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Abstract

Contact tracing is a non-pharmaceutical intervention (NPI) widely used in the control of the COVID-19 pandemic. Its
effectiveness may depend on a number of factors including the proportion of contacts traced, delays in tracing, the mode
of contact tracing (e.g. forward, backward or bidirectional contact training), the types of contacts who are traced (e.g.
contacts of index cases or contacts of contacts of index cases), or the setting where contacts are traced (e.g. the household
or the workplace). We performed a systematic review of the evidence regarding the comparative effectiveness of contact
tracing interventions. 78 studies were included in the review, 12 observational (ten ecological studies, one retrospective
cohort study and one pre-post study with two patient cohorts) and 66 mathematical modelling studies. Based on the results
from six of the 12 observational studies, contact tracing can be effective at controlling COVID-19. Two high quality
ecological studies showed the incremental effectiveness of adding digital contact tracing to manual contact tracing. One
ecological study of intermediate quality showed that increases in contact tracing were associated with a drop in COVID-19
mortality, and a pre-post study of acceptable quality showed that prompt contact tracing of contacts of COVID-19 case
clusters / symptomatic individuals led to a reduction in the reproduction number R. Within the seven observational studies
exploring the effectiveness of contact tracing in the context of the implementation of other non-pharmaceutical interven-
tions, contact tracing was found to have an effect on COVID-19 epidemic control in two studies and not in the remaining
five studies. However, a limitation in many of these studies is the lack of description of the extent of implementation of
contact tracing interventions. Based on the results from the mathematical modelling studies, we identified the following
highly effective policies: (1) manual contact tracing with high tracing coverage and either medium-term immunity, highly
efficacious isolation/quarantine and/ or physical distancing (2) hybrid manual and digital contact tracing with high app
adoption with highly effective isolation/ quarantine and social distancing, (3) secondary contact tracing, (4) eliminating
contact tracing delays, (5) bidirectional contact tracing, (6) contact tracing with high coverage in reopening educational
institutions. We also highlighted the role of social distancing to enhance the effectiveness of some of these interventions in
the context of 2020 lockdown reopening. While limited, the evidence from observational studies shows a role for manual
and digital contact tracing in controlling the COVID-19 epidemic. More empirical studies accounting for the extent of
contact tracing implementation are required.
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widely available treatments, governments still rely on non-
pharmaceutical interventions (NPIs) to control COVID-19
transmission, morbidity and mortality. Contact tracing is the
process of identifying and obtaining information from indi-
viduals who have been in long enough contact with other
infected individuals (in this context, with other individu-
als infected with the SARS-CoV-2 virus). Contact tracing
can be manual or digital. The former typically relies on the
identification of contacts via interviews with cases followed
by phone calls to contacts of these cases, while the latter
relies on the use of smartphone-based apps to automatically
store and report contact information via Bluetooth technol-
ogy [3]. Once contacts are traced they are warned of their
status and either quarantined and/or tested and, if testing
positive, isolated and possibly treated. Contact tracing is a
widely used intervention to contain outbreaks and one of a
wide set of NPIs currently available to policy makers. It is a
much less disruptive NPI than lockdown-type policies such
as restrictions on gatherings, work closing or stay-at-home
requirements. The mechanism by which contact tracing is
effective (i.e. has an impact on morbidity and mortality) is
by identifying contacts of the index case who have been
exposed to the pathogen. As mentioned, these contacts can
then be placed in quarantine, or tested for the pathogen and,
if testing positive, isolated and maybe treated. With these
interventions, onward transmission of the infectious agent is
reduced. Contact tracing has been successfully used to con-
trol the COVID-19 pandemic in countries like Singapore,
South Korea and China [4]. However, in other countries it
has not worked so well. For example, the United Kingdom’s
NHS Test and Trace programme has not been as effective at
reducing COVID-19 transmission as was originally hoped
[5]. In the United States, many states’ testing-tracing efforts
after reopening were met with surges in case counts [6].
COVID-19 is a quite infectious disease which affects the
whole population and which is transmitted by both symp-
tomatic and asymptomatic individuals. In this context, the
effectiveness of contact tracing interventions may vary,
inter alia, based on a number of factors. For example, on
the proportion of contacts who are traced (i.e. the contact
tracing coverage) [7]; on the delays in tracing [8]; on the
mode of contact tracing — for example, forward contact trac-
ing (i.e. tracing the contacts of a known case), backward
contact tracing (tracing the index case in a chain of con-
tacts), or bidirectional contact tracing (i.e. both forward and
backward contact tracing) [9, 10]; on whether only contacts
of known cases are traced (primary or first order contact
tracing) or contacts of contacts of known cases are traced
(secondary or second order contact tracing) [11]; or on the
setting where contacts are traced — e.g. household or work-
place contacts [12].
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In order to support policy makers in making decisions
about whether, and if so what types of contact tracing inter-
ventions to implement to contain the COVID-19 pandemic,
we performed a systematic review of the evidence regarding
the comparative effectiveness of contact tracing interven-
tions in the particular context of COVID-19 transmission.

Methods

In this systematic review, we followed the Preferred Report-
ing Items for Systematic Reviews and Meta-analyses
(PRISMA) statement [13]. On June 26, 2021, we searched
Embase (including Medline resources) for published peer
reviewed studies. On July 7, 2021, we searched medRxiv
for preprints. We restricted the search to articles available
in the English language from January 1, 2020. The search
strategies for both databases are available in Annex 1 in the
supplementary information file.

Studies were included in the review if they:

e Assessed the effectiveness of contact tracing interven-
tions in terms of any health outcomes (e.g. morbidity,
mortality) in the context of COVID-19.

e Were empirical (i.e. either observational, experimen-
tal or quasi-experimental) or mathematical modelling
studies.

e Compared the effectiveness of two or more contact trac-
ing interventions or compared the effectiveness of a con-
tact tracing intervention to no contact tracing.

Studies were excluded if they:

e Did not assess the direct link between specific contact
tracing interventions and a health outcome (for example,
if they explored only testing or quarantining of contacts).

e FEvaluated the cost-effectiveness rather than the effec-
tiveness of contact tracing interventions.

We assessed the quality of the empirical studies with two
different tools. For ecological studies, we used a risk of
bias tool developed by Dufault et al. [14] which has been
previously adapted in several systematic reviews [15-17].
This tool evaluates the study quality in the following three
domains: study design, statistical methodology and report-
ing (for details, please see Annex 2.1 in the supplementary
information file). For cohort studies, we used the Scottish
Intercollegiate Guidelines Network (SIGN) cohort study
critical appraisal tool [18].

To assess the quality of all studies that were based on
mathematical models, we used an original framework
informed by previous Cochrane reviews of similar studies,
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Table 1 Criteria used in assessing the quality of studies using mathematical models

Criteria Scores

1. Is the model transparently described? Yes=1,No=0
2. Are the parameters and their sources fully described? Yes=1,No=0
3. Are sensitivity analyses performed on key model assumptions? Yes=1,No=0
4. Does the model distinguish between different categories of infectiousness? Yes=1,No=0
5. Is the model an individual-based simulation? Yes=3,No=0

6. Does the model include social mixing or a multi-layer network?

Yes (multi-layer network) =2
Yes (social mixing)=1
No=0

and developed by Anglemyer et al. [19] and Nussbaumer-
Streit et al. [20]. Table 1 shows the criteria that we employed
in the quality assessment, where each criterion was assigned
a range of possible scores.

