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A B S T R A C T   

Background: Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) seem to be highly 
transmissible, often infect otherwise healthy humans and frequently occur in hospital outbreaks. 
Methods: Refugees, living in accommodations in Germany were screened for nasal carriage of S. aureus. The 
isolates were investigated regarding resistance and virulence, phenotypically and by whole genome data 
analysis. 
Results: 5.6% (9/161) of the refugees are carriers of S. aureus. 2.5% (4/161) are MRSA carriers. Among the 
refugees, spa-types t021, t084, t304, t991 and t4983 were detected, as well as the new spa-types t18794 and 
t18795. t304 and t991 are assumed to be local spa-types from the middle east. The isolates are less resistant and 
marginal biofilm formers. Each isolate has a remarkable set of virulence genes, although genes, encoding for 
proteins strongly associated with invasive S. aureus infections, like Panton-Valentine leucocidin, were not 
detected. 
Conclusion: The detection of strains from the middle east, supports the assumption that strains co-travel with the 
refugees and persist despite a transition of the host’s living conditions. Whole genome data analysis does not 
permit to finally evaluate a germ’s virulence. Nevertheless, an impression of the virulence potential of the strains, 
regarding skills in colonization, resistance, immune evasion, and host cell damaging can be pictured.   

1. Introduction 

Refugees escape from various countries and often transit several 
states on their way. Refugees who arrived in Germany between 2014 
and 2016 mostly came from the Arab language area (especially Syria, 
Iraq, Afghanistan) and Sub-Saharan Africa. The majority escaped via the 
Balkan route [1]. Along the route, people transit countries which are 
heterogeneous in prevalence of methicillin-resistant S. aureus (MRSA) 
infections. In countries without MRSA surveillance and respective 
research, there is a deficiency in the knowledge about prevalences of 
MRSA infections and common local MRSA variants. While in most Af-
rican countries, as well as in Syria, Iraq and Afghanistan no MRSA 

monitoring exists, the Balkan countries have a surveillance network. 
Compared to Germany, a higher prevalence of invasive infections with 
antimicrobial resistant bacteria (AMR), including MRSA, was docu-
mented in the Balkans. All countries on the Balkan route (Turkey, 
Greece, North Macedonia, Serbia, Croatia and Slovenia) have rates of 
25–50% nosocomial invasive MRSA infections [2]. Similar to the Eu-
ropean trend, the rate of invasive MRSA infections in Germany 
decreased from 11.1% in 2015 to 7.6% in 2018 [3]. The predominant 
number (63.5%) of infections occur in health care settings [4]. In 
2017/2018, community-acquired MRSA (CA-MRSA) represented about 
10% of the positive specimen sent to the National Reference Center in 
Germany. The most frequent clonal complexes within CA-MRSA isolates 
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are CC8, CC5 and CC30 [5,6]. In contrast to healthcare-acquired (HA-) 
MRSA, CA-MRSA are strongly associated with skin- and soft tissue in-
fections (SSTIs) and frequently infect otherwise healthy young in-
dividuals. Thus, they spread rapidly among healthy members of a 
community [7,8]. Worldwide, several local strain types occur. As 
reviewed by Tuner and colleagues, sequence types ST2, ST5, ST8 and 
ST398 predominate in America, ST22, ST30, ST36, ST80, ST239 and 
ST398 in Europe, clonal complexes CC5 and CC8 and sequence types 
ST59, ST72, ST239 and ST772 in Asia, ST5, ST22, ST30 and ST80 in 
Africa and ST93 and CC121 are most prevalent in Australia [9]. Amongst 
them are CA-MRSA and HA-MRSA strains. Regarding to phenotypical 
properties, CA-MRSA are often characterized by the expression of toxins, 
in particular Panton-Valentine Leukocidin (PVL) and by presence of the 
arginine catabolic mobile element (ACME). Furthermore, among 
CA-MRSA the prevalence of the smaller SCCmec cassette types IV and V 
is higher. CA-MRSA were long time considered to be commonly sus-
ceptible to clindamycin, chloramphenicol and fluoroquinolones, though 
resistant strains incrementally appear [9–11]. Strommenger et al. 
defined four genes as genetic markers characteristic for common clonal 
lineages of CA-MRSA: the PVL gene lukPV, the enterotoxin H gene seh, 
the arginine deiminase gene arcA (on ACME) and the etd gene, encoding 
for exfoliative toxin D. Each of the genes is highly prevalent in one of the 
most common CA-MRSA lineages [12]. CA-MRSA are supposed to ex-
press a particular set of virulence factors and regulatory systems, 
different from HA-MRSA, promoting the remarkable virulence and 
successful transmission in the community. For example, phenol soluble 
modulins (PSMs) are considerably produced by CA-MRSA, while 
HA-MRSA produce none or marginal amounts of PSMs [13]. Highly 
pathogenic CA-MRSA are producing higher amounts of cell 
wall-associated wall teichoic acids (WTA), resulting in an increased 
WTA-dependent and T-cell-mediated induction of skin abscesses in a 
murine animal model [14]. Otsuka et al. demonstrated a strong associ-
ation of the adhesins bone sialoprotein (Bbp) and collagen adhesin (Cna) 
with CA-MRSA of ST30 [15]. In USA300 and USA400, exoprotein 
assessment revealed an increased occurrence of eleven virulence factors 
in the supernatants, amongst them: alpha-hemolysin (Hla), collagen 
adhesin (Cna), staphylokinase (Sak), coagulase (Coa), lipase (Lip), 
enterotoxin C3 (Sec3), enterotoxin Q (Seq), V8 protease (SspA) and 
cysteine protease (SspB) [16]. These virulence factors include adhesins, 
toxins and proteins involved in host immune evasion. 

