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People often take nondiagnostic information into account when revising their beliefs. A probability judgment
decreases due to nondiagnostic information represents thewell-established “dilution effect” observed inmany
domains. Surprisingly, the opposite of the dilution effect called the “confirmation effect” has also been
observed frequently. The present work provides a unified cognitive model that allows both effects to be
explained simultaneously. The suggested similarity-updating model incorporates two psychological com-
ponents: first, a similarity-based judgment inspired by categorization research, and second, a weighting-and-
adding process with an adjustment following a similarity-based confirmation mechanism. Four experimental
studies demonstrate the model’s predictive accuracy for probability judgments and belief revision. The
participants received a sample of information from one of two options and had to judge fromwhich option the
information came. The similarity-updating model predicts that the probability judgment is a function of the
similarity of the sample to the options. When one is presented with a new sample, the previous probability
judgment is updatedwith a second probability judgment by taking aweighted averageof the twoand adjusting
the result according to a similarity-based confirmation. The model describes people’s probability judgments
well and outcompetes a Bayesian cognitive model and an alternative probability-theory-plus-noise model.
The similarity-updatingmodel accounts for several qualitativefindings, namely, dilution effects, confirmation
effects, order effects, and the finding that probability judgments are invariant to sample size. In sum, the
similarity-updating model provides a plausible account of human probability judgment and belief revision.
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Judging probabilities correctly and making good decisions under
uncertainty are crucial skills and can affect any area of people’s
lives, be it finance, education, or health care. What is the probability
that my newly acquired stocks will rise within the next month? And
what is the probability that my mother will recover from her hip
injury within the next year? Such probability judgments are usually
based on several sequentially acquired pieces of information.
Accordingly, initial probability judgments are made and then
dynamically revised on the basis of new incoming information.
We suggest the similarity-updating model, which explains the
cognitive process of how people make and revise probability

judgments and why people deviate from probability theory. Spe-
cifically, the model clarifies how people deal with nondiagnostic
information and explains contradictory findings on how people use
nondiagnostic information.

Characteristics of Human Probability Judgments and
Belief Revision

Past research has shown that people’s probability judgments are
often inconsistent with normative probability theory. For instance,
well-described phenomena such as conservatism (Dougherty et al.,
1999; Edwards, 1968), base-rate neglect (e.g., Bar-Hillel, 1980), sub-
and superadditivity (Dougherty & Hunter, 2003; Macchi et al., 1999;
Tversky & Koehler, 1994), the conjunction fallacy (e.g., Tversky &
Kahneman, 1983), and order effects (Hogarth & Einhorn, 1992)
represent violations of probability theory. Various models have
been proposed to describe these effects and the cognitive processes
underlying probability judgments, including mathematical models
following Bayesian principles (Chater et al., 2006; Griffiths et al.,
2010; Sanborn & Chater, 2016; Tenenbaum et al., 2006).

One interesting violation of probability theory is the well-
established dilution effect (e.g., Nisbett et al., 1981). According
to this effect, people sometimes revise their beliefs by decreasing
their initial probability judgment on the basis of nondiagnostic new
information that should be ignored. Although the dilution effect
represents a robust phenomenon, the opposite finding—a confirma-
tion effect—is sometimes also observed. People sometimes become
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more certain in their beliefs after receiving nondiagnostic informa-
tion (e.g., LaBella & Koehler, 2004). Past research suggested
various theoretical accounts, such as modified Bayesian models
or averaging-and-adjustment models (e.g., Hogarth & Einhorn,
1992), to explain some of the effects, but they cannot explain
dilution and confirmation effects simultaneously.

The Impact of Nondiagnostic Information and
Presentation Order

When an initial belief has to be revised in light of new, non-
diagnostic evidence, theories based on probability theory predict
that the initial belief is not changed, contrary to the dilution and
confirmation effect.

The Dilution Effect

According to the dilution effect, an initial probability judgment
p(X|E1) that an event X occurs given diagnostic evidence E1 is larger
than the revised probability judgment p(X|E1, E2) after additional
nondiagnostic evidence E2 occurs. In Shanteau’s (1975) classic
numerical dilution study, for example, participants observed sam-
ples of red and white beads being drawn with replacement from
either a box consisting of 70 white and 30 red beads or a box with 30
white and 70 red beads. After the presentation of each sample,
participants had to estimate the probability that the sample came
from the 70/30 box. Participants’mean probability judgments given
a diagnostic sample decreased when they drew a nondiagnostic
sample afterward.
The dilution effect has been observed in various areas (Macrae

et al., 1992; McKenzie et al., 2002; Meyvis & Janiszewski, 2002;
Peters et al., 2007), and in several everyday-life scenarios: For
instance, in legal decision making, confidence in a verdict decreased
after an independent verdict was received (McKenzie et al., 2002). In
social reasoning, students’ estimates about other students changed
after they received nondiagnostic information (Peters & Rothbart,
2000). In auditor judgments, inexperienced auditors were affected by
nondiagnostic information (Shelton, 1999), and auditors generally
underweighted diagnostic information (Waller & Zimbelman, 2003).

Factors Mitigating the Dilution Effect

The dilution effect does not always occur, meaning that an initial
probability judgment p(X|E1) that an event X occurs given diagnos-
tic evidence E1 sometimes equals the combined probability p(X|E1,
E2) after receiving nondiagnostic evidence E2. Specifically, experts
in relatively well-defined domains infrequently show the dilution
effect. For instance, only the judgments by relatively less experi-
enced auditors were diluted by nondiagnostic information, whereas
judgments of experienced auditors were not (Shelton, 1999). Like-
wise in legal decision making, people were relatively immune to
the dilution effect when they had much diagnostic information
(Smith et al., 1998–1999).
The dilution effect also seems to be mitigated by the mode and

type of stimulus presentation. In perceptual decision making, the
dilution effect occurs less frequently and/or less strongly if natural-
istic stimuli that promote automatic processing are used (Hotaling
et al., 2015). The dilution effect is often not observed in situations
where diagnostic information mixes nondiagnostic and diagnostic

features (LaBella & Koehler, 2004; Sanborn et al., 2020). In social
reasoning, the dilution effect is eliminated or even reversed by the
evidence’s typicality in a given situation (Peters & Rothbart, 2000).
For example, when participants predicted the number of books a
fraternity member would read outside of class assignments, the
dilution effect occurred only after presenting information that was
atypical for a fraternity member (does not like parties) and was
reversed for typical information (is extroverted).

The Confirmation Effect

The confirmation effect represents the opposite of the dilution
effect, so that an initial probability judgment p(X|E1) that an event X
occurs given diagnostic evidence E1 is smaller than the combined
probability p(X|E1, E2) after presenting additional nondiagnostic
evidence E2. Generally speaking, the confirmation effect describes
that people often look for information to confirm rather than disprove
their previous hypothesis (Jones & Sugden, 2001; Wason, 1968).
Similarly, people tend to interpret information in a way that confirms
their hypotheses (Lord et al., 1979; Plous, 1991). For example, the
stepwise evolution of the preference paradigm (cf., Russo et al.,
1998; for an overview see Russo, 2015) describes how people tend
to interpret new, nondiagnostic information as being in favor of
their original hypothesis when they update their preferences
repeatedly.

LaBella and Koehler (2004) investigated in detail in which
situations people show a confirmation effect versus a dilution effect
in a repeated probability judgment task. They observed the dilution
effect for probability judgments that were based on a mix of
diagnostic and nondiagnostic information. However, in a belief-
revision task, where participants had to revise an initial probability
judgment, LaBella and Koehler observed on average a confirmation
effect when a diagnostic sample was followed by a mixed non-
diagnostic sample and none when it was followed by a neutral one
including only nondiagnostic features.

Order Effects

Sequential probability judgments based on two pieces of non-
diagnostic evidence tend to be influenced by presentation order (see
Hogarth & Einhorn, 1992, for an early overview and Trueblood &
Busemeyer, 2011, for a more current review). Order effects describe
the finding that the probability p(X|E1, E2) for eventX given evidence
E1 before evidence E2 is not equal to the probability p(X|E2, E1)
where E2 was presented before E1. Order effects have been shown in
various areas, including the standard “bookbag-and-poker-chip” task
(Shanteau, 1970), risky monetary gambles (Hertwig et al., 2004),
legal evidence in a jury trial (Furnham, 1986; Walker et al., 1972),
and clinical evidence in a medical case (Bergus et al., 1998). For
example, Bergus et al. (1998) found that physicians judged the
probability that a patient was suffering from a urinary tract infection
to be higher if they received indicative information last compared to
when they received inconclusive evidence last.

Cognitive Theories for Probability Judgments and
Belief Revision

In the following, we describe theories to explain human probabil-
ity judgments and belief updating. We start with the Bayesian model
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following normative probability theory and explain how it has been
extended to explain some probability judgment phenomena. After-
ward, we introduce the probability-theory-plus-noise model
(Costello & Watts, 2014, 2016) and the quantum probability model
(Busemeyer et al., 2011). Then we introduce different approaches to
modeling probability judgments and belief updating, especially
based on similarities and weighting-and-adding mechanisms.

Bayesian Models

According to Bayesian theory, belief updating starts with a prior
belief, which is then updated on the basis of subsequent observations
following Bayes’s theorem. The prior belief is updated according to the
likelihood of the observed information leading to the posterior belief.
When the prior belief can be represented by a probability, the updating
process leads to a posterior probability. This process repeats itself with
each new piece of evidence. In principle, standard Bayesian models
cannot explain how people’s probability judgments change through
nondiagnostic evidence or the order in which evidence is presented.
However, there are some characteristics predicted by the Bayes-

ian model: First, according to Bayes’s theorem, probability esti-
mates increase if additional, converging evidence supports an initial
hypothesis.1 For example, if a physician is sequentially presented
with converging evidence suggesting that a patient has pneumonia,
their probability estimate that the patient has pneumonia should
continually increase. Second, the law of large numbers postulates
that if an experiment is repeated a large number of times, the average
of the results will be close to the expected value of the experiment.
However, people are often insensitive to sample sizes following the
“law of small numbers,” according to which people think even small
samples represent the underlying population well (Kahneman, 2011;
Tversky & Kahneman, 1971). Third, a statistical principle related to
the law of large numbers is the regression to the mean (Galton,
1886). Accordingly, after extreme observations of a random variable
have been made, subsequent observations should fall closer to the
variable’s expected value.

Inductive Confirmation

To explain certain aspects of human probability judgments,
researchers have proposed several extensions to Bayesian models.
For example, inductive confirmation (Carnap, 1962; Tentori et al.,
2013) is a mechanism included in Bayesian models to explain the
conjunction fallacy. This mechanism assumes that the combination
of an initial belief (or a prior distribution) and a new piece of
evidence also depends on how much the new information differs
from the prior. For example, assume a person draws a hidden card
from a card deck and is asked to guess if the card shows a king. The
initial probability of the card showing a king is 1/13. With new
information that the card shows a picture, the probability of it also
showing a king increases to 1/3, which increases the credibility of
the card showing a king dramatically, although the probability of it
showing a king is still less than the probability that the card does not
show a king (2/3; Tentori et al., 2013).

The Probability-Theory-Plus-Noise Model

The Bayesian model provides a normative solution for probability
judgments, but it might not present a plausible cognitive model

(Tversky & Kahneman, 1974; but see Chater et al., 2006; Griffiths
et al., 2010; Sanborn, & Chater, 2016; Tenenbaum et al., 2006).
One promising alternative model for probability judgments is the
probability-theory-plus-noise (PT+N) model (Costello & Watts,
2014, 2016) that can explain a range of probability judgment
phenomena such as conservatism, subadditivity, the conjunction
fallacy, and the disjunction fallacy. The PT+N model assumes that
single probability judgments are the result of a sampling process that
draws instances from memory. The probability of sampling an
instance of a certain type A is the actual probability that an event
of type A occurs, p(A). However, there is a chance d < .5 that a
sampled instance is read incorrectly, meaning that with probability d
an event A is incorrectly read as ¬A.

Quantum Probability Theory

A different approach to explaining probability judgments and
belief updating assumes that the cognitive process is not based on
(traditional) probability theory. One increasingly popular explana-
tion for belief updating is based on quantum probability theory
(QPT; Pothos & Busemeyer, 2013; Pothos et al., 2013, 2015;
Pothos & Trueblood, 2015; Trueblood et al., 2014). According
to QPT, probabilities are computed geometrically via the projection
of state vectors onto different (cognitive) subspaces and by com-
puting the squared length of such projections (Trueblood &
Busemeyer, 2011). The process of belief updating is the result of
a change in perspective modeled in a vector space. Each dimension
in the vector space represents the joint probability of a hypothesis
and a piece of evidence. A belief that a hypothesis is true is then a
point in the vector space represented differently depending on one’s
perspective. A change in perspective is mathematically modeled
with a unitary transformation that is not commutative and thus leads
to order effects (Busemeyer et al., 2011; Trueblood & Busemeyer,
2011). However, as of now there is no QPT model that can explain
fallacies associated with nondiagnostic evidence, specifically, the
dilution and the confirmation effect.

Similarity-Based Probability Judgments

Recently, similarity-based approaches have been used to explain
subjective probability judgments in the form of the similarity
heuristic (Read &Grushka-Cockayne, 2011), the representativeness
as prototype similarity (Nilsson et al., 2005), and representativeness
as relative likelihood (Nilsson et al., 2005). Generally, similarities
can be identified conceptually according to rules or more automati-
cally on the basis of perceived relations between objects. There are
four traditional approaches to similarity (Goldstone & Son, 2005;
Hahn, 2014): Geometric models represent items in a metric space
and calculate similarity based on the geometric distance of objects.
Feature-based approaches (e.g., Tversky, 1977) assume that fea-
tures are represented as binary contrasts (e.g., black and nonblack),
and thus similarity can be assessed by simple feature matching.
Models based on structural alignment stem from the field of
analogical reasoning and extend feature-based models by taking
the structural alignment of features into account. Finally, transfor-
mational models assess similarities based on the number of
operations one has to apply to transform one object into another.

1 Note that this is true only if the pieces of evidence are independent.

1090 ALBRECHT, JENNY, NILSSON, AND RIESKAMP

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

C
on
te
nt

m
ay

be
sh
ar
ed

at
no

co
st
,b

ut
an
y
re
qu
es
ts
to

re
us
e
th
is
co
nt
en
t
in

pa
rt
or

w
ho
le
m
us
t
go

th
ro
ug
h
th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n.



Recently, quantum probability theory has been introduced to model
similarity processes in cognition (Pothos & Busemeyer, 2013; Pothos
et al., 2013, 2015; Pothos & Trueblood, 2015; Trueblood et al., 2014).

Weighting-and-Adding Models for Belief Updating

Alternative approaches to belief updating are weighting-and-
adding theories that have repeatedly been demonstrated to describe
people’s controlled judgments well (Anderson, 1981, 1996; Juslin
et al., 2008; Lopes, 1985, 1987; Roussel et al., 2002; Shanteau,
1970, 1972, 1975), explain order effects (Hogarth & Einhorn, 1992),
and, recently, describe conjunctive probability judgments (Jenny
et al., 2014; Nilsson et al., 2009, 2013). Even the integration of
sensory input from different modalities is assumed to happen
through a weighting-and-adding process (Ernst & Bülthoff, 2004).
Hogarth and Einhorn (1992) have described belief updating with a
weighting-and-adding process, which have also been discussed in the
context of the dilution effect (LaBella & Koehler, 2004). Weighted-
additive integration is mathematically equivalent to reinforcement
learning, where people form expectancies or beliefs based on the
information and feedback they accumulated in the past. They update
their expectancies according to the prediction error, represented by
the difference between the expectancies and the present information
or feedback (cf., Sutton & Barto, 1998). Reinforcement learning
theories have also accumulated substantially converging evidence at
a neural level (e.g., Tobler et al., 2006).

Psychological Explanations for the Sensitivity to
Nondiagnostic Information

Psychological explanations for the dilution and the confirmation
effect are sparse. Theories built directly on probability theory, like
Bayesian models and the PT+N model, naturally cannot explain the
effects. Whether or not a model based on quantum probability theory
can, however, has yet to be explored. Because such an exploration
needs extensive theorizing and testing it is not part of the current
work. A weighting-and-adding process has been thought to produce
the dilution effect (Shanteau, 1975; Troutman& Shanteau, 1977), but
these models cannot account for the confirmation effect (LaBella &
Koehler, 2004). Verbal similarity theories (e.g., Nisbett et al., 1981;
but see Peters & Rothbart, 2000) have provided another theoretical
explanation for the dilution effect. According to Nisbett et al. (1981),
for example, a nondiagnostic piece of evidence decreases the per-
ceived similarity between a hypothesis and previously presented
evidence, which dilutes belief in the hypothesis.
As alternative theoretical explanations, expectancy and representa-

tiveness have been discussed (Tetlock & Boettger, 1989; Troutman &
Shanteau, 1977). According to expectancy theory, people form
hypotheses about how subsequent samples are likely to look after
the presentation of a first sample. Certainty decreases if these expecta-
tions are not met by a nondiagnostic sample. This account predicts that
a first sample that is nondiagnostic does not have any influence on
subsequent samples because it does not elicit a directed hypothe-
sis. However, contrary to the expectancy account, nondiagnostic
first samples have been found to influence subsequent judgments
(Troutman & Shanteau, 1977). According to the representativeness
account, people predict outcomes that are representative of an option.
Therefore, similarity between an option and an outcome depends on
the number of common features (Tetlock & Boettger, 1989).