The first three criteria in Table 1 were included as key
areas indicating the risk of bias after reviewing the model-
ling and reporting recommendations of the Society for Medi-
cal Decision Making (SMDM) and the International Society
for Pharmacoeconomics and Outcomes (ISPOR) [21]. The
last three criteria in Table 1 were risk of bias criteria based
on the models’ realistic representation of SARS-CoV-2 dis-
ease transmission. As in reality Sars-CoV-2 transmission
occurs at different rates from both symptomatic and asymp-
tomatic individuals and also between different age groups, a
model is more realistic if it distinguishes between different
categories of infectiousness. Since disease transmission in
reality occurs between individuals, a model is more realistic
if it simulates infectiousness at the individual level rather
than at the aggregate cohort level. As social mixing between
individuals occurs in reality at a different rate in different
contexts (e.g. in the household versus in the workplace), a
model is more realistic if it represents the contacts of indi-
viduals either by distinguishing between social mixing for
different social groups or for different networks of indi-
viduals. The maximum possible quality score for any given
study was nine points. We excluded from the analysis any
study which scored five points or less.

Study screening and selection was performed by five
reviewers (FPM, MABS, KW, SAM, VD). Data extraction
was performed by four reviewers (FPM, KW, SAM, VD).
Another reviewer (MABS) screened a random selection
of 10% of the total records and all the records that were
selected by abstract. Two reviewers (FPM and MABS)
independently assessed the quality of the studies. Disagree-
ments between reviewers were solved by arbitration by a
third reviewer (CEB).

Results
Overview

The initial search identified 5,617 records after remov-
ing duplicates across the databases. These records were
screened and filtered based on whether any of the inclusion/
exclusion criteria were met based on the abstract. If unclear,
the full-text was retrieved. Overall, 159 full-text records
were assessed for eligibility. Of these, 141 met the inclu-
sion criteria and were included in the quality assessment and
18 did not (See Fig. 1 for more details). 63 studies were
excluded from the review based on the results from the qual-
ity assessment. 78 studies were included in the review, 67 of
them published in peer-reviewed journals and 11 preprints.
The full quality assessment of the 141 studies is available in
Annex 2.2 of the supplementary information file.

Methodological characteristics of the studies
included in the analysis

Study type, timeframe and geographical scope

Study type Out of the 78 studies included in the review,
12 studies were empirical (all of them observational) and
66 were mathematical modelling studies. Out of the 12
empirical studies, ten were ecological, of which nine were
published [22-30] and one was a preprint [31]. One was a
published retrospective cohort study [32] and another one
was a published pre-post study of two COVID-19 patient
cohorts [33]. Annex 3.1 in the supplementary information
file provides an overview of each of these studies.

Out of the 66 mathematical modelling studies, 38 used
agent-based models (ABM), i.e. models simulating COVID-
19 infection and disease progression between groups of
interacting individuals, 19 used stochastic branching pro-
cess models (SBP) simulating COVID-19 outbreaks by
tracking the sequential process of disease progression from
an initial case or groups of cases and 9 used other varied
disease modelling approaches (Other). Out of the 38 ABM-
based studies, 32 were published [7, 12, 34—63] and six were
preprints [64—69]. Out of the 19 SBP-based studies, 17 were
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published [5, 811, 70-81] and two were preprints [82, 83].
Of 9 studies using varied modelling approaches, seven were
published [84-90] and two were preprints [91, 92]. Annex
3.2 in the supplementary information file provides an over-
view of the mathematical modelling studies.

Timeframe In terms of timeframe, out of the 12 empirical
studies, nine published studies [22-26, 28, 30, 32, 33] and
one preprint [31] were based on data from the first wave
of the COVID-19 pandemic. Only Pozo-Martin et al. [27]
and Wibbens et al. [29] included data from further pandemic
waves, the former until December 2020 and the latter until
November 2020.

For the ABM-based mathematical modelling studies,
based on the period of the epidemic modelled we identi-
fied two broad groups of studies: (1) Studies modelling the
COVID-19 epidemic in a context other than the 2020 lock-
down reopening, either in the general population [36—41,
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(n=63)

46, 47, 54, 55, 57, 61, 64, 66—68], in a population of work-
ers [44] or in a hospital [53] , and (2) studies modelling the
COVID-19 epidemic in the context of the 2020 lockdown
reopening, either in the general population [7, 12, 34, 35,
39, 45, 48, 49, 51, 52, 56, 58-60, 62, 65, 69] or in educa-
tional institutions [42, 43, 50, 63]. Within the first group, all
studies modelled outbreaks over a variable time span (from
60 days [40] to 600 days [68]) from the first COVID-19
cases except three [38, 46, 54], which modelled the condi-
tions of an ongoing epidemic, such as acquired immunity or
vaccination. Within the second group of studies, all repro-
duced the conditions of specific 2020 lockdown and reopen-
ing scenarios in the modelling parameters except the studies
set in educational institutions, which modelled outbreaks
in the event of initiating at least some in-person teaching.
Using the same grouping for the SBP-based studies: all the
SBP-based studies modelled the epidemic in a context other
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than 2020 lockdown reopening from the first cases except
Brook et al. [71], Fyles et al. [73] and Huamani et al. [75],
who modelled 2020 lockdown reopening conditions. With
respect to the varied modelling studies, all of them mod-
elled the epidemic from its start in a context other than 2020
lockdown reopening with the exception of Moran et al. [91],
who simulated events for an ongoing epidemic from June
2020 onwards.

Geographical scope The geographical scope of the studies
is varied. Six empirical studies assessed contact tracing in
a wide range of geographical areas - Haug et al. [22] in 79
territories and 56 countries worldwide, Hong et al. [23] in
108 countries, Leffler et al. [25] in 200 countries around the
world, Liu et al. [26] in 130 countries around the world,
Papadopoulos et al. [31] in 137 countries, Pozo-Martin et al.
[27] in the 37 OECD member states, while the remaining six
focused in specific geographical contexts around the world.
The ABMs simulated epidemics in either specific communi-
ties - e.g. in the University of Illinois [50], in Masiphumele
township in Cape Town (South Africa) [66], in towns or cit-
ies, such as Boston MA (USA) [35] or Seattle WA (USA)
[45], in regions - for example, Victoria (Australia) [56], or
in an entire country, e.g. Luxembourg [60] or Belgium [62].
The SBP-based studies typically simulated local outbreaks
in either generic unspecified contexts or in specific contexts,
such as a student community at UC Berkeley at the start
of a semester [71]. Studies not belonging to either category
modelled outbreaks either in unspecified geographical areas
[84], in cities, such as San Francisco CA (USA) [92] orin a
country, e.g. the United Kingdom [86, 87].

Statistical and modelling approaches and parameters

Empirical studies Annex 4.1 in the supplementary informa-
tion file presents an overview of the type of study design,
the modelling approach / statistical analysis, sample size
and sources of data for the empirical studies.

The ecological studies used a wide range of statistical
methods to assess the impact of contact tracing (among
other NPIs) on the relevant health outcomes. Among the
nine longitudinal ecological studies, Haug et al. [22] used
four different approaches to separately estimate and then
harmonize the impact of a vast number of NPIs on the
reproduction number R: case-control analysis, step-function
lasso regression, RF regression and transformer model-
ling. Pozo-Martin et al. [27] used both maximum likelihood
and Bayesian estimation to estimate the impact of 13 NPIs
including contact tracing on the weekly growth rate in
cumulative COVID-19 cases. Kendall et al. [24] and Wib-
bens et al. [29] also used longitudinal Bayesian estimation/
modelling techniques to estimate, respectively, the impact
of adding digital to manual contact tracing and the impact

of eleven NPIs (including contact tracing) on the growth
rate in cases. Wymant et al. [30] used both matched neigh-
bour regression and modelling. The cross-sectional study
[23] used multiple linear regression. The most common
sources of data for these studies were a range of COVID-
19 policy trackers — in particular, the Oxford COVID-19
Government Policy Tracker. The retrospective cohort study
[32] used surveillance data and hypothesis tests to estimate,
inter alia, the reduction in the number of secondary cases
per diagnosed individual under contact tracing compared to
symptomatic surveillance. The pre-post study [33] also used
surveillance data to estimate the reduction in R associated
with tracing and testing contacts of COVID-19 case clusters
/ symptomatic individuals compared to those of symptom-
atic individuals.