The knowledge about the CA-MRSA virulence is based, in many 
cases, on research on USA300/ST8 and USA400/ST1 strains. Other CA- 
clones, including MSSA, need to be investigated to develop the overall 
picture. In the on-hand study, S. aureus isolates from a local German 
refugee population are investigated. This small-sized study aims to give 
an overview of spa-types and sequence types (STs) found in the popu-
lation and tries to retrace, if the strains co-travelled with the refugees. 
Moreover, the S. aureus isolates were comprehensively analyzed 
regarding antibiotic resistances, biofilm formation and genetic provision 
with virulence genes. 

2. Materials and methods 

2.1. Sampling and questionnaire 

Sampling was performed in course of the “FlüGe”- refugee health 
study (University Bielefeld project) between January and August 2018. 
All participants are refugees,1 who arrived in Germany within five years 
before data acquisition. They lived in communal accommodations in 

North Rhine Westphalia, Germany. In the course of “FlüGe” – refugee 
health study, all participants answered a questionnaire in interview 
format, guided by an instructed interviewer and translator in the par-
ticipant’s language. The questionnaire involves demographic data, in-
formation about countries of origin and flight routes, history of 
hospitalization and medical treatments, as well as further information 
regarding physical, mental, and social health. Each participant of the 
study was asked to voluntarily provide a nasal swab. Due to specifica-
tions of the ethics committee, the participants swabbed their own nasal 
cavities after instruction. Within 6 h after swabbing, 1 ml phosphate 
buffered saline (PBS) was added to each viscose swab (Sarstedt, Nüm-
brecht - Germany). Swabs were frozen at − 20 ◦C until proceeding. 

2.2. Cultivation conditions 

Nasal swabs were streaked on tryptic soy broth (TSB; Oxoid, 
Basingstoke, GB), mannitol salt agar (MSA: 10 g/l peptone, 1 g/l beef 
extract, 75 g/l NaCl, 10 g/l D-mannitol, 0.025 g/l phenol red, 15 g/l 
agar, pH 7.4 ± 0.2) and MRSA chromogenic agar (Roth, Karlsruhe, GER) 
without supplementing antibiotics. Pure cultures of the isolates were 
cultivated at 37 ◦C on Müller-Hinton agar with 5% sheep blood (Thermo 
Scientific, Schwerte, GER), on Tryptic Soy Agar, and in TSB under 
shaking conditions (100 rpm). 

2.3. Identification 

Isolate colonies were controlled by coagulase-agglutination test 
(Pastorex Test, Bio-Rad, Germany) and identified by 16S rDNA sequence 
analysis. 16S rDNA was amplified with the primer pair 5′- 
CTACCTTGTTACGACTTCAC-3′ and 5′-CACGGCTAACTACGTGCCA-3’. 
The amplicons were Sanger-sequenced and matched with RDP database 
(http://rdp.cme.msu.edu/, [17]). For spa typing, the spa gene was 
amplified as described before [18]. The isolates were attributed to spa 
types with Ridom SeqSphere+ Software (https://www.ridom.de/staph 
type, [19]). 

2.4. PCR-based analysis 

The spa and mecA genes were amplified by PCR as described before 
[18]. By a multiplex-PCR developed by Strommenger et al., isolates were 
screened for genes characteristic for common CA-MRSA lineages [12]. 
SCCmec cassettes of mecA-positive strains were classified as described by 
Kondo et al. and Boye et al. [20,21]. 

