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toxin-producing Escherichia coli
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Introduction: The objective of this study was to develop, using a genome wide

machine learning approach, an unambiguous model to predict the presence of

highly pathogenic STEC in E. coli reads assemblies derived from complex samples

containing potentially multiple E. coli strains. Our approach has taken into account

the high genomic plasticity of E. coli and utilized the stratification of STEC and

E. coli pathogroups classification based on the serotype and virulence factors

to identify specific combinations of biomarkers for improved characterization of

eae-positive STEC (also named EHEC for enterohemorrhagic E.coli) which are

associated with bloody diarrhea and hemolytic uremic syndrome (HUS) in human.

Methods: The Machine Learning (ML) approach was used in this study on a large

curated dataset composed of 1,493 E. coli genome sequences and 1,178 Coding

Sequences (CDS). Feature selection has been performed using eight classification

algorithms, resulting in a reduction of the number of CDS to six. From this reduced

dataset, the eight ML models were trained with hyper-parameter tuning and

cross-validation steps.

Results and discussion: It is remarkable that only using these six genes, EHEC can

be clearly identified from E. coli read assemblies obtained from in silico mixtures

and complex samples such as milk metagenomes. These various combinations

of discriminative biomarkers can be implemented as novel marker genes for the

unambiguous EHEC characterization from di�erent E. coli strains mixtures as well

as from raw milk metagenomes.

KEYWORDS

machine learning, Shiga toxin-producingEscherichia coli, food safety,metagenomics, raw

milk

1. Introduction

Shiga toxin-producing Escherichia coli (STEC) are important zoonotic pathogens

comprising more than 400 serotypes (Beutin and Fach, 2015). Pathogenic STEC strains such

as enterohemorrhagic E. coli (EHEC) may cause hemorrhagic colitis (HC) and hemolytic-

uremic syndrome (HUS) in humans. However, it remains difficult to fully define human

pathogenic STEC or identify virulence factors for STEC that clearly foresee their capacity to
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cause human disease (European Food Safety Authority and

European Centre for Disease Prevention and Control, 2021). The

production of Shiga toxin (stx genes) by highly pathogenic STEC

(i.e., EHEC) is the major virulence factor responsible for HUS,

but many E. coli strains that produce Shiga toxin do not cause

HUS. Therefore, the identification of virulent STEC strains based

solely on the presence of stx genes may be misleading. Shiga

toxins comprise a growing family of genes with a vast type

diversity (Scheutz et al., 2012). The Stx family splits into two

major branches, Stx1 and Stx2, which are immunologically not

cross-reactive and show about 55% difference in their amino acid

sequences (Müthing et al., 2009). In addition to producing one or

both types of Shiga toxin, typical EHEC strains harbor a genomic

pathogenicity, called the “locus of enterocyte effacement” (LEE).

This locus was first identified in enteropathogenic E. coli (EPEC),

a leading cause of infant diarrhea in developing countries. The

LEE carries genes encoding proteins involved in the pathogenicity

of E. coli strains, as they participate in bacterial colonization of

the gut and destruction of the intestinal mucosa (Nataro and

Kaper, 1998). For example, the intimin-encoding gene (eae) is

directly involved in the attaching and effacing (A/E) process

and serves as an indicator for the A/E function in the bacteria

(Zhang et al., 2002). As mentioned above, prediction of STEC

pathogenicity using available markers is challenging, but strains

positive for Shiga toxin (in particular the stx2 genes) and eae

(intimin production) genes have been shown to be associated with

a higher risk of causing more severe illness than other virulence

factor combinations (European Food Safety Authority, 2007, 2013).

STEC are traditionally considered to be zoonotic pathogens that

are primarily food- and water-borne, with the main reservoir being

the digestive tract of mammals, particularly ruminants (Gill et al.,

2022). Consumption of contaminated food, such as undercooked

ground meat and unpasteurized dairy products, is the principal

source of infection. Current methods for EHEC identification in

feed and food samples rely on the molecular detection of stx,

eae, and the top five or top seven EHEC serogroups, followed by

strain isolation, as described in the ISO/TS 13136:2012 (EU) and

MLG5C.02 (US) reference methods (International Organization

for Standardization, 2012; European Food Safety Authority and

European Centre for Disease Prevention and Control, 2021). The

strain isolation step is necessary to demonstrate that both genes

are present in the same strain. Indeed, the major challenge for

EHEC identification based on stx and eae genes detection is that

these genes are located on mobile genetic elements, and can be

carried by non-pathogenic E. coli strains simultaneously present in

the food matrix, as well as other Enterobacteriaceae (Herold et al.,

2004) or even free bacteriophages (Imamovic et al., 2009). The

high rates of unconfirmed presumptive positive results observed in

food safety tests are a global challenge for the regulatory agencies

and industry quality control laboratories performing STEC testing

(Delannoy et al., 2016, 2022). It remains a desirable goal for the

industry and decision makers to develop cost-effective sensitive

detection tests that can guaranty the highest level of food safety.

