes classifier. All models detected less
ILI cases compared to the reference in the second half of the time frame, where the original
(rule-based) amount of ILI cases is 4704. Both naive Bayes models resulted in less than half
that many cases (1805 and 2025) and the DataWig models resulted in 3905 (bag of words)
to 4399 (categorical) cases.

4.2 Classification of an ILI syndrome
A naive Bayes classifier and a logistic regression model were compared in their ability to predict
an ILI syndrome that is based on the expert case definition without relying on the diagnosis
code. Several up- and downsampling methods were used. See Table 4.3 for the evaluation
metrics of all syndrome models.

4.2.1 Evaluation of the syndrome predictions

Of the naive Bayes models, recall and balanced accuracy were best in the model using up- and
downsampling (NBUpDown), with 79.62% recall and 82.02% balanced accuracy. Precision
and F1-measure were best in the normal naive Bayes model (25.17% precision and 32.97%
F1-measure). In overall, the two models NB and NBDown had similar metrics and the three
models NBUp, NBUpDown and NBSMOTE had comparable metrics, diverging in whether
recall and balanced accuracy are better or precision and F1-measure. All models classified
more cases as ILI as were originally present in the dataset (314 cases). The naive Bayes model
(without resampling) and NBDown predicted approximately the same amount of ILI cases and
two times the originally present ILI cases (601 and 731), but NBDown had a higher recall
(53.82% vs. 47.77%). NBUp, NBUpDown and NBSMOTE predicted about five times as
many cases as originally present (1485, 1719 and 1512 versus 314).
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Model Balanced
Accuracy

Sensitivity
(Recall) Specificity Precision F1 tp + fpa

Naive Bayes
NB 0.7144 0.4777 0.9510 0.2517 0.3297 601
NBDown 0.7385 0.5382 0.9387 0.2325 0.3247 731
NBUp 0.8107 0.7548 0.8665 0.1632 0.2684 1485
NBUpDown 0.8202 0.7962 0.8442 0.1499 0.2523 1719
NBSMOTE 0.8003 0.7389 0.8618 0.1557 0.2572 1512

Logistic Regression
logReg 0.5994 0.2038 0.9949 0.5818 0.3019 105
logRegDown 0.6625 0.3376 0.9874 0.4796 0.3963 216
logRegUp 0.8336 0.7707 0.8964 0.2042 0.3229 1209
logRegUpDown 0.8387 0.8312 0.8462 0.1571 0.2643 1708
logRegSMOTE 0.8142 0.7452 0.8831 0.1803 0.2903 1271

a tp + fp = total amount of predicted cases. Testset size: n = 9417.

Table 4.3: Evaluation metrics for syndrome models. The prediction results for the naive Bayes
and the logistic regression models are shown, with the normal model and four resampling methods
for each approach. In the last column the total amount of predicted ILI cases for each model is
shown, which can be compared to the original number of ILI cases in the test set (nILI = 314). The
highest value of each metric is highlighted for each group of classifiers.

For the logistic regression model, the results differ. The two models logReg and logReg-
Down classify about a third and half of the cases as ILI compared to the originally present cases
(105 and 216 vs. 314). Precision is highest for the normal logistic regression model (58.18%)
and F1-measure is best for the logistic regression using downsampling (39.63%). LogRegUp,
logRegUpDown and logRegSMOTE classify more cases as ILI than originally present (1209,
1708, 1271 vs. 314). Of these three models, logRegUp has the highest F1-measure (32.29%).
The three models have higher recall values than the first two models, with logRegUpDown
having the highest recall (83.12%) and balanced accuracy (83.87%).

4.2.2 Variable importance of the logistic regression models

To get an understanding of which variables were important for the models to predict whether
a visit has ILI or not, the absolute z-value of the logistic regression models are reported. For
the logistic regression models, the 20 most important variables for each model are shown
in Figure 4.1. Note that categorical variables were transformed to dummy variables by the
models and therefore each category is depicted as a variable in this plot. All of the mod-
els have the body temperature (median) as their most important variable. Of the complaint
groups, the most frequent ones are malaise in adults (Unwohlsein bei Erwachsenen), headache
(Kopfschmerzen), malaise in children (Unwohlsein bei Kindern), general indicators (Generelle
Indikatoren), respiratory distress in children (Atemnot bei Kindern), respiratory distress in
adults (Atemnot bei Erwachsenen), conspiciuous behaviour (Auffälliges Verhalten) and sore
throat (Halsschmerzen). The months February, March and April are among the most impor-
tant variables. All of these variables were also significant on a 0.001-level, indicating that
the regression coefficients are statistically significant different from zero. The most impor-
tant variables are approximately the same for the first four models in Figure 4.1, only for
logRegSMOTE they have a different order. For logRegUp and logRegUpDown more variables
are statistically significant different from zero than for logReg and logRegDown.
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Figure 4.1: Variable importance of logistic regression models. The absolute z-value for the 20
most important variables in each model is shown. * p < 0.001 (for reasons of readability).
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4.3 Evaluation of weekly aggregated cases
For syndromic surveillance it is important to monitor the change of ILI cases over time. This
is why a further evaluation was implemented on the resulting ILI case time series. To obtain
the time series for the imputed diagnosis codes, the expert case definition was applied to the
imputed codes and the resulting ILI cases were aggregated weekly. For the syndrome prediction
models, the predicted ILI cases were aggregated weekly as well. Both were compared to the
reference time series, that is obtained by applying the expert case definition to the originally
present diagnosis codes (Syndrome ILI).
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(a) Weekly aggregated cases of naive Bayes imputation models
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(b) Weekly aggregated cases of DataWig imputation models

Figure 4.2: Weekly aggregated ILI cases resulting of the imputation models. The ILI cases
are shown that result from applying the expert rule on the imputed diagnosis codes by the imputa-
tion models, compared to the reference (dark blue line). (a) naive Bayes (normal vs. hierarchical
approach) and (b) DataWig models (three different encoders). The absolute amount of cases is
shown, for the second half of the dataset.
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4.3.1 Imputed diagnosis codes

Figure 4.2a shows the weekly ILI cases resulting from the imputation models using the flat
versus the hierarchical naive Bayes classifier versus the reference (dark blue line). It can be
seen that both resulting time series follow approximately the same line and are both below the
reference for most of the time. The weekly aggregated cases have a correlation of r = 0.873
(p < 0.001, NB Block) and r = 0.865 (p < 0.001, NB Hierarchical) with the reference. They
show the same seasonal pattern with peaks in January, February and March.