2.5. Antibiograms 

Minimal inhibitory concentrations (MICs) of the antibiotics cefox-
itin, ciprofloxacin, clindamycin, daptomycin, erythromycin, fosfomycin, 
fusidic acid, gentamycin, moxifloxacin, mupirocin, oxacillin, penicillin, 
rifampicin, teicoplanin, tetracycline, tigecycline, trimethoprim/sulfa-
methoxazole, and vancomycin were determined by broth microdilution, 
according to EUCAST standards [22] and to ISO standard 20776-1. The 
results were interpreted applying the EUCAST clinical breakpoint table 
(https://eucast.org/clinical_breakpoints/, European Committee on 
Antimicrobial Susceptibility Testing [22]. In addition, strains were 
cultivated in nutrient broth with 2 μg/ml oxacillin and 8 μg/ml sul-
bactam, to exclude a β-lactamase-mediated oxacillin resistance. 

2.6. Biofilm assays 

The ability of the strains to form biofilms was assessed as described 
by Heilmann et al. [24]. As adaption, 1% (w/v) Glucose was supple-
mented to the medium. Staphylococcus carnosus TM300 was set as 
negative control and S. aureus RN4220 as positive control. Strains are 
defined as biofilm formers, if they produce significantly (p-value <0.05) 
more biofilm as the negative control. Biofilm thickness was therefore 

1 The term “refugee” is not used as a political category of migrants. In context 
of this study, it describes asylum seekers, registered by the German govern-
ment, and allocated to a district for accommodation. At the time of sampling, 
the participants application for asylum was in preparation, in process or was 
closed (with positive or negative result). 
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equalized with the light absorption by the stained cell layer (semi--
quantitative approach). 

2.7. Whole genome sequencing (WGS) 

Genomic DNA was extracted using the NucleoSpin gDNA Clean-up 
kit (Macherey Nagel, Düren, GER), according to the manufacturer’s 
guidelines. The protocol was extended by a 30 min lysis step with 40 μg/ 
ml lysostaphin (Abcam, Cambridge, UK). The Qubit 2.0 fluorometer 
(Life Technologies, Carlsbad, CA) was used to measure the DNA con-
centration. Genomic libraries were prepared using the Nextera DNA Flex 
library preparation kit (Illumina, San Diego, CA) and, subsequently, 
sequenced using 2 × 300-bp paired-end library on the Illumina MiSeq 
platform. 

For generation of the draft genome, paired end reads were processed 
in Galaxy (www.usegalaxy.org). First, reads were quality controlled 
with FastQC [25], then trimmed with Trim Galore! [26] and Trimmo-
matic [27]. The reads were rechecked with FastQC, before mapping to 
the reference genome (N315, NC_002745.2) with BWA [28]. 

2.8. Whole genome data analysis 

Whole genome data analysis was performed in a two phased 
approach. In the first phase online tools provided by the Center for 
genomic Epidemiology were used (http://www.genomicepidemiology. 
org/), including the tools ResFinder 3.2 [29] and Virulence Finder 2.0 
[30], as well as the typing tool MLST 2.0 [31]. In the second phase, genes 
in the draft genome were predicted using the annotation tool Prokka 
[32] and screened for known virulence genes. A phylogenetic tree was 
computed from whole genome sequences with the online tool CSI Phy-
logeny 1.4 [33]. 

3. Results 

From a total of 198 participants (76% male) in the “FlüGe” refugee 
health study, 161 (81.3%, 78% male) agreed to provide a nasal swab. 
S. aureus was detected in 9 (5.6%, 100% male) of the 161 nasal swabs. 
Four isolates (2.5%) were MRSA. Several colonies per swab were picked 
and processed. Only one S. aureus spa-type could be detected per 

participant. The isolates belong to spa-types t021, t084, t304, t991 and 
t4983. In addition, two isolates with by now unknown spa-types (t18794 
and t18795) were found. All isolates were attributed to multilocus 
sequence types (STs) and clonal complexes (CCs, see Table 1). 

3.1. Sociodemography and health status 

The S. aureus carriers were all male and came from Iraq, Syria, Iran, 
Afghanistan, and Bangladesh (see Supplementary A). The carriers have 
spent an average of nearly 50 weeks for their escape and resided in 
Germany since 3.25 years on average (>5 years as criterion for exclu-
sion). None of the S. aureus carriers (0/9) stated suffering from inflam-
matory skin irritations (in all participants: 12.6%, n = 20). While 4/9 
suffered from chronic diseases, 2/9 had been hospitalized and 1/9 un-
derwent surgery in the previous year. Furthermore, 4/8 S. aureus car-
riers took antibiotics in the past, from whom only one took them in the 
previous 12 months. Considering the overall small number of nine cases, 
this data cannot be regarded as representative of the German refugee 
population. 