Our objective here was to refine the EHEC diagnostic systems

for better identification and characterization of highly pathogenic

STEC from any kind of food samples. This work was based on the

hypothesis that the co-occurrence of the stx and eae genes in the

same genome would imply the presence of other (variable) genes

and should create complex genetic signatures. We took advantage

of a Genome Wide Association Study program (GWAS) to explore

a large number of E. coli assemblies available from public databases

(Franz et al., 2014) and generated a complex matrix summarizing

presence and absence for groups of orthologuous genes. Machine

learning (ML) methods perform admirably in detecting predictive

patterns hidden within high dimensional data (Lupolova et al.,

2016; Moradigaravand et al., 2018). Supervised learning was used

to create ML models that can precisely predict the co-occurrence

of stx and eae genes in a genome or an assembly. After testing on

simple in silico mixtures of strains, we successfully applied these

models on long-read metagenomic sequencing data of artificially

eae-positive STEC contaminated raw milk samples.

2. Materials and methods

2.1. Genomic data collection

Available E. coli genomes (n = 31,230) were retrieved from

the GenBank database during the database construction. Based

on the genome sequence completeness (full E. coli genomes

were included in priority), the country of isolation and the E.

coli pathotype, 1,425 genomes were selected to maximize the

diversity. Sixty-eight additional genomes sequenced and assembled

in a previous study by Jaudou and colleagues (Jaudou et al.,

2023), were added to reach a total of 1,493 genomes. The

genome accession numbers and the metadata associated with

the selected genomes are reported in Supplementary Table 1. All

the genomes were screened against a custom database (Available

at https://github.com/fabgenomics/ML_EHEC) containing all the

stx subtypes, eae and O-group genes using abricate v1.0.1.

(https://github.com/tseemann/abricate). The phylogroup of each

genome was determined using the EzClermont phylotyping tool

available at https://github.com/nickp60/EzClermont.

2.2. Genome annotation and classification

The selected genomes were annotated using the rapid

prokaryotic genome annotation software prokka v1.13.3

(Seemann, 2014) using the proteins option with the reference

genome of E. coli O157:H7 str. Sakai (NC 002695.2) (Hayashi

et al., 2001). Resulting General Feature Format (.gff) files

were processed through a Pangenome analysis pipeline using

panaroo v1.2.7 with -clean-mode strict, -remove

invalid-genes and -merge paralogs options

(Tonkin-Hill et al., 2020). Panaroo collapses genes into putative

families with a family sequence identity level of 70% by default

and creates groups. The gene_presence_absence.Rtab table

provided by the panaroo output contains all the groups and

genes and the presence/absence information from each genome.

These groups and genes were renamed using a custom script

(Available at https://github.com/fabgenomics/ML_EHEC)

in which we used the information in the panaroo

output file matrix (gene_presence_absence.csv available

at https://doi.org/10.5281/zenodo.7129021) to retrieve the

corresponding locus tag number from the E. coli O157:H7 Sakai
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strain annotation (ECs number) relative to the group or the gene

(CDS). Only groups renamed with the locus tag number by our

custom script were retained for further analysis. We created a CDS

presence/absence matrix (ECs_presence_absence.csv available at

https://doi.org/10.5281/zenodo.7129021), by adding a new column

based on the pathotype of each genome. Genomes that were found

to be stx+/eae+ were assigned to the EHEC pathotype and noted 1

in the table and all the other genomes (STEC for stx+/eae-, EPEC

for stx-/eae+ and the abbreviation COM was used for stx-/eae-)

were considered non-EHEC pathotype and noted 0. A phylogenetic

tree was reconstructed using IQtree v2.0.3 (Minh et al., 2020) with

the Generalised Time Reversible (GTR) model on the core genome

alignment produced by panaroo. The tree was annotated with

the molecular serogroups using the CLC genomic workbench v21

(QIAGEN, Aarhus, Denmark).

2.3. Machine learning model training and
evaluation

Before evaluating the performance of the different classifiers,

the CDS presence/absence matrix was filtered on non-

informative features. Any CDS with less than 10% variance

on its presence/absence vector was removed, as these loci do not

contain useful information to test machine learning algorithms.

This step removed 3,603 CDS, resulting in a dataset with 1,178

CDS. Then, to avoid possible data leakage between training

and testing datasets, we grouped the samples based on their

similarity. For each pair of samples, their CDS presence/absence

vector was used to compute a hamming distance (i.e. the number

of differences). Any two samples with a hamming distance

lower than or equal to D were allocated to the same cluster.

We considered possible values for D of 5, 10, 50, 100 and 200.

Note that the resulting clusters have extremely homogeneous

pathotypes (at D = 100, only one cluster consists of a mixture

of EHEC and non-EHEC samples). The cluster table is available

at https://github.com/fabgenomics/ML_EHEC. The main dataset

(n = 1,493) was then subsampled to keep only one genome from

each cluster. Then, each subsampled dataset was randomly split

using 80% of the samples for training/validation and the remaining

20% for testing. The train_test_splitmodule from Sklearn

was used, with stratify option to control the proportion of EHEC

in both datasets. Eight classification algorithms were trained on

each dataset using 10-fold Cross-Validation: Decision Tree, Extra

Tree, Gradient Boosting, LGBMClassifier, Logistic Regression,

Random Forest, XGBClassifier and Support Vector Machine. The

evaluation metric used was the function cross_val_score

from the sklearn library. For all the cross-validation scores

(10 folds i.e. 10 scores), the mean accuracy was calculated

(Supplementary Table 2 and Figure 1). Further analysis were

performed using a distance D = 100 for clustering (dataset

Cluster-D100). This implies that two samples in this dataset differ

by at least 8.4% (100/1178 CDS) of their gene content. A module

from Sklearn library v0.23.1 (RandomUnderSampler) was used

to select randomly the same amount of non-EHEC genomes to

be equal to the number of remaining EHEC genomes from the

cluster analysis. The Cluster-D100 dataset was randomly split with

a ratio of 80/20% for training and testing datasets respectively and

the stratify option. Eight classification algorithms were used to

select the most important features with the SelectFromModel

library from Sklearn. The most important CDS are listed in

Table 1. We arbitrarily chose to select the six most important

features to create a new reduced dataset. With this resulting

matrix, hyper-parameter tuning was done on each of the eight

models using RandomizedSearchCV and GridSearchCV

(scoring on roc_auc metric) and cross-validation steps (n = 5)