In Figure 4.2b the weekly cases resulting from the DataWig imputation models are shown.
The time series resemble the reference and follow the same seasonal pattern. The correlations
are r = 0.807 (p < 0.001, DataWig Categorical), r = 0.839 (p < 0.001, DataWig BoW) and
r = 0.797 (p < 0.001, DataWig LSTM). There is no clear difference between the models, but
the BoW-Model has the highest correlation with the reference.

4.3.2 Syndrome models

Figure 4.3a shows the weekly aggregated ILI cases predicted by the naive Bayes models from the
second part of the analyses. As we saw in Section 4.2, all naive Bayes models predicted more
cases compared to the expert definition. This is clearly visible in the time series graphs. The
normal naive Bayes model (NB) and the one using downsampling (NBDown) predicted around
the same number of cases and the models NBUp, NBUpDown and NBSMOTE predicted
around the same number. All models follow the same seasonal pattern as the reference. The
weekly cases from the normal naive Bayes model correlate highest with the reference (r =
0.866, p < 0.001), followed by the model using downsampling (r = 0.861, p < 0.001). NBUp,
NBUpDown and NBSMOTE have the following correlations with the reference: r = 0.831 (p
< 0.001), r = 0.799 (p < 0.001) and r = 0.856 (p < 0.001).

Figure 4.3b shows the weekly aggregated ILI cases resulting from the logistic regression
models predicting ILI. The two models logReg (normal) and logRegDown predicted less cases
compared to the expert definition, and both time series are clearly below the dark blue line
for the reference. The other three models predicted more cases as ILI and are exceeding the
reference line in most of the times, with bigger abbrevations in the first two years and less in
2019. The weekly cases from the logRegDown model correlate most with the reference with r
= 0.812 (p < 0.001), followed by logRegUp with r = 0.793 (p < 0.001). The normal logReg
model, logRegUpDown and logRegSMOTE have the following correlations with the reference
cases: r = 0.789 (p < 0.001), r = 0.789 (p < 0.001) and r = 0.769 (p < 0.001).
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(a) Weekly aggregated cases of naive Bayes syndrome classifiers
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(b) Weekly aggregated cases of logistic regression syndrome classifiers

Figure 4.3: Weekly aggregated ILI cases predicted by the syndrome classifiers. The predicted
amount of cases are compared to the reference (dark blue line). (a) Naive Bayes models and (b) the
logistic regression models, each with four different up- and downsampling methods. The absolute
amount of cases is shown, for the second half of the dataset.

4.3.3 Selection of the best models

At this point a selection of the models was obtained. The goal was to find the models from
each approach that are best suited to find ILI cases, when the information about the diagnosis
code is missing. For an overview of the selection criteria see Section 3.3.4. The models are
selected based on criteria 1. - 5. and then the selected models are further evaluated.

From the first approach, where imputation models were used to fill up missing diagnosis
codes, the hierarchical naive Bayes classifier showed better recall and F1-measures than the flat
naive Bayes classifier both when predicting the ICD codes and when evaluated on syndrome
level. Of the DataWig models, the LSTM approach had a higher recall on syndrome level, but
the bag-of-words approach had a better F1-measure and performed best on diagnosis-level.
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Even though the hierarchical NB classifier had the highest correlation with the reference time
series, it predicted less ILI cases than present in the reference (2025 vs. 4704 in the testset).
The DataWig BoW model predicted only slightly less ILI cases than the reference (3905 vs.
4704) and had a higher recall (35.18% vs. 23.71% on syndrome level), therefore this model
might be better suited to detect possible ILI cases. These two approaches (hierarchical naive
Bayes and DataWig BoW) were chosen as the best models from the imputation approach,
even though both resulted in less ILI cases than originally present.

The syndrome classification models were described in detail as well. From the naive Bayes
models, the normal model (NB) and NBDown did not predict as many ILI cases as the last
three models with 601 and 731 versus 314 original cases (and 1485, 1719 and 1512 for the last
three models). Both models followed the same seasonal pattern as the reference (see Figure
4.3a), with correlations of r = 0.866 and r = 0.861 respectively. Furthermore both models
had approximately the same F1-measure (32.97% for NB and 32.47% for NBDown). Because
NBDown had a higher recall (53.82%) than normal NB (47.77%), it was chosen as the best
naive Bayes model.

Of the logistic regression models, the first two (normal and logRegDown) resulted in less
ILI cases than in the reference, whereas the last three resulted in more ILI cases. Of these
three models, logRegUp has the highest correlation with the reference (r = 0.793). It has
the highest F1-measure (32.29%), while still having reasonable recall and balanced accuracy
measures and predicting as many ILI cases as logRegUpDown and logRegSMOTE do. It is
therefore chosen as the best logistic regression model.

4.3.4 Further evaluation of the selected models

The models selected in the last section were then further evaluated. They were used in the
first half of the dataset, where no diagnosis codes are available at all. Furthermore, they
were compared to another data source, the ICOSARI data, to validate them externally. A
comparison with the scenario of no available diagnosis codes at all was done to show the
advantage of the models over the ICD code-based case definition. As a last step, the false
classifications of the models were evaluated.
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Figure 4.4: Weekly aggregated ILI cases of the best models for the whole dataset. Predictions
were obtained for the first and the second half of the dataset and the resulting absolute number of
ILI cases are shown. Notice that for the expert rule (dark blue line) almost no cases are detected in
the first half of the dataset, because the diagnosis code is missing for all visits.