3.2. Antibiograms 

All isolated S. aureus strains are resistant against penicillin G (PEN). 
Four isolates (spa-types t304, t021 and t991) are confirmed as MRSA and 
are resistant against oxacillin (OX) and cefoxitin (FOX), which equates to 
44% of all S. aureus isolates and 2.5% of all specimens. Each MRSA strain 
was also cultivable in oxacillin/sulbactam medium. The t021/ST30 
isolate is resistant against three antibiotic classes: β-lactams (PEN, OX, 
FOX), erythromycin (ERY) and clindamycin (CLI). Furthermore, one t084 
(2)/ST15 MSSA isolate is resistant against tetracycline. Resistance pro-
files are displayed in Table 1. Antibiotics to which none of the isolates was 
resistant are not shown. All MRSA strains possess SCCmec element type IV 
(ccr gene complex type 2, class B mec gene complex). 

3.3. Community-acquired strains 

The isolates were screened for marker genes indicating common CA- 
lineages. While PVL genes (lukSF-PV) and enterotoxin H gene seh were 
not detected, arcA was amplified from MRSA t021/ST30 and etd was 

Table 1 
Minimal inhibitory concentration (MIC) values of all resistances of the isolated S. aureus stains. Resistance (R) 
is represented by dark boxes; light boxes indicate susceptibility (S). Antibiotics are abbreviated as following: PEN – 
penicillin, OXA – oxacillin, FOX – cefoxitin, ERY – erythromycin, CLI – clindamycin, TET – tetracycline. Growth in 
oxacillin/sulbactam medium (OXA/SUL) is notified by a plus (+), while no growth is indicated by a minus symbol (− ). 
In case of MRSA, SCCmec cassette types are listed as well. MLST-multilocus sequence type, CC – clonal complex. 
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detected in MRSA t991/ST913 and MSSA t18795/ST291. Both genes 
were detected in other lineages as those, which they are characteristic 
for (etd – ST80, arcA - ST8). Moreover, spa types t084 (ST15), t304 
(ST6), t4983 (ST46) and t18794 (ST7) were isolated. Therein, none of 
the marker genes have been detected by PCR. Due to sampling of per se 
healthy refugees in a non-health care-setting, the entirety of the S. aureus 
isolates are CA-isolates, from the epidemiological perspective. 

In Table 2, short reports of literature research on each spa-type (or 
ST) and its geographic occurrence and frequency in S. aureus screening 
studies are given. 

3.4. Biofilm formation 

Assessment of biofilm formation reveals slight to moderate biofilm 
formation of 5/9 isolates (t021, t3042, t991, t4983, t18794; see Fig. 1) 
in comparison to S. aureus RN4220 and Staphylococcus carnosus TM300. 

3.5. Whole genome sequencing and virulence profiles 

To assess the genetic makeup of the isolates with virulence de-
terminants, the entire genome was sequenced. Whole genome data are 
provided in the NCBI BioProject PRJNA658858 (Accession numbers 

Table 2 
Short overview on geographic occurrence and frequency of the spa-types (or sequence types) found in the "FlüGe" health study.  

spa-type/ sequence type Geographic occurrence and frequency References 

t021/ ST30  - ubiquitarian CA-strains  
- within ST30 a PVL-positive and CA-lineage arose 

[8] 
[68]  

- in this study t021/ST30 was isolated from an Iraqi and does not express PVL 

t084/ ST15  - one of the most prevalent strains worldwide  
- Europe: mostly MSSA, frequently isolated from healthy carriers  
- Middle East: mostly MRSA, causing infections and circulating in hospitals 

[69,70] 
[34,36,69] 
[71,72]  

- here, two t084/ST15 MSSA were isolated from participants originating from Syria 

t304/ ST6  - relatively new strain type, first occurred in the early 2010s  
- caused outbreaks in Denmark  
- occur in European studies, wherein refugees were screened and are associated with refugees from Iraq  
- t304 (no MLST defined) was detected in 2017/18 for the first time in Iran 

[73] 
[50] 
[74]  

- in this study, two Iraqis carried spa type t304/ST6 

t991/ ST913  - exfoliative toxin-positive and PVL-negative local MRSA clone in the Middle East  
- Europe: only found in refugee screening studies, carriers stated to originate from Syria or Iraq 

[51,72,75] 
[41,50]  

- here, the t991 was isolated from a participant from Syria  
- the isolate is PVL-negative but etD-positive 

t4983/ ST46  - as far as known, t4983 has not been described in the literature before  
- ST46 was sporadically mentioned in few clinical studies  
- CC45 is primarily known for the epidemic “Berlin (E)MRSA” (ST45), from Germany and adjoining countries 