The Similarity-Updating Model

The proposed similarity-updating model combines a similarity-
based process and a weighting-and-adding process, thereby explain-
ing several established phenomena from the domain of probability
judgments and belief updating. The initial judgment is based on a
similarity process, specifically the idea that the belief that a hypothesis
is thought to be true is an increasing function of the similarity between
the evidence and the hypothesis. This initial belief determined by
similarity is then updated following two psychological processes: (a) a
weighting-and-adding process for combining two judgments and (b) a
similarity-based confirmation process modifying the combined judg-
ment. In this model, the dilution effect is the result of a combination of
a weighting-and-adding mechanism, as proposed by Shanteau (1975),
and a similarity-based process, in line with the ideas behind repre-
sentativeness (Tetlock & Boettger, 1989; Troutman & Shanteau,
1977) and verbal similarity theories (Nisbett et al., 1981). The
confirmation effect is the result of a similarity-based process alone
and counteracts the weighting-and-adding process.

Formation of Initial Beliefs

In a nutshell, people first form two similarity judgments, which
are based on the metric distance between a piece of evidence E1 and
hypothesis A, and the distance between the same evidence E1 and
hypothesis B and then compare these similarities to compute a
probability judgment that hypothesis A is true. According to our
model, first a distance in the metric space (e.g., Nosofsky &
Johansen, 2000) is computed:

dij =
�X

m
wm × jxim − xjmjr

�1
r

, (1)

where xim is the value of the ith piece of evidence on a psychological
dimension m, xjm is the value of hypothesis j on the psychological
dimension wm is the weight put on the dimension m, and r defines the
metric (r = 1 for the city blockmetric, r = 2 for the Euclideanmetric).2

This distance is transformed into a similarity between the evi-
dence i and the hypothesis j by a nonlinearly decreasing function:

sij = eð−c × dlijÞ, (2)

where c is a sensitivity parameter and l determines the form of the
similarity gradient (l = 1 for the exponential similarity gradient,
l = 2 for the Gaussian similarity gradient).3,4 The sensitivity

2 Note that this definition of similarity assumes an equal number of
features in i and j. Considering the task at hand, if we assume that sampling
a certain feature (e.g., green cards) immediately brings one to reject a deck
because it does not contain that feature, we need to (a) extend the missing
features with an F (false) and (b) extend our notion of similarity:

sexti,j =
�
si,j if ∀Aik ∈ i = ði1, : : : ,inÞ,∀jk ∈ s = ðj, : : : ,jnÞ∶ðik ∧ jkÞ
0 else

:

The conjunction (i ∧ j) becomes false if one conjunct is false. Intuitively,
false in the present paradigm means that a sample s cannot have been drawn
from a deck A. In that case, the similarity is 0 and, thus, the probability for
that deck is also 0.

3 Similarity judgments based on such separable features are usually better
described by a city-block metric as opposed to a Euclidean metric (Shepard,
1987), which is why rwas fixed to 1. We did not find a reason to assume that
these dimensions are weighted unequally, so wwas fixed to 1/3 in our model
(as we had three color dimensions in our task).

4 According to Shepard (1987), an exponential similarity gradient is
preferred in the case of discriminable stimuli, which is why we fixed l to 1.
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parameter represents the subjective perception of similarity relative to
distance. If c is high, then objectively small distances between evidence
and hypotheses result in low similarity judgments (Appendix A
compares likelihoods and similarities).5

The similarities between the evidence E1 and hypothesis A (sE1,A)
and the evidence E1 and hypothesis B ðsE1,BÞ are then transformed
into probabilities (Luce, 1959):

pðAjE1Þ =
1

1 + eθðsE1 ,B−sE1 ,AÞ
, (3)

where θ is a free parameter that determines how strongly hypothesis A
is favored over hypothesis B if the evidence speaks for hypothesis A.
The larger this parameter’s value, the more clearly hypothesis A is
favored; the smaller θ is, the more conservative (closer to .50)
estimates of probabilities become.

Updating Process

In light of new information, a new similarity judgment is formed
according to Equations 1 and 2 and transformed into probability
judgments according to Equation 3. The updating process is based
on two different psychological processes: (a) a weighting-and-
adding process for combining two judgments and (b) a
similarity-based confirmation process modifying the combination
of single probabilities. The first component follows the work of
Hogarth and Einhorn (1992) that assumes there is a belief-
adjustment process where new information is integrated with old
information in a weighted-additive fashion. The second component
explicates the ideas sketched by LaBella and Koehler (2004) by
transferring the functional definition of inductive confirmation
(Tentori et al., 2013) to a similarity-based model for probability
judgments.

Weighting-and-Adding Process

In a first step, the two probability judgments are combined in a
weighting-and-adding process as proposed by Hogarth and Einhorn
(1992):

pavgðAjE1, E2Þ = ð1 − τÞ × pðAjE1Þ + τ × pðAjE2Þ, (4)

where τ is a recency parameter with values between 0 and 1 that
measures how much weight is put on the more recent piece of
evidence, p(A|E2).

6 The τ parameter is comparable to the weight
parameter in the value-updating model for risky choice (Hertwig
et al., 2005).

Confirmation Process

In a second step, the result of the weighting-and-adding process is
modified by a confirmation mechanism. In a nutshell, if people
believe hypothesis A is likely to be true given evidence E1 [i.e.,
p(A|E1) > 0.5 according to Equation 3], they have a tendency to
interpret a new piece of evidence E2 relative to what they have

learned about hypothesis A through E1 (LaBella & Koehler, 2004).
According to Tentori et al. (2013), inductive confirmation can be
defined formally as a function c(h, e) that is positive [c(h, e) > 0] if
the probability of a hypothesis h after an additional piece of evidence
e is greater than the prior probability [P(h|e) > P(e)]; negative
[c(h, e) < 0] if the probability of the hypothesis h after an additional
piece of evidence e is smaller than the prior probability; and 0 if they
are equal. Several different instantiations of this general framework
have been proposed (e.g., Crupi & Tentori, 2010; Fitelson, 2006;
Tentori et al., 2007).

We apply this idea to the context of subjective probability
judgments that are the result of a similarity process by considering
the difference in similarity estimates between the two pieces of
evidence E1 and E2 and the chosen hypothesis (sE2,A − sE1,A). More
precisely, if the new piece of evidence is more similar to the favored
hypothesis than the previous piece of evidence, that is,
(sE2,A − sE1,A ) > 0, then the hypothesis is confirmed, leading to
an increase in the probability estimate. If, however, it is less similar
(sE2,A − sE1,A) < 0 and does not confirm the previous evidence, the
probability estimate decreases:

cðAjE1, E2Þ = ðsE2,A − sE1,AÞ: (5)

The final predicted probability judgment is the averaged
probability, pavg(A|E1, E2), adjusted by the confirmation process,
c(A|E1, E2): (See above Equation 6)

The adjustment is weighted by (pavg(A|E1, E2) − 0.5) or
(1 − pavg(A|E1, E2)) because the size of the adjustment should
depend on the predicted averaged probability and how close it is
to possible minimum and maximum response values (in our case
responses were restricted to values between 50% and 100%). If the
averaged probability estimate is already very high, a positive
adjustment would naturally be smaller than if the averaged proba-
bility was around .50.

Figure 1 illustrates how the predicted, combined probability in
favor of hypothesis A, p(A|E1, E2) in Equation 6, depends on the
difference between the two single probabilities p(A|E1), p(A|E2), and
on their distance to the maximum and minimum response values
(cf. Equations 4 and 6), the difference between similarities sE2,A, sE1,A

(Equation 5) and parameter τ (Equation 4).

pðAjE1, E2Þ =
�
pavgðAjE1, E2Þ + cðAjE1, E2Þ × ð1 − pavgðAjE1, E2ÞÞ, ifcðAjE1, E2Þ ≥ 0
pavgðAjE1, E2Þ + cðAjE1, E2Þ × ðpavgðAjE1, E2Þ − 0.5Þ, ifcðAjE1, E2Þ < 0

, (6)

5 Note that the similarity-updating model uses the general concept of
similarity to model judgments and applies meaningful defaults for parameter
values where possible; which of the two distance matrices (city-block metric
or Euclidean metric) and which form of the similarity gradient (exponential
or Gaussian) is more appropriate depend on the types of stimuli used.

6 Note that Equation 4 can be reformulated in the tradition of reinforce-
ment learning models (pt(A) = pt−1(A) + β[p(A) − pt−1(A)]) where β is the
weighting parameter with values between 0 and 1, which indicates the weight
on the difference between the two probability judgments—in other words, on
the prediction error of the first judgment relative the second judgment, the
latter being based on additional information (Sutton & Barto, 1998). Also
note that if the weighting parameter takes the function of β = 1/(n − 1),
Equation 4 produces the current or running mean over all previously
encountered pieces of evidence.
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Explaining the Dilution and the Confirmation Effect

The similarity-updating model predicts the dilution effect as the
result of two possible sources. First, as proposed by Shanteau
(1975), the dilution effect generally occurs because of the nature
of the weighting-and-adding mechanism (Equation 4). In addition,
the dilution effect might be increased if the new, nondiagnostic piece
of evidence E2 is less similar to hypothesis A than the diagnostic
piece of evidence E1. For an example, consider the upper right panel
in Figure 1, with probability p(A|E1) = 0.75 and the probability
p(A|E2) = 0.5. Assuming a similarity difference of 0, the dilution
effect is observed if parameter τ is not equal to 0 (if τ = 0 the second
piece of evidence would be completely ignored). The dilution effect
increases with a decreasing similarity difference (i.e., the first piece
of evidence is more similar to the favored hypothesis than the
second, nondiagnostic piece of evidence). However, with an
increasing similarity difference, the dilution effect decreases, up
to the point where it is reversed and a confirmation effect is observed
(probability judgments above the blue dotted line in Figure 1). On
average, the model predicts that dilution effects are observed more
frequently and should be larger compared to confirmation effects.
With the similarity-based confirmation mechanism, the similarity

updating model explains a number of findings from the literature.
For example, if the nondiagnostic evidence is neutral, in the sense
that it includes mainly information that is not represented in both
hypotheses, the dilution effect is predicted to be higher (or more
likely to happen) than if the nondiagnostic evidence is mixed,
meaning that it includes information used to describe the

hypotheses, where confirmation effects are more likely (LaBella
& Koehler, 2004). The reason is that mixed nondiagnostic samples
are on average more similar to the hypotheses than neutral non-
diagnostic samples. Similarly, findings that the typicality of evi-
dence mitigates or even inverts the dilution effect (leading to the
confirmation effect; Peters &Rothbart, 2000) might be a result of the
similarity between a held hypothesis (fraternity members do not
read) and how similar a new piece of evidence is to that hypothesis
(does not like parties). Our model is in principle also able to explain
why individuals show the dilution effect in some trials but not in
others.

Empirical Investigation

Paradigm

To test our similarity-updating model, we implemented the
classic bookbag-and-poker-chip paradigm as a computerized card
game (Edwards, 1968). This task was designed specifically to
investigate deviations from Bayesian theory in human belief forma-
tion and the belief-updating process, such as the conservatism bias
(Corner et al., 2010; Edwards, 1968; Peterson et al., 1965; Peterson &
Miller, 1965). Since its development, several versions of it have
been used as a standard task to assess people’s probability judg-
ments (e.g., Jenny et al., 2014; Nilsson et al., 2013; Shanteau,
1975) and specifically to assess the dilution effect (e.g., LaBella &
Koehler, 2004; Troutman & Shanteau, 1977). We chose this
paradigm with stochastic events to rule out that nondiagnostic

Figure 1
Predictions of Combined Probabilities, p(A|E1, E2), Relative to the Predicted Similarity Between the Two
Pieces of Evidence and the Hypothesis (sE2 ,Aand sE1,A) and Different Combinations of Constituent Probabilities
p(A|E1) and p(A|E2)

Note. Colored lines correspond to different values of parameter τ (Equation 4). The blue dotted line is the maximum and
the red dashed line is the minimum of the two constituent probabilities. The weighting-and-adding models always predict
values within the range of single probabilities. The similarity-updating model predicts values outside the range of single
probabilities, depending on the similarity distance. See the online article for the color version of this figure.
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evidence could carry semantic information about hypothesis A or B
(cf., Peters & Rothbart, 2000).
On each trial, participants received two novel card decks (A and

B) and samples were drawn with replacement from a randomly
chosen and undisclosed deck. Each deck totaled 100 cards and
contained blue, red, and green cards. Above the cards, numbers
between 10 and 80 indicated how many cards per color each deck
contained. After receiving the first sample, participants were asked
to indicate the deck the sample had been drawn from and to estimate
the probability that the chosen deck had generated the sample (by
pointing on a scale between the values 50% and 100%). After
receiving a second sample, participants were asked to identify the
deck from which both samples came and state the probability that
their deck was the source of the samples.
In all experimental studies, mixed and neutral nondiagnostic

samples were tested. For example, assume that deck A consists
of 30% blue, 20% red, and 50% green cards and deck B 20% blue,
30% red, and 50% green cards. A nondiagnostic sample that is
neutral to these two decks would consist of only green cards,
because both decks have the same number of green cards. A mixed
nondiagnostic sample, on the other hand, might include two blue
cards, two red cards, and three green cards. It is easy to see that the
neutral nondiagnostic evidence is less similar to (or typical for) both
decks than the mixed nondiagnostic sample.
In Study 1, two samples of seven cards each were presented

sequentially and both samples were visible on the screen during the
whole trial. In Study 2, the first sample was removed from the screen
when the second sample appeared. In Study 3, three samples were
sequentially presented. In Study 4, half of the trials included samples
with 14 instead of seven cards.

Model Testing

We tested our model qualitatively and quantitatively against the
Bayesian model (Appendix B) and the PT+N model (Costello &
Watts, 2014, 2016; Appendix C) in four different experimental
studies. The similarity-updating model makes different predictions
from the alternative models. As discussed in detail above and to the
best of our knowledge, it is the only model to explain the dilution
effect and the confirmation effect within one framework. Second,
the Bayesian model and the PT+N model predict that probabilities
increase in light of sequentially presented converging evidence; the
similarity-updating model, however, predicts that probability judg-
ments can decrease if later converging evidence is less predictive
than earlier evidence. Second, the Bayesian model and the PT+N
model predict on average no effects of presentation order of the
combined judgments, because noise causes the probability judg-
ments to be centered around the predicted mean. In contrast, the
differential weighting of sequentially presented pieces of evidence
leads the similarity-updating model to produce order effects. Third,
the similarity-updating model is insensitive to changes in sample
size while the Bayesian model and the PT+N model predict judg-
ments become more extreme and have decreasing trial-by-trial
variance with increasing sample size.
We also compared the models to a benchmark baseline model. Per

person, this model predicts the mean of the observed first probability
judgments as a first probability judgment and the mean of the
observed second probability judgments as a second probability
judgment in all trials. Any cognitive model that claims to provide

a good account of probability judgments needs to outcompete the
baseline model as a plausibility check.7 For all models we assumed
an error process so that the predicted judgment would vary around
the most likely point estimate (cf. Budescu et al., 1997; Juslin et al.,
1997). We used a normalized truncated normal probability density
likelihood function to link the models’ point predictions with
people’s judgments.

In Studies 3 and 4 we additionally tested how generalizable the
predictions of the different models are by estimating the models on a
subset of the data and generalizing the predictions of the models to
the remaining data set. Study 3 tested the generalizability of the
proposed belief-updating mechanism and Study 4 tested the gener-
alizability across different sample sizes.

Study 1: Full Display of Samples

The dilution effect has been shown in many different domains
(Hackenbrack, 1992; LaBella &Koehler, 2004; Macrae et al., 1992;
McKenzie et al., 2002; Meyvis & Janiszewski, 2002; Peters &
Rothbart, 2000; Shanteau, 1975; Shelton, 1999; Smith et al.,
1998–1999; Troutman & Shanteau, 1977; Waller & Zimbelman,
2003). However, sometimes the opposite effect is observed, namely,
a confirmation effect (LaBella & Koehler, 2004; Russo et al., 1998).
Study 1 aimed to replicate findings of how people update beliefs
when facing nondiagnostic information, especially the dilution
effect. Additionally, Study 1 evaluates quantitatively and qualita-
tively the similarity-updating model.