when the option was available. Finally, each classifier was retrained

with its best hyper-parameter and evaluated on the testing

dataset previously set aside (accuracy, precision, recall and

F1-score are obtained using the classification_report

from Sklearn, see Supplementary Table 3). To understand

which gene combination led to the prediction of the EHEC

pathotype, we generated all 26 = 64 combinations of the six

genes presence/absence and computed, for each ML model, the

probability of the EHEC pathotype. We then kept the cases

where the probability was ≥ 0.7 and transformed the set of gene

combinations into simplified boolean expressions (using a boolean

Algebra Solver). The results are reported on Figure 2 Charts of

the training pipeline and the prediction pipeline are presented in

Figures 3A, B, respectively.

2.4. Evaluation of the eight models on in

silico mixtures of E. coli

From a previous study conducted by Jaudou et al. (2023),

raw ONT MinION reads from two STEC (ECA279 (O174:H2)

= SRR18191627 and 97HMPL652 (O110:H9) = SRR18191587),

one stx-negative eae-positive E. coli (2142-O103 (O103:H25) =

SRR18191529), one eae-positive STEC (E. coli 12-1 (O157:H7)

= SRR18191640) and one commensal E. coli [i.e., negative for

both stx and eae (NC809 (O41:H7) = SRR18191621)] were

collected. One stx-negative eae-positive E. coli strain (KK072/05

- O156:H8) was newly sequenced during this study following

the same protocol described by Jaudou et al. (Jaudou et al.,

2023) and the raw ONT MinION reads were deposited to the

NCBI database under the number SRX18376762. Raw reads

were subsampled using Rasusa v0.6.0 (Hall, 2022) with 5.5Mb

for the target number of bases and 10, 20, 30, 40 and 50x

for the coverage. From these subsampled reads, twenty-five

in silico mixtures were generated by concatenating into a 1:1

ratio the same coverage of subsampled reads. Details of the

different mixtures are presented in the Table 2. From these

mixtures, an assembly was generated using metaFlye v2.9-b1768

(Kolmogorov et al., 2020) with nano-raw and meta parameters.

The resulting assemblies were annotated with the same parameters

as described in the Genome annotation and classification paragraph

(Section 2.2). The produced GFF file of each annotation was

integrated individually in the pangenome graph generated with

the 1,493 genomes using the panaroo-integrate command from

the panaroo program. From the new gene_presence_absence.csv

and the gene presence absence.Rtab generated by the panaroo-

integrate command, the row corresponding to the added mixture

was extracted using a newly developed python script (Available
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FIGURE 1

Influence of sample clustering on classification performance. For the di�erent classification algorithms, the average accuracy (over 10 fold cross

validation) is reported for di�erent values for the clustering distance D (cluster sizes: D5 = 1,489, D10 = 1,470. D20 = 1,410, D50 = 1,203, D100 = 756,

D200 = 137).

TABLE 1 Top six most important features extracted from the training of the eight classification models.

Rank Locus_tag Gene ID Gene name Encoded protein Number of models using
the gene for EHEC

prediction

1 ECs_1056 62675958 - Phage excisionase 8

2 ECs_1812 912909 nleA/espI T3SS secreted effector NleA/EspI 7

3 ECs_1824 912888 nleG T3SS secreted effector NleG 5

4 ECs_3858 916318 nleE T3SS secreted effector NleE 4

5 ECs_1815 912903 nleF T3SS secreted effector NleF 4

6 ECs_1561 913337 espN T3SS secreted effector EspN 4

The Gene ID of each locus is provided, and when known, the gene name as well.

at https://github.com/fabgenomics/ML_EHEC) to reconstruct the

CDS presence/absence table. We extracted only the features

required for the tested model and when a feature was absent, we

created it and introduced a 0 value. The data extracted were used

to perform the predictions (Figure 3B). The predict_proba

method from all the algorithms was used to estimate the probability

that the sample is an EHEC.

2.5. Evaluation of the eight models on
experimentally-contaminated raw milk

Eight metagenomes from artificially contaminated raw

milks described in a previous study (Jaudou et al., 2022) were

downloaded from the Genbank public database (Table 3).

The estimated level of contamination was 0.5x103, 0.5x102

and 0.5x101 CFU.mL−1 of EHEC O26 plus one EHEC-free

milk. Raw reads were processed using the STECmetadetector

pipeline developed by Jaudou et al. (2022) available at

https://gitlab.com/Bfr_bioinformatics/STECmetadetector and

the extracted E. coli reads were assembled using metaFlye v2.9-

b1768 with the same parameters as described in Section 2.4. The

resulting assemblies were annotated with the same parameters

as described in the Genome annotation and classification

paragraph (Section 2.2). The resulting GFF file was treated with

the same process than the in-silico mixture GFF file and the

EHEC predictions were performed, as described in Section 2.3

(Figure 3B).
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FIGURE 2

Gene combinations that are predicted as EHEC. For each classifier, the combination of genes predicting the EHEC pathotype are given in columns. A

black cells means the gene is present and a grey cell that there is no constraint. For instance a decision tree predicts the EHEC pathotype if either

ECs_1056 and ECs_1812 are present (column 4), or if ECs_1812, ECs_1815, and ECs_1824 are present (column 5). The number of possible

combinations for each of the classifier are ET: 3, DT: 2, SVM: 3, LR: 9, GB: 2, RF: 1.