[73,76] 
[77–79]  

- the t4983/ST46 isolate, in this study, derived from an Iranian participant 

t18794/ ST7  - ST7 is most common in China, associated with poultry meat [80,81]  
- t18794 was newly detected in this study, in the sample of a refugee from Bangladesh  
- MSSA 

t18795/ ST291  - MSSA/MRSA of ST291 frequently occur in hospitals in Iran  
- worldwide, it occurs sporadically 

[52,53,82,83]  

- here, t18795 (MSSA) was isolated from an Afghan refugee, representing the first report of this spa type  

Fig. 1. The isolates capability to form biofilms assayed by a semi-quantitative colorimetric microtiter plate assay. Columns labelled with asterisks (***) are biofilm 
formers, significantly (p < 0.05) producing more biofilm as the negative control (S. carnosus TM300). S. aureus RN4220 was used as the positive control for bio-
film formation. 
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Table 3 
Virulence genes and antimicrobial resistance genes found in S. aureus isolates of the refugees by using VirulenceFinder and ResFinder and by screening annotated genes.  

major gene 
function 

short term gene product t021/ 
ST30/ 
CC30 

t084(1)/ 
ST15/ 
CC15 

t084(2)/ 
ST15/ 
CC15 

t304(2)/ 
ST6/ CC5 

t304(3)/ 
ST6/ CC5 

t991/ 
ST913 

t4983/ 
ST46/ 
CC45 

t18794/ 
ST7 

t18795/ 
ST291  

resistance genes mecA penicillin-binding protein PBP2a, Class B1 PBP x o o x x x o o o [84] 

mecC penicillin-binding protein PBP2′, Class B1 PBP o o o o o o o o o [85] 

pbpD/pbp4 penicillin-binding protein PBP4, Class C PBP o o o o o o o o o [86] 

mecR transmembrane sensor protein/mecA- 
regulator 

o o o x x o o o o [84] 

ermA rRNA adenine N-6-methyltransferase, x o o o o o o o o [87] 

ermC rRNA adenine N-6-methyltransferase, ER o o o o o o o o o 

tet38 MFS tetracycline efflux pump x x x x x x x x x [88],[89] 

tetA class B MFS tetracycline efflux pump, TET-RP o x x x x x o x o 

vanA low-affinity peptidoglycan precursor synthesis 
protein 

o o o o o o o o o [90] 

aacA/aphD aac 
(6′)-Ie-aph(2′′′) 

6′aminoglycoside N-acetyltransferase/ 
2′′aminoglycoside phosphotransferase, AAC 
(6′)/APH(2′′′) 

o o o o o o o o o [89][91] 

ant1/aadC ant 
(9)-Ia 

ANT(9)-Ia streptomycin-3′′-adenyltransferase x o o o o o o o o 

aph(3′)-III aminoglycoside-3′-phosphotransferase-III, 
APH(3′)-III 

o o o o o o o o o 

aadCD/knt/ant 
(4′)-Ia 

kanamycin nucleotidyltransferase, 
aminoglycoside O-nucleotidyltransferase ANT 
(4′)-Ia 

o o x o o o o o o 

ileS isoleucyl-tRNA synthetase o o o o o o o o o [89] 

msrA/B efflux transporter/peptide methionine 
sulfoxide reductase 

x x x x x x x x x [92] 

mprF multiple peptide resistance factor x x x x x x x x x [93] 

norA multidrug efflux pump NorA o o o o o o o o o [94],[95] 

norB multidrug efflux pump NorB x x x x x x x x x 

norC multidrug efflux pump NorC o o o o o o o o o 

sdrM multidrug efflux pump SdrM o x x x x x o x o 

mepA multidrug efflux pump MepA x x x x x x x x x [89][95] 

sepA multidrug resistance ABC transporter SepA o x x x x x o x x 

bmrA multidrug resistance ABC transporter/ 
permease protein BmrA 

x x x x x x x x x [94](Bacillus 
subtilis) 

emrB/mdeA multidrug export protein EmrB/MdeA o o o o o o x o o [94][96] 

tap multidrug efflux pump Tap x x x o o o o o o [97](Mycobacterium 
tuberculosis) 

dltA D-alanine carrier/transfer protein A x x x x x x x x x [98] 

dltB D-alanine carrier/transfer protein B o o o o o o o o o 

(continued on next page) 
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Table 3 (continued ) 