Simulation studies The three categories of simulation mod-
els assessed in this review — ABM, SBP and Other models
differ in fundamental aspects. ABMs simulate groups of
interacting individuals, ranging from communities to entire
populations. Each individual (i.e. each agent) is assigned
particular characteristics which may affect the probability
of infecting other individuals, becoming ill, recovering or
dying. In contrast, SBPs simulate outbreaks starting with an
index case or a small group of cases and track the sequen-
tial process of disease transmission. Models categorised as
Other are neither ABMs nor SBPs but may share common
characteristics with both. Annex 4.2 in the supplementary
information file presents the main methodological charac-
teristics of the mathematical modelling studies, including
the representation of social interactions (specifically, the
types of network layers and contact structure modelled for
the interactions between individuals, with data sources),
the representation of infection and disease (specifically,
whether the models distinguish between symptomatic and
asymptomatic carriers and/or levels of severity in COVID-
19 symptoms) and the main model parameters and their
sources.

ABMs The ABMs from the 38 studies assessed in this
review can be characterised into two broad types: multi-
layer and single-layer ABMs. Multi-layer ABMs simulate
different social layers (e.g. households, schools, work-
places) with different contact structures. In this sense,
they are more realistic than single-layer ABMs. Within the
multi-layer ABMs, the COVID-19 Agent-Based Simula-
tor (COVASIM) is the most used - see [45, 46, 52, 56, 58].
COVASIM is an open-source ABM [93] which includes
demographic data on age-structure and population size for
specific countries, four different social layers (households,
schools, workplaces, leisure) and a comprehensive descrip-
tion of health states, including asymptomatic/ presymptom-
atic/ mild/ severe/ critical/ dead. COVASIM incorporates
different types of transmission networks, such as random
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networks and realistic networks via its integration with
Synthpops, an open-source data-driven model that allows
to generate synthetic contact networks based on evidence-
based age-contact patterns for different environments such
as schools and households [93]. Interestingly, many of the
remaining ABM studies not using COVASIM also incor-
porate realistic network structures — for example, Aleta et
al. [35] or Gressman et al. [42]. Studies that include less
realistic age-contact patterns include those which model
the age-contact structure using only the average number of
contacts per age-group, e.g. Abueg et al. [34]. In addition,
less realistic ABMs include those which are single-layer
network ABMs- see for example [7, 38, 40, 41, 50, 55, 63],
Reich et al. 1 [67], Reich 2 [68] and Tuomisto et al. [69].
Most ABM-based studies distinguish between symptomatic
and asymptomatic transmission of COVID-19; exceptions
include Bhattacharyya et al. [37], Wallentin et al. [7], Gold-
enbogen et al. [65], Low et al. [66], and Reich et al. 1 [67].
Some studies also distinguish between levels of severity of
COVID-19 infected.

SBPs As with the ABMs, the SBP used in the 19 studies
assessed in this review can be separated into multi-layer and
single-layer SBPs. Plank et al. [81] uses a multi-layer SBP
(home, school, work and leisure). Seven studies [5, 10, 11,
70, 72,75, 79] use adaptations of the SBP by Hellewell et al.
[74]. This model is a SBP which simulates outbreaks with
the following characteristics [74]: the number of potential
secondary cases arising from an index case is distributed
as a negative binomial distribution with mean equal to the
reproduction number R; each new infection is assigned an
incubation time (time between virus exposure and symp-
toms) for which a probability distribution is also assumed;
once the individual is symptomatic he/she is isolated at a
time drawn from a delay distribution; for each potential
secondary case, depending on the study, a generation time
(time between the infection of a primary case and one of
its secondary cases) or a serial interval (time between the
onset of symptoms in a transmission pair) is drawn from a
distribution. Each contact is then traced with a probability p.
Similar to the ABM studies, most SBP distinguish between
symptomatic and asymptomatic transmission of COVID-
19, except for Endo et al. [9] and Huang et al. [83]. In con-
trast with the ABMs, most SBPs do not distinguish between
different levels of infection severity, except for Allali et al.
[82].

Other models Nine models belonging to this category were
assessed in this review. For example, Kucharski et al. [87]
uses a model starting with a number of infected and simulat-
ing contacts via an age-based contact distribution. Cencetti
et al. [84] uses recursive equations where time is modelled
in discrete steps. Grassly et al. [86] uses a time-depen-
dent infectiousness function which distinguishes between

@ Springer

symptomatic and asymptomatic infected individuals. Wor-
den et al. [92] uses Monte Carlo methods to simulate out-
breaks. Two of the models used in this group of studies
are multi-layer [84, 87]. All of these models but one - see
Worden et al. [92], separate symptomatic and asymptomatic
transmission of COVID-19.

Parameters used in simulation studies and their
sources Parameters describing COVID-19 infectiousness
commonly used across models include (1) the basic repro-
duction number R, (the average number of new cases gen-
erated by an index case); (2) the incubation time; (3) the
latency period (time between exposure and infectiousness),
used in ABMs; (4) the generation time (the time between
the infection of a primary case and the infection of a sec-
ondary case) and serial interval (the time between onset of
symptoms in a transmission pair), used in SBPs and Other
models; and (5) the proportion of asymptomatic cases:

1) Different values of R, are used across models, typically
when setting scenarios of higher or lower virus trans-
mission. For example, Huamani et al. [75] uses R, val-
ues of 2.7 and 3.5 for pre-lockdown and 1.5, 2.0 and 2.7
post-lockdown, based on estimates by Liu et al. [94] and
Chen et al. [95]. Liu et al. [94] is referenced as a source
of R, in several studies, including Wallentin et al. [7],
Huamani et al. [75], James et al. [76] and Pollmann et
al. [54] - this paper reviews the first estimates of R, in
China, concluding that the mean (median) value for this
parameter is 3.28 (2.79).

2) The incubation time is set to relatively similar values
across most studies. COVASIM-based studies estimate
a mean value for this parameter of 5.6 days based on a
statistical analysis of cases by Linton et al. [96]. Several
other ABM studies — e.g. Gressman et al. [42], Pham et
al. [53], and Tuomisto et al. [69] assume a Gamma dis-
tribution for the incubation time between 5 and 6 days.
In most SBP studies based on the model by Hellewell
et al. [74], the incubation time is assumed to follow a
Lognormal [5, 10] or Weibull [11, 72, 74] distribution
with mean (standard deviation) in the range 5.5-5.8
(2.3-2.6) days. The most used reference for incubation
time is Lauer et al. [97]. Lauer et al. [97] is indeed cited
as a source for the incubation time by a number of ABM
studies including Abueg et al. [34], Bicher et al. [12],
Colomer et al. [38], Fiore et al. [40], and Pollmann et al.
[54]; a number of SBP studies such as Bradshaw et al. 1
[10], James et al. [76], Bradshaw et al. 2 [70], Plank et
al. [81], and by two studies included in the Other model
types category [85, 86]. Lauer et al. [97] estimate the
duration of the COVID-19 incubation period by ana-
lysing the cumulative number of confirmed COVID-
19 cases reported between January 4 and February 24,
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2020 in 50 regions and countries. Other widely used
references for the incubation time include Backer et al.
[98] and Li et al. [99].