3. Results

3.1. Escherichia coli pathotype assignation
based on genomic information

To take advantages of ML to find patterns and preserve its

generalization potential, we constituted an E. coli database for

which we selected in priority complete E. coli genomes with a

minimum of requiredmetadata (origin, isolation date and location)

and verified their pathotypes (stx and eae genes presence). A

total of 1,493 genomes were downloaded from the GenBank

database. The geographic origin of the strains was 33, 26, 23,

7, and 3% from Europe, Asia, America, Africa and Oceania,

respectively and the 8% remaining were missing the country

of origin. During the genome selection, we tried to respect an

equal proportions of stx/eae-positive strains (i.e., EHEC) and

non-EHEC strains based on the metadata provided. Genomes

simultaneously positive for at least one stx gene and the eae gene

(n = 632) were assigned to the EHEC group. The other genomes

(n = 861) were assigned to the non-EHEC group (Available at

https://doi.org/10.5281/zenodo.7129021). In addition, the custom

database was reporting all the O-group sequences so that the

serogroup information, in particular the most frequent EHEC

serogroup, was available (Supplementary Table 1). The top seven

most represented serogroups were O26 (n = 160), O157 (n = 126),

O103 (n = 66), O121 (n = 61), O145 (n = 60), O111 (n = 36), and

O45 (n = 9). These serogroups comprised mostly EHEC strains

with 126 EHEC O26 strains, 124 EHEC O157 strains, 57 EHEC

O103 strains, 55 EHEC O121 strains, 59 EHEC O145 strains, and

31 EHEC O111 strains. The phylogroup analysis showed that the

diversity of the species is well represented. The phylogeny of the

final dataset is illustrated in Figure 4.

3.2. Generation of the input dataset

From 37,380 groups generated by panaroo, 13,952 remained

with an ECs annotation. Some ECs were duplicated in the table due

to the genetic diversity of some genes and the panaroo identity level

threshold. We aggregated the results for these genes, which resulted

in 4,780 unique CDS and kept the presence/absence information.

Before splitting the ECs presence/absence table (Available at

https://doi.org/10.5281/zenodo.7129021), we first selected CDS

with enough variation between the samples (see Section 2). This

filtering step removed 3,602 CDS resulting in a dataset containing

1,178 CDS. To avoid optimistic performance estimates that would

result from near duplicate samples both in training and testing sets,

we performed a clustering based on gene content similarity (see

Section 2). Clustering at distance D ensures that two clusters in the

dataset have at least D genes that are different. We evaluated the

change in accuracy for increasing values of D, starting from 5 and

up to 200 (Figure 1). Up toD = 100 (8.4% of the CDS), the accuracy

of all classifiers remains very high (above 97%). This indicates

that robust information can be extracted from gene profiles to

predict EHEC pathotype with high accuracy. The performances

drop by around 5–10% for D = 200 for an accuracy of around

93%. While still high, this decrease could be attributed to the

low number of clusters that remain for prediction (n = 137,

15 EHEC and 122 non-EHEC). From these results, a value of

D = 100 was chosen to build the dataset for further analysis,

as it combines both good performance with a sufficient sample

size (n = 756). However, this dataset was imbalanced. To avoid

overfitting problems, we subsampled the non-EHEC class to be

equal to the EHEC class and ended with a balanced dataset (see

Section 2). The matrix was then randomly split into a training

dataset containing 80% of the genomes used in the study (n

= 139) with 69 non-EHEC and 70 EHEC. The testing dataset

contained the remaining 20% (n = 35) with 18 non-EHEC and 17

EHEC.

3.3. CDS selection using eight ML classifiers

We conducted a comprehensive analysis of the top features

extracted from the training of eight classification models, and
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FIGURE 3

(A) Training pipeline for the eight models. (B) Pipeline of the prediction on in-silico mixtures and artificially contaminated raw milk.
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TABLE 2 Prediction of the class probabilities on the 25 generated mixtures of pure E. coli cultures.