Performance in first half of the dataset The first half of the dataset poses a use case
with no available diagnosis codes. Here the newly developed models might help to detect ILI
cases that otherwise would be unable to find. Figure 4.4 shows the resulting ILI cases from
the best models for the whole time. It can be seen that the blue line, indicating the internal
reference (using the rule expert definition on the existing diagnosis codes), results in almost
no ILI cases up to March 2016. This is of course due to the fact, that no diagnosis codes are
available in this period of time. For the influenza season in 2015 and 2016, the new models
enable to estimate the course of the ILI waves. In the first years (2012 - 2014), the models
are not able to extract the same peaks of ILI cases. This might be due to missing data in the
rest of the dataset as well, especially in the complaint variables, which are most informative
for the classifications. Still the models find more ILI cases without relying on the diagnosis
code than the expert definition.

Comparison to an external data source In Section 2.5 it was shown that the ILI cases
derived by the case definition in this study can be compared to the severe acute respiratory
infection cases of the ICOSARI data base. The weekly aggregated cases from this data source
can be used as an external validating reference for the models, especially in the first half of
the data, where no internal reference can be derived.

Table 4.4 depicts the correlations of the best models with the internal reference (Syndrome
ILI) and the external reference (ICOSARI data) for the second half of the dataset. The
syndrome model NBDown correlates highest with the external data source, ICOSARI (r =
0.867, p < 0.001). The other models have a high correlation with the external data as well,
and the internal reference has the lowest correlations with the ICOSARI data. A plot with the
best models compared to the external ICOSARI data can be seen in Figure 4.5. The models
NBHierarchical (Diagnosis) and NBDown (Syndrome) have the highest correlations with the
internal reference (r = 0.865, p < 0.001 and r = 0.861, p < 0.001).
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Syn. ILI NBDown LogRegUp NBH. DataWigBoW ICOSARI

Syndrome ILI 1
NBDown 0.861*** 1
LogRegUp 0.793*** 1
NBHierarchical 0.865*** 1
DataWigBoW 0.839*** 1
ICOSARI 0.786*** 0.867*** 0.821*** 0.783*** 0.831*** 1

*** p < 0.001

Table 4.4: Correlations of the internal reference ILI cases with the best models and
the ICOSARI data. The resulting ILI cases from the best models were compared with the
internal reference (Syndrome ILI) for the second half of the dataset.

0.00

0.25

0.50

0.75

1.00

2017 2018 2019

R
el

at
iv

e 
F

re
qu

en
cy

Model

ICOSARI
LogReg Up (Syndrome)
NB Down (Syndrome)
Datawig BoW (Diagnosis)
Syndrome ILI

Figure 4.5: Weekly aggregated ILI cases of the best models compared to ICOSARI data.
The relative amount scaled to the maximum of each time series is shown, for the second half of the
dataset.

While using the expert case definition on the first half of the data set produces almost
no ILI cases and results in a correlation of r = 0.561 (p < 0.001) with the ICOSARI data
(2014-01-01 to 2016-03-15), all models explored in this thesis are able to detect at least some
ILI cases in the first half. Correlations between the model ILI cases and ICOSARI data for
the first half (2014-01-01 to 2016-03-15) are: r = 0.825 (p < 0.001) for NBHierarchical, r =
0.815 (p < 0.001) for NBDown, r = 0.809 (p < 0.001) for DataWigBoW and r = 0.639 (p
< 0.001) for logRegUp. It can therefore be shown that the models follow the external data
source with almost the same precision in the first half of the dataset as they do in the second
half. This can also be seen as an indicator that the models perform well on unseen data. A
plot with the best models over the whole time frame together with the external data can be
seen in Figure A.2 in Appendix A.
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Comparison to no diagnosis codes existing at all To get another impression of how
useful the models explored in this thesis will prove, they are compared to the case when no
diagnosis codes are available at all. This is depicted in Figure 4.6. The grey line at the bottom
indicates this worst case, when the case definition based on ICD codes leads to a low amount
of ILI cases and thus will not be helpful for syndromic surveillance. The benefit of the different
models becomes obvious.
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Figure 4.6: Weekly aggregated ILI cases of the best models compared to the scenario with
no diagnosis codes available. The grey line shows the resulting ILI cases for the expert rule if no
diagnosis codes are available. The absolute number of cases is shown, for the second half of the
dataset.

Evaluation of false classifications In this section, the selected models are explored in
detail with regard to their false classifications. For the false positives and false negatives, the
most frequent diagnosis codes are examined. Additionally, the diagnosis codes are grouped
into categories according to how likely they are related to ILI (see Section 3.3.3). This was
done to enable a quick sanity check and assess the quality of the models.

We know from Tables 4.2 and 4.3 that both imputation models (hierarchical NB and
DataWigBoW) resulted in less than the originally present ILI cases, whereas the classification
models logRegUp and NBDown resulted in a higher number of ILI cases. The false positives of
the four selected models labelled with ILI yes, possible or no, are depicted in Table 4.5. In all of
the models, the majority of the cases can be clearly labelled as non-ILI cases.8 The NBDown
classification model and the DataWigBoW model have a higher number of possible ILI cases
in their false positive classification than the other two models (35.23% and 36.87% versus
19.28% and 21.86%). All models have a very low number of actual ILI cases in their false
positives, which is to be expected. To get a more detailed insight into the false classifications,
the diagnosis codes of these false positives were looked at with regard to the letter or chapter
of the diagnosis (see Table 4.6).

8It has to be kept in mind that this still relies on the first given diagnosis code that is not necessarily the
only relevant diagnosis.
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Most of the false positives have diagnosis codes from the chapters J (Diseases of the
respiratory system), R (Symptoms, signs and abnormal clinical and laboratory findings, not
elsewhere classified), I (Diseases of the circulatory system), N (Diseases of the genitourinary
system), A and B (Certain infectious and parasitic diseases). Chapter J includes most of
the actual influenza-related diagnoses and chapter R includes various symptoms instead of
diagnoses, like cough or headache. The most frequent diagnosis code of the false positives is
J44 (Chronic obstructive pulmonary disease with acute lower respiratory infection Excl.: with
influenza (J09-J11)). It can be assumed that this diagnosis implies very similar symptoms
compared to influenza-like illness and is therefore either predicted as ILI by the classification
models or might get another diagnosis code from the chapter J assigned by the imputation
models. The second most frequent diagnosis of false positives is J15 (Bacterial pneumonia),
where the same explanation applies.
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Figure 4.7: Alluvial plot for the predicted diagnoses of DataWigBoW. Those cases are shown
in green that got a diagnosis (block) of the chapter J by the DataWigBoW model. On the left side,
the original chapter of these diagnoses is shown.