major gene 
function 

short term gene product t021/ 
ST30/ 
CC30 

t084(1)/ 
ST15/ 
CC15 

t084(2)/ 
ST15/ 
CC15 

t304(2)/ 
ST6/ CC5 

t304(3)/ 
ST6/ CC5 

t991/ 
ST913 

t4983/ 
ST46/ 
CC45 

t18794/ 
ST7 

t18795/ 
ST291  

dltC D-alanine carrier/transfer protein C x x x x x x x x x 

dltD D-alanine carrier/transfer protein D x x x x x x x x x 

surface 
determinants 

spa staphylococcal surface protein A x x x x x x x x x [59] 

isdA iron-regulated surface determinant protein A o x x x x x x x x 

isdB iron-regulated surface determinant protein B x x x x x x x x x 

isdC iron-regulated surface determinant protein C x x x x x x x x x 

isdH iron-regulated surface determinant protein H x x x x x x x x x 

sasG S. aureus surface protein G o o o o o o o o o 

pls plasmin sensitive protein o o o o o o o o o 

sraP serine-rich adhesin for platelets x x x x x o o o x [59][99] 

bap biofilm-associated protein Bap o o o o o o o o o [59][100] 

ebpS elastin-binding protein EbpS x x x x x x x x x [99] 

sasX S. aureus surface protein o o o o o o o o o [59][101] 

clfA clumping factor A x x x o x x o o o [59][102] 

clfB clumping factor B o o o o o o o o o 

bbp bone sialoprotein-binding protein x o o x o o o o x 

fnbA fibronectin-binding protein A x x x x x x x x x 

fnbB fibronectin-binding protein B o o o o o o x x x 

cna collagen adhesin o o o o o o o o o 

sdrC serine-aspartate repeat containing protein C o x o x o x o x o 

sdrD serine-aspartate repeat containing protein D o x x x x o x x x 

sdrE serine-aspartate repeat containing protein E o x x x x x x x o 

isaB immunodominant staphylococcal antigen B o x x x x x o x o [99][103] 

toxins hly/hla α-toxin/α-hemolysin o x x x x x x x x [104] 

hlb β-hemolysin, phospholipase C, 
sphingomyelinase C 

o x x x x x x x x 

hlgA γ-hemolysin component A x x x x x x x x x 

hlgB γ-hemolysin component B x x x x x x x x x 

hlgC γ-hemolysin component C o x x x x x o x x 

etA exfoliative toxin A, serine protease o o o o o o o o o 

etB exfoliative toxin A, serine protease o o o o o o o o o 

sea/entA enterotoxin A o o o o o o o o o [104][105] 

seb enterotoxin B o o o o o o o o o 

sec enterotoxin C o o o o o o o o o 

sed enterotoxin D o o o o o o o o o 

(continued on next page) 
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Table 3 (continued ) 

major gene 
function 

short term gene product t021/ 
ST30/ 
CC30 

t084(1)/ 
ST15/ 
CC15 

t084(2)/ 
ST15/ 
CC15 

t304(2)/ 
ST6/ CC5 

t304(3)/ 
ST6/ CC5 

t991/ 
ST913 

t4983/ 
ST46/ 
CC45 

t18794/ 
ST7 

t18795/ 
ST291  

see enterotoxin E o o o o o o o o o 

seg enterotoxin G x o o o o o x o o 

seh enterotoxin H o o o o o o o o o 

sei/entE enterotoxin I x o o o o o x o o 

sej enterotoxin-like J o o o o o o o o o [106] 

sek enterotoxin-like K o o o o o o o o o 

sel enterotoxin-like L o o o o o o o o o 

sem enterotoxin-like M o o o o o o x o o 

sen enterotoxin-like N x o o o o o x o o 

seo enterotoxin-like O x o o o o o x o o 

sep enterotoxin-like P o o o o o o o x o 

seq enterotoxin-like Q o o o o o o o o o 

ser enterotoxin-like R o o o o o o o o o 

seu/entB enterotoxin-like U x o o o o o x o o 

selx staphylococcal enterotoxin-like X o x x x x x x x x [104] 

tst toxic shock syndrome toxin − 1 x o o o o o o o o 

lukAB bicomponent leukocidin A and B o o o o o o o o o 

lukED bicomponent leukocidin E and D o x x x x x o x x/o 

lukS leukocidin S subunit o o o o o o x o o 

lukFS-PV panton-valentine leukocidin (PVL) o o o o o o o o o 

splA secreted serine protease-like A o x x x x x o x x 

splB secreted serine protease-like B o x x x x x o x x 

splC secreted serine protease-like C o x x x x x o x o 

splD secreted serine protease-like D o x x x x x o o o 

splE secreted serine protease-like E o o o o o o o o o 

splF secreted serine protease-like F x x x x x x o x x 

scpA staphopain A, cysteine protease x x x x x x x x x 

sspA V8 protease, serine protase o x x x x o x x x 

sspB staphopain B cysteine protease x x x x x x x x x 

aur zinc metalloproteinase aureolysin x x x x x x x x x 

PSMs psmβ1 antibacterial protein 3/β-class PSM 1, PSM-β1 x x x x x x x x x [61][104] 