Strains and genome
coverage used for
in-silico mixture

E. coli

Pathotype
mixture∗

Class∗∗ LGBM LR DT XGB RF SVM GB ET

ECA279 + NC809 10x STEC-COM 0 0.00 0.02 0.00 0.00 0.04 0.01 0.02 0.03

ECA279 + NC809 20x STEC-COM 0 0.00 0.02 0.00 0.00 0.04 0.01 0.02 0.03

ECA279 + NC809 30x STEC-COM 0 0.00 0.02 0.00 0.00 0.04 0.01 0.02 0.03

ECA279 + NC809 40x STEC-COM 0 0.00 0.02 0.00 0.00 0.04 0.01 0.02 0.03

ECA279 + NC809 50x STEC-COM 0 0.00 0.02 0.00 0.00 0.04 0.01 0.02 0.03

97HMPL652 + 2142-O103 10x STEC-EPEC 0 0.22 0.27 0.00 0.27 0.46 0.21 0.02 0.47

97HMPL652 + 2142-O103 20x STEC-EPEC 0 0.22 0.27 0.00 0.27 0.46 0.21 0.02 0.47

97HMPL652 + 2142-O103 30x STEC-EPEC 0 0.98 0.96 1.00 1.00 0.87 1.00 0.98 0.88

97HMPL652 + 2142-O103 40x STEC-EPEC 0 0.73 0.72 0.75 0.75 0.73 0.88 0.98 0.77

97HMPL652 + 2142-O103 50x STEC-EPEC 0 0.73 0.72 0.75 0.75 0.73 0.88 0.98 0.77

97HMPL652 + KK072/05 10x STEC-EPEC 0 0.05 0.20 0.00 0.01 0.26 0.01 0.02 0.25

97HMPL652 + KK072/05 20x STEC-EPEC 0 0.05 0.20 0.00 0.01 0.26 0.01 0.02 0.25

97HMPL652 + KK072/05 30x STEC-EPEC 0 0.05 0.20 0.00 0.01 0.26 0.01 0.02 0.25

97HMPL652 + KK072/05 40x STEC-EPEC 0 0.05 0.20 0.00 0.01 0.26 0.01 0.02 0.25

97HMPL652 + KK072/05 50x STEC-EPEC 0 0.05 0.20 0.00 0.01 0.26 0.01 0.02 0.25

Ecoli12-1 + NC809 10x EHEC-COM 1 1.00 0.99 1.00 1.00 0.95 1.00 0.98 0.98

Ecoli12-1 + NC809 20x EHEC-COM 1 1.00 0.99 1.00 1.00 0.95 1.00 0.98 0.98

Ecoli12-1 + NC809 30x EHEC-COM 1 1.00 0.99 1.00 1.00 0.95 1.00 0.98 0.98

Ecoli12-1 + NC809 40x EHEC-COM 1 0.97 0.92 0.75 0.75 0.82 0.88 0.98 0.86

Ecoli12-1 + NC809 50x EHEC-COM 1 1.00 0.99 1.00 1.00 0.95 1.00 0.98 0.98

ECA279 + Ecoli12-1 10x STEC-EHEC 1 0.97 0.92 0.75 0.75 0.82 0.88 0.98 0.86

ECA279 + Ecoli12-1 20x STEC-EHEC 1 0.97 0.92 0.75 0.75 0.82 0.88 0.98 0.86

ECA279 + Ecoli12-1 30x STEC-EHEC 1 0.97 0.92 0.75 0.75 0.82 0.88 0.98 0.86

ECA279 + Ecoli12-1 40x STEC-EHEC 1 0.97 0.92 0.75 0.75 0.82 0.88 0.98 0.86

ECA279 + Ecoli12-1 50x STEC-EHEC 1 0.97 0.92 0.75 0.75 0.82 0.88 0.98 0.86

∗EHEC, enterohemorrhagic E. coli; STEC, Shiga toxin-producing Escherichia coli; EPEC, enteropathogenic E. coli; COM, commensal Escherichia coli.
∗∗Non-EHEC = 0; EHEC = 1.

LGBM, LGBMClassifier; LR, Logistic Regression; DT, Decision Tree; XGB, XGBClassifier; RF, Random Forest; SVM, Support Vector Machine; GB, Gradient Boosting; ET, Extra Tree.

the results are summarized in Table 1. The table shows the

top six most important features, ranked based on the number

of times they were used by the models. The most important

feature was found to be ECs_1056, which corresponds to a

phage excisionase gene. This feature was used by eight of the

models. The second most important feature was ECs_1812,

which corresponds to the nleA/espI gene, coding for a type

III secretion system (T3SS) secreted effector protein, and was

used by seven of the models. The third most important feature

was ECs_1824, which corresponds to the nleG gene, which

encodes another T3SS secreted effector protein, and was used by

five of the models. The remaining features, namely ECs_3858,

ECs_1815, and ECs_1561, were used by four models each, and

correspond to the nleE, nleF, and espN genes, respectively,

all of which encodes T3SS secreted effector proteins. Multiple

classifiers achieved near perfect performance when evaluated on

the D100 dataset. To better understand which combinations

of genes contribute to the prediction of the EHEC pathotype,

we generated all 64 (26) genes presence/absence profiles and

recorded in which case one of the models predicted an EHEC

pathotype with confidence (Figure 2 and Section 2). This confirms

that some genes, such as ECs_1056 (phage excisionase) and

ECs_1824 (nleG) have an importance (they are needed in

the majority of the predictions). Decision Tree and Gradient

boosting learned the same decision rule: “ECs_1812 (nleA)

and (ECs_1056 or (ECs_1815 (nleF) and ECs_1824))”. The

SVM classifier predicts EHEC for any two combination of

ECs_1056, ECs_1815, and ECs_1824. All those classifiers can

predict an EHEC pathotype with as little as two genes. On the

other hand, Extra tree and logistic regression make predictions

involving three to four genes, showing that they can have

different sensitivity.
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TABLE 3 Prediction of the class probabilities on the milk metagenomes.