3) The latency period is also set to relatively similar val-
ues across most studies. COVASIM-based studies use a
lognormal distribution with mean (standard deviation)
4.5 (1.5) days based on Lauer et al. [97] and Nishiura et
al. [100]. Aleta et al. [35] uses values ranging between 3
and 5 days, based on estimations by Backer et al. [98].
Bicher et al. [12] and Tatapudi et al. [59] use a latency
period of 3 days. Ng et al. [51] use a PERT distribu-
tion with mean 3.68 days to characterise this parameter.
Lauer et al. [97] is again used by multiple studies as a
source for this parameter.

4) The serial interval and the generation time are also set to
relatively similar values across most studies. Hellewell-
based studies (all of them SBPs) mainly assume a Skew-
Normal distribution for the serial interval with mean the
incubation time and standard deviation equal to 2, e.g.
Hellewell et al. [74], Bradshaw et al. 1 [10], Filonets
et al. [72], Firth et al. [11] and Bradshaw et al. 2 [70].
Other SBP studies mainly assume a Weibull distribution
for the generation time with mean 5.00-5.05 and stan-
dard deviation 1.92—1.94, based on Ferretti et al. [85].

5) The proportion of asymptomatic cases is modelled dif-
ferently. COVASIM-based studies assume a different
proportion of asymptomatic infected individuals by
age groups, which are based on estimates by Fergu-
son et al. [101] and Verity et al. [102]. Other studies
such as Abueg et al. [34], Moreno Lopez et al. [49] and
Thompson et al. [60] also model a varying proportion
of asymptomatic infected for different age groups. This
approach adds realism to the representation of asymp-
tomatic infected individuals in models. Aleta et al. [35]
and Ng et al. [51] use equal values across all age groups
for this parameter respectively of 25% and 38%. Nishi-
ura et al. [100] is often cited as a source for the propor-
tion of asymptomatic cases [35, 75, 77]. Nishiura et al.
[100] analyse PCR results from 565 Japanese citizens
evacuated from Wuhan and calculate the proportion of
asymptomatic infected using Bayes’ theorem. Other
sources commonly used for this parameter are Lavezzo
et al. [103] and Mizumoto et al. [104].

To summarise, a host of statistical/ modelling approaches
have been used to estimate the comparative effectiveness
of contact tracing interventions. Among the empirical stud-
ies, longitudinal ecological designs evaluating the impact of
contact tracing along with that of other NPIs on different
health outcomes are predominant. The simulation studies
differ substantially in their realistic representation of popu-
lations or outbreaks. Finally, there is relative consistency

in the parameters commonly used across simulation mod-
els, whereby these parameters are extracted from adequate
sources.

Results of the studies
Empirical studies

Table 2 presents the results of the empirical studies, in
descending order based (where applicable) on their quality
score.

We separated the ecological studies into three categories
based on their risk of bias rating: lower quality studies (risk
of bias rating 11 or 12), intermediate quality studies (risk
of bias rating 13 to 15), and higher quality studies (risk of
bias rating 16 or 17). In the highest quality ecological study,
Wymant et al. [30] found that use of the NHS COVID-19
app averted a large number of cases (594,000 and 284,000,
depending on the method of estimation) between the end of
September and the end of December 2020. They estimated
that for each case consenting to notification of their contacts
approximately one case could be averted and that for every
percentage increase in app adoption cases could be reduced,
depending on the method of estimation, by 2.3% or 0.8%.
In the second highest quality ecological study, Kendall et
al. [24] found that, after the implementation of a test, trace
and isolate intervention including manual and digital con-
tact tracing in the Isle of Wight, there was a consistent drop
in the effective reproductive number from 1.3 to 0.5 [24].
Vecino-Ortiz et al. [28], in an ecological study of intermedi-
ate quality comparing the impact of contact tracing across
32 departments and five districts in Colombia, found that
an increase in the proportion of cases identified through
contact tracing of 10% was associated with a reduction in
COVID-19 mortality of between 0.8% and 3.4%.

In a retrospective cohort study of acceptable quality (as
defined by the SIGN risk of bias checklist, acceptable qual-
ity refers to neither high quality nor of unacceptably low
quality), Malheiro et al. [32] compared (1) the number of
secondary cases from index cases who were not subject to
contact tracing and quarantine before laboratory confirma-
tion of COVID-19 status with (2) the number of secondary
cases from close contacts of index cases who were traced
and quarantined before laboratory confirmation of COVID-
19 status. The authors found that contact tracing was not
associated with a reduction in the number of secondary
cases per contact. In a pre-post study of two cohorts of
COVID-19 patients of acceptable quality (as defined by the
SIGN checklist), Park et al. [33] found that prompt tracing
of contacts of COVID-19 case clusters/ symptomatic indi-
viduals was associated with a reduction in R from 1.3 to 0.6.
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Table 2 (continued)

Quality score/ Comment

Results relevant to contact tracing with effect sizes in

Intervention(s)/ comparator(s)
brackets

Authors;
Setting;

(studies with score < 16)

Longitudinal/ cross-sectional

Malheiro et al. [32]

Acceptable

Impact tracing and quarantine did not have an impact. Sec-
ondary attack rate in intervention group (95% CI)

(1) Contact tracing and quarantine. Comparator: no contact

tracing and quarantine

Risk of performance bias

12:1%

Eastern Porto (Portugal)

Longitudinal study

(7-1-18-9]; Secondary attack rate in control group (95% CI):

=0.13
With tracing and testing the contacts of COVID-19 case

9-2% (7-:8-10-8), p-value

Acceptable

(1) Tracing the contacts of all COVID-19 case clusters and
symptomatic individuals, testing them and placing all those
testing positive in quarantine. Comparator: Testing only

Park et al. [33]

Risk of selection bias

clusters / symptomatic individuals and placing all those test-

Seoul (South Korea)
Longitudinal study

ing positive in quarantine the effective reproduction number
was reduced from 1.3 to 0.6 (effect size not provided)

symptomatic, tracing and testing their contacts and quaran-

tining all those testing positive

In the ecological studies which explored the compara-
tive effectiveness of contact tracing in the context of a broad
set of other (mostly social distancing) NPIs, contact tracing
showed a very small effect on reducing weekly COVID-
19 growth rates in Wibbens et al. [29]. Hong et al. [23]
found that school closing and high-intensity contact trac-
ing can, implemented together, have an effect on reducing
the COVID-19 growth rate. Papadopoulos et al. [31], in a
multivariate analysis comparing several NPIs, found no
association between early adoption of contact tracing and
reduced morbidity/ mortality. In a univariate analysis (i.e.
not including the effect of other NPIs), the authors found
that contact tracing was associated with an increase in the
number of COVID-19 cases but neither with a decrease in
the number of cases nor with a decrease in the number of
deaths [31]. The remaining studies exploring contact trac-
ing along other NPIs found no impact of contact tracing on
health outcomes either in the first wave of the epidemic [22,
25, 26] or in both the first wave of the epidemic and in the
period October-December 2020 [27].