Method

Participants

Twenty-five undergraduate students (Mdnage = 22 years, 76%
women, 24% men) at the University of Basel participated. Partici-
pants were compensated with either course credit or book vouchers
worth 15 Swiss francs (CHF). Additionally, they received a
performance-contingent bonus (Mdn = 2.10 CHF).

Materials

The experiments were computerized. Participants were presented
with a diverse set of randomly ordered “games” involving two decks
of cards. For the distributions of cards in the first deck, all combina-
tions of three underlying probabilities of 10%, 20%, 30%, 40%,
50%, 60%, 70%, and 80% were used. These probabilities—for
example, 20%/50%/30% red, blue, and green cards—always added
up to 100%. To construct the second deck, one of the probabilities
was held constant, and the other two switched positions, resulting in
30%/50%/20% red, blue, and green cards, for example.

The sample distributions for 81% of all trials were determined by
randomly drawing seven times from a Dirichlet distribution with the
underlying probability distribution of the picked deck. The Dirichlet
distribution is a multivariate generalization of the beta distribution

7 To additionally test the ecological validity of the similarity-updating
model, we ran a simulation that parallels simulations by Juslin et al. (2009).
This simulation was intended to test if the model leads to good judgments in
our environment as compared to a normative solution as given by likelihood
computation and Bayes’s theorem. In sum, the similarity-updating model’s
binary predictions are well adapted to the environment and their accuracy
increases with decreasing sampling error.
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and takes a symmetrical (i.e., “uniform”) shape when its parameters
are all set to 1. Sampling values from a three-parameter Dirichlet
distribution (with all three parameters set to 1) produces three values
between 0 and 1 that sum up to 1. For 19% of all trials, one sample
was randomly sampled and the other sample was tweaked such that
its likelihood of being drawn from deck A was identical to its
likelihood of coming from deck B. These nondiagnostic samples
consisted of either only cards of the color that was equally repre-
sented in the two decks (neutral nondiagnostic samples) or a certain
number of this card and an equal number of the other two cards
(mixed nondiagnostic samples). To simplify the task for the parti-
cipants, the samples were sorted according to color. All games were
presented twice, once with the original order and once with a
switched order of samples. This means that all nondiagnostic
samples were presented first once, which allowed us to elicit single
probability judgments for them. Appendix D shows a visual repre-
sentation of how stimuli were presented to the participants.

Procedure

Study 1 involved 86 rounds consisting of one game with two
samples each. The two samples were presented sequentially, with
both samples visible on the screen at the end of a trial. In each round,
participants were asked to choose the deck that they thought wasmore
likely to have generated the samples they drew. Additionally, they
stated the probability that their chosen deck and not the other one had
generated the sample. At the end of the experiment, one round was
randomly picked and participants won 2.50 CHF if they had chosen
the right deck in that round. The participants received an additional
reward with a maximum of 5 CHF for the probability judgment that
they had provided after having seen two samples in that round. The
reward was based on an inverse Brier score (Brier, 1950) by sub-
tracting the squared difference between the judged probability and the
outcome score from 1. If, for example, deck A was the right choice,
the outcome score for deck A was 1, and if the participant assigned
this deck a probability of 70%, then the inverse Brier score was 1 –

(.70 – 1)2 = .91. This score was multiplied by five, rounded to one
decimal point, and paid in Swiss francs.
After providing informed consent, participants read through the

instructions on the screen and received a printed version of the
instructions (see Appendix E, German version translated to English),
which they could hold on to throughout the experiment. The
instructions particularly stressed that samples were drawn with
replacement and that the probability judgment always concerned
the chosen deck. Participants were also informed about the success-
dependent bonus with a maximum of 7.5 CHF. The procedure
included five practice trials and afterward participants could ask
remaining questions concerning the task and procedure, if necessary.
At the end of the experiment, we checked if participants understood
the task by asking them to write down how they had solved the task.
Twenty-two of the 25 participants had understood the task. For three
participants, it was not clear if they had understood that within one
trial both samples were drawn from the same deck.

Results

Participants’ General Performance

To assess participants’ general performance we compared their
responses with the normative solution following Bayes’s theory.

Table 1 shows the performance after the first sample (if it was
diagnostic) and after both samples had been presented for Study 1
and also for the three following studies. Participants chose the
correct deck in 82% of all trials after the first sample and in 82%
after the second sample was presented. The normative solution fared
around 10% better in both cases. In 20% of trials, participants
changed their minds between the first and the second sample. The
majority (65%) of these switches resulted in correct choices. Inter-
estingly, the root mean square deviation between participants’
probability judgments and the normatively correct probabilities
increased (0.17–0.21) and the correlation between them decreased
(.67–.51) across samples, showing a decrease in judgment accuracy.
Apparently people’s updating process distorted the second proba-
bility judgments. Nevertheless, although people’s probability judg-
ments differed considerably from the normative solution, they
correlated with it and allowed participants to choose the correct
deck in most trials.

Reaction to Nondiagnostic Evidence

First Sample. In principle, people were able to detect and
correctly identify nondiagnostic samples if they were presented
first, suggesting that the effect of nondiagnostic information was
driven by the belief-updating process and not by the process of
judging single probabilities. On average, participants correctly
identified a first nondiagnostic sample (response 50%) in 88%
(median; range: 0%–100%) of all trials. However, this varied
between different types of nondiagnostic evidence: For neutral
samples, participants correctly identified the nondiagnostic samples
in a median of 100% of the trials (interquartile range [IQR] = 90%–

100%) and for mixed samples correct identification decreased to a
median of 67% (IQR = 17%–83%) of all trials.

Second Sample. In this analysis, we focused on trials in which
the second sample was nondiagnostic (its likelihood of coming from
either deck was .50), participants’ judgments after only the first
samples were >.50 (treating it as diagnostic and leaving room for a
decreased second judgment), and participants did not change their
choice between samples, the latter because choice changes based on
nondiagnostic samples when the first samples were diagnostic could
potentially be due to guessing and not only to perceiving a

Table 1
Percentage of Trials Where the Correct Deck Was Identified

Study Sample Participants Normative Correlation ρ RMSD

1 1 82% 90% .67 0.17
2 82% 91% .51 0.21

2 1 83% 90% .58 0.19
2 83% 91% .45 0.22

3 1 75% 77% .61 0.19
2 73% 75% .50 0.23
3 75% 81% .22 0.22

4 1 82% 89% .55 0.20
2 83% 93% .33 0.25

Note. RMSD = Root Mean Square Deviation. The normative solution was
calculated using likelihood and Bayes’s theorem. The correlation shows the
median Spearman correlation coefficient between participants’ probability
judgments and the normatively correct probabilities and the respective
RMSD.
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nondiagnostic piece of information as diagnostic or to a specific
information-integration process.
In total, analyzed nondiagnostic trials accounted for 14% of all

trials. Table 2 shows the percentage of these trials in which parti-
cipants showed a dilution effect, a confirmation effect, or no effect.
Note that the latter is predicted by the Bayesian and the PT+Nmodel.
The similarity-updating model can predict all events, but in principle
it would predict a larger proportion of dilution effects and a small
proportion of confirmation effects and null effects. The results show
that participants clearly showed the dilution effect in around 65% of
these trials. Additionally, more than half (68%) of the participants
showed the dilution effect in more than half of these trials.
Dilution Effect. We performed a regression analysis to exam-

ine the strength of the dilution effect between the first and second
probability judgment. In principle, if the participants ignored non-
diagnostic information, the slope of the regression line would have a
value of 1, whereas a smaller positive value would on average show
the dilution effect, and a smaller negative value would on average
show a confirmation effect. The observed slope was .54, indicating a
strong dilution effect. Figure 2 shows the difference between parti-
cipants’ first and second probability judgments in all four studies,
when the first sample, the second sample, or neither of the samples
were nondiagnostic. When the second sample was diagnostic the
majority of differences was positive regardless of whether the first
sample was diagnostic or nondiagnostic, meaning that the second,
combined probability judgment was greater than the first. When the

second sample was nondiagnostic, however, the situation was
reversed, with a clear majority of second probability judgments
being smaller than the first, representing a dilution effect. This
clearly shows that the dilution effect depends on the second sample
being nondiagnostic and that the dilution effect cannot simply be
explained as a regression to the mean effect.

There are different factors that have an impact on the dilution
effect.When the first probability judgment was lower than or equal to
the median probability judgment (74%) over all trials and partici-
pants, dilution effects were observed in 56% of the trials. When the
first probability judgment was higher than the median, dilution
effects were observed in 71% of the trials. Thus, the rate of dilution
effects depended on the size of the first probability judgment. This,
together with the finding that people recognized nondiagnostic

Table 2
Percentage of Dilution and Confirmation Trials

Effect
Study 1

Mdn (range)
Study 2

Mdn (range)
Study 3

Mdn (range)
Study 4

Mdn (range)

Dilution 64%
(8%, 100%)

67%
(7%, 93%)

62%
(0%, 100%)

75%
(0%, 100%)

Confirmation 21%
(0%, 92%)

23%
(0%, 67%)

20%
(0%, 100%)

11%
(0%, 75%)

None 0%
(0%, 53%)

8%
(0%, 57%)

0%
(0%, 60%)

8%
(0%, 61%)

Figure 2
Histogram of Differences Between Participants’ First and Second Probability Judgments by
Presentation of Nondiagnostic Sample in All Trials in All Four Studies

Note. See the online article for the color version of this figure.
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information correctly in the first sample, indicates that if participants
also identified the second, nondiagnostic decks as nondiagnostic, the
integration of the two decks may have led to the dilution effect.
Dilution Versus Confirmation. For neutral nondiagnostic

samples, dilution effects were observed in 64% of the trials, whereas
for mixed nondiagnostic samples, dilution effects were observed in
61% of the trials. On average, the dilution effect was greater for
neutral nondiagnostic samples (mean difference between the first
and second probability judgment of −8%) compared to mixed
nondiagnostic samples (mean difference of −3%). In line with
LaBella and Koehler’s (2004) studies, we also found more confir-
mation effects for mixed nondiagnostic evidence (Mdn = 40%;
IQR = 0%–50%) than for neutral nondiagnostic evidence (Mdn =
15%; IQR = 0%–40%). The similarity-updating model explains
these results: Mixed nondiagnostic samples were on average
more similar to both decks (and thus the correct deck) than neutral
nondiagnostic samples. As a result, the similarity-based confirma-
tion mechanism led to smaller increases or even decreases in
probability judgments for neutral samples (Equation 5).
In sum, the results replicate the dilution effect and differences

between different types of nondiagnostic evidence. Additionally, our
analyses clearly show that the dilution effect is not due to regression
to the mean. The Bayesian model and the PT+N model can neither
account for the dilution effect nor for different probability judgments
following mixed and neutral nondiagnostic samples. Thus, the
qualitative results support the similarity-updating model.

Averaging and Adjustment

Pure averaging models predict that all combined probabilities after
the second sample was presented must lie between the single
probability estimates for Samples 1 and 2. Bayesian models, on
the other hand, predict that the combined probability estimates must
always be larger than both single probability estimates when both
samples are in favor of the same hypothesis. If one piece of evidence
is nondiagnostic, the Bayesian model predicts that the combined
probability judgment solely depends on the diagnostic piece of
evidence. The similarity-based confirmation mechanism predicts
that judgments could be smaller or larger than the single probability
estimates under the condition that a second sample is much more (or
less) similar to the chosen deck than the first sample. The predicted
percentage of judgments outside the range of single probabilities
depends on the similarity between a deck and a sample, which
depends on values of free parameters (cf. Figure 1) and usually
differs between people and tasks.
In our experiments each trial was presented twice to participants

with a switched order of the samples. Thus, we could estimate the
single probability assigned to a configuration of cards presented as a
second sample and compare it with a trial where this configuration
was presented as a first sample. On average, 47% (median; IQR =
42%–55%) of all combined probability judgments after participants
saw two samples lay between the two single probability judgments
(including the two single probabilities), 12% (median; IQR = 8%–

21%) were smaller than both single probability judgments, and 36%
(median; IQR = 30%–45%) were larger.
To specifically test if the similarity-based confirmation mecha-

nism is consistent with participant responses, we additionally
compared the predicted similarity difference (based on estimated
individual parameter values, cf. Table 3) with the difference

between the two observed probability judgments within one trial
(r = .23, p < .01). Figure 3 shows a graphical representation of this
correlation across all four studies. In sum, the similarity-based
confirmation mechanism predicts the difference between first and
second probability judgments well, and the similarity-updating
model is most consistent with our findings.

Order Effects

The Bayesian model and the PT+N model predict trial order
invariance in that the order in which the samples are presented does
not influence the final probability judgments. In contrast, the
similarity-updating model predicts order effects, which result
from the unequal weighting of the first and the second sample.
Indeed, the median absolute deviation between the two second
probability judgments for tasks with the same configuration pre-
sented in inverse order was 16% (IQR = 13%–17%) over all
participants. Thus, the fact that participants’ probability judgments
were affected by sample order speaks against the Bayesian model
and the PT+N model on a qualitative level (assuming probabilities
are taken at face value). Table 4 shows the order effects for all four
studies.

Converging Evidence

We investigated converging evidence by looking at all trials in
which both samples stemmed from one of the two decks with a
likelihood of >.50, in which participants picked the same deck after
both samples, and in which the normative solution predicted the
same deck after all samples. These trials constituted 53% of the
whole set in Study 1. In 83% (median) of the subset of trials in which
according to the normative solution the second sample was more
diagnostic than the first one, participants’ final probability judg-
ments exceeded their first judgments (range: 67%–91%). In 36%
(median) of the subset of trials in which the first sample was more
diagnostic than the second one according to the normative solution,
participants’ judgments decreased between the initial and the final
estimate (range: 30%–61%). Table 4 shows the results for converg-
ing evidence in all four studies.

Thus, in contrast to the normative solution but in line with the
similarity-updating model, converging evidence did not always lead
participants to increase their probability judgments, and how parti-
cipants treated converging evidence depended on the presentation

Table 3
Median Parameter Values of All Models in All Studies

Model Parameter

Study

1 2 3 4

Similarity updating c 0.13 0.44 0.57 0.08
θ 39.77 14.59 10.01 95.69
τ .56 .60 .49 .52
σ 0.13 0.14 0.11 0.12

Bayesian σ 0.24 0.27 0.31 0.33
PT+N d .19 .19 .25 .19

σ 0.20 0.22 0.19 0.25
Baseline σ 46,910.56 2,357 0.41 0.61

Note. PT+N = probability-theory-plus-noise model.
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order of the samples, thus providing us with qualitative evidence in
favor of the similarity-updating model.

Quantitative Model Comparison

We estimated all models8 on the basis of the participants’
individual complete data using maximum likelihood estimation
and compared models by the Bayesian information criterion
(BIC; Schwarz, 1978), which takes model complexity into account.
The BICs for the four competitor models are listed in Table 5 and
the median optimal parameter values are listed in Table 3. The
median value of the weight parameter τ was .56, indicating that the
second piece of information was weighted more than the first,
meaning that we observed a recency effect.
The similarity-updating model,9 clearly outperformed the com-

peting models. The median BIC of the similarity-updating model
across all participants was −242 while for the PT+N model it
was −139. Also, the similarity-updating model explained the re-
sponses of 24 of the 25 participants best according to model
selection based on BIC. One person was best described by the
PT+Nmodel. Neither the Bayesian model (median BIC of −98) nor
the baseline model (median BIC of 4) performed well in compari-
son. In sum, the first experiment provides strong evidence that
people’s probability judgments are better described with the

similarity-updating model than with the PT+N or the Bayes-
ian model.

Discussion

Study 1 shows qualitative and quantitative findings supporting the
similarity-updatingmodel as compared to the competing models. The
dilution effect, effects of different types of nondiagnostic samples, the
existence of order effects, and the results on converging evidence are

Figure 3
Correlation of the Difference in Participants’ Probability Judgments in All Four Studies Between
the First and the Second Judgment (Combined Probability Estimate for Samples 1 and 2 Minus the
Probability Estimate for Sample 1) and the Similarity Difference Predicted by the Similarity-
Updating Model (Equation 1)

Note. Predictions based on estimated individual parameter values (cf. Table 3). See the online article for the
color version of this figure.

8 Data, models, and model fits presented in this article are available at
OSF: https://osf.io/x28um.

9 With the similarity-updating model, we tested a specific instantiation of a
similarity process and a specific belief updatingmechanism. In a preliminary,
explorative analysis we evaluated variants of both processes as alternatives to
the here presented versions using the data of Study 1. As an alternative
similarity process, we tested the similarity heuristic (Read & Grushka-
Cockayne, 2011), representativeness as prototype similarity (Nilsson
et al., 2005), and representativeness as relative likelihood (Nilsson et al.,
2005). As alternative updating processes we tested the Sigma model (Juslin
et al., 2008) and a traditional belief-updating mechanism (Hogarth &
Einhorn, 1992; which in our setting is mathematically equivalent to simple
averaging). This preliminary work provided empirical evidence for the
similarity-updating model. A detailed description of this analysis is available
as Supplemental Material.
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all in line with the predictions of the similarity-updating model. A
quantitative model comparison based on BIC supports these results.