Strain Accession
number∗

EHEC
spiking
level∗∗

Class∗∗∗ LGBM LR DT XGB RF SVM GB ET

4712-O26 SRR19090780 0.5x103 1 1.00 0.99 1.00 1.00 0.95 1.00 0.98 0.98

6423-O26 SRR19090775 0.5x103 1 1.00 0.99 1.00 1.00 0.95 1.00 0.98 0.98

4712-O26 SRR19090792 0.5x102 1 1.00 0.99 1.00 1.00 0.95 1.00 0.98 0.98

6423-O26 SRR19090774 0.5x102 1 1.00 0.99 1.00 1.00 0.95 1.00 0.98 0.98

4712-O26 SRR19090778 0.5x101 1 1.00 0.99 1.00 1.00 0.95 1.00 0.98 0.98

6423-O26 SRR19090772 0.5x101 1 1.00 0.99 1.00 1.00 0.95 1.00 0.98 0.98

6423-O26 SRR19090769 0.5x101 1 1.00 0.99 1.00 1.00 0.95 1.00 0.98 0.98

EHEC-

neg

SRR19090777 0 0 0.02 0.15 0.00 0.03 0.18 0.21 0.02 0.13

∗From Jaudou et al. (2022).
∗∗CFU.mL−1 .
∗∗∗Non-EHEC = 0; EHEC = 1.

LGBM, LGBMClassifier; LR, Logistic Regression; DT, Decision Tree; XGB, XGBClassifier; RF, Random Forest; SVM, Support Vector Machine; GB, Gradient Boosting; ET, Extra Tree.

3.4. Performance of the eight models on
the selected features

Supplementary Table 3 shows the evaluation metrics obtained

by training the eight classifiers using the selected six features:

ECs_1056, ECs_1812, ECs_1824, ECs_3858, ECs_1815, ECs_1561.

All classifiers achieved high accuracy scores, ranging from

0.97 to 1.00, indicating a good performance in predicting the

target variable. Logistic Regression, Extra Trees XGBCLassifier,

LGBMClassifier, Decision Tree, and SVMachieved perfect accuracy

scores of 1.00, while Random Forest and Gradient Boosting

achieved a slightly lower accuracy score of 0.97. Extra Tree and

Random Forest achieved a precision of 0.94 on the EHEC class

and a recall of 0.94 on the non-EHEC class. All the other classifiers

achieved perfect precision, recall, and F1-scores, indicating that the

selected features were informative and sufficient to discriminate

perfectly between the two classes.

3.5. EHEC prediction on in silico E. coli

mixtures

We first tested the ability of the different models to predict the

presence of an EHEC strain in a mixture of E. coli strains. For this

purpose, in silico mixtures of raw MinION reads were assembled.

Assemblies produced using meta-Flye ranged from 5.63 to7.94 Mb

(mean = 6.57 Mb) and the number of contigs from 80 to 155 (mean

= 106) (Supplementary Table 4). In all mixtures of E. coli strains,

the assembly size was longer than a normal E. coli assembly (4.8–

5.5 Mb). Shorter assemblies were produced by meta-Flye with the

STEC-COM mixture (5.63–6.16 Mb). On the contrary, the EHEC-

COM mixture produced longer assemblies (7.35–7.94 Mb). The

eight models were then used to perform predictions on the in silico

mixtures (Table 2). Predictions of the pathotype ranged from 0 to 1

and the average prediction from 0.01 to 0.99. The cut-off for binary

classification is usually set to 0.5. Above or equal to this cut-off

value the presence of an EHEC is predicted, and below a non-

EHEC is predicted. This cut-off of 0.5 was used to report the results

presented in this study. The eight classifiers were able to predict

the correct class 22 times over 25 predictions (88%). However, all

models incorrectly predicted the presence of an EHEC three times

for the STEC-EPECmixture with the strain 97HMPL652 and 2142-

O103 for a coverage of 30x, 40x and 50x, respectively. For all non-

EHEC containing mixtures, the higher value was 0.47 for the same

STEC-EPECmixture with the Extra Tree classifier (Table 2). For the

EHEC class the lower value was 0.75 for the EHEC-COM mixture

and the STEC-EHEC mixture with the Decision Tree classifier and

the XGBClassifier. Taken together, these data indicate that all the

classifiers were able to predict with high confidence the presence

of an EHEC in E. coli mixtures that combine different E. coli

pathotypes. Only three false positives were predicted for the most

difficult mixture combining a STEC and an EPEC.

3.6. EHEC prediction on
artificially-contaminated raw milk

We then tested the performance of the eightmodels on complex

mixtures using artificially contaminated raw milk. A bioinformatic

pipeline called STECmetadetector developed by Jaudou et al.

(2022), was used to specifically extract E. coli reads from raw milk

samples artificially contaminated with an O26 EHEC strain (from

0 to 500 CFU.mL−1). The E. coli reads were assembled using the

same method as described in Section 2 (paragraph 2.5). Assemblies

ranged from 5.2 Mb to 6.83 Mb (mean = 5.95Mb) and the numbers

of contigs from 5 to 62 (mean = 15). The eight classifiers were

used to predict the pathotype of artificially contaminated raw

milks (Table 3). All models were able to accurately predict the

EHEC pathotype in the sample with high confidence, at the three

contamination levels tested, regardless of the strain used for the

artificial contamination. Notably, the raw milk used for spiking

with the 6423-O26 strain was naturally containing commensal

E. coli of serotype O185:H2 and O8:H19 (Jaudou et al., 2022).
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FIGURE 4

Phylogenetic tree of the 1,493 genomes reconstructed from the core genome alignment. The inner ring corresponds to the pathotype of each strain

determined based on stx and eae presence/absence (0 for all non-EHEC and 1 for the EHEC). The outer ring corresponds to the top 10 O-groups.

Predictions of the pathotype ranged from 0.95 to 1 for the class

EHEC for all contamination levels. The negative control (a non-

contaminated raw milk), was classified accurately as non-EHEC

by all eight classifiers with the higher value of 0.21 for the SVM

(Table 3).