Simulation studies

The simulation studies varied enormously, inter alia, in the
geographical context, outcomes measured, point of the epi-
demic explored, and additional NPIs factored into the analy-
sis. In addition, the majority of simulation studies reported
results graphically and supported this graphical presentation
with a descriptive narration regarding the specific aspects
of the simulated contact tracing interventions which had a
substantial impact on the epidemic. In this challenging con-
text for evidence synthesis, we used the following approach
to present the study results. First, we separated the studies
into two types: (1) those that explicitly reported numerical
changes in outcomes relevant to the contact tracing interven-
tions, and (2) those that highlighted the specific contact trac-
ing interventions modelled which could achieve COVID-19
epidemic control / suppression (R <1). Within both groups,
we classified the studies into the two types described pre-
viously regarding the period of the epidemic modelled: (a)
Studies modelling the epidemic in a context other than the
2020 lockdown reopening, and (b) Studies modelling the
epidemic in the context of a 2020 lockdown reopening. In
addition, for each study we made explicit whether condi-
tions of social distancing / reductions in transmission were
incorporated in the simulations of specific contact tracing
interventions. In order to categorise the evidence for the
studies explicitly reporting numerical changes in outcomes
relevant to the contact tracing interventions analysed, we
separated the contact tracing interventions reported into
those that achieved high effectiveness (> 50% of reduction in
the outcomes reported), intermediate effectiveness (between
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10% and 50% reduction in the outcomes reported) and low
effectiveness (< 10% reduction in outcomes reported). The
outcomes reported include the effective reproduction num-
ber R, incidence-related outcomes (e.g. the attack rate, the
number of susceptible individuals, infections, cases, hospi-
talisations and recovered individuals) and mortality. For a
full description of the mathematical modelling study results,
please see Annex 5 in the supplementary information file.

Table 3 below highlights the contact tracing interven-
tions achieving high, intermediate, and low effectiveness
for the studies modelling the epidemic in a context other
than reopening a 2020 lockdown which explicitly reported
numerical changes in outcomes. From Table 3, in studies
modelling the epidemic in a context other than the 2020
lockdown reopening, the following contact tracing interven-
tions were highly effective:

e In the context of manual primary contact tracing, high
manual forward tracing coverage with medium term
immunity or high isolation/ quarantine efficacy and/or
physical distancing. In a context of physical distancing
and mid-term immunity, tracing and testing 40% of con-
tacts [91] resulted in a reduction of 99% in the number
of deaths. With high isolation/ quarantine efficacy, trac-
ing all contacts achieved reductions in R of 64% [87].
Wells et al. [61] found that with levels of quarantine
efficacy of 47% tracing all infected individuals could
reduce the epidemic size by 95%. Eilersen et al. [39]
estimated that an approach of one-step tracing, identi-
fication and highly efficacious quarantining of social
contacts of individuals testing positive could reduce the
peak number of infected by 60%. Colomer et al. [38]
found that, with social distancing and a population vac-
cination level of 19% in the summer of 2021, a lower
contact tracing coverage of 40% would reduce deaths by
71%/77% depending on the level of social distancing.

e Hybrid manual and digital contact tracing with high app
coverage and high isolation/ quarantine efficacy. Plank
et al. [81] estimated that a fast and effective contact trac-
ing strategy with high quarantine efficacy and digital
contact tracing with 75% app adoption reduced R by
53%. Kucharski et al. [87] found that adding digital con-
tact tracing with 53% app adoption to manual tracing of
acquaintances achieved a reduction in R of 61%. Both
authors found that the efficacy of hybrid contact tracing
increased with physical distancing. Kucharski et al. [87]
in addition found that digital contact tracing on its own
had no advantage over manual contact tracing.

e Secondary contact tracing. Geffen et al. [64] found that
with perfect isolation of infected and perfect tracing
of first and secondary contacts the number of infec-
tions was reduced by 82%. Firth et al. [11] found that

secondary manual contact tracing achieved a reduction
in infections of 78%. Bhattacharya et al. [37] estimated
that coupled with a moderate lockdown, secondary con-
tact tracing may achieve a 99% reduction in recovered
individuals.

e Immediate contact tracing from identification of index
case (i.e. no delays in contact tracing). Quilty et al. [55]
found that in a context with moderate/ high quarantine
efficacy, a reduction in tracing delays from three to zero
days could avert 58% of transmissions.

e Bidirectional contact tracing. Endo et al. [9] found that
across a wide level of relevant infection- and policy-
related parameters, bidirectional contact tracing could
avert two or three times more cases than forward contact
tracing alone.

The following contact tracing interventions had intermedi-
ate effectiveness:

e In the context of manual forward contact tracing, dif-
ferent levels of contact tracing coverage coupled with
either quick quarantine or high isolation and quarantine
efficacy. Plank et al. [81] found that tracing of school/
work/casual contacts with 50% quarantine efficiency
achieved an R reduction of 35%. Low et al. [66] found
that testing and isolating infected contacts with a two-
day test turnaround time reduced the number of infec-
tions by 25.5%. Geffen et al. [64] found that with a
strong isolation policy, levels of 10%/30% contact trac-
ing could achieve a 23%/41% infection reduction.

e Digital contact tracing with intermediate levels of app
adoption. Kuzdeuov et al. [88] estimated that a level
of 50% app adoption could lead to a 20% reduction in
infections in the context of mass random testing.

e Small (i.e. 1 day) contact tracing delays. Grassly et al.
[86] found that in the context of very high levels of test-
ing of symptomatic individuals and contact tracing, a
one-day delay to contact tracing could induce a reduc-
tion in R of 26%.

e Longer bidirectional contact tracing windows. In the
study by Bradshaw et al. 2 [70], bidirectional contact
tracing with a six-day window and 50% coverage would
reduce R by 10%; to obtain the same effect with a 2-day
tracing window, a higher level of coverage of 70%
would be required.

The following contact tracing interventions had low
effectiveness:

e [Longer delays to contact quarantine. Low et al. [66]
found that a contact quarantine delay induced by an
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8-day delay in the time from contacts testing to achiev-
ing test results could reduce infections by 8%.

e Longer (i.e. 2 days) delays to contact tracing. In the
same study discussed previously, Grassly et al. [86]
found that with high levels of symptomatic testing and
contact tracing, a two-day contact tracing delay resulted
in a reduction in R of 8%.

Table 4 below highlights the contact tracing interventions
achieving high, intermediate, and low effectiveness for
the studies modelling the epidemic in the context of 2020
lockdown reopening which explicitly reported numerical
changes in outcomes. Based on the results from Table 4, the
following contact tracing interventions were highly effec-
tive in studies modelling contact tracing in the context of
2020 lockdown reopening scenarios:

e In forward manual primary contact tracing, high forward
tracing coverage levels coupled with high isolation and/
or quarantine efficacy and with social distancing after
reopening. Ng et al. [51] and Bicher et al. [12] found
in the context of strong isolation policies and social
distancing after reopening, that 100% and 50% tracing
coverage achieved a 99% reduction in the attack rate
and a 62% reduction in infections respectively. Tatapudi
et al. [59] found, with social distancing after reopen-
ing, a 66% reduction in the infection rate with a strong
contact tracing policy identifying 50% of symptomatic
and asymptomatic individuals. Willem et al. [62] esti-
mated that, with social distancing, identifying 50% of
symptomatic and tracing their contacts with high cov-
erage (90% in households, 50% outside of households)
reduced hospitalisations by 58%.

e Digital contact tracing alone or hybrid manual and dig-
ital contact tracing, both with high app adoption, and
social distancing. Moreno Lopez [49] found that with
high/ low social distancing after reopening, digital con-
tact tracing with 60% app adoption achieved a reduc-
tion in peak incidence of 89%/66%. Abueg et al. [34] in
the context of reopening with mask wearing and closed
schools, found that digital tracing with 75% app adop-
tion could reduce infections between 56% and 73% (low
estimates) in three counties in the USA.

e Reopening educational institutions with high levels of
contact tracing and with social distancing. Brook et al.
[71] estimated a very large (x17) increase in the number
of cases saved with a policy reaching 90% of contacts
within one day of identifying the student index case.
Zafarnejad et al. [63] estimated, in a context of surveil-
lance testing, that shifting from no contact tracing to the
maximum level could avert 70% of cases in reopening
an educational institution.