Study 2: Sequential Display of Two Samples

In Study 1, the first sample was still present at the time of the
presentation of the second sample. Thus, the updating process could
be based on description and performed with perfect memory. How-
ever, this is not always the case, as people often receive bits of
information sequentially, have access to only one piece of evidence at
a time, and have to remember previous information. The goal of the
second study was to replicate the results from Study 1 in a setting in
which the two samples were never simultaneously presented.

Method

Participants

Twenty-six undergraduate students (Mdnage = 23.0 years, 58%
women, 42% men) at the University of Basel participated and were
compensated with either course credit or book vouchers worth 15
CHF. Additionally, they received a performance-contingent bonus
(Mdn = 2.65 CHF).

Materials

In contrast to Study 1, in Study 2, samples were presented in a
truly sequential manner. Additionally, a screen between rounds
announced the next round and instructed participants to start the
next round by pressing the letter “W” (which stood for the German
word weiter, which means “proceed” in this context).

Procedure

The procedure in Study 2 was identical to that in Study 1 except
that the first sample disappeared when the second one was pre-
sented. All participants understood the task.

Results and Discussion

Table 1 shows participants’ general performance, Table 2 the
results for nondiagnostic evidence, and Table 4 the results for order
effects and converging evidence across all four studies. Participants
showed similar results for order effects and converging evidence to
results found in Study 1.

Participants’ General Performance

Participants performed equally as well as in Study 1 (Table 1). In
17% of trials, participants changed their mind between the first and
the second sample. The majority (69%) of these switches resulted in
correct choices.

Reaction to Nondiagnostic Evidence

First Sample. The median percentage of correctly identified
first nondiagnostic samples averaged around 81% (range: 6%–

100%). If the nondiagnostic sample was a neutral sample, partici-
pants correctly identified it in a median of 100% of the trials
(IQR = 73%–100%). This performance was lower for nondiagnos-
tic mixed samples (Mdn = 50%; IQR = 33%–100%). We found
confirmation effects with a median of 11% of the trials (IQR = 0%–

30%) for neutral samples and a median of 33% (IQR = 20%–60%)
for mixed samples.

Second Sample. In Study 2, 14% of trials met the criteria to be
analyzed as second, nondiagnostic samples. Table 2 shows the
percentage of these trials in which participants showed a dilution
effect, a confirmation effect, or no effect. The slope of a simple
linear regression was .52, illustrating, on average, a dilution
effect. One participant showed a dilution effect in 0% of all trials,
but this was because this person responded “.50” on all trials.
More than half of the remaining participants (56%) showed the
dilution effect in more than half of these trials. As in Study 1,
participants showed fewer dilution effects (49%) when their first
probability judgment was lower than or equal to the median
probability judgment over all trials and participants (Mdn = 74%)
than when their first probability judgment was higher (68%).
Further, participants showed dilution effects in 61% of the ana-
lyzed trials if the nondiagnostic sample was neutral, but in 53% of
mixed nondiagnostic trials. The median downward adjustment of

Table 5
The Models’ Bayesian Information Criteria (BICs) for the Proba-
bility Judgments in All Studies

Study Result

Model

Similarity
updating Bayesian PT+N Baseline

1 Median BIC −242 −98 −139 4
n 24 0 1 0

2 Median BIC −247 −84 −133 4
n 25 1 0 0

3 Median BIC −408 −83 −184 −29
n 23 0 1 0

4 Median BIC −251 −55 −96 −3
n 23 1 1 0

Note. PT+N = Probability-theory-plus-noise model; BIC = Bayesian
Information Criteria.

Table 4
Order Effects and Effects on Converging Evidence

Effect
Study 1

Mdn (IRQ)
Study 2

Mdn (IRQ)
Study 3

Mdn (IRQ)
Study 4

Mdn (IRQ)

Order 16%
(13%–17%)

17%
(14%, 19%)

7%
(6%, 9%)

17%
(16%, 23%)

Converging:
Increase

83%
(67%, 91%)

84%
(61%, 95%)

80%
(69%, 88%)

83%
(65%, 92%)

Converging:
Decrease

36%
(30%, 61%)

26%
(11%, 39%)

13%
(0%, 27%)

32%
(23%, 69%)

Note. IQR = Interquartile range. Order effects show the median absolute
deviation between the two second probability judgments for tasks with the
same configuration presented in inverse order. Converging evidence is
calculated over a subset of trials where all samples stemmed from one of
the two decks with a likelihood of >.50, in which participants picked the
same deck after all samples, and in which the Bayesian model picked the
same deck after all samples. Included percentage of trials was 53% in Study
1, 54% in Study 2, 38% in Study 3 (because condition extended to the third
sample), and 53% in Study 4. Increase shows the trials in which according to
the normative solution the last sample was more diagnostic than the other
samples. Decrease shows the trials in which the first sample was more
diagnostic than the other samples according to the normative solution.
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the probabilities after the presentation of the nondiagnostic piece
of information in these trials was 11% (IQR = 5%–23%). We
could thus replicate our findings from Study 1 irrespective of
whether the initial samples were present when the subsequent
samples were shown.

Averaging and Adjustment

On average, 48% (median; IQR = 39%–55%) of all combined,
second probability judgments lay between the two single, first
probability judgments. Around 8% (median; IQR = 5%–14%)
were smaller than both single probability judgments and 42%
(median; IQR = 28%–50%) were larger. The correlation of the
similarity-based confirmation mechanism’s predictions (based on
estimated parameter values, cf. Table 3) and the difference between
the two observed probability judgments within one trial was again
positive (r = .36, p < .01; cf. Figure 3).

Quantitative Model Comparison

In Study 2, the first sample disappeared as soon as the second
sample appeared.We hypothesized that this manipulation would not
change the cognitive process behind people’s updating behavior.
We estimated all models in the same ways as in Study 1. The median
BIC over all participants for the four models was 4 for the baseline
model, −84 for the Bayesian model, −133 for the PT+N model,
and −247 for the similarity-updating model, indicating that the
latter provided the best model fit. The median optimal parameter
values of all models are listed in Table 3. According to model
selection based on the BIC, 25 of 26 participants were best described
by the similarity-updating model and one person was best described
by the Bayesian model.
The median value of the weight parameter τ, at .60, was a bit

higher than in Study 1 (.56). This indicates that the second piece of
information was weighted more than the first in Study 2, where the
first piece of evidence was removed from the screen when the
second one was presented.

Study 3: Sequential Display of Three Samples

Study 2 provided strong evidence that the similarity-updating
process describes not only description-based updating well, but also
truly sequential updating including a memory component, in that the
first sample or the first judgment had to be retrieved from memory
when making a final judgment. Additionally, we wanted to test
whether the similarity-updating model could also describe a longer
updating process well, one that is based on more than two samples.
In Study 3, participants received three samples in total. This allowed
us to test the models against each other in a longer, more complex
sequential belief-updating situation.

Method

Participants

Twenty-four undergraduate students (Mdnage = 23.50 years,
79% women, 21% men) participated in Study 3. Participants
were compensated with either course credit or book vouchers worth
15 CHF. Additionally, they received a performance-contingent
bonus (Mdn = 2.30 CHF).

Materials

The experimental setup of Study 3 was identical to that of Study 2
with samples being presented sequentially. The only difference was
that in each round, three samples were drawn and presented to the
participants. As in Studies 1 and 2, participants were confronted
with a diverse set of randomly ordered games containing all
combinations of three underlying probabilities of 10%, 20%,
30%, 40%, 50%, 60%, 70%, and 80%. The sample frequencies
for 75% of all trials were determined by drawing random samples of
seven cards from a binary distribution with the underlying proba-
bility of the respective deck. For 25% of all trials, one sample was
tweaked such that its likelihood of being drawn from deck A was
identical to the likelihood of being drawn from deck B. A randomly
determined quarter of the regular trials were repeated three times
with different orders of the samples. All trials including nondiag-
nostic evidence were repeated three times with the nondiagnostic
sample appearing first, second, or third.

Procedure

The procedure in Study 3 was identical to that of the previous
studies and included 84 rounds plus five practice rounds. Samples
were presented sequentially and a sample disappeared when a
subsequent one was presented. Twenty-three of the 24 participants
understood the task.

Results and Discussion

Table 1 shows participants’ general performance, Table 2 the
results for nondiagnostic evidence, and Table 4 the results for order
effects and converging evidence across all four studies. Results for
order effects and converging evidence are comparable to those in
Studies 1 and 2.

Participants’ General Performance

In Study 3 participants performed as well as in Studies 1 and 2
(Table 1). In 29% of trials, participants changed their mind between
the first and the second sample or between the second and the third.
The majority (59%) of these switches resulted in correct choices.

Reaction to Nondiagnostic Evidence

First Sample. The percentage of correctly identified nondiag-
nostic samples averaged around 89% (median; range: 0%–100%). If
the nondiagnostic sample was neutral, participants correctly identi-
fied it in a median of 100% of the trials (IQR = 83%–100%). This
performance was lower for nondiagnostic mixed samples (Mdn =
84%; IQR = 54%–100%). Similarly to the previous studies, we
found confirmation effects in a median of 17% (IQR = 0%–33%) of
trials after neutral samples and a median of 31% (IQR = 11%–51%)
of trials after mixed samples in Study 3.

Second Sample. We analyzed all trials where either the second
sample was nondiagnostic, participants did not change their choice
between Samples 1 and 2, and their first probability judgment was
≠.50; or the third sample was nondiagnostic, participants did not
change their choice between Samples 2 and 3, and their second
probability judgment was ≠.50. This included 22% of all trials.
Table 2 shows the percentage of these trials in which participants

1100 ALBRECHT, JENNY, NILSSON, AND RIESKAMP

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

C
on
te
nt

m
ay

be
sh
ar
ed

at
no

co
st
,b

ut
an
y
re
qu
es
ts
to

re
us
e
th
is
co
nt
en
t
in

pa
rt
or

w
ho
le
m
us
t
go

th
ro
ug
h
th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n.



showed a dilution effect, a confirmation effect, or no effect. The
slope of a simple linear regression between the first and the second
probability judgment was .52 and the slope for a linear regression
between the second and the third sample was .82, again illustrating
the dilution effect. Sixty-seven percent of the participants showed
the dilution effect in more than half of the analyzed trials between
the first (second) and the second (third) sample. The median
downward adjustment of the probabilities after the presentation
of a nondiagnostic piece of information in these trials was 7%
(IQR = 3%–14%). As in Studies 1 and 2, participants showed fewer
dilution effects (46%) when their first probability judgment was
lower than or equal to the median probability judgment over all trials
and participants (66%) than when their first probability judgment
was higher (69%). Similarly, between Samples 2 and 3, they showed
fewer dilution effects (45%) when their second probability judgment
was lower than or equal to the median probability judgment over all
trials and participants (68%) than when their second probability
judgment was higher (55%). Further, if the nondiagnostic sample
was neutral, dilution effects were observed in 60% of the dilution
trials, whereas in all other dilution trials, dilution effects were
observed 58% of the time between Samples 1 and 2, and 71%
and 50% of the time between Samples 2 and 3.Thus, we could
replicate the dilution effect not only irrespective of whether the
initial samples were present when the subsequent samples were
shown but also irrespective of the number of samples presented.

Averaging and Adjustment

In Study 3 not all trials were presented in reverse order, thus the
following analysis is based on 44% of the data. On average, 50%
(median; IQR = 35%–56%) of all combined, second probability
judgments lay between the two single, first probability judgments,
41% (median; IQR = 33%–49%) were larger, and 9% (median;
IQR = 25%–37%) were smaller. The correlation of the similarity-
based confirmation mechanism’s predictions (based on estimated
parameter values, cf. Table 3) and the difference between the two
observed probability judgments within one trial was again positive
(r = .23, p < .01; cf. Figure 3).

Quantitative Model Comparison

Parameter estimation and model selection were done as in the
previous two studies, including all probability judgments per trial.
The median BIC over all participants for the four models was −29
for the baseline model, −83 for the Bayesian model, −184 for the
PT+N model, and −408 for the similarity-updating model. The
median best fit parameter values of all models are listed in Table 3.
Twenty-three of 24 participants were best described by the
similarity-updating model according to model selection based on
the BIC, and one was best described by the PT+N model. So the
similarity-updating model is the best model overall and also de-
scribes the individual participants’ probability judgments best.
Study 3 also tested the predictive power of the similarity-updating

model regarding generalizations to independent judgments ignored
for parameter estimation. To this end, we estimated the model’s
parameters on the basis of the first two judgments in each trial and
predicted the third judgment. The median deviance over all parti-
cipants was −15 for the Bayesian model, −40 for the PT+Nmodel,
and −97 for the similarity-updating model. According to model

selection based on minimum deviance, the Bayesian model was
chosen for three of 24 participants, the PT+N model also for three
participants, and the similarity-updating model for 18 participants.
These results show that the similarity-updating model not only
accounts for the qualitative patterns found in all studies and
describes the probability judgments well on an individual level,
but also predicts repeated probability judgments well in comparison
to other models.

Study 4: Varying Sample Size

Study 4’s goal was to test whether sample size has an impact on
probability judgments. The similarity-updating model, in contrast to
the Bayesian or the PT+N model, predicts that sample size should
not influence the probability judgments because single similarity
judgments are agnostic to sample size. Study 4’s setting was
identical to Study 2’s. Around two thirds of the nondiagnostic
and half of the diagnostic trials were chosen randomly and the
samples were doubled to directly compare pairs of trials with seven
and 14 cards.

Method

Participants

Twenty-five students (Mdnage = 25 years, 64% women, 36%
men) at the University of Basel participated and were compensated
with either course credit or 20 CHF. Additionally, they received a
performance-contingent bonus with a maximum of 7.5 CHF.

Materials

Study 4 was based on the materials of Study 2. From Study 2 we
randomly selected 60% of the nondiagnostic trials and 50% of the
diagnostic trials. For each of the selected trials we tested one
unchanged version (sample size of seven cards) and one version
with doubled sample size (14 cards). As in the previous studies, all
seven or 14 cards were shown on the screen, making the increased
sample size explicit (cf., Appendix D). Around 5% of the decks with
a sample size of 14 had to be changed because they inconsistently
showed one or both decks with only 10 cards of a certain color but a
sample with more than 10 cards with that color. In these tasks we
switched two values in the decks so that the samples were consistent
with the information given by the decks.

Procedure

The procedure in Study 4 was identical to that in Study 2. All
participants understood the task.

Results and Discussion

Table 1 shows participants’ general performance, Table 2 the
results for nondiagnostic evidence, and Table 4 the results for order
effects and converging evidence across all four studies. Participants
showed similar results for order effects and converging evidence to
those in Studies 1–3.
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Participants’ General Performance

Participants performed equally as well as in all previous studies
(Table 1). In 20% of trials, participants changed their mind between
the first and the second sample. The majority (66%) of these
switches resulted in correct choices.

Differences in Sample Size

All cognitive models that follow probability theory and sampling
ideas in a broader sense predict differences between observations
with different sample sizes. Bayesian models predict (independently
of the assumed error component) a more extreme probability
estimate for the correct deck. Frequentist models predict a lower
variance. The similarity-updating model predicts no differences
between sample sizes.
We first tested the predictions of the similarity-updating model

(no difference due to sample size) against the predictions of
frequentist models (lower variance) by using a Bayesian t-test
(Morey & Rouder, 2018). We found substantial evidence in favor
of the null hypothesis, that there is no difference in the mean
variance per participant between sample sizes, with a Bayes factor
(BF) of BF0 = 3.55 for the first probability judgments and
BF0 = 3.56 for the second probability judgments, as predicted by
the similarity-updating model. The median standard deviation
across participants for the first probability judgment was 12%
(IQR = 10%–13%) for samples with seven cards and 12% (IQR =
9%–14%) for samples with 14. For the second probability judg-
ment, the standard deviation across participants was 10% (IQR =
8%–13%) for samples with seven cards and 10% (IQR = 9%–12%)
for samples with 14 cards.
Next, we tested the predictions of the similarity-updating model

against the predictions of the Bayesian model, that there is a
difference between the two sample sizes, using a Bayesian t-test
on median judgments. The Bayesian t-test gave substantial evidence
in favor of the null hypothesis, that there is no difference between
sample sizes. The BF0 for the first probability judgment was 3.56
and for the second probability judgment also 3.60. These results
support the similarity-updating model and speak against the Bayes-
ian model and the PT+N model. The median first probability
judgment across participants was 73% (IQR = 60%–76%) for a
sample size of seven cards and 73% (IQR = 64%–78%) for a
sample size of 14 cards. The median second probability judgment
across participants was 75% (IQR = 63%–82%) for a sample size of
seven and 75% (IQR = 64%–85%) for a sample size of 14 cards. All
these results clearly show that we did not observe any differences in
probability judgments between the different sample sizes, which
speaks in favor of the similarity-updating model and against the
Bayesian model and the PT+N model.