psmβ2 antibacterial protein 2/β-class PSM 2, PSM-β2 o o o o o o o o o 

psmα1-4 α-class phenol soluble modulins o o o o o o o o o 

hld δ-hemolysin (α-class PSM) o o o o o o o o o 

PSMmec SCCmec encoded phenol-soluble modulin o o o o o o o o o 

(continued on next page) 

I. Creutz et al.                                                                                                                                                                                                                                   



TravelMedicineandInfectiousDisease45(2022)102204

8

Table 3 (continued ) 

major gene 
function 

short term gene product t021/ 
ST30/ 
CC30 

t084(1)/ 
ST15/ 
CC15 

t084(2)/ 
ST15/ 
CC15 

t304(2)/ 
ST6/ CC5 

t304(3)/ 
ST6/ CC5 

t991/ 
ST913 

t4983/ 
ST46/ 
CC45 

t18794/ 
ST7 

t18795/ 
ST291  

biofilm genes icaA Poly-β-1,6-N-acetyl-D-glucosamine (PNAG) 
synthase 

x x x x x x x x x [107] 

icaB PNAG N-deacetylase x x x x x x x x x 

icaC putative PNAG export protein x x x x x x x x x 

icaD PNAG synthesis protein IcaD x x x x x x x x x 

icaR ica operon, negative transcriptional regulator 
IcaR 

x x x x x x x x x 

regulatory 
systems 

agrA accessory gene regulator protein A, QS-System x x x x x x x x x [108][109] 

agrB accessory gene regulator protein B o x x o o x o o o 

sarA transcriptional regulator SarA x x x x x x x x x 

sarS transcriptional regulator SarS x x x x x x x x x 

sarX transcriptional regulator SarX x x x x x x x x x 

sarR transcriptional regulator SarR x x x x x x x x x 

sarV transcriptional regulator SarV x x x x x x x x x 

sarT transcriptional regulator SarT o x x x x x o o o 

sarU transcriptional regulator SaU o x x x x x o o o 

sarZ transcriptional regulator SarZ x x x x x x x x x 

luxS QS-System, S-ribosylhomocysteine lyase x x x x x x x x x [110] 

cvfB conserved virulence factor B x x x x x x x x x [111] 

host immune 
evasion genes 

chp chemotaxis inhibitory protein x x x o o x x o x [112][113] 

sak staphylokinase x o o x x x x x x 

scn staphylococcal complement inhibitor x x x x x x x x x 

flr FPR-like1 inhibitory protein FLIPr o x x x x o o x o [113] 

fll FLIPr-like protein o o o o o o o o o 

ssl1 staphylococcal superantigen-like protein 1 o o o x o o x x o 

ssl3 staphylococcal superantigen-like protein 3 o x x x x x o x o 

ssl4 staphylococcal superantigen-like protein 4 o x x x x x o x o 

ssl5 staphylococcal superantigen-like protein 5 o x x x x x o x x 

ssl7 staphylococcal superantigen-like protein 7 o x x x x x x x o 

ssl10 staphylococcal superantigen-like protein 10 o x x x x x x x x 

ssl13 staphylococcal superantigen-like protein 13 o x x x x x o x o 

ecb extracellular complement-/fibrinogen-binding 
protein 

o o o o o o o o o 

sbi immunoglobulin-binding protein o o x x x o x o x 

efb/fib (extracellular) fibrinogen-binding protein o x x x x x o x x 

eap/map o o o o o o o o o 

(continued on next page) 
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Table 3 (continued ) 

major gene 
function 

short term gene product t021/ 
ST30/ 
CC30 

t084(1)/ 
ST15/ 
CC15 

t084(2)/ 
ST15/ 
CC15 

t304(2)/ 
ST6/ CC5 

t304(3)/ 
ST6/ CC5 

t991/ 
ST913 

t4983/ 
ST46/ 
CC45 

t18794/ 
ST7 

t18795/ 
ST291  

extracellular adherence protein/MHC 
analogous protein 

coa staphylocoagulase o x x x o o x x o [114] 

vWbp/vwb vonWillebrand factor-binding protein o o o o o o o o o 

esaC type IV seretion system accessory protein C o o o o o o o o o [115] 