The following contact tracing interventions had intermedi-
ate effectiveness:

e Manual contact tracing of household or work contacts
with social distancing. Bicher et al. [12] found that, in a
context of strong social distancing after reopening, man-
ual contact tracing of household/ work contacts reduced
the number of infections by 41%/ 35%.

e [solation of household contacts and digital contact trac-
ing (low uptake) with social distancing. Moreno-Lopez
et al. [49] found that in a context of isolation of cases
and their household contacts digital contact tracing with
20% app adoption and lower/ higher social distancing
reduced infections between 35% and 45%.

The following contact tracing interventions had low
effectiveness:

e Reopening of educational institutions with random
testing, contact tracing and social distancing and small
changes in tracing coverage when it is already at a high
level. In the study by Gressman et al. [42], contact trac-
ing within a set of policies in educational institutions
including random testing and social distancing reduced
infections by 8.5%. However, the level of contact trac-
ing coverage in the study was not clear. Mukherjee et
al. [50], in a similar context, found that increasing from
contact tracing coverage from 80% to 90% had a small
(5.54%) impact on infection reduction.

Table 5 presents a set of specific contact tracing interven-
tions which can achieve COVID-19 epidemic control /
suppression (R<1) from the studies included in the review
which did not explicitly report changes in numerical out-
comes relevant to contact tracing but which highlighted
these interventions. From Table 5, the results from the stud-
ies modelling the epidemic in contexts other than 2020
lockdown reopening echo the results that we have outlined
above:

e For manual forward tracing, high levels of isolation,
contact tracing and quarantine efficacy helped achieve
epidemic control/ suppression [80], especially in the
context of reduced transmission by, inter alia, social
distancing interventions [40, 67, 74, 79].

e For digital or hybrid contact tracing, high level of smart-
phone use/ app adoption, particularly with social dis-
tancing [57, 72, 90] helped achieve epidemic control/
suppression. Cencetti et al. [84] found that with a two-
day delay in contact tracing, high quarantine efficacy
and strong social distancing, a level of app adoption of
40% was enough to control the epidemic.

@ Springer
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e Shorter delays to contact tracing helped epidemic con-
trol: three days delay with highly successful quarantine
and no social distancing [85]; zero days delay with 80%
contact tracing and social distancing [8]; one day delay
(i.e. one day to isolation of symptomatic) with physi-
cal distancing [82]; zero days without physical distanc-
ing and 100% coverage of household contacts [78].
Kretzschmar et al. 2 [78] found the following trade-off:
for a tracing delay of zero days, contact tracing cover-
age of 40% or higher can achieve R < 1; however, if this
tracing delay is increased to one day, tracing coverage
needs to increase to 100% to achieve the same effect. In
a similar context, Quilty et al. [55] found that reducing
contact tracing delays may allow for shorter quarantine
periods.

The results from the studies modelling contact tracing in
2020 lockdown reopening scenarios similarly echo our pre-
vious results and add new information:

e For manual forward tracing, high levels of contact
tracing and physical distancing helped attain epidemic
control/ suppression [58]. In addition, full-time and
part-time reopening of schools with high levels of test-
ing and contact tracing and some social distancing can
help epidemic control [52].

e Digital contact tracing with lower app adoption and
physical distancing helped control/ suppress the epi-
demic. Wallentin et al. [7] found that in a context of 20%
reduction in mobility at reopening, lower (26%) levels
of digital contact tracing app adoption led to R=1.

e With high contact tracing levels and lower transmission
due to mask wearing and school closures, tracing delays
of two days did not hinder control of the epidemic [45].

e Contact tracing coverage (50%) considering the struc-
ture of households with the addition of physical distanc-
ing helped R< 1 [73].

To summarise the results of the review for the modelling
studies across levels of effectiveness:

1. Manual contact tracing with high tracing coverage
is a highly effective intervention if accompanied by
medium term immunity or high isolation/ quarantine
efficacy and/or physical distancing. Excluding casual
contacts from contact tracing may reduce the effective-
ness of manual contact tracing. Manual contact tracing
with longer delays to contact quarantine were found
to have low effectiveness, which highlights the impor-
tance of high quarantine efficacy in the context of this
intervention.

@ Springer

2. Hybrid contact tracing with high app adoption is a
highly effective intervention if accompanied by high
isolation and quarantine efficacy and social distancing.
Moderate levels of app adoption reduce the effective-
ness of this intervention.

3. Secondary contact tracing is
intervention.

4. Reducing delays to contact tracing (from three to zero)
is increasingly effective, and immediate contact trac-
ing is highly effective. Some 2020 lockdown reopening
studies found that delays in tracing up to three days can
be effective, particularly with social distancing. Other
studies found that increases in tracing delays of only
one day (from zero to one) require a very large increase
in contact tracing coverage to achieve a similar effect,
and that reducing tracing delays may allow for shorter
quarantine periods.

5. Bidirectional contact tracing is highly effective. Longer
(e.g. 6 days) tracing windows have been found to have
intermediate effectiveness.

6. Contact tracing with high coverage in reopening educa-
tional institutions is highly effective. One study found
that contact tracing in an educational institution had low
effectiveness, but the level of tracing coverage was not
clear. Small changes in tracing coverage when coverage
is high in educational institutions have been shown to
have low effectiveness.

a highly effective

Discussion

Study quality.

The quality of the empirical studies was variable. Studies
using large sample sizes and advanced statistical methods
[24, 30] or using large databases and multiple, more sophis-
ticated methods of analysis [22, 27] coexisted with studies
with relatively small sample sizes and less sophisticated/
flexible statistical methods, e.g. [25, 31]. Most studies (ten
out of twelve), however, were of intermediate or high qual-
ity. Specifically, this was the case for four out of the five
studies with a statistically significant positive effect on
reducing health outcomes [24, 28-30], hence highlighting
the validity of the results reported in individual studies. For
the mathematical modelling studies, there was less variabil-
ity in quality than for the empirical studies. In addition, a
full one half of the studies (33/66) reached a score of eight or
nine (with the maximum possible being nine) and four fifths
(57/66) achieved a score of seven, eight or nine, yielding
more confidence in their results. Quality differences across
models were for the most part due to differences in the rep-
resentation of more realistic social mixing between individ-
uals in the models. Specifically, as mentioned previously,
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agent-based models often (two-thirds of the time) imple-
mented multi-layer networks. Such networks are based on
actual interactions of individuals across different networks,
such as at school, at work, or in the community and most
realistically represent the interactions between individuals
that can lead to disease spreading.

Empirical studies.

From the 12 empirical studies analysed in this review,
two higher quality studies [24, 30], two intermediate qual-
ity studies [28, 29], one acceptable quality study [33] and
one lower quality study [23] found an effect of contact trac-
ing on controlling the COVID-19 pandemic, while six [22,
25-27, 31, 32] did not.