Reaction to Nondiagnostic Evidence

First Sample. The percentage of correctly identified nondiag-
nostic first samples averaged around 89% (median; IQR: 67%–

94%). If the nondiagnostic sample was a neutral sample, participants
correctly identified it in a median of 100% of the trials (IQR =
75%–100%). This performance was lower for nondiagnostic mixed
samples (Mdn = 83%; IQR = 33%–83%). We found confirmation
effects in a median of 8% of the trials (IQR = 0%–17%) after

neutral samples and a median of 0% (IQR = 0%–33%) after mixed
samples.

Second Sample. In Study 4, 16% of trials met the criteria to be
analyzed as second, nondiagnostic samples. Table 2 shows the
percentage of these trials in which participants showed a dilution
effect, a confirmation effect, or no effect. The slope of a simple
linear regression was .72, illustrating the dilution effect. More than
two thirds of the participants (68%) showed the dilution effect in
more than half of these trials. Further, participants showed dilution
effects in 82% of trials with neutral nondiagnostic second samples
and in 75% of trials with mixed nondiagnostic second samples.

Averaging and Adjustment

On average, 57% (median; IQR = 52%–63%) of all combined,
second probability judgments lay between the two single, first
probability judgments, as predicted by pure averaging models.
Eleven percent (median; IQR = 3%–17%) were smaller than
both single probability judgments and 33% (median; IQR = 25%–

37%) were larger. The correlation of the similarity-based confirma-
tion mechanism’s predictions (based on estimated parameter values,
cf. Table 3) and the difference between the two observed probability
judgments within one trial was again positive (r = .20, p < .01;
cf. Figure 3).

Quantitative Model Comparison

In Study 4 we estimated all models on the basis of participants’
probability judgments following a maximum likelihood estimation
approach. The median BIC over all participants for the four models
was −3 for the baseline model, −55 for the Bayesian model, −96
for the PT+N model, and −251 for the similarity-updating model,
indicating that the latter provided the best model fit. The median
optimal parameter values of all models are listed in Table 3.
According to model selection based on the BIC, 23 of 25 partici-
pants were best described by the similarity updating model, one was
best described by the Bayesian model, and one by the PT +
N model.

As a second test of the predictive power of the models we
estimated parameters for all trials with a sample size of 7 and
predicted the probability judgments for the trials with a sample size
of 14. The median deviances over all participants were −34 for
the Bayesian model, −33 for the PT+N model, and −131 for the
similarity-updating model. As in the model selection based on
the BIC, 24 of 25 participants were best predicted by the
similarity-updating model, and one by the PT+N model according
to the minimum deviance.

To summarize the results of the four studies, we observed a stable
dilution effect (in 60% or more of all considered trials, Table 2).
When looking at all first and second probability judgments over all
studies, the slope of a simple linear regression line was .58,
illustrating, on average, the dilution effect. We also found a smaller
proportion of confirmation effects, a finding that in principle can be
explained by our similarity-updating model. Additional results, such
as order effects and effects on converging evidence (Table 4), are
stable across studies and speak in favor of the similarity-updating
model. According to model selection based on the BIC, over 95% of
all participants were best described by the similarity-updating
model, 3% by the PT+N model, and 2% by the Bayesian model.
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An additional analysis of predictive power reveals that the results of
the model comparison are not due to overfitting.

General Discussion

Research has shown that when people judge probabilities, they do
not always behave according to Bayesian theory (e.g., Bar-Hillel,
1980; Edwards, 1968; Jenny et al., 2014; Nisbett et al., 1981;
Tversky & Kahneman, 1983; but see Chater et al., 2006;
Gigerenzer & Hoffrage, 1995; Griffiths et al., 2010; Sanborn &
Chater, 2016; Tenenbaum et al., 2006). Belief updating prescribes
that beliefs and probability judgments should not be influenced by
nondiagnostic information. In contrast, people’s beliefs and judg-
ments often change upon the presentation of nondiagnostic infor-
mation. The dilution effect, a special case of this influence of
nondiagnostic information on people’s beliefs, has been observed
in a plethora of studies in fields ranging from social reasoning to
accounting. The opposite effect, a confirmation effect, has also been
observed. Yet, few studies have provided thorough cognitive ex-
planations as to why people show the dilution effect, and there is no
single framework to explain why people sometimes show a dilution
effect and in other situations show a confirmation effect.

Introducing and Testing the Similarity-Updating Model

To explain the cognitive processes behind people’s belief-
updating behavior we developed a new cognitive model, the
similarity-updating model, which is inspired by models from the
judgment and decision-making and categorization literature. One
innovation of this theory is its synthesis of cognitive models from
different fields of research: People’s subjective probability judg-
ments are modeled with a similarity process, which has been used in
the categorization literature (e.g., Nosofsky & Johansen, 2000), and
people’s belief updating is modeled with a weighting-and-adding
process, which has been used in judgment and decision-making
research (e.g., Hogarth & Einhorn, 1992; Jenny et al., 2014; Juslin
et al., 2009; Nilsson et al., 2009, 2013). Combined probability
judgments are affected by a similarity-based confirmation process
modeled after the principles underlying inductive confirmation
(Tentori et al., 2013). This model not only bridges different fields
of research but also is based on concepts that have already been
validated in the respective fields of research.
The similarity-updating model is able to explain why people show

the dilution effect most of the time but sometimes also show a
confirmation effect. In the words of LaBella and Koehler (2004):
“One possible modification of such models : : : is to allow the
subjective evaluation of the implications of a piece of evidence to
depend on what evidence has already been encountered” (p. 1086).
We propose that this subjective evaluation is a by-product of the
similarity-based process underlying the formation of constituent
probability judgments formally described by our similarity-based
confirmation mechanism. Importantly, the confirmation mechanism
biases the formation of the combined probability, that is, the
weighting-and-adding process, explaining why the dilution effect
is observed more often than the confirmation effect.
Further, our model settles a debate started by Nisbett et al. (1981),

in which they argued that similarity rather than averaging processes
produce the dilution effect. In our view, it is the fact that people seem
to follow a combination of both similarity and averaging processes

whenmaking their judgments that leads them to produce the dilution
effect. The subtleties of this only become clear when the two
processes are combined into one overarching model. The combina-
tion shows that although a similarity process can explain the
individual judgments, the updating process of weighting and aver-
aging eventually leads to the dilution effect. Our model also
accounts for the criticism by Trueblood and Busemeyer (2011)
that adding and averaging models cannot account for the strength of
different pieces of evidence relative to each other, which our model
does with the addition of the similarity-based confirmation
mechanism.

The similarity-updating model predicts that the sample size should
not affect people’s judgments. The Bayesian model and the PT+N
model predict that probability judgments become more extreme and
less noisy with increasing sample size. The results of Study 4 confirm
the prediction of the similarity-updating model. The idea that in
probability judgments people give too little weight to sample sizes
has a long tradition in psychology (Tversky & Kahneman, 1971)
and has also been observed in more recent work (e.g., Hoffart,
Olschewski, et al., 2019; Hoffart, Rieskamp, et al., 2019).

Although people’s probability judgments differed considerably
from the normative solution, they nevertheless correlated well with
this solution and people were able to choose the correct deck in most
trials. Consistently over all studies and participants, we observed
dilution trials at a rate of approximately 60%. The greater participants’
first probability judgments, the more dilution effects they produced.
Overall, participants correctly identified a nondiagnostic first deck as
such. Extrapolating from this and assuming that they also were quite
well able to identify a second, nondiagnostic deck, it seems likely that
it was people’s belief-updating mechanism rather than the way they
judged individual probabilities that led them to produce the dilution
effect. On average, their second probability judgment was also smaller
only when the second sample was nondiagnostic. This suggests that
the effect is not a falsely qualified regression to the mean effect, which
would be explained by the PT+N model.

We tested the similarity-updating model thoroughly within a
cognitive modeling framework by estimating it on the basis of
people’s trial-by-trial probability judgments. An additional strength
of our model test is that we examined the model’s ability to predict
people’s behavior and compared it with a Bayesian model, the PT+N
model, and a random baseline model. The models were tested against
each other in four experimental studies, in which people provided
subjective probability judgments and revised them in light of addi-
tional information in a card game. Additionally, we evaluated the
models’ generalization ability byfitting participants’ responses only to
a subset of the data and predicting responses for the excluded data.

The process behind people’s first and subsequent probability
judgments in this task was best described by the similarity-updating
model as compared to a Bayesian model, the PT+N model, and a
random baseline model. The similarity-updating model not only
provided the best model fit over all participants but also described
the individual behavior of almost all participants best. These results
held irrespective of whether the first sample was still present or
removed at the time of the second sample being presented, for
updating situations in which participants could make use of an
additional third sample, and also for different sample sizes. The
generalization test in Studies 3 and 4 additionally showed that the
superior model fit was not due to overfitting or excessive model
flexibility.
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Implications

Subjective Probability Judgment

Among other areas, similarity has previously informed research
on quantitative estimations (e.g., Juslin et al., 2008; von Helversen
et al., 2014; von Helversen & Rieskamp, 2009). In line with related
findings (Nilsson et al., 2005; Read & Grushka-Cockayne, 2011),
we have shown that introducing the concept of similarity to the study
of subjective probability judgments provides important insights.
Alternative models of similarity are the evidential support accumu-
lation model (Koehler et al., 2003), cue-based relative frequency,
and the probabilities from exemplars (PROBEX) model (Juslin &
Persson, 2002). The first two models were not tested in the present
studies because there is not a straightforward application of these
models to probability judgment tasks. Further, applied to our task,
which does not involve memory processes across trials, the PRO-
BEX model boils down to the probability judgment part of the
similarity-updating model with a probability judgment function,
which differs slightly from Equation 3. This makes testing this
model superfluous as long as no memory processes are involved.

Belief Updating

A weighting-and-adding process has been successfully applied to
explain people’s behavior in conjunctive probability estimation
(Jenny et al., 2014; Nilsson et al., 2009, 2013) and they have
been demonstrated to perform better than normative as well as
alternative cognitive models. In the present article we have shown
that they can also well describe people’s belief-updating processes,
which have previously been described with belief-updating models
(Hogarth& Einhorn, 1992) and the sigmamodel (Juslin et al., 2008).
A potential alternative approach to modeling belief-updating is

based on QPT (Busemeyer et al., 2011; Trueblood et al., 2017), and
there is evidence suggesting that QPT explains several nonnorma-
tive behaviors. QPT can be seen as a generalized and relaxed version
of Bayesian probability theory that explains nonnormative beha-
viors usually with a context or background that gives rise to certain
mathematical representations. For example, order effects are ex-
plained by the idea that people adopt different perspectives when
evidence is presented and a shift between contexts is a noncommu-
tative operation (Trueblood & Busemeyer, 2011). However, the
dilution effect, as usually tested with the bookbag-and-poker-chip
task, does not include different contexts or backstories. As such,
while interesting, specifying a model following QPT that explains
the dilution effect is not straightforward and not in scope of the
current work.

Similarity-Based Confirmation

Confirmation effects have a long-standing tradition in psychology
and economics and have been shown to affect people’s judgments
and decision making in a variety of contexts (Jones & Sugden, 2001;
Lord et al., 1979; Plous, 1991; Wason, 1968). However, computa-
tional cognitive models that intend to explain this effect are rare.
Similarly, confirmation effects have rarely been investigated in the
domain of probability judgments (but see LaBella &Koehler, 2004).
We propose a similarity-based confirmation mechanism that is a part
of the belief-updating process. This belief-updating mechanism can
be seen as an instance of an anchoring-and-adjustment process

(Chapman & Johnson, 2002; Epley & Gilovich, 2001, 2006;
Hogarth & Einhorn, 1992; Tversky & Kahneman, 1974). Anchor-
ing-and-adjustment models have recently been discussed as a
resource-efficient way to combine the result of different cognitive
functions (Albrecht et al., 2020; Lieder et al., 2018; Millroth et al.,
2019). In our model, people average the probabilities of two
sequentially presented pieces of evidence (Hogarth & Einhorn,
1992) but then adjust the probability as a result of a similarity
bias. The more similar the second piece of evidence is to a favored
hypothesis, the higher the adjustment and, thus, the resulting
probability judgment.

Reduced Dilution by Expertise

It has been shown that the dilution effect decreases with expertise
in several domains (e.g., Shelton, 1999; Smith et al., 1998–1999).
According to the similarity-updating model, the magnitude of
decrease after a second sample has been presented depends on,
among other things, the perceived importance of the second sample.
If this importance is zero, the probability judgment does not change
when the second sample is presented. A decrease in the perceived
importance thus implies a reduction in the observed dilution in
probability judgments. For example, an experienced auditor or a
judge might consider the importance of a new piece of evidence as
rather small in comparison to a body of evidence already gathered.

Bridging the Gap Between Related Fields

In general, the similarity-updating model can be applied when-
ever the probability of an event has to be judged given multiple
pieces of information. One such domain is causal reasoning
(Trueblood & Pothos, 2014; Trueblood et al., 2017). After learning
a causal structure (aspect A/B causes event E) participants were
asked to judge how likely event E is to occur given the presence/
absence of aspects A and B. The similarity-updating model can also
account for some of the effects in causal reasoning. Order effects in
causal reasoning as well as the “memoryless” effect (the probability
that an aspect is present depends on only the most recent informa-
tion; Trueblood & Pothos, 2014) can be explained by the recency
component in the updating mechanism.

Another related domain is the literature on probability judgments
of conjunctive events (e.g., Tversky & Kahneman, 1983). Here
participants are asked to combine p(A), that is, the probability of A,
and p(B) into a judgment of p(A and B) and the typical finding is that
p(A and B) tends to fall between the two constituent probabilities,
that is, if p(A) < p(B), then the typical finding is that p(A) < p(A and
B) < p(B). This judgment pattern is often referred to as the con-
junction error/fallacy, as it violates the conjunction rule of proba-
bility theory. Notably, the similarity-updating model can predict
the conjunction error with its averaging mechanism (for similar
arguments see, Fantino et al., 1997; Nilsson et al., 2009, 2013)
and through the adaptation of inductive confirmation (Tentori
et al., 2013).

Bridging Cognitive Psychology and Judgment and
Decision-Making Research

Applying the concept of similarity to the area of judgment and
decision making via the similarity-updating model fits the movement
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of applying concepts from more basal processes such as perception to
higher order processes such as similarity judgments. This so-called
mindful judgment and decision-making research has led to a more
detailed understanding of judgment and decision-making phenomena
(Weber & Johnson, 2009), for example, by modeling recognition
within the cognitive architecture ACT-R (Schooler & Hertwig, 2005),
modeling confidence judgments with evidence-accumulation models
(Pleskac & Busemeyer, 2010), and modeling inferential choices with
evidence-accumulation models (Lee & Cummins, 2004).
Considering the similarity-updating model in the context of the

dilution effect facilitated the realization that pieces of information
that a researcher or experimenter uses because they are nondiag-
nostic will not necessarily be perceived and treated as nondiagnostic
by the experiment participants. Although in our experiment non-
diagnostic first samples were often perceived as such, nondiagnostic
second samples still influenced the initial probability judgments
based on first diagnostic samples. This was due to people’s tendency
to put considerable weight on the second piece of (potentially
nondiagnostic) evidence. Thus, by looking at the first probability
judgments based on nondiagnostic samples and by inspecting the
weight parameter of the estimated similarity-updating model (τ), it is
possible to distinguish whether the dilution effect is caused by
distorted probability estimation or by the belief-updating mecha-
nism. Additionally, we propose that the similarity between evidence
and hypothesis influences how people aggregate sequential proba-
bility judgments.

Open Questions

Belief-updating can occur in an immediate, online fashion where
one’s belief changes within seconds. Alternatively, it can also occur
much more slowly, over the course of hours, days, or longer periods
of time. The structure of the typical dilution task allows one to
consider belief updating formed in a rapid sequence. Updating a
belief in such an online fashion is an important skill, as people often
have to adapt accurately and quickly update their beliefs based on
sequentially observed information and make good corresponding
decisions in many professional situations. Thus, understanding how
people form such belief updates crucially broadens the understand-
ing of complex human cognition as a whole. This raises the question
of whether the similarity-updating model also explains people’s
belief-updating well if the updating happens over a longer period of
time. This is an important question to address in future research.