These findings indicate that overall the classification models are able to predict diseases
that are medically related to each other, but might not be able to distinguish with the precision
needed. Especially for the diagnosis prediction (but similarly for the syndrome prediction) this
might be due to low information density in the other available variables. Symptoms coded
in MTS are probably the most informative predictors, but still only have 51x191 different
categories and are probably not able to represent the same amount of information that a
physician uses for making a decision.

The third most frequent diagnosis of false positives is N39 (Other disorders of urinary
system, including Urinary tract infection). This is a somewhat surprising finding, but the
misclassification might be due to similar symptoms. When examining the most frequent
symptoms in these cases, 60.25% of them had symptoms that were related to ILI as well or
were unspecific symptoms.9

9For the false positives of the syndrome model logRegUp, that had N39 as their first diagnosis (n =
317), the most frequent complaint group and complaint value combinations were: malaise in adults & adult
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logRegUp NBDown DataWigBoW NBHierarchical

Category N % N % N % N %

ILI no 3699 79.41 7375 63.58 1139 62.58 554 77.16
ILI possible 898 19.28 4087 35.23 671 36.87 157 21.86
ILI yes 61 1.31 138 1.19 10 0.55 7 0.98

Sum 4658 100.00 11600 100.00 1820 100.00 718 100.00

Table 4.5: False positives of the best models, by category. The cases falsely predicted
as being ILI by the best models are evaluated on a medical level. The absolute number and
percentages of cases definitely being ILI (ILI yes), possibly being ILI (ILI possible) or definitely
not being ILI (ILI no) are shown.

The alluvial plot in Figure 4.7 provides an insight in the predictions of one of the imputation
models. It can be seen, that for visits that get a J diagnosis as the prediction, the original
diagnoses usually are J, R, I, A, E and N diagnoses. These were already identified as the
most frequent diagnoses chapters of false positives, therefore providing an explanation why
they were labelled as ILI based on the imputed diagnosis codes but not based on the original
diagnosis codes.

The same evaluation was done for the false negatives, i.e. the cases classified as non-ILI,
that are originally ILI cases. The categorisation of the false negatives into ILI yes, possible or
no is depicted in Table 4.7 and the categorisation into diagnosis (block) can be found in Table
4.8. All models had classified approximately 5% of cases as non-ILI that were actually no ILI
cases (regarding the diagnosis code). Around 95% of all false negatives were verified as being
actual ILI cases. In Table 4.8 it can be seen that the the diagnosis codes of the false negative
cases are just a few codes, with the most common codes of cases that originally should have
been classified as ILI being J18, J06, J10 and R50.

temperature > 38.5◦C (n = 85), malaise in adults & recent problem (< 7 days) (n = 28), malaise in adults
& rapid onset (n = 27), general indicators & adult temperature > 38.5◦C (n = 26) and respiratory distress
in adults & low oxygen saturation (n = 25).
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Diagnosis
(letter)

logRegUp NBDown DataWigBoW NBHierarchical

N % N % N % N %

A 372 7.99 1024 8.83 158 8.68 80 11.14
B 113 2.43 609 5.25 145 7.97 45 6.27
C 72 1.55 45 0.39 20 1.10 13 1.81
D 88 1.89 87 0.75 20 1.10 13 1.81
E 192 4.12 110 0.95 40 2.20 24 3.34
F 14 0.30 87 0.75 7 0.38 3 0.42
G 71 1.52 134 1.16 17 0.93 15 2.09

H 26 0.56 684 5.90 74 4.07 5 0.70
I 565 12.13 316 2.72 61 3.35 47 6.55
J 1266 27.18 4440 38.28 691 37.97 155 21.59
K 193 4.14 377 3.25 60 3.30 27 3.76
L 28 0.60 159 1.37 12 0.66 5 0.70
M 58 1.25 79 0.68 20 1.10 15 2.09
N 478 10.26 534 4.60 165 9.07 108 15.04

O 8 0.17 30 0.26 15 0.82 19 2.65
P 5 0.11 209 1.80 4 0.22 1 0.14
Q 1 0.02 89 0.77 1 0.05 0 0.00
R 894 19.19 1568 13.52 173 9.51 84 11.70
S 35 0.75 234 2.02 9 0.49 12 1.67
T 48 1.03 211 1.82 18 0.99 12 1.67
X 0 0.00 1 0.01 0 0.00 0 0.00
Z 131 2.81 573 4.94 110 6.04 35 4.88

Sum 4658 100.00 11600 100.00 1820 100.00 718 100.00

Table 4.6: False positives of the best models, by diagnosis (letter). The cases falsely
predicted as being ILI by the best models are evaluated on a second medical level. The
absolute number and percentages of the diagnosis codes (letter) of the false positives are
shown.

logRegUp NBDown DataWig06bow NBHierarchical

Category N % N % N % N %

ILI no 20 5.62 72 5.34 136 4.55 189 5.37
ILI possible 0 0 1 0.07 0 0 0 0
ILI yes 336 94.38 1276 94.59 2854 95.45 3332 94.63

Sum 356 100.00 1349 100.00 2990 100.00 3521 100.00

Table 4.7: False negatives of the best models, by category. The cases falsely predicted
as not being ILI by the best models are evaluated on a medical level. The absolute number
and percentages of cases definitely being ILI (ILI yes), possibly being ILI (ILI possible) or
definitely not being ILI (ILI no) are shown.
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Diagnosis
(block)

logRegUp NBDown DataWig06bow NBHierarchical

N % N % N % N %

J06a 65 18.26 541 40.10 1665 55.67 1921 54.56
J09b 1 0.28 3 0.22 2 0.07 4 0.11
J10a 61 17.14 188 13.94 264 8.83 328 9.32
J11b 19 5.34 66 4.89 128 4.28 178 5.06
J12b 0 0.00 2 0.15 6 0.20 7 0.20
J18a 169 47.47 372 27.58 559 18.70 630 17.89
J20c 0 0.00 1 0.07 0 0.00 0 0.00
J22a 9 2.53 26 1.93 44 1.47 58 1.65
J44b 0 0.00 1 0.07 0 0.00 0 0.00