Implementing digital contact tracing in addition to man-
ual contact tracing was identified in our review as an effec-
tive intervention in two high quality observational studies
[24, 30]. Wymant et al. [30] suggest that the positive effect
of the NHS COVID-19 app on health outcomes is due to
a higher tracing speed and a higher coverage of contacts
compared to manual contact tracing (the app detected 4.2
contacts per index case compared with 1.8 with manual
contact tracing). Kendall et al. [24] suggest that among the
reasons for the success of the implementation of digital con-
tact tracing along with manual contact tracing in the Isle
of Wight were the large advertising campaign, community
discussions and national publicity that followed the launch
of the initiative. While Vecino-Ortiz et al. [28] showed that
increased levels of contact tracing had a significant impact
on mortality in Colombia and Park et al. [33] found that
tracing contacts associated with COVID-19 case clusters
reduced the reproduction number R to levels compatible
with epidemic control (albeit without providing an effect
size) in Seoul (South Korea), Malheiro et al. [32] did not
find that contact tracing and quarantine was more effective
than symptomatic surveillance in Porto (Portugal). This
last finding may be due to two explanations according to
the authors. First, citing Nussbaumer-Streit et al. [20], they
argue that considering the large reproduction number and
the pre-symptomatic transmission of COVID-19, quaran-
tine of contacts alone seems to be insufficient to contain
the epidemic [32]. Second, they state that, in their cohort
study, most high-risk contacts were household contacts
and, in many cases, housing conditions could not guarantee
that contacts could be truly isolated, and hence the chain of
transmission was not immediately stopped [32].

Among the ecological studies exploring the joint imple-
mentation of contact tracing with other NPIs, Wibbens et al.
[29] found that contact tracing had a very small marginal
effect on reducing weekly COVID-19 growth rates across
40 jurisdictions: the authors suggest that this very small
effect could be due to the lifting of policies, other than those
reported in the database used in their study, at the same time

as contact tracing was being implemented [29]. While Hong
etal. [23], in a lower quality study, found that school closing
was effective at reducing the pandemic growth rate only if
implemented concurrently with high intensity contact trac-
ing, the authors did not report an explanation for this effect.
No other ecological studies exploring the impact of contact
tracing in the context of other NPIs (including strict social
distancing measures such as stay-at-home orders) found
that contact tracing was a comparatively effective interven-
tion for controlling the COVID-19 epidemic. Haug et al.
[22] comment that this could be partially explained by two
factors. First of all, their analysis was undertaken in April
and May 2020, when contact tracing structures were over-
whelmed in most countries rendering this policy ineffective
[22]. Second, in countries where contacts were traced and
tested, this policy would increase the reproduction number
in the short term, as more cases will be found [22]. Liu et al.
[26] share this last argument to explain the lack of impact
of contact tracing in their study. They add that information
bias in the database where they sourced their NPI data could
also play a role. Pozo-Martin et al. [27], in their study of
NPI impact in OECD member states discuss that the lack
of effect of contact tracing shown in the early phase of the
epidemic may be explained at least in part by the fact that
for the period of study, most OECD countries implemented
limited contact tracing (i.e. they did not trace the contacts of
all confirmed cases). It is well known that ecological stud-
ies have limitations, for example being exposed to omitted
variable bias. A further problem of assessing the effective-
ness of contact tracing in the context of other NPIs is that
it is statistically challenging because NPIs are typically
implemented simultaneously- some statistical methods may
overestimate the effects of an NPI due to insufficient adjust-
ment for confounding from other measures, and other meth-
ods may underestimate the effect of an NPI by assigning
its impact to a highly correlated NPI [22]. For this reason,
the use of more than one statistical method to explore the
effectiveness of joint NPI implementation is good practice
(and in fact is included in the study quality rating tool used
in our review). Two of the higher quality studies exploring
the comparative effectiveness of contact tracing in relation
to other NPIs [22, 27] used more than one statistical method
to control for this potential problem and found results were
consistent across methods.

Mathematical modelling studies.

Based on the results from the mathematical modelling
studies, high contact tracing coverage is an important mitiga-
tion intervention, particularly in contexts of high COVID-19
transmission. This is because individuals become infectious
days before the onset of symptoms and it is estimated that
35% of COVID-19 transmission is asymptomatic [105].
Manual contact tracing involves carrying out interviews
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with identified cases, contacting their contacts (usually by
phone) and informing them about their likely exposure to
the pathogen. It is labour intensive and time-consuming. In
contexts of high COVID-19 transmission, high coverage
of manual contact tracing may be difficult to achieve given
health system resource constraints. In contrast, in contexts
of low COVID-19 transmission, the probability of contact
tracing achieving epidemic control increases [74]. Some
have suggested that in contexts of low COVID-19 transmis-
sion, contact tracing is the key intervention in COVID-19
outbreak management and control [106].

There are a number of interventions that can directly
help reduce COVID-19 transmission and hence increase the
effectiveness of manual contact tracing. Three of these are
robust case detection, high isolation/ quarantine efficacy,
and non-pharmaceutical interventions increasing social dis-
tancing. As we showed in the review, a number of modelling
studies found that manual contact tracing was highly effec-
tive in the context of such interventions. These interventions
can be of particular relevance in reopening scenarios such
as after the 2020 lockdowns. This is of course because (at
a huge social cost) lockdowns achieve the interruption of
SARS-CoV-2 transmission [35] and contact tracing then
becomes feasible. Undeniably, the epidemic resurged dur-
ing the second half of 2020 with the relaxation of NPIs.
Modelling studies have been proposed which combine
robust contact tracing with social distancing to mitigate the
effect of NPI relaxation [59].

Digital contact tracing is a potential improvement over
manual contact tracing. Once an index case is confirmed,
the digital tracing app can immediately and automatically
detect risky contacts of the index case, inform these contacts
of their status and request that they quarantine. In a context
of high transmission, it may perform the contact tracing task
more efficiently than the staff involved in manual contact
tracing. In addition, it does not rely on an index case’s recall
of her/ his recent contact history. We found in our review
that hybrid manual and digital contact tracing with high app
adoption is highly effective with high isolation/ quarantine
efficiency and with social distancing. These interventions
reduce transmission and the number of contacts who are not
known and who may be difficult to trace even with a tracing
app. However, achieving high app adoption is not a given.
In fact, the uptake of these apps in many countries has been
slow [107]. A survey in Germany of 3,276 adults exploring
the potential barriers for the adoption the official COVID-
19 contact tracing app [108] found that potential spreaders
(those with frequent contacts) had a high ability (91%) to
adopt the app but a low willingness (31%) to adopt it cor-
rectly. For vulnerable groups the main barrier (62%) was
access to the app [108]. The authors predicted an adoption
rate 0f 34.7%, below the estimated 56% that epidemiological
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models predicted was required to contain the epidemic
[108]. Panchal et al. [109], in a UK survey assessing the
usability and functionality of the NHS COVID-19 contact
tracing app, found via a readability analysis that about 40%
of the UK population may not understand the information
contained in the text displayed in the app, likely affecting
its uptake.

Tracing secondary contacts (i.e. contacts of contacts)
was found to be a very effective intervention. In effect, sec-
ondary contact tracing approach to contact tracing which
essentially acts as a “local lockdown” [11]. In their model
simulations, Firth et al. [11] found that secondary contact
tracing may result at a given point in half of the population
being quarantined. The authors suggest that combining con-
tact tracing with other interventions (e.g. social distancing)
may result in controlling the epidemic while reducing the
number of quarantined contacts [11].