4. Discussion

The correct detection and identification of highly pathogenic

STEC from food remains challenging. Conventional detection

methods based on the detection of the stx and eae genes (as well

as genes from the most frequent serogroups) require an isolation

step to ensure the correct characterization of the strain. Detection

of EHEC in food samples based on the presence of a small

number of additional genes that are more specifically associated

with strains possessing simultaneously the stx and eae genes would

represent a significant improvement for screening food samples

(Delannoy et al., 2016, 2022). With such an approach, the number

of presumptive positive samples that require further investigation

by isolation and genotypic characterization can be reduced by

around 50% (Delannoy et al., 2016, 2022), allowing to save

money and time. Still, the amount of unconfirmed presumptive

positive samples may be a problem for both the food industry

and the decision maker. In a previous study, we showed that

long-read metagenomics was efficient in identifying eae-positive

STEC strains from complex matrices such as raw milk in an

isolation-independent way (Jaudou et al., 2022). However, we
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have highlighted that the presence of multiple E. coli strains may

hinder the identification of the eae-positive STEC due to the

assembly-based approach used. We wanted to continue exploring

the potential of long-read metagenomics and take full advantage

of ML algorithms by applying them to predict the presence of

an EHEC strain directly from E. coli reads assembly, even in the

presence of multiple E. coli strains.

As of February 2021, 31,230 E. coli genomes were available in

the NCBI Genbank database, around 10% of which are genomes of

O157:H7 strains. To build our database, we downloaded complete

E. coli genomes as well as some scaffolded genomes that contained

accompanying metadata, while taking care of having the top

10 EHEC serotypes represented, as well as less frequent ones

(Figure 4). Because the geographical distribution of certain clones

may be skewed, we also included strains originating from all

continents. During the genome selection, our objective was to

obtain a database constituted at 50% of EHEC genomes (targets)

and 50% of non-EHEC genomes (non-targets). When selecting the

non-EHEC genomes we were careful to include various pathotypes

such as EPEC (eae+ only), STEC (stx+ only), commensals (stx and

eae negative) and some Extra-intestinal pathogenic E. coli (ExPEC)

strains. Despite the size of our database and the precautions we took

to build it, our final dataset after dereplication, was composed of 87

EHEC and 87 non-EHEC. We originally included large numbers

of genomes for each of the top 10 serotypes observed in clinical

cases worldwide in order to be representative of the frequency of

isolation of the various serotypes. However, the diversity within

each serotype appears limited. Indeed, several studies on various

EHEC serotypes have shown that even the most diverse ones (in

terms of SNPs) show a high degree of synteny and collinearity

between isolates of different clades or lineages (Dallman et al., 2015;

Ogura et al., 2017; Nishida et al., 2021). Also, the pool of genes

included in the dataset is the pool present in the Sakai annotation.

Therefore, by reducing the available pangenome and increasing the

probability for each strain to possess one version of each CDS, we

increased the similarity between the genomes in the dataset. To

avoid possible data leakage, we chose to group all the genomes that

had less than 100 genes difference in their repertoire (8.4% of the

genes considered). This is a drastic filtering step, but it is, to our

knowledge, the most reliable to avoid reporting biased performance

estimates.

One of the first choices when designing the pipeline is whether

to use raw reads or assembled data. Initial tests showed that

performing the annotation directly on long reads generated a very

large amount of data that was computationally too intensive for

the downstream processing (not shown). Based on these results

we chose to work with assemblies and used the Flye long-read

assembler with the metagenome option in order to deal with highly

non-uniform coverage, in particular with low level artificially-

EHEC contaminated milks. An early step of the pipeline consists

in the annotation of the assembled genomes. The advantage of

the annotation software used, prokka, is that a reference genome

can be used to standardize the annotation. In our case, we used

the O157:H7 Sakai genome as reference over the K12 E. coli

reference genome because it is an EHEC carrying around 20%more

integrated genomic elements than K12 E. coli, like pathogenicity

islands and phages (Hayashi et al., 2001). To generate the first

matrix of gene presence/absence we chose panaroo among GWAS

programs such as Roary (Page et al., 2015), PIRATE (Bayliss et al.,

2019), or PPanGGoLiN (Gautreau et al., 2020) because it offers

the possibility to add one new genome to an existing pangenome

graph. This feature is the keystone of our pipeline because it is very

important to add the new genome into the existing pangenome

graph so as not to modify the original matrix used for training the

models. Panaroo collapses genes into putative families with a family

sequence identity level of 70% in the default mode. During the

analysis of the generated matrix, we identified locus tags that were

split in different groups and regrouped them. Indeed, the allelic

variability of STEC virulence genes can be important (Michelacci

et al., 2016).

Other studies have used different algorithms like Support

Vector Machine, Gradient Boosting or Random Forest (Lupolova

et al., 2016; Njage et al., 2019; Im et al., 2021; Shaik et al., 2022) but

the nature of the data and the predictive outcome were different.