R05a 0 0.00 7 0.52 24 0.80 40 1.14
R50a 32 8.99 142 10.53 298 9.97 355 10.08

Sum 356 100.00 1349 100.00 2990 100.00 3521 100.00
a ILI yes
b ILI no
c ILI possible

Table 4.8: False negatives of the best models, by diagnosis (block). The cases
falsely predicted as not being ILI by the best models are evaluated on a second medical
level. The absolute number and percentages of the diagnosis codes (block) of the false
positives are shown.
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5 Discussion
The aim of this thesis was to investigate two approaches for dealing with missing values in
the diagnosis variable in an emergency department dataset, to subsequently be able to detect
cases that might have an influenza-like illness syndrome. To achieve this, in the first approach,
three methods were compared that impute the missing ICD-10 diagnosis codes from all other
variables. A flat multi-class naive Bayes classifier was compared to a hierarchical naive Bayes
classifier and the imputation package DataWig. In the second approach, a binary classification
model was trained to predict the syndrome ILI for a given visit, without using the diagnosis code
as input. A naive Bayes classifier and a logistic regression model were compared and several
resampling methods were used to tackle the high imbalancedness of the training dataset. All
models were evaluated with regard to their ability to detect the ILI cases as accurately as
possible and in a last step compared on a weekly aggregated time series level. The best
models from each approach were selected and further examined.

In the following, the results of the imputation and classification approaches as well as the
evaluation of the models are briefly summarized and discussed. The limitations of this analysis
are considered and further developments are suggested.

5.1 Critical discussion of the results
Imputation of diagnosis codes The classification and imputation of the diagnosis codes
worked reasonably well and showed that predicting clinical diagnoses in an emergency depart-
ment dataset from all information linked to a patient stay can help enhancing the dataset
for subsequent analyses. The DataWig imputation models performed slightly better than the
naive Bayes classifiers, both on model- and syndrome-level. Only on time series-level the naive
Bayes models had minimal higher correlations with the reference time series. Of the DataWig
models, the bag-of-words approach performed best regarding F1-measure and correlation with
the reference time series. The DataWig models that interpreted the complaint variable as
sequential were better able to predict the diagnosis code than when interpreting complaint as
categorical. This might be due to the format of the complaints, that consist of several words or
a short description of the symptom. When regarded as representations in a feature space some
complaints might have smaller or larger distances to each other, caused by a similar wording.
This can be taken into account in the prediction process, but would not be recognised if taken
as categorical features. If in the future more data sources are added to the system (e.g. patient
records), this approach has the key advantage that even sequential variables can be used as
input to impute the diagnosis codes without the need of further preprocessing steps.

On the other hand, the naive Bayes models differ only slightly from the DataWig models in
terms of F1-measure and recall, indicating that even this rather simple model is able to keep
up with the more complex machine learning approach. This is in line with other findings of
the performance of the naive Bayes classifier in difficult tasks compared to other methods and
emphasizes its predictive performance when most of the input variables are categorical (Rish,
2001). The NB classifier was furthermore shown to perform well when predicting medical
diagnoses (Al-Aidaroos, Bakar, & Othman, 2012; Pakhomov et al., 2006; Scheurwegs et al.,
2017). Compared to the neural network-based method in DataWig, naive Bayes offers an
easily understandable model and decision making process. Furthermore it requires way less
computational power and is much faster. If additional sequential data is available in the future,
a naive Bayes approach can be used for classifying this data as well, since it performs well for
text classification tasks (Mitchell, 1997).

The hierarchical naive Bayes classifier resulted in better predictions than the flat classifier,
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indicating that taking into account the hierarchical nature of the ICD-10 diagnosis codes in
the prediction process can enhance the performance, as suggested by Perotte et al. (2014)
and Zhang (2008). The procedure explored in this work represents a rather simplistic way of
implementing the hierarchy into the model. It was used to get a first impression of whether this
might improve the performance. In a future analysis one could implement a procedure similar
to the one proposed by Perotte et al. (2014), with one classifier predicting the first hierarchical
level (diagnosis (letter)) and then 23 classifiers on the second level, one for each letter. Another
idea could be to take into account the hierarchy in the evaluation metrics, for example by
inserting a factor for the correct prediction of the first level (diagnosis (letter)). Nevertheless,
the flat and the hierarchical naive Bayes classifiers from this work showed comparable results
to those of Perotte et al. (2014), where the flat (SVM) classifier had an F1-measure of 27.6%
(28.7% in this work) and the hierarchical 39.5% (30.33% in this work).

Comparing the imputation models on syndrome- and time series-level showed that the
reference ILI cases could be detected reasonably well by the expert definition using the imputed
diagnosis codes. All time series have the same seasonal peaks around February and March of
each year. This also emphasizes the use of ED data for the syndromic surveillance of influenza-
like illness, as suggested by Zheng et al. (2007) and Bourgeois, Olson, Brownstein, McAdam,
and Mandl (2006).

Regarding the evaluation metrics reported in this work, it has to be taken into consideration
that for a multi-class setting the metrics can be computed in different ways. In this work,
the macro-averaged metrics were computed, which weight each class the same (versus micro-
averaging, where larger classes are weighted more compared to smaller classes). Some metrics
can therefore be affected by imbalanced class sizes, if the model performs differently for small
versus large classes. If a model has better performance for larger classes, a macro-average is
a more conservative metric. If it performs better on smaller classes, a macro-average might
be an overestimation. Therefore, the macro-averages suggest a more conservative picture
of the overall performance. In this work, when predicting diagnosis codes, it is considered
more relevant that the model performs well for the large classes which are the diagnosis codes
mostly given and present in an emergency department. When looking into the relationship
of e.g. recall in a single class (diagnosis (block)) compared to this classes’ size (see Figure
A.3 in Appendix A) for the DataWigBoW model, we can indeed see that recall is better for
larger classes (r = 0.485, p < 0.001). F1-measures on the other hand are not correlated with
class frequency (r = 0.140, n.s.), confirming that F1-measures are appropriate for unbalanced
classes. To get a better picture of the performance of the models without relying too heavily
on the smaller classes, one might also have a look at the micro-averaged metrics.