Bidirectional contact tracing can be highly effective.
This is because it allows to identify the upstream source of
a chain of transmission, and hence many more potentially
exposed individuals. In addition, bidirectional contact trac-
ing is quite effective when there is wide variability in the
number of onwards transmissions across individuals, as is
the case in COVID-19 [9]. Although bidirectional contact
tracing has been used to successfully identify clusters of
COVID-19 transmission in the community, e.g. in Singa-
pore [10, 110], it is not common. For manual bidirectional
contact tracing, extending the tracing window prior to symp-
tom onset (for example, from two to six days) was found
to be effective as contacts between infectors and infectees
often occur several days before symptoms begin [10]. How-
ever, extending the tracing window requires contact tracers
to trace many more contacts per index case, at an increas-
ing cost, including in terms of individuals quarantined [10].
Bradshaw et al. 1 [10] propose to limit these costs via effi-
cient prioritisation of forward and backward contact tracing.
For example, since individuals identified through backward
tracing are unlikely to still be highly infectious, the need for
quarantine without a positive test is reduced and an efficient
contact tracing programme may prioritise backward tracing
(and testing) of contacts from three to six days before the
start of symptoms and then initiate forward tracing from
the identified cases [10]. This is a similar approach to that
of Japan’s contact tracing programme [10]. One important
issue that may affect manual bidirectional contact tracing
effectiveness is loss of recall. Fyles et al. [73] found that a
reduction in the probability of recalling a contact of 10%
per day may eliminate all the gains due to backward con-
tact tracing. Hybrid manual and digital bidirectional contact
tracing has been identified as a highly performing alterna-
tive to manual bidirectional contact tracing. Bradshaw et
al. 1 [10] found that with a short tracing window of two



Comparative effectiveness of contact tracing interventions in the context of the COVID-19 pandemic: a... 261

days, supplementing manual bidirectional contact tracing
with digital contact tracing improved contact tracing perfor-
mance. Digital contact tracing has the added advantage over
manual contact tracing of being fast and scalable, although
it has the disadvantage that it is subject to network fragmen-
tation due to insufficient adoption of the contact tracing app
[10]. Other approaches to hybrid bidirectional contact trac-
ing using digital applications include the use of Bluetooth
beacons placed in places where individuals congregate,
which have shown to be effective [36]. The bidirectional
interoperability of these systems with manual contact trac-
ing efforts may improve the sensitivity and specificity of
contact tracing [36].

Contact tracing effectiveness can be substantially
increased with a reduction in contact tracing delays. In
particular, we identified that this was the case for reduc-
ing tracing delays from three days to zero days (in effect,
instantaneous contact tracing). We also identified that trac-
ing delays of up to three days may still be effective, and
that reducing tracing delays may allow trade-offs in terms of
reducing coverage of contact tracing or quarantine duration.
Timeliness of contact tracing is important in part because
it is likely to be interdependent with contact tracing cover-
age: tracing a few contacts may be done quickly, but this is
less likely when the number of contacts is high [76]. James
et al. [76] found in their modelling study that with a mean
tracing time higher than six days the benefit of tracing more
contacts is very low and that faster tracing of those contacts
who are easier to locate should be a priority.

Contact tracing with high coverage may be an impor-
tant measure, in conjunction with other NPIs, to control the
COVID-19 epidemic in schools and other educational insti-
tutions. The relevance of this assessment gains weight when
one considers the negative impact of closing educational
institutions, which includes economic losses to parents
forced into childcare, educational losses and psychological
harm to students [111].

In this review, empirical studies show that contact trac-
ing can be effective in controlling the COVID-19 pandemic.
These results are based on six studies, a small set. Inter-
estingly, the mathematical studies included in this review
described a plethora of highly effective contact interven-
tions. This contrast may signal that the implementation of
contact tracing interventions in the real world poses strong
challenges not accounted for by modelling studies. Further,
while the majority of the ecological studies exploring the
effect of contact tracing in the context of other NPIs did
not show a comparatively significant effect, contact trac-
ing is defined in most of these studies as a policy with dif-
ferent levels of intensity/stringency. For example, in the
widely used Oxford COVID-19 Government Response
Tracker, these levels are “no contact tracing”, “limited

contact tracing — not done for all cases”, and “comprehen-
sive contact tracing — done for all identified cases” [112].
This is a general definition of contact tracing which may not
accurately describe actual contact tracing implementation.
Indeed, this definition does not provide information about,
for example, the extent of contact tracing coverage. Thus, its
use may be not be reflecting the real impact of specific con-
tact tracing interventions on the pandemic. More empirical
studies accounting for the actual extent of contact tracing
implementation are required to address this issue.

A recent systematic review of the effectiveness of con-
tact tracing interventions in the control of infectious dis-
eases [113] concluded that, across eight diseases including
COVID-19, HIV, several STIs and measles, provider-initi-
ated contact tracing was associated with improvements in
case detection, disease transmission, and incidence. In the
case of COVID-19, based on four observational studies -
three of which are included in our review [24, 30, 33], the
authors highlight, like us, that contact tracing programmes
can have effectiveness at mitigating disease spread [113].
The review also discusses some of the limitations of these
studies. For example, all the studies were mostly undertaken
in high resource settings and used observational designs
with different programmatic approaches, hence limiting
generalisability [113]. These limitations extend to the set of
empirical studies included in this review.

This study has certain limitations. Due to the extent of the
literature, we did not extend the focus of the review to the
whole test-trace-quarantine process. Indeed, each of these
three elements are linked and the failure of one of them may
render the other two ineffective. For example, the effective-
ness of testing suspected index cases, key for the contact
tracing, can be hindered by, inter alia, low sensitivity and
specificity of diagnostic tests, by insufficient capacity in the
health care system for testing index patients, or by delays
in testing index cases. Assuming contact tracing is highly
effective, the effectiveness of quarantine can be affected by,
inter alia, delays between contact tracing and quarantining,
the length of the quarantine, and adherence of individuals
to the quarantine. An adequate test-trace-quarantine process
requires high levels of coordination between public health
agents (those involved in surveillance, laboratory testing,
monitoring and enforcing quarantines, communicating
risks and rules) and a substantial economic investment, not
to mention the collaboration of the public. An additional
limitation is that we did not incorporate into the review all
contact tracing mathematical modelling studies. Our focus
on the higher quality studies incorporating more realistic
modelling assumptions, particularly individual-based mod-
elling and the realistic representation of social interactions,
led to the exclusion of an important part of the literature:
that of studies using compartmental dynamic transmission
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modelling. Finally, another limitation is that we included
preprints in this review. Although preprints are not peer-
reviewed, we assessed their quality using standard risk of
bias tools and only included those with the highest quality.

To the best of our knowledge, at the time of writing there
is no other systematic review of the comparative effec-
tiveness of contact tracing interventions in the context of
COVID-19 covering the literature until the summer sol-
stice of 2021. Based on a limited number of observational
studies, we found that there is evidence regarding the
incremental effectiveness of both manual and digital con-
tact tracing for COVID-19 epidemic control. The highest
quality mathematical modelling studies available found
that highly effective contact tracing interventions include:
manual contact tracing with high tracing coverage and
either medium-term immunity, highly efficacious isolation/
quarantine and/ or physical distancing; hybrid manual and
digital contact tracing with high app adoption, highly effec-
tive isolation/ quarantine and social distancing; secondary
contact tracing; eliminating contact tracing delays; bidirec-
tional contact tracing; contact tracing with high coverage
in reopening educational institutions. We also highlighted
the role of social distancing to enhance the effectiveness of
some of these interventions in the context of 2020 lockdown
reopening.
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