Conclusions

People’s probability judgments in a belief-revision task in which
they experience the occurrence rate of events through sampling can
be better described by a similarity-updating model consisting of a
similarity and a weighting-and-adding process than by a Bayesian
model or other models based on probability theory. It seems that, on
average, people show the dilution effect because when forming and
updating their probability judgments, they use a rule that lets them
integrate nondiagnostic information into the judgment via a weight-
ing-and-adding process. However, they sometimes show a confir-
mation effect because a similarity-based confirmation process
affects this weighting-and-adding process. These findings are in
line with previous findings (e.g., Anderson, 1981; Hogarth &
Einhorn, 1992; Nilsson et al., 2009; Shanteau, 1970) that a

similarity and a weighting-and-adding process affect people’s
probability judgments. Although following a similarity-updating
process leads people to take nondiagnostic information into account
and produce the dilution effect, it still leads them to make generally
good predictions and receive good decision outcomes. The
similarity-updating model can describe the underlying cognitive
process of people’s probability judgments that often lead to accurate
decisions despite violating probability theory.

References

Albrecht, R., Hoffmann, J. A., Pleskac, T. J., Rieskamp, J., & von Helversen,
B. (2020). Competitive retrieval strategy causes multimodal response
distributions in multiple-cue judgments. Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 46(6), 1064–1090. https://
doi.org/10.1037/xlm0000772

Anderson, N. H. (1981). Foundations of information integration theory.
Academic Press.

Anderson, N. H. (1996). A functional theory of cognition. Lawrence Erlbaum.
Bar-Hillel, M. (1980). The base-rate fallacy in probability judgments. Acta
Psychologica, 44(3), 211–233. https://doi.org/10.1016/0001-6918(80)
90046-3

Bergus, G. R., Chapman, G. B., Levy, B. T., Ely, J. W., & Oppliger, R. A.
(1998). Clinical diagnosis and the order of information.Medical Decision
Making, 18, 412–417. https://doi.org/10.1177/0272989X9801800409

Brier, G. W. (1950). Verification of forecasts expressed in terms of proba-
bility. Monthly Weather Review, 78, 1–3. https://doi.org/10.1175/1520-
0493(1950)078<0001:VOFEIT>2.0.CO;2

Budescu, D. V., Erev, I., &Wallsten, T. S. (1997). On the importance of random
error in the study of probability judgment. Part I: New theoretical develop-
ments. Journal of Behavioral Decision Making, 10, 157–171. https://doi.org/
10.1002/(SICI)1099-0771(199709)10:3<157:AID-BDM260>3.0.CO;2-#

Busemeyer, J. R., Pothos, E. M., Franco, R., & Trueblood, J. S. (2011). A
quantum theoretical explanation for probability judgment errors. Psycho-
logical Review, 118, 193–218. https://doi.org/10.1037/a0022542

Carnap, R. (1962). Logical foundations of probability (2nd ed.). University
of Chicago Press.

Chapman, G. B., & Johnson, E. J. (2002). Incorporating the irrelevant:
Anchors in judgments of belief and value. In T. Gilovich, D. Griffin, & D.
Kahneman (Eds.), Heuristics and biases: The psychology of intuitive
judgment (pp. 120–138). Cambridge University Press. https://doi.org/10
.1017/CBO9780511808098.008

Chater, N., Tenenbaum, J. B., & Yuille, A. (2006). Probabilistic models of
cognition: Conceptual foundations. Trends in Cognitive Sciences, 10(7),
287–291. https://doi.org/10.1016/j.tics.2006.05.007

Corner, A., Harris, A., & Hahn, U. (2010). Conservatism in belief revision
and participant skepticism. In S. Ohlsson & R. Catrambone (Eds.),
Proceedings of the 32nd annual meeting of the cognitive science society
(pp. 1625–1630). Cognitive Science Society.

Costello, F., & Watts, P. (2014). Surprisingly rational: Probability theory
plus noise explains biases in judgment. Psychological Review, 121(3),
463–480. https://doi.org/10.1037/a0037010

Costello, F., & Watts, P. (2016). People’s conditional probability judgments
follow probability theory (plus noise). Cognitive Psychology, 89, 106–
133. https://doi.org/10.1016/j.cogpsych.2016.06.006

Crupi, V., & Tentori, K. (2010). Irrelevant conjunction: Statement and
solution of a new paradox. Philosophy of Science, 77, 1–13. https://
doi.org/10.1086/650205

Dougherty, M. R. P., Gettys, C. F., & Ogden, E. E. (1999). MINERVA-DM:
A memory processes model for judgments of likelihood. Psychological
Review, 106, 180–209. https://doi.org/10.1037/0033-295X.106.1.180

Dougherty, M. R. P., & Hunter, J. (2003). Probability judgment and
subadditivity: The role of working memory capacity and constraining

THE SIMILARITY-UPDATING MODEL 1105

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

C
on
te
nt

m
ay

be
sh
ar
ed

at
no

co
st
,b

ut
an
y
re
qu
es
ts
to

re
us
e
th
is
co
nt
en
t
in

pa
rt
or

w
ho
le
m
us
t
go

th
ro
ug
h
th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n.

https://doi.org/10.1037/xlm0000772
https://doi.org/10.1037/xlm0000772
https://doi.org/10.1037/xlm0000772
https://doi.org/10.1016/0001-6918(80)90046-3
https://doi.org/10.1016/0001-6918(80)90046-3
https://doi.org/10.1016/0001-6918(80)90046-3
https://doi.org/10.1177/0272989X9801800409
https://doi.org/10.1177/0272989X9801800409
https://doi.org/10.1175/1520-0493(1950)078%3C0001:VOFEIT%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1950)078%3C0001:VOFEIT%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1950)078%3C0001:VOFEIT%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1950)078%3C0001:VOFEIT%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1950)078%3C0001:VOFEIT%3E2.0.CO;2
https://doi.org/10.1002/(SICI)1099-0771(199709)10:3%3C157:AID-BDM260%3E3.0.CO;2-#
https://doi.org/10.1002/(SICI)1099-0771(199709)10:3%3C157:AID-BDM260%3E3.0.CO;2-#
https://doi.org/10.1002/(SICI)1099-0771(199709)10:3%3C157:AID-BDM260%3E3.0.CO;2-#
https://doi.org/10.1002/(SICI)1099-0771(199709)10:3%3C157:AID-BDM260%3E3.0.CO;2-#
https://doi.org/10.1002/(SICI)1099-0771(199709)10:3%3C157:AID-BDM260%3E3.0.CO;2-#
https://doi.org/10.1037/a0022542
https://doi.org/10.1037/a0022542
https://doi.org/10.1017/CBO9780511808098.008
https://doi.org/10.1017/CBO9780511808098.008
https://doi.org/10.1017/CBO9780511808098.008
https://doi.org/10.1016/j.tics.2006.05.007
https://doi.org/10.1016/j.tics.2006.05.007
https://doi.org/10.1016/j.tics.2006.05.007
https://doi.org/10.1016/j.tics.2006.05.007
https://doi.org/10.1016/j.tics.2006.05.007
https://doi.org/10.1016/j.tics.2006.05.007
https://doi.org/10.1037/a0037010
https://doi.org/10.1037/a0037010
https://doi.org/10.1016/j.cogpsych.2016.06.006
https://doi.org/10.1016/j.cogpsych.2016.06.006
https://doi.org/10.1016/j.cogpsych.2016.06.006
https://doi.org/10.1016/j.cogpsych.2016.06.006
https://doi.org/10.1016/j.cogpsych.2016.06.006
https://doi.org/10.1016/j.cogpsych.2016.06.006
https://doi.org/10.1086/650205
https://doi.org/10.1086/650205
https://doi.org/10.1086/650205
https://doi.org/10.1037/0033-295X.106.1.180
https://doi.org/10.1037/0033-295X.106.1.180
https://doi.org/10.1037/0033-295X.106.1.180
https://doi.org/10.1037/0033-295X.106.1.180
https://doi.org/10.1037/0033-295X.106.1.180


retrieval. Memory & Cognition, 31, 968–982. https://doi.org/10.3758/
BF03196449

Edwards, W. (1968). Conservatism in human information processing. In
B. Kleinmuntz (Ed.), Formal representation of human judgment
(pp. 17–52). Wiley.

Epley, N., & Gilovich, T. (2001). Putting adjustment back in the anchoring
and adjustment heuristic: Differential processing of self-generated and
experimenter-provided anchors. Psychological Science, 12(5), 391–396.
https://doi.org/10.1111/1467-9280.00372

Epley, N., & Gilovich, T. (2006). The anchoring-and-adjustment heuristic:
Why the adjustments are insufficient. Psychological Science, 17(4),
311–318. https://doi.org/10.1111/j.1467-9280.2006.01704.x

Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust
percept. Trends in Cognitive Sciences, 8, 162–169. https://doi.org/10
.1016/j.tics.2004.02.002

Fantino, E., Kulik, J., Stolarz-Fantino, S., & Wright, W. (1997). The
conjunction fallacy: A test of the averaging hypotheses. Psychonomic
Bulletin & Review, 4, 96–101. https://doi.org/10.3758/BF03210779

Fitelson, B. (2006). Logical foundations of evidential support. Philosophy of
Science, 73, 500–512. https://doi.org/10.1086/518320

Furnham, A. (1986). The robustness of the recency effect: Studies using legal
evidence. The Journal of General Psychology, 113, 351–357. https://
doi.org/10.1080/00221309.1986.9711045

Galton, F. (1886). Regression towards mediocrity in hereditary stature.
Journal of the Anthropological Institute of Great Britain and Ireland,
15, 246–263. https://doi.org/10.2307/2841583

Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning
without instruction: Frequency formats. Psychological Review, 102(4),
684–704. https://doi.org/10.1037/0033-295X.102.4.684

Goldstone, R. L., & Son, J. Y. (2005). Similarity. In K. J. Holyoak & R. G.
Morrison (Eds.), Handbook of thinking and reasoning (pp. 13–36).
Cambridge University Press.

Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. B.
(2010). Probabilistic models of cognition: Exploring representations and
inductive biases. Trends in Cognitive Sciences, 14(8), 357–364. https://
doi.org/10.1016/j.tics.2010.05.004

Hackenbrack, K. (1992). Implications of seemingly irrelevant evidence in
audit judgment. Journal of Accounting Research, 30, 126–136. https://
doi.org/10.2307/2491095

Hahn, U. (2014). Similarity. Wiley Interdisciplinary Reviews: Cognitive
Science, 5(3), 271–280. https://doi.org/10.1002/wcs.1282

Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from
experience and the effect of rare events in risky choice. Psychological
Science, 15, 534–539. https://doi.org/10.1111/j.0956-7976.2004
.00715.x

Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2005). The role of
information sampling in risky choice. In K. Fiedler & P. Juslin (Eds.),
Information sampling and adaptive cognition (pp. 72–91). Cambridge
University Press. https://doi.org/10.1017/CBO9780511614576.004

Hoffart, J. C., Olschewski, S., & Rieskamp, J. (2019). Reaching for the star
ratings: A Bayesian-inspired account of how people use consumer ratings.
Journal of Economic Psychology, 72, 99–116. https://doi.org/10.1016/j
.joep.2019.02.008

Hoffart, J. C., Rieskamp, J., & Dutilh, G. (2019). How environmental
regularities affect people’s information search in probability judgments
from experience. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 45(2), 219–231. https://doi.org/10.1037/xlm0000572

Hogarth, R., & Einhorn, H. J. (1992). Order effects in belief updating: The
belief-adjustment model. Cognitive Psychology, 24, 1–55. https://doi.org/
10.1016/0010-0285(92)90002-J

Hotaling, J. M., Cohen, A. L., Shiffrin, R. M., & Busemeyer, J. R. (2015).
The dilution effect and information integration in perceptual decision
making. PLOS ONE, 10(9), Article e0138481. https://doi.org/10.1371/
journal.pone.0138481

Jenny, M. A., Rieskamp, J., & Nilsson, H. (2014). Inferring conjunctive
probabilities from noisy samples: Evidence for the configural weighted
average model. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 40, 203–217. https://doi.org/10.1037/a0034261

Weber, E. U., & Johnson, E. J. (2009). Mindful judgment and decision
making. Annual Review of Psychology, 60, 53–85. https://doi.org/10
.1146/annurev.psych.60.110707.163633

Jones, M., & Sugden, R. (2001). Positive confirmation bias in the acquisition
of information. Theory and Decision, 50(1), 59–99. https://doi.org/10
.1023/A:1005296023424

Juslin, P., Karlsson, L., & Olsson, H. (2008). Information integration in
multiple cue judgment: A division of labor hypothesis. Cognition, 106,
259–298. https://doi.org/10.1016/j.cognition.2007.02.003

Juslin, P., Nilsson, H., &Winman, A. (2009). Probability theory, not the very
guide of life. Psychological Review, 116, 856–874. https://doi.org/10
.1037/a0016979

Juslin, P., Olsson, H., & Björkman,M. (1997). Brunswikian and Thurstonian
origins of bias in probability assessment: On the interpretation of stochas-
tic components of judgment. Journal of Behavioral Decision Making,
10, 189–209. https://doi.org/10.1002/(SICI)1099-0771(199709)10:3<189:
AID-BDM258>3.0.CO;2-4

Juslin, P., & Persson,M. (2002). PROBabilities fromExemplars (PROBEX):
A “lazy” algorithm for probabilistic inference from generic knowledge.
Cognitive Science, 26, 563–607. https://doi.org/10.1207/s15516709cog
2605_2

Kahneman, D. (2011). Thinking, fast and slow. Macmillan.
Koehler, D. J., White, C. M., & Grondin, R. (2003). An evidential support
accumulation model of subjective probability. Cognitive Psychology, 46,
152–197. https://doi.org/10.1016/S0010-0285(02)00515-7

LaBella, C., & Koehler, D. J. (2004). Dilution and confirmation of proba-
bility judgments based on nondiagnostic evidence. Memory & Cognition,
32, 1076–1089. https://doi.org/10.3758/BF03196883

Lee, M. D., & Cummins, T. D. R. (2004). Evidence accumulation in decision
making: Unifying the “take the best” and the “rational” models. Psycho-
nomic Bulletin & Review, 11, 343–352. https://doi.org/10.3758/
BF03196581

Lieder, F., Griffiths, T. L., Huys Q. J. M., & Goodman, N. D. (2018).
Empirical evidence for resource-rational anchoring and adjustment. Psy-
chonomic Bulletin & Review, 25(2), 775–784. https://doi.org/10.3758/
s13423-017-1288-6

Lopes, L. L. (1985). Averaging rules and adjustment processes in Bayesian
inference. Bulletin of the Psychonomic Society, 23, 509–512. https://
doi.org/10.3758/BF03329868

Lopes, L. L. (1987). Procedural debiasing. Acta Psychologica, 64, 167–185.
https://doi.org/10.1016/0001-6918(87)90005-9

Lord, C. G., Ross, L., & Lepper, M. R. (1979). Biased assimilation and
attitude polarization: The effects of prior theories on subsequently con-
sidered evidence. Journal of Personality and Social Psychology, 37(11),
2098–2109. https://doi.org/10.1037/0022-3514.37.11.2098

Luce, R. D. (1959). Individual choice behavior: A theoretical analy-
sis. Wiley.

Macchi, L., Osherson, D., & Krantz, D. H. (1999). A note on superadditive
probability judgment. Psychological Review, 106, 210–214. https://
doi.org/10.1037/0033-295X.106.1.210

Macrae, C. N., Shepherd, J. W., &Milne, A. B. (1992). The effects of source
credibility on the dilution of stereotype-based judgments. Personality and
Social Psychology Bulletin, 18, 765–775. https://doi.org/10.1177/
0146167292186013

McKenzie, C. R. M., Lee, S. M., & Chen, K. K. (2002). When negative
evidence increases confidence: Change in belief after hearing two sides of
a dispute. Journal of Behavioral Decision Making, 15, 1–18. https://
doi.org/10.1002/bdm.400

Meyvis, T., & Janiszewski, C. (2002). Consumers’ beliefs about product
benefits: The effect of obviously irrelevant product information.