It can be concluded that the imputation models propose a valid approach of filling up
missing values in the diagnosis variable and thereby enable subsequent analyses based on the
diagnosis codes. The hierarchical approach improved the performance compared to a flat
classifier. A health outcome like ILI can be detected with a reasonable accuracy, enabling the
assessment of seasonal peaks on a large time frame. However, for predictions on single case
level, the models might not be suited that well. In this case, a multi-label approach would be
a more appropriate solution, which allows for multiple diagnoses to be possible and with an
expert making the final decision. This could be implemented with the current dataset as well,
with the advantage that several diagnosis codes are already existing for one visit.

Prediction of an ILI syndrome The second part of this thesis consisted of learning and
predicting the ILI syndrome from all available variables except for the diagnosis code. It could
be shown that this way of automatically finding a case definition for ILI that is independent
of the diagnosis code worked quite well, but the models have to be evaluated cautiously with
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regard to their decision making process. For the logistic regression models, the relevant predic-
tor variables were identified. The body temperature was the most important predictor in all of
the models, together with the symptoms mailaise in adults (Unwohlsein bei Erwachsenen) and
headache (Kopfschmerzen). These predictors can be considered relevant for the ILI syndrome
and were confirmed by a physician and epidemiologist. The twelve most important variables
(see Section 4.2.2) can be considered relevant for the ILI syndrome and were approved by epi-
demiologists. After these variables, some models had complaints like falls (Stürze), collapsed
adult (Kollabierter Erwachsener) and diarrhoea and vomiting (Durchfälle und Erbrechen) as
significant predictors. These can not be linked medically to the ILI syndrome, but probably
occur often in an emergency department setting. Furthermore, the months February, March
and January are among the twelve most important predictors for all models. Whereas this is
theoretically sound, the inclusion of the months into the models in the first place is question-
able. The models might label a case with ILI-like symptoms as "ILI" only if it appears within
these months. Or it might falsely classify another infection as ILI because it appears within
these months. Because the goal of the model is to detect ILI based on the symptoms (and
other health related data), it might not be suitable to include this variable in the first place.
The models might need to be trained without this variable to confirm their ability to detect
relevant ILI cases.

The different resampling methods for balancing the minority versus majority class in the
training set improved the performance of the models compared to the basic ones based on
the original training set. Simple downsampling resulted in models with higher sensitivity
than and almost the same specificity as the normal models. Upsampling, combined up- and
downsampling and the SMOTE algorithm resulted in higher sensitivity but smaller specificity
of the models compared to the normal ones. Interestingly, the SMOTE algorithm did not
improve the prediction of ILI more than did the simple up- and downsampling methods. This
might be caused by the fact that while the SMOTE algorithm does include an upsampling
method for nominal data as well it was originally designed for numeric data only (Torgo, 2010).
With all of these resampling methods it has to be kept in mind that the sampling was only
repeated once. To improve the stability of the results one could draw multiple random samples
for up- and downsampling and average the resulting metrics across them, but also vary the
amount of sampled data.

Regarding the time series of weekly aggregated ILI cases by the classification models, it can
be seen that the predicted cases by both model types follow the seasonal peaks around January
to March. Furthermore, the NB models detect much more ILI cases compared to logReg or
the reference ILI cases. This amount could be adjusted by changing the threshold at which a
case is classified as ILI. To assess the relationship between sensitivity and specificity for each
model, ROC curves could be examined as well. In ROC curves the sensitivity is plotted against
1 - specificity (Fawcett, 2006). This can help to find the optimal threshold in order to obtain
the desired sensitivity or specificity. Because logistic regression and naive Bayes allow to get
a prediction of a probability, it is possible to set a threshold manually and therefore adjust the
model to the desired sensitivity and specificity. Additionally, the priors of the minority class
can be changed for the naive Bayes classifier, therefore making it more sensitive to this class
(Chawla et al., 2002).

It has to be kept in mind that the naive Bayes classifiers will always predict the outcome
for any given observation, even if it has missing values in one of the variables. The logistic
regression models on the other hand will only make a prediction if the observation has valid
values in all of the variables of the model. Logistic regression would need an imputation of
the other missing values before applying the model, but one could also use the model on an
incomplete dataset. The results from the time series evaluation suggested that even with only
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considering the complete cases, the logistic regression models (e.g. logRegUp) can give an
appropriate impression of the existing ILI cases.

In general, both classification model types are also dependent on the labels in the training
set and how they were determined. In this case, a more sensitive, unspecific ILI case definition
was used to label the cases, to obtain a larger number of positive training examples. This leads
to an inclusion of visits with more unspecific symptoms, making the model learn to include
these cases in the prediction. This might be one of the reasons why that many false positives
of the logRegUp and NBDown models were considered non-ILI cases. It might therefore be
interesting to use a more specific set of rules for the labelling of the reference ILI cases, resulting
in only few but very clear ILI cases. The training set would need to be upsampled again to
obtain enough positive training examples. Because several additional datasets of EDs exist in
the project, this kind of analysis might be feasible to conduct, combined with a downsampling
of the non-ILI cases.

An advantage of the logistic regression model is that interactions can be included. This
might help to model the relationship better, for example by including an interaction term with
temperature and the symptom variables. Non-linear relationships were not considered in this
analysis and might be worth to take into consideration as well.

In conclusion, it can be seen that the ILI syndrome can be predicted with the two classi-
fication models relying on the variables from the emergency department setting and therefore
proposing an alternative case definition that is independent of the existence of diagnosis codes.
The most important source of information are symptoms, as reported by the complaint group
(MTS category). Compared to the first approach, imputation of diagnosis codes (and espe-
cially the DataWig models), the syndrome models provide a better explainability and can be
extended to other syndromes as well. Still, a new model has to be trained for each syndrome,
whereas the imputation models only need to be executed once.