In this study we used the power of ML to evaluate a high number

of genes (1,178 CDS). We successfully decreased the number of

genes needed for EHEC presence prediction down to six genes

while keeping a high accuracy. It is remarkable that none of these

six genes are related to the Shiga toxins. Surprisingly, neither stx1

subunit A and B nor stx2 subunit A and B are needed to predict

an EHEC. Because it is present in all EPEC strains (eae-positive

E. coli, non-target) the absence of eae in the six genes scheme is

expected. In the reduced set of selected genes, we found five Type

3 Secretion System (T3SS) effectors and a phage excisionase. The

T3SS represents an important component of the E. coli mobile

gene pool. Although the LEE carries constitutive elements of the

T3SS, additional effectors are encoded by prophages inserted into

the genome (Tobe et al., 2006). A large number of studies have

described T3SS effectors as associated virulence markers (Coombes

et al., 2008; Konczy et al., 2008; Bugarel et al., 2010a,b, 2011;

Imamovic et al., 2010; Creuzburg et al., 2011). Here, the most

important features identified for EHEC prediction are located on

four genomic islands that harbors putative virulence factors already

demonstrated to be present in EHEC strains: Sp4 (ECs 1056 / phage

excisionase), Sp6 (ECs 1561 / espN), Sp9 (ECs 1812 / nleA, ECs 1815

/ nleF, ECs 1824 / nleG) and SpLE3 (ECs 3858 / nleE) (Tobe et al.,

2006; Rasko et al., 2008; Bugarel et al., 2010a,b, 2011; Delannoy

et al., 2013). The nleA gene (ECs 1812 - Sp9), which was found to

be the second most important feature in our study, has been shown

to play a key role in the virulence of various pathogenic bacteria,

including E. coli (Rasko et al., 2008). Similarly, the nleG gene (ECs

1824 - Sp9), which was the third most important feature, has been

shown to be important for the virulence of enterohemorrhagic E.

coli (Tobe et al., 2006). Other T3SS effectors located in these four

genomic islands have previously been shown to be associated with

EHEC. For example, the Sp4 genomic island also harbors espV (ECs

1127), which, in combination with espK (ECs 1568 - Sp6) have

been demonstrated to be present in EHEC strains and proposed

as genetic markers to reduce false-positive results in food testing

(Delannoy et al., 2013, 2016). Similarly, combinations of genes

from Sp9 and SpLE3 were demonstrated to be strong signatures of

typical EHECs (Bugarel et al., 2010a,b, 2011). These four genomic

islands are recurrently found as harboring important features with

all models and were previously experimentally found associated
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with EHEC. This strongly suggests that these genomic islands

are stably associated with both the LEE and the presence of an

stx-phage and may have co-evolved (Guo et al., 2012). Although,

the precise order of acquisition of these mobile genetic elements

remains to be determined. The only incorrect EHEC predictions

of the models using in-silico mixtures were obtained with the

STEC/EPEC mixtures containing the aEPEC strain 2142-O103.

Although negative for the stx gene this strain harbors the different

genomic islands: Sp4, Sp6, Sp9, and SpLE3. It also belongs to a

known EHEC serotype (O103:H25) that has been associated with

an HUS outbreak (Schimmer et al., 2008). It is thus likely that this

strain represents what had previously been named an EHEC-like

or EHEC-LST (Bielaszewska et al., 2007; Mellmann et al., 2008;

Bugarel et al., 2011), meaning that it could constitute an EHEC

progeny that has lost the stx phage at one point. The existence

of such EHEC-like strains constitute a caveat of our approach, as

it is impossible for our model to distinguish a STEC/EHEC-like

mixture accurately. However, from a risk management perspective,

it could be beneficial to detect this kind of strains when in the

presence of other STEC strains due to the potential of these

EHEC-like to acquire the stx phage and become typical EHEC

(Bielaszewska et al., 2007; Mellmann et al., 2008). Correct and

timely identification of EHEC is crucial in food microbiology as

well as for surveillance of STEC-mediated disease. The growing

genomic sequence data offers additive information that may

support the identification of discriminative EHEC markers (Kiel

et al., 2018). To extend EHEC diagnostics in the post-genomic era

beyond the detection of the O157:H7 and the non-O157 serogroups

from the Top 7, we developed suitable pipelines that integrate

high throughput sequence data, to predict with high specificity and

sensitivity EHEC strains. Different combinations of discriminative

genetic markers were identified and validated to target the main

STEC subgroup (eae-positive STEC) associated with severe human

infections and outbreaks worldwide. Our study is in line with

recent papers showing the potential and power of GWAS and

Machine Learning approaches for designing biomarkers that target

foodborne pathogens (Feucherolles et al., 2021; Sévellec et al.,

2022). Here, the description of these new EHEC biomarkers is the

confirmation that stx and eae are not the only genetic markers

that are the hallmark of EHEC, but that EHEC characterization

is much more complex than the simultaneous identification of

stx and eae genes. There are in fact associated factors (type III

effectors are some of them as shown in this study) which, by

their presence or absence, provide a fairly precise predictive model

on the co-localization of stx and eae in a single strain. The new

EHEC markers found using ML in our study could predict EHEC

with very high accuracy in a large genome dataset and artificially

contaminated raw milk metagenomes. The correct prediction of

the EHEC strain while co-occurring with another E. coli strain at a

ratio of 1:1 is remarkable. Most programs that aim at distinguishing

strains from the same species relies on coverage differences (i.e.

for assemblers and binning tools). These findings open the door

for the development of new diagnostics tests for a better screening

of EHEC in foods products. As long as DNA sequence-based

diagnostics of mixed populations cannot resolve whether relevant

markers like stx and eae genes are present in the same genome,

some risk of generating false-positive results exist. Including the

combination of additional EHEC-related markers like those we

described here, in the detection scheme, would supports a better

hazard characterization of typical EHEC.
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