1106 ALBRECHT, JENNY, NILSSON, AND RIESKAMP

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

C
on
te
nt

m
ay

be
sh
ar
ed

at
no

co
st
,b

ut
an
y
re
qu
es
ts
to

re
us
e
th
is
co
nt
en
t
in

pa
rt
or

w
ho
le
m
us
t
go

th
ro
ug
h
th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n.

https://doi.org/10.3758/BF03196449
https://doi.org/10.3758/BF03196449
https://doi.org/10.3758/BF03196449
https://doi.org/10.1111/1467-9280.00372
https://doi.org/10.1111/1467-9280.00372
https://doi.org/10.1111/1467-9280.00372
https://doi.org/10.1111/j.1467-9280.2006.01704.x
https://doi.org/10.1111/j.1467-9280.2006.01704.x
https://doi.org/10.1111/j.1467-9280.2006.01704.x
https://doi.org/10.1111/j.1467-9280.2006.01704.x
https://doi.org/10.1111/j.1467-9280.2006.01704.x
https://doi.org/10.1111/j.1467-9280.2006.01704.x
https://doi.org/10.1016/j.tics.2004.02.002
https://doi.org/10.1016/j.tics.2004.02.002
https://doi.org/10.1016/j.tics.2004.02.002
https://doi.org/10.1016/j.tics.2004.02.002
https://doi.org/10.1016/j.tics.2004.02.002
https://doi.org/10.1016/j.tics.2004.02.002
https://doi.org/10.3758/BF03210779
https://doi.org/10.3758/BF03210779
https://doi.org/10.1086/518320
https://doi.org/10.1086/518320
https://doi.org/10.1080/00221309.1986.9711045
https://doi.org/10.1080/00221309.1986.9711045
https://doi.org/10.1080/00221309.1986.9711045
https://doi.org/10.1080/00221309.1986.9711045
https://doi.org/10.1080/00221309.1986.9711045
https://doi.org/10.2307/2841583
https://doi.org/10.2307/2841583
https://doi.org/10.1037/0033-295X.102.4.684
https://doi.org/10.1037/0033-295X.102.4.684
https://doi.org/10.1037/0033-295X.102.4.684
https://doi.org/10.1037/0033-295X.102.4.684
https://doi.org/10.1037/0033-295X.102.4.684
https://doi.org/10.1016/j.tics.2010.05.004
https://doi.org/10.1016/j.tics.2010.05.004
https://doi.org/10.1016/j.tics.2010.05.004
https://doi.org/10.1016/j.tics.2010.05.004
https://doi.org/10.1016/j.tics.2010.05.004
https://doi.org/10.1016/j.tics.2010.05.004
https://doi.org/10.1016/j.tics.2010.05.004
https://doi.org/10.2307/2491095
https://doi.org/10.2307/2491095
https://doi.org/10.2307/2491095
https://doi.org/10.1002/wcs.1282
https://doi.org/10.1002/wcs.1282
https://doi.org/10.1002/wcs.1282
https://doi.org/10.1111/j.0956-7976.2004.00715.x
https://doi.org/10.1111/j.0956-7976.2004.00715.x
https://doi.org/10.1111/j.0956-7976.2004.00715.x
https://doi.org/10.1111/j.0956-7976.2004.00715.x
https://doi.org/10.1111/j.0956-7976.2004.00715.x
https://doi.org/10.1111/j.0956-7976.2004.00715.x
https://doi.org/10.1017/CBO9780511614576.004
https://doi.org/10.1017/CBO9780511614576.004
https://doi.org/10.1017/CBO9780511614576.004
https://doi.org/10.1016/j.joep.2019.02.008
https://doi.org/10.1016/j.joep.2019.02.008
https://doi.org/10.1016/j.joep.2019.02.008
https://doi.org/10.1016/j.joep.2019.02.008
https://doi.org/10.1016/j.joep.2019.02.008
https://doi.org/10.1016/j.joep.2019.02.008
https://doi.org/10.1037/xlm0000572
https://doi.org/10.1037/xlm0000572
https://doi.org/10.1016/0010-0285(92)90002-J
https://doi.org/10.1016/0010-0285(92)90002-J
https://doi.org/10.1016/0010-0285(92)90002-J
https://doi.org/10.1371/journal.pone.0138481
https://doi.org/10.1371/journal.pone.0138481
https://doi.org/10.1371/journal.pone.0138481
https://doi.org/10.1371/journal.pone.0138481
https://doi.org/10.1371/journal.pone.0138481
https://doi.org/10.1037/a0034261
https://doi.org/10.1037/a0034261
https://doi.org/10.1146/annurev.psych.60.110707.163633
https://doi.org/10.1146/annurev.psych.60.110707.163633
https://doi.org/10.1146/annurev.psych.60.110707.163633
https://doi.org/10.1146/annurev.psych.60.110707.163633
https://doi.org/10.1146/annurev.psych.60.110707.163633
https://doi.org/10.1146/annurev.psych.60.110707.163633
https://doi.org/10.1023/A:1005296023424
https://doi.org/10.1023/A:1005296023424
https://doi.org/10.1016/j.cognition.2007.02.003
https://doi.org/10.1016/j.cognition.2007.02.003
https://doi.org/10.1016/j.cognition.2007.02.003
https://doi.org/10.1016/j.cognition.2007.02.003
https://doi.org/10.1016/j.cognition.2007.02.003
https://doi.org/10.1016/j.cognition.2007.02.003
https://doi.org/10.1037/a0016979
https://doi.org/10.1037/a0016979
https://doi.org/10.1002/(SICI)1099-0771(199709)10:3%3C189:AID-BDM258%3E3.0.CO;2-4
https://doi.org/10.1002/(SICI)1099-0771(199709)10:3%3C189:AID-BDM258%3E3.0.CO;2-4
https://doi.org/10.1002/(SICI)1099-0771(199709)10:3%3C189:AID-BDM258%3E3.0.CO;2-4
https://doi.org/10.1002/(SICI)1099-0771(199709)10:3%3C189:AID-BDM258%3E3.0.CO;2-4
https://doi.org/10.1002/(SICI)1099-0771(199709)10:3%3C189:AID-BDM258%3E3.0.CO;2-4
https://doi.org/10.1207/s15516709cog2605_2
https://doi.org/10.1207/s15516709cog2605_2
https://doi.org/10.1207/s15516709cog2605_2
https://doi.org/10.1016/S0010-0285(02)00515-7
https://doi.org/10.1016/S0010-0285(02)00515-7
https://doi.org/10.3758/BF03196883
https://doi.org/10.3758/BF03196883
https://doi.org/10.3758/BF03196581
https://doi.org/10.3758/BF03196581
https://doi.org/10.3758/BF03196581
https://doi.org/10.3758/s13423-017-1288-6
https://doi.org/10.3758/s13423-017-1288-6
https://doi.org/10.3758/s13423-017-1288-6
https://doi.org/10.3758/BF03329868
https://doi.org/10.3758/BF03329868
https://doi.org/10.3758/BF03329868
https://doi.org/10.1016/0001-6918(87)90005-9
https://doi.org/10.1016/0001-6918(87)90005-9
https://doi.org/10.1037/0022-3514.37.11.2098
https://doi.org/10.1037/0022-3514.37.11.2098
https://doi.org/10.1037/0022-3514.37.11.2098
https://doi.org/10.1037/0022-3514.37.11.2098
https://doi.org/10.1037/0022-3514.37.11.2098
https://doi.org/10.1037/0033-295X.106.1.210
https://doi.org/10.1037/0033-295X.106.1.210
https://doi.org/10.1037/0033-295X.106.1.210
https://doi.org/10.1037/0033-295X.106.1.210
https://doi.org/10.1037/0033-295X.106.1.210
https://doi.org/10.1037/0033-295X.106.1.210
https://doi.org/10.1177/0146167292186013
https://doi.org/10.1177/0146167292186013
https://doi.org/10.1177/0146167292186013
https://doi.org/10.1002/bdm.400
https://doi.org/10.1002/bdm.400
https://doi.org/10.1002/bdm.400
https://doi.org/10.1002/bdm.400


The Journal of Consumer Research, 28, 618–635. https://doi.org/10.1086/
338205

Millroth, P., Guath, M., & Juslin, P. (2019). Memory and decision making:
Effects of sequential presentation of probabilities and outcomes in risky
prospects. Journal of Experimental Psychology: General, 148(2), 304–324.
https://doi.org/10.1037/xge0000438

Morey, R. D., & Rouder, J. N. (2018). BayesFactor: Computation of Bayes
factors for common designs (R package version0.9.12-4.2) [Computer
software]. https://CRAN.R-project.org/package=BayesFactor

Nilsson, H., Olsson, H., & Juslin, P. (2005). The cognitive substrate of
subjective probability. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 31, 600–620. https://doi.org/10.1037/0278-7393
.31.4.600

Nilsson, H., Rieskamp, J., & Jenny, M. A. (2013). Exploring the overesti-
mation of conjunctive probabilities. Frontiers in Psychology, 4, 101.
https://doi.org/10.3389/fpsyg.2013.00101

Nilsson, H., Winman, A., Juslin, P., & Hansson, G. (2009). Linda is not a
bearded lady: Configural weighting and adding as the cause of extension
errors. Journal of Experimental Psychology: General, 138, 517–534.
https://doi.org/10.1037/a0017351

Nisbett, R., Zukier, H., & Lemley, R. (1981). The dilution effect:
Nondiagnostic information weakens the implications of diagnostic infor-
mation. Cognitive Psychology, 13, 248–277. https://doi.org/10.1016/
0010-0285(81)90010-4

Nosofsky, R. M., & Johansen, M. K. (2000). Exemplar-Based accounts of
“multiple-system” phenomena in perceptual categorization. Psychonomic
Bulletin & Review, 7, 375–402. https://doi.org/10.1007/BF03543066

Peters, E., Dieckmann, N., Dixon, A., Hibbard, J. H., & Mertz, C. K. (2007).
Less is more in presenting quality information to consumers.Medical Care
Research and Review : MCRR, 64, 169–190. https://doi.org/10.1177/
10775587070640020301

Peters, E., & Rothbart, M. (2000). Typicality can create, eliminate, and
reverse the dilution effect. Personality and Social Psychology Bulletin, 26,
177–187. https://doi.org/10.1177/0146167200264005

Peterson, C. R., & Miller, A. J. (1965). Sensitivity of subjective probability
revision. Journal of Experimental Psychology, 70, 117–121. https://
doi.org/10.1037/h0022023

Peterson, C. R., Schneider, R. J., & Miller, A. J. (1965). Sample size and the
revision of subjective probabilities. Journal of Experimental Psychology,
69, 522–527. https://doi.org/10.1037/h0021720

Pleskac, T. J., & Busemeyer, J. R. (2010). Two-stage dynamic signal
detection: A theory of choice, decision time, and confidence. Psychologi-
cal Review, 117, 864–901. https://doi.org/10.1037/a0019737

Plous, S. (1991). Biases in the assimilation of technological breakdowns: Do
accidents make us safer? Journal of Applied Social Psychology, 21(13),
1058–1082. https://doi.org/10.1111/j.1559-1816.1991.tb00459.x

Pothos, E. M., Barque-Duran, A., Yearsley, J. M., Trueblood, J. S., Buse-
meyer, J. R., & Hampton, J. A. (2015). Progress and current challenges
with the quantum similarity model. Frontiers in Psychology, 6, 205.
https://doi.org/10.3389/fpsyg.2015.00205

Pothos, E. M., & Busemeyer, J. R. (2013). Can quantum probability provide
a new direction for cognitive modeling? Behavioral and Brain Sciences,
36, 255–274. https://doi.org/10.1017/S0140525X12001525

Pothos, E. M., Busemeyer, J. R., & Trueblood, J. S. (2013). A quantum
geometric model of similarity. Psychological Review, 120(3), 679–696.
https://doi.org/10.1037/a0033142

Pothos, E. M., & Trueblood, J. S. (2015). Structured representations in a
quantum probability model of similarity. Journal of Mathematical Psy-
chology, 64–65, 35–43. https://doi.org/10.1016/j.jmp.2014.12.001

Read, D., & Grushka-Cockayne, Y. (2011). The similarity heuristic.
Journal of Behavioral Decision Making, 24, 23–46. https://doi.org/
10.1002/bdm.679

Roussel, J.-L., Fayol, M., & Barrouillet, P. (2002). Procedural vs. direct
retrieval strategies in arithmetic: A comparison between additive and

multiplicative problem solving. The European Journal of Cognitive
Psychology, 14, 61–104. https://doi.org/10.1080/09541440042000115

Russo, J. E. (2015). The predecisional distortion of information. In E. A.
Wilhelms & V. F. Reyna (Eds.), Neuroeconomics, judgment, and decision
making (pp. 91–110). Psychology Press.

Russo, J. E., Meloy,M. G., &Medvec, V. H. (1998). Predecisional distortion
of product information. JMR, Journal of Marketing Research, 35, 438–
452. https://doi.org/10.1177/002224379803500403

Sanborn, A. N., & Chater, N. (2016). Bayesian brains without probabilities.
Trends in Cognitive Sciences, 20(12), 883–893. https://doi.org/10.1016/j
.tics.2016.10.003

Sanborn, A. N., Noguchi, T., Tripp, J., & Stewart, N. (2020). A dilution
effect without dilution: When missing evidence, not non-diagnostic evi-
dence, is judged inaccurately. Cognition, 196, Article 104110. https://
doi.org/10.1016/j.cognition.2019.104110

Schooler, L. J., & Hertwig, R. (2005). How forgetting aids heuristic
inference. Psychological Review, 112, 610–628. https://doi.org/10
.1037/0033-295X.112.3.610

Schwarz, G. (1978). Estimating the dimension of a model. Annals of
Statistics, 6, 461–464. https://doi.org/10.1214/aos/1176344136

Shanteau, J. C. (1970). An additive model for sequential decision making.
Journal of Experimental Psychology, 85, 181–191. https://doi.org/10
.1037/h0029552

Shanteau, J. C. (1972). Descriptive versus normative models of sequential
inference judgment. Journal of Experimental Psychology, 93, 63–68.
https://doi.org/10.1037/h0032509

Shanteau, J. C. (1975). Averaging versus multiplying combination rules of
inference judgment. Acta Psychologica, 39, 83–89. https://doi.org/10
.1016/0001-6918(75)90023-2

Shelton, S. (1999). The effect of experience on the use of irrelevant evidence
in auditor judgment. The Accounting Review, 74, 217–224. https://doi.org/
10.2308/accr.1999.74.2.217

Shepard, R. N. (1987). Toward a universal law of generalization for
psychological science. Science, 237, 1317–1323. https://doi.org/10
.1126/science.3629243

Smith, H. D., Stasson, M. F., & Hawkes, W. G. (1998-1999). Dilution in
legal decision making: Effect of non-diagnostic information in relation to
amount of diagnostic evidence. Current Psychology: A Journal for
Diverse Perspectives on Diverse Psychological Issues, 17(4), 333–345.
https://doi.org/10.1007/s12144-998-1015-6

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning. MIT Press.
Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based
Bayesian models of inductive learning and reasoning. Trends in Cognitive
Sciences, 10(7), 309–318. https://doi.org/10.1016/j.tics.2006.05.009

Tentori, K., Crupi, V., Bonini, N., & Osherson, D. (2007). Comparison of
confirmation measures. Cognition, 103, 107–119. https://doi.org/10.1016/
j.cognition.2005.09.006

Tentori, K., Crupi, V., & Russo, S. (2013). On the determinants of the
conjunction fallacy: Probability versus inductive confirmation. Journal of
Experimental Psychology: General, 142, 235–255. https://doi.org/10
.1037/a0028770

Tetlock, P. E., & Boettger, R. (1989). Accountability: A social magnifier of
the dilution effect. Journal of Personality and Social Psychology, 57, 388–
398. https://doi.org/10.1037/0022-3514.57.3.388

Tobler, P. N., O’doherty, J. P., Dolan, R. J., & Schultz, W. (2006). Human
neural learning depends on reward prediction errors in the blocking
paradigm. Journal of Neurophysiology, 95, 301–310. https://doi.org/10
.1152/jn.00762.2005

Troutman, C. M., & Shanteau, J. (1977). Inferences based on nondiagnostic
information. Organizational Behavior and Human Performance, 19,
43–55. https://doi.org/10.1016/0030-5073(77)90053-8

Trueblood, J. S., & Busemeyer, J. R. (2011). A quantum probability account
of order effects in inference. Cognitive Science, 35, 1518–1552. https://
doi.org/10.1111/j.1551-6709.2011.01197.x

THE SIMILARITY-UPDATING MODEL 1107

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

C
on
te
nt

m
ay

be
sh
ar
ed

at
no

co
st
,b

ut
an
y
re
qu
es
ts
to

re
us
e
th
is
co
nt
en
t
in

pa
rt
or

w
ho
le
m
us
t
go

th
ro
ug
h
th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n.