Performance on the first half and comparison with external data When using both
approaches, imputing diagnoses and predicting the ILI syndrome, to obtain ILI cases in the
first half of the dataset, where no diagnosis codes are available at all, the advantage of these
two approaches becomes very clear. Relying solely on the expert definition based on ICD-10
diagnosis codes, no analyses would be possible for this period of time. Both approaches were
able to detect some ILI cases to allow for subsequent analyses. It was also shown that in this
period of time the models have a reasonable correlation with the external data source (r =
0.825 for NBHierarchical with ICOSARI).

It was surprising to find that the data from this study resembled an external data source
that well. First of all, this study only includes data from one single emergency department,
not many across Germany. The ICOSARI data on the other hand joins data from about 80
hospitals all over Germany. Second, the case definitions used in the ICOSARI data differs from
the ILI case definition used in this study. Still the cases seem to be comparable, indicating
that the ILI definition in this study captures also less severe influenza cases and cases with
acute respiratory infections, which in turn resemble those cases included by ICOSARI (hos-
pitalised/more severe acute respiratory infections). The ICOSARI data therefore served as a
useful source of validation and with including more emergency departments in the analysis,
the comparison can be enhanced.

Evaluation of false classifications The evaluation of false classifications of all models and
the predictors of the logistic regression models revealed that the models learned to predict a
syndrome that resembles the ILI syndrome from the expert case definition. Nevertheless, the
models included many cases that were not originally labelled as ILI and the evaluation showed
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that this is mostly due to very similar symptoms or diagnosis codes. In a future application, the
models should be either trained with more specific labels or the threshold should be reduced to
include only cases with more severe symptoms. Regarding the false negatives, a more detailed
evaluation would bring insights in why they were not found to be ILI cases in the first step
of the classification. For the diagnosis imputation models this might be due to the models
predicting a non-ILI-related diagnosis code for a case that originally had an ILI-related ICD
code. For the ILI prediction models it would be interesting to see what characteristics the
false negatives have in comparison to the true positives. And last, the evaluation of false
classifications could also be extended to complaints or variables like temperature.

5.2 Limitations of this work
This work has several limitations that will be discussed in this section. First of all, with
selecting only the first diagnosis code from all available diagnoses for a visit, a pre-selection
and reduction of information is done. Even though several diagnoses might be true for one
visit, only one was selected. This can lead to cases where the symptoms might not be clearly
related to the diagnosis code. A way to deal with this would be a multi-label approach, where
in training and prediction multiple diagnosis codes are possible (see Larkey and Croft (1995)
and Pakhomov et al. (2006) for suggested approaches). Even though in this particular setting
predicting more than one diagnosis is not feasible, considering the second and maybe third
likely diagnosis for the evaluation of the prediction model might improve its performance (as
suggested by Perotte et al. (2014)). At the same time, the diagnosis was reduced to the
3-digit version, therefore further diminishing the amount of information. This problem might
be solved by a multi-label approach as well, or by a more sophisticated hierarchical approach.

A drawback of the syndrome prediction approach is that it is still dependent on the data
being labelled manually before the analysis to have a reference to train the model. An a priori
case definition has to be made by epidemiologists and the trained model is dependent on this
definitions’ sensitivity and specificity. It is therefore not a fully automatic or unsupervised
approach, but enables application users to adapt the model or original case definition with
regard to the results.

Furthermore, as described in Section 2.4, the expert case definition was originally developed
using the 4-digit ICD-codes, but was then applied to the 3-digit codes. In this dataset this
resulted in only 12 falsely included cases, but this procedure should not be applied to another
dataset without assessing the amount of wrongly included cases before.

The training dataset was derived from a reduced dataset containing only visits with no
missing values in the relevant variables at all. This might lead to a selection bias in the
resulting cases. An analysis of the distribution of the variables for the whole dataset versus
the second half with all cases versus the second half with no missing values revealed that the
mean of age differs for the last dataset (see Table A.2 in Appendix A). This might indicate
that the values are not completely missing at random, but instead more missing values occur
in younger patients. Furthermore, the distribution of cases regarding diagnosis (letter), the
involved department and the time of admission was different in the reduced dataset compared
to the whole set. In this case, this only influences the generalisability of the models to
new datasets, because they might be less sensitive at detecting the syndrome in a different
population.

It also has to be considered that the vital parameters were aggregated to a median over the
observed values in one visit. Different preprocessing methods are possible as well, e.g. using
only the maximum value or binning them to predefined categories with regard to severity.

Another limitation lies in the hierarchical structure of the MTS symptoms. Because only
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the most severe complaint is reported, other possible symptoms are neglected. Free-text
variables could provide more information, but might take more time to be filled out by the
medical staff. Still, this kind of variable is not available in the present dataset.

Last, this study uses data from only one emergency department and therefore the results
can not easily be generalised. Because of the general data framework that is used in the pro-
posed syndromic surveillance system, the integration and comparison of additional emergency
departments is achieved easily and the models from this study can be explored on a broader
set of EDs covering all of Germany. It might be of interest how the models differ between the
EDs and whether they can be applied on new datasets.

5.3 Conclusion
This study showed that two different approaches are possible for dealing with missing diagnosis
codes in an ED setting, when the goal is to monitor an influenza-like illness syndrome. It
was possible to predict and impute the missing diagnosis codes from the available ED data.
Numeric and categorical variables could be used, with the potential of expanding the model to
include sequential data without further preprocessing steps. The dataset is therefore enhanced
and a diagnosis code can be predicted for a visit at any time, enabling further analyses and
the syndromic surveillance based on diagnosis codes. The predictions made by the models
were sufficiently precise to subsequently monitor an ILI syndrome. Introducing a multi-label
approach or considering the hierarchical nature of ICD-codes could improve the performance.

Additional to the existing rule-based case definition, a model for a data-driven case defi-
nition derived from a given case definition for the ILI syndrome was developed. This flexible
case definition is less vulnerable to missing data and is able to predict the syndrome by relying
on symptoms, vital parameters and other information available in the dataset. The sensitivity
can be adjusted according to the use case, including more or less severe cases. Furthermore,
this generic method can be extended to other syndromes as well.

In conclusion, the syndromic surveillance of an ILI syndrome based on the present ED data
was enabled, through enhancing the data basis and developing flexible methods to find ILI
cases in a realistic dataset with missing diagnoses. While this study was based on data from
only one ED, it will be the next step to apply the models to additional datasets and other
syndromes to evaluate their generalisability.
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A Supporting tables and figures

Variable Description % missing
in whole dataset

% missing
in second half

Age* 18.3 1.3
Gender* < 0.01 < 0.01
PLZ first three digits of postal code** 0
Date* 0 0
Hour* 0 0
Department* 18.3 37.4
Disposition allocation after ED > 99.9
Isolation reason for isolation (if applicable) 46.7
Referral* referral to hospital < 0.01 0.5
Transport mean of transport to hospital 67.0
Triage triage value of severity 44.4
Vaccination tetanus 46.3
Complaint (group)* MTS category < 0.01 2.3
Complaint (value)* MTS indicator < 0.01 3.5
Diagnosis A excluded diagnosis > 99.9
Diagnosis G* verified diagnosis 58.8 16.1
Diagnosis V suspected diagnosis 93.3
Diagnosis Z diagnosis for condition after sth. > 99.9
Pain (healthprofessional) pain rating by healthprofessional 87.4
Pain (patient) pain rating by patient > 99.9
Bloodpressure systolic* 55.1 52.1
Heartrate* 55.8 50.6
Oxygensaturation* 57.7 52.3
Respiratory rate* 48.8 10.7
Temperature* 52.3 46.2
* Variable selected for analysis.
** Constant for all visits.

Table A.1: Variables originally included in the dataset. All variables available in the dataset are
shown and described where needed, together with their percentage of missing values in the whole
dataset (n = 384021). The variables that were selected for the analysis are marked with a star (*).
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Variable Whole set 2nd half w/ missings 2nd half w/o missings*

mean SD mean SD mean SD

Age 45.51 26.04 42.13 26.74 56.32 22.49
Temperature (median) 36.95 1.08 36.89 0.96 36.80 0.92
Blood pressure (median) 139.78 24.10 139.50 23.95 139.37 23.84
Oxygen saturation (median) 96.78 3.72 97.07 3.15 96.88 3.17
Heart rate (median) 84.32 21.45 85.61 23.00 83.32 19.05
Respiratory rate (median) 13.84 6.56 13.23 6.30 15.14 5.15

Gender (% female) 48.31 48.09 50.97
* Complete-case dataset, meaning only visits with no missing values in any of the variables are in-
cluded. The metrics can of course only be computed for those cases that have an observation in the
corresponding variable.

Table A.2: Descriptive statistics for the numeric variables, compared for different datasets.
Mean and standard deviation are reported for the numeric variables included in this analysis. For the
categorical variable gender the percentage of female patients are shown. They are compared for the
different datasets: the whole dataset, including all cases (n = 384021), the second half (n = 188490)
and the second half including only complete cases (n = 47088), which is the basis for the training of
the models.

referral Label (German) Label (English)

VAP Vertragsarzt/Praxis panel doctor/doctor’s office
KVNPIK KV-Notfallpraxis am Krankenhaus emergency doctor’s office at the hospital
KVNDAK KV-Notdienst außerhalb des Krankenhauses emergency service out of the hospital
RD Rettungsdienst ambulance
NA Notarzt emergency doctor
KLINV Klinik/Verlegung clinic/transfer
NPHYS Zuweisung nicht durch Arzt referral not by physician
OTH Andere others

Table A.3: Abbreviations in the variable referral.
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Figure A.1: Weekly aggregated ILI cases compared to ICOSARI data. The cases are scaled
to the maximum of each timeseries, resulting in relative frequencies. The whole timeframe is shown,
with ICOSARI data being not available before 2014. In the first part, where ICOSARI data is available
(2014-01-01 to 2016-03-15) the time series have a correlation of r = 0.561 (p < 0.001). In the second
part, the correlation is r = 0.786 (p < 0.001).
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Figure A.2: Weekly aggregated ILI cases by the best models compared to ICOSARI data for
the whole time frame. The relative amount scaled to the maximum of each time series is shown,
for the whole dataset.
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Figure A.3: Recall by class frequency for DataWigBoW. The recall measure for every class
(diagnosis (block)) for the imputation model DataWigBoW is plotted against the frequency of this
class in the test set.
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Package Version Package Version

alluvial 0.1-2 matrixStats 0.55.0
assertthat 0.2.1 mice 3.7.0
broom 0.5.3 naivebayes 0.9.6
car 3.0-7 naniar 0.4.2
caret 6.0-85 plotly 4.9.1

corrplot 0.84 plyr 1.8.5
cowplot 1.0.0 ppcor 1.1
data.table 1.12.8 pROC 1.16.1
dbplyr 1.4.2 pryr 0.1.4
DMwR 0.4.1 RANN 2.6.1

doParallel 1.0.15 readxl 1.3.1
dplyr 0.8.3 rjson 0.2.20
e1071 1.7-3 rlist 0.4.6.1
fst 0.9.0 rmarkdown 2.1
ggalluvial 0.11.1 ROCR 1.0-7

ggplot2 3.2.1 RODBC 1.3-16
ggpubr 0.2.5 rstudioapi 0.10
ggrepel 0.8.1 skimr 2.0.2
gplots 3.0.1.2 stargazer 5.2.2
Hmisc 4.3-0 stringi 1.4.4

ids 1.0.1 tibble 2.1.3
kableExtra 1.1.0 tidyr 1.0.0
klaR 0.6-14 tidyverse 1.3.0
knitr 1.27 timeDate 3043.102
lubridate 1.7.4 VIM 5.1.1

Table A.4: R packages and their versions used
in this work.
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