https://doi.org/10.1086/338205
https://doi.org/10.1086/338205
https://doi.org/10.1086/338205
https://doi.org/10.1037/xge0000438
https://doi.org/10.1037/xge0000438
https://CRAN.R-project.org/package=BayesFactor
https://CRAN.R-project.org/package=BayesFactor
https://CRAN.R-project.org/package=BayesFactor
https://doi.org/10.1037/0278-7393.31.4.600
https://doi.org/10.1037/0278-7393.31.4.600
https://doi.org/10.1037/0278-7393.31.4.600
https://doi.org/10.1037/0278-7393.31.4.600
https://doi.org/10.1037/0278-7393.31.4.600
https://doi.org/10.3389/fpsyg.2013.00101
https://doi.org/10.3389/fpsyg.2013.00101
https://doi.org/10.3389/fpsyg.2013.00101
https://doi.org/10.3389/fpsyg.2013.00101
https://doi.org/10.1037/a0017351
https://doi.org/10.1037/a0017351
https://doi.org/10.1016/0010-0285(81)90010-4
https://doi.org/10.1016/0010-0285(81)90010-4
https://doi.org/10.1016/0010-0285(81)90010-4
https://doi.org/10.1007/BF03543066
https://doi.org/10.1007/BF03543066
https://doi.org/10.1177/10775587070640020301
https://doi.org/10.1177/10775587070640020301
https://doi.org/10.1177/10775587070640020301
https://doi.org/10.1177/0146167200264005
https://doi.org/10.1177/0146167200264005
https://doi.org/10.1037/h0022023
https://doi.org/10.1037/h0022023
https://doi.org/10.1037/h0022023
https://doi.org/10.1037/h0021720
https://doi.org/10.1037/h0021720
https://doi.org/10.1037/a0019737
https://doi.org/10.1037/a0019737
https://doi.org/10.1111/j.1559-1816.1991.tb00459.x
https://doi.org/10.1111/j.1559-1816.1991.tb00459.x
https://doi.org/10.1111/j.1559-1816.1991.tb00459.x
https://doi.org/10.1111/j.1559-1816.1991.tb00459.x
https://doi.org/10.1111/j.1559-1816.1991.tb00459.x
https://doi.org/10.1111/j.1559-1816.1991.tb00459.x
https://doi.org/10.3389/fpsyg.2015.00205
https://doi.org/10.3389/fpsyg.2015.00205
https://doi.org/10.3389/fpsyg.2015.00205
https://doi.org/10.3389/fpsyg.2015.00205
https://doi.org/10.1017/S0140525X12001525
https://doi.org/10.1017/S0140525X12001525
https://doi.org/10.1037/a0033142
https://doi.org/10.1037/a0033142
https://doi.org/10.1016/j.jmp.2014.12.001
https://doi.org/10.1016/j.jmp.2014.12.001
https://doi.org/10.1016/j.jmp.2014.12.001
https://doi.org/10.1016/j.jmp.2014.12.001
https://doi.org/10.1016/j.jmp.2014.12.001
https://doi.org/10.1016/j.jmp.2014.12.001
https://doi.org/10.1002/bdm.679
https://doi.org/10.1002/bdm.679
https://doi.org/10.1002/bdm.679
https://doi.org/10.1002/bdm.679
https://doi.org/10.1080/09541440042000115
https://doi.org/10.1080/09541440042000115
https://doi.org/10.1177/002224379803500403
https://doi.org/10.1177/002224379803500403
https://doi.org/10.1016/j.tics.2016.10.003
https://doi.org/10.1016/j.tics.2016.10.003
https://doi.org/10.1016/j.tics.2016.10.003
https://doi.org/10.1016/j.tics.2016.10.003
https://doi.org/10.1016/j.tics.2016.10.003
https://doi.org/10.1016/j.tics.2016.10.003
https://doi.org/10.1016/j.cognition.2019.104110
https://doi.org/10.1016/j.cognition.2019.104110
https://doi.org/10.1016/j.cognition.2019.104110
https://doi.org/10.1016/j.cognition.2019.104110
https://doi.org/10.1016/j.cognition.2019.104110
https://doi.org/10.1016/j.cognition.2019.104110
https://doi.org/10.1037/0033-295X.112.3.610
https://doi.org/10.1037/0033-295X.112.3.610
https://doi.org/10.1037/0033-295X.112.3.610
https://doi.org/10.1037/0033-295X.112.3.610
https://doi.org/10.1037/0033-295X.112.3.610
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1037/h0029552
https://doi.org/10.1037/h0029552
https://doi.org/10.1037/h0032509
https://doi.org/10.1037/h0032509
https://doi.org/10.1016/0001-6918(75)90023-2
https://doi.org/10.1016/0001-6918(75)90023-2
https://doi.org/10.2308/accr.1999.74.2.217
https://doi.org/10.2308/accr.1999.74.2.217
https://doi.org/10.2308/accr.1999.74.2.217
https://doi.org/10.2308/accr.1999.74.2.217
https://doi.org/10.2308/accr.1999.74.2.217
https://doi.org/10.2308/accr.1999.74.2.217
https://doi.org/10.2308/accr.1999.74.2.217
https://doi.org/10.1126/science.3629243
https://doi.org/10.1126/science.3629243
https://doi.org/10.1126/science.3629243
https://doi.org/10.1007/s12144-998-1015-6
https://doi.org/10.1007/s12144-998-1015-6
https://doi.org/10.1016/j.tics.2006.05.009
https://doi.org/10.1016/j.tics.2006.05.009
https://doi.org/10.1016/j.tics.2006.05.009
https://doi.org/10.1016/j.tics.2006.05.009
https://doi.org/10.1016/j.tics.2006.05.009
https://doi.org/10.1016/j.tics.2006.05.009
https://doi.org/10.1016/j.cognition.2005.09.006
https://doi.org/10.1016/j.cognition.2005.09.006
https://doi.org/10.1016/j.cognition.2005.09.006
https://doi.org/10.1016/j.cognition.2005.09.006
https://doi.org/10.1016/j.cognition.2005.09.006
https://doi.org/10.1016/j.cognition.2005.09.006
https://doi.org/10.1016/j.cognition.2005.09.006
https://doi.org/10.1037/a0028770
https://doi.org/10.1037/a0028770
https://doi.org/10.1037/0022-3514.57.3.388
https://doi.org/10.1037/0022-3514.57.3.388
https://doi.org/10.1037/0022-3514.57.3.388
https://doi.org/10.1037/0022-3514.57.3.388
https://doi.org/10.1037/0022-3514.57.3.388
https://doi.org/10.1152/jn.00762.2005
https://doi.org/10.1152/jn.00762.2005
https://doi.org/10.1152/jn.00762.2005
https://doi.org/10.1152/jn.00762.2005
https://doi.org/10.1016/0030-5073(77)90053-8
https://doi.org/10.1016/0030-5073(77)90053-8
https://doi.org/10.1111/j.1551-6709.2011.01197.x
https://doi.org/10.1111/j.1551-6709.2011.01197.x
https://doi.org/10.1111/j.1551-6709.2011.01197.x
https://doi.org/10.1111/j.1551-6709.2011.01197.x
https://doi.org/10.1111/j.1551-6709.2011.01197.x
https://doi.org/10.1111/j.1551-6709.2011.01197.x
https://doi.org/10.1111/j.1551-6709.2011.01197.x


Trueblood, J. S., & Pothos, E. M. (2014). A quantum probability approach to
human causal reasoning. In P. Bello, M. Guarini, M. McShane, & B.
Scassellati (Eds.), Proceedings of the 36th annual meeting of the cognitive
science society (pp. 1616–1621). Cognitive Science Society.

Trueblood, J. S., Pothos, E. M., & Busemeyer, J. R. (2014). Quantum
probability theory as a common framework for reasoning and similarity.
Frontiers in Psychology, 5, 322. https://doi.org/10.3389/fpsyg.2014.00322

Trueblood, J. S., Yearsley, J. M., & Pothos, E. M. (2017). A quantum
probability framework for human probabilistic inference. Journal of
Experimental Psychology: General, 146(9), 1307–1341. https://doi.org/
10.1037/xge0000326

Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–
352. https://doi.org/10.1037/0033-295X.84.4.327

Tversky, A., & Kahneman, D. (1971). Belief in the law of small numbers.
Psychological Bulletin, 76(2), 105–110. https://doi.org/10.1037/h0031322

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heur-
istics and biases. Science, 185(4157), 1124–1131. https://doi.org/10.1126/
science.185.4157.1124

Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reason-
ing: The conjunction fallacy in probability judgment. Psychological
Review, 90, 293–315. https://doi.org/10.1037/0033-295X.90.4.293

Tversky, A., & Koehler, D. J. (1994). Support theory: A nonextensional
representation of subjective probability. Psychological Review, 101, 547–
567. https://doi.org/10.1037/0033-295X.101.4.547

von Helversen, B., Herzog, S. M., & Rieskamp, J. (2014). Haunted by a
doppelgänger: Irrelevant facial similarity affects rule-based judgments.
Experimental Psychology, 61(1), 12–22. https://doi.org/10.1027/1618-
3169/a000221

von Helversen, B., & Rieskamp, J. (2009). Models of quantitative estima-
tions: Rule-based and exemplar-based processes compared. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 35, 867–
889. https://doi.org/10.1037/a0015501

Walker, L., Thibaut, J., & Andreoli, V. (1972). Order of presentation at
trial. The Yale Law Journal, 82, 216–226. https://doi.org/10.2307/
795112

Waller, W. S., & Zimbelman, M. F. (2003). A cognitive footprint in archival
data: Generalizing the dilution effect from laboratory to field settings.
Organizational Behavior and Human Decision Processes, 91, 254–268.
https://doi.org/10.1016/S0749-5978(03)00024-4

Wason, P. C. (1968). Reasoning about a rule. The Quarterly Journal of
Experimental Psychology, 20(3), 273–281. https://doi.org/10.1080/
14640746808400161

Appendix A

Comparison of Likelihood and Similarity

Figure A1 shows the similarity (for different values of the
sensitivity parameter c) and likelihood for a sample relative to
the city-block distance between different samples and all tested

decks. Each grid cell shows the results for another, representative
sample. Grid cell 0-0-7, for example, shows the results (similarity/
likelihood) for a sample with 0 blue, 0 green and 7 red cards relative

Figure A1
Comparison of Likelihood and Similarity

Note. Likelihood is calculated with the multinomial distribution. Similarity is calculated with different values of parameter c
relative to the distance between an average deck and different types of samples (grid). See the online article for the color version
of this figure.
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to the distance between this sample and all possible tested decks.
The presented sample types are representative for all samples,
because city-block distance is symmetrical, meaning that the graphs
for 0-0-7 and 0-7-0 are identical. The results show that both the
likelihood and the similarity decrease with the distance between a

sample and a deck. However, for small distances, the likelihood is
much lower on average than similarity and consequently the
decrease is flatter compared to similarity. Similarity can only
approximate likelihood for some sample types and high values of
the sensitivity parameter c.

Appendix B

Detailed Implementation of the Bayesian Model

The first step to calculate the probability of hypothesis A given a
specific piece of evidence is to calculate the likelihood of observing
the sample under hypothesis A. In our card game example, this is the
likelihood of sampling the cards of sample E1 out of deck A:

pðE1jAÞ = pf 1.1A1 × pf 1.2A2 × pf 1.3A3 : (B1)

where pA1, pA2, and pA3 are the probabilities of the different colors in
deck A and f1.1, f1.2, and f1.3 are the frequencies of the respective
colors observed in sample E1. The posterior probability of sample E1

coming from deck A is then computed by

pðAjE1Þ =
pðE1jAÞ × pðAÞ

pðE1jAÞ × pðAÞ + pðE1jBÞ × pðBÞ , (B2)

where p(E1|A) and p(E1|B) are the likelihoods of receiving sample E1

out of deckA and deck B and p(A) and p(B) are the prior probabilities
of categories A and B, respectively. We implemented this model
fixing the prior probabilities to .50, assuming that prior to having
seen any data, participants would be indifferent about the categories.
This posterior probability becomes a new prior probability in light of
which additional information will be processed. According to
Bayesian theory, this new prior probability is updated in light of
new evidence as follows by first computing the likelihood of
observing sample E2 out of deck A:

pðE2jAÞ = pf 2.1A1 × pf 2.2A2 × pf 2.3A3 , (B3)

where pA1, pA2, and pA3 are the probabilities of the different colors in
deck A and f2.1, f2.2, and f2.3 are the frequencies of the respective
colors observed in sample E2. The posterior probability that both
sample E1 and sample E2 come from deck A is then computed by

pðAjE1, E2Þ =
pðAjE1Þ × pðE2jAÞ

pðAjE1Þ × pðE2jAÞ + pðBjE1Þ × pðE2jBÞ
, (B4)

where p(A|E1) and p(B|E1) are the posterior probabilities for decks A
and B given that sample E1 was observed (and thus the new prior
probabilities), and p(E2|A) and p(E2|B) are the likelihoods of receiv-
ing sample E2 out of deck A and B. Note that in this example,
because the second sample is just as likely to come from deck A as
from deck B, p(A|E1, E2) = p(A|E2). Equation B4 can be rearranged
to an odds format where

pðAjE1, E2Þ
pðBjE1, E2Þ

=
pðAÞ
pðBÞ ×

pðE1jAÞ
pðE1jBÞ

×
pðE2jAÞ
pðE2jBÞ

=
pðE1jAÞ
pðE1jBÞ

×
pðE2jAÞ
pðE2jBÞ

, ifpðAÞ = pðBÞ = .50. (B5)

Appendix C

Detailed Implementation of the PT+N Model

Our implementation of the PT+Nmodel, in principle, follows the
implementation of the Bayesian model introduced in Appendix B,
with the exception that we assume that there is a chance that samples
are perceived incorrectly, more specifically, a chance d that the color
of a card is misperceived, leading to an incorrect count.
In our setting, the error chance d modulates how a sample of n

cards is actually perceived. To model this, we first calculate the
chance for every unordered sample of size N given the real sample
E1. For an arbitrary sample E1 the probability of accidentally
perceiving E1 as E′1 given d is

PperceiveðE ′

1jE1, dÞ =
N!

distðE1,E
′

1Þ! · ðn − distðE1,E
′

1ÞÞ!

· ðð1 − dÞN−distðE1,E ′

1Þ · ddistðE1E
′

1ÞÞ: (C1)

The distance (dist) between the two samples E1 and E′1 is given by
the number of different cards. The likelihood that a sample E1 stems
from deck A is calculated by multiplying the probability of perceiv-
ing every unordered sample, Pperceive(E′1

����E1, d), with the probability
that this perceived sample stems from the deck, P(E′1

����A),
PðE1jAÞ =

X
E′1

PperceiveðE′1jE1, dÞ · PðE′1jAÞ (C2)

The probability that the misperceived sample E′1 stems from deck
A is given by

pðE′1jAÞ = pf 1.1A1 × pf 1.2A2 × pf 1.3A3 (C3)
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The updating process is calculated analogously to the Bayesian
cognitive model (described in Appendix B). Please note that the
Bayesian cognitive model is nested in this implementation of the
PT+N model (d = 0). The higher the error chance d, the higher are

the deviations of the model’s predictions from the predictions of the
Bayesian cognitive model. However, the deviations are symmetrical
and cannot in principle predict stimulus-dependent deviations such
as the dilution effect.

Appendix D

Appendix E

Instructions of the Four Studies

In the following, you will be presented with two decks of cards.
Both decks consist of three types of card: red, blue, and green cards.
Each deck consists of 100 cards. The numbers above the decks
indicate how many red, blue, and green cards the decks contain.
Proceed by hitting any key.
One of the decks will be randomly picked and two [three]

samples will be sequentially drawn (with replacement) from this
deck. The cards that are drawn in each sample are replaced before
drawing additional samples. Thus, within one game, the decks
always consist of the number of cards indicated above the decks.

The composition of the decks will vary between games. Proceed by
hitting any key.

Your task will be to indicate which deck you think the two [three]
samples were drawn from. Both samples were drawn from the same
deck. Additionally, you will assess the probability that the samples
stem from the deck you picked. PLEASE NOTE THAT THE
PROBABILITY JUDGMENTS ALWAYS RELATE TO THE
DECK THAT YOU PICKED. Proceed by hitting any key.

You will receive 15 CHF (or 2 course credits) for your participa-
tion. In the end, one of the games you played will be picked at

Figure D1
Visual Presentation of Stimuli at the End of a Trial in Study 1

Note. In Study 1, Sample 1 stayed visible when the second sample was
presented. In all other studies, Sample 1 (and Sample 2, respectively in Study
3) was removed from the screen when a new sample appeared. Initially, the
slider was not visible to avoid anchor effects. In Study 4, samples with a size
of 14 showed 14 instead of seven cards. See the online article for the color
version of this figure.
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random and played out. If you picked the right deck in this game,
then you receive 2.50 CHF in addition to the participation fee as a
bonus. Proceed by hitting any key.
Additionally,youcanwinabonus,whichiscontingentontheaccuracy

of your probability judgment. The better your judgment, the higher your
bonuswillbe(max.5CHF).Thus,youwillreceiveabonusforyourchoice
AND your probability judgment. Proceed by hitting any key.
Please address the instructor now if anything is unclear. Note that

you will always first pick a deck by hitting either key “1” or “2” and
then provide your probability judgment. PLEASE NOTE THAT
WITHIN ONE GAME, BOTH [ALL THREE] SAMPLES

WILLBEDRAWNFROMTHE SAMEDECK.10 First, a couple
of practice trials will follow, which will not count.11 Proceed by
hitting any key.

Are you ready for the real experiment? Now every game counts.10

Please address the instructor if anything is unclear. If you are ready,
then please hit any key.

Received September 15, 2018
Revision received April 1, 2021

Accepted April 2, 2021 ▪

10 This sentence was added to the instructions of Studies 2, 3 and 4 tomake
sure participants thoroughly understood the task.

11 This sentence was used only in Studies 2, 3 and 4.
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