esxA type IV secretion system extracellular protein 
A 

x x x x x x x x x 

essC type IV secretion system protein EssC o o o x x o x x x 

nuc thermonuclease Nuc x x x x x x x x x [104] 

others ssaA staphylococcal secretory antigen SsaA x x x x x x x x x [116] 

sodA superoxid dismutase x x x x x x x x x [117] 

sodM superoxid dismutase x x x x x x x x x 

tarS β-O-GlcNAc transferase, WTA 
glycoslytransferase 

o x x x x x x x x [118] 

ebh/ebhAB extracellular matrix-binding protein x x x x x x x x x [119] 

emp/ssp extracellular matrix-binding protein o x x x x x x x o 

fmtA teichoic acid D-alanine hydrolase x x x x x x x x x [120] 

femA aminoacetyltransferase FemA x x x x x x x x x [121] 

femB aminoacetyltransferase FemB x x x x x x x x x 

femX glycyltransferase FemX x x x x x x x x x 

spn staphylococcal peroxidase inhibitor o o o o o o o o o [113] 

ACME arginine catabolic mobile element (ACME) o o o o o o o o o [122] 

x: gene detected, o: gene not detectable. 
Abbreviations: ABC: ATP-binding cassette superfamily; A+A1:N169CME: arginine catabolic mobile element; AG: aminoglycosides; CLI: clindamycin; ERY: erythromycin; MFS: major facilitator superfamily; MLS: 
macrolides, lincosamides and streptogarmin; MUP: mupirocin; PBP: penicillin binding protein; PNAG: poly-N-acetyl-D-glucosamine; PSM: phenol-soluble modulin; QS: quorum sensing. 
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NZ_CP060596.1 up to NZ_CP060611.1). A coverage of 88.1–93.2% was 
archieved for the sequences, with GC-contents between 29.4 and 30.8%. 
Each genome was screened for virulence- and resistance genes with 
Virulence Finder and ResFinder. Independently, protein annotation was 
performed with the WGS data. Virulence genes detected with this two- 
phased approach are listed in Table 3. As expected, the isolates 
feature genes for the phenotypically shown resistances: t021 harbors 
mecA (β-lactams) and ermA (erythromycin, clindamycin), t084(1) has 
tetA and norB (tetracycline), and t991 as well as the t304 isolates feature 
mecA (β-lactams). For t021 and t084(2) a kanamycin, neomycin, ami-
kacin, and tobramycin resistance mediated by the aminoglycoside 
resistance protein ANT(4′)-Ia can be predicted, although a phenotypic 
verification of the resistance was not performed. Additionally, the iso-
lates are equipped with a considerable amount of multidrug efflux 
proteins. Moreover, they feature a lot of genes encoding for surface 
proteins binding to host structures, like S. aureus surface proteins SasG 
and SasX, fibronectin-binding proteins FnbAB, bone sialoprotein- 
binding protein Bbp, serine-rich adhesin for platelets SraP, collagen 
adhesin Cna, Protein A (spa), elastin-binding protein EbpS, clumping 
factors ClfAB, iron-regulated surface determinant IsdA, and serine/ 
aspartate repeat proteins SdrC and SdrD. On an average, 6.6 (5–8) of 14 
of these proteins are found. The refugees’ isolates are also equipped with 
toxins. All isolates have α-toxin and β-toxin (hla and hlb), except for 
t021/ST30. hlgA and hlgB are present in all isolates, hlgC is only present 
in 8/9 isolates (t084, t304, t991, t18794, t18795). Furthermore, lukED 
genes are found in t084, t304, and t18794. t18795 has only lukE. lukS 
was found in one isolate (t4983). Neither, the gene locus lukFS-PV 
encoding for PVL, nor exfoliative toxin A and B genes (etA and etB) were 
found in any of the isolates. Only, the t021 isolate harbors tst encoding 
for the toxic shock syndrome toxin-1. Staphylococcal enterotoxin (SE) 
genes are found in three isolates. In the t021 isolate seg, sei, sen, seo, and 
seu were detected. In the t4983 isolate seg, sei, sem, sen, seo and seu were 
found, as well as sep in the t18794 isolate. All isolates harbor the gene for 
staphylococcal enterotoxin-like X (selX). Moreover, all strains produce 
serine proteases, except for the t4983 isolate. t021 prossesses only splF, 
while t084, t304, and t991 have splA-D and splF. spa-type t18794 fea-
tures splA-C, and t18795 has only splA and splB. Regarding regulatory 
loci, the strains only differ in presence of the accessory gene regulator B 
(agrB) (present in t021, t304, t4983, t18794, t1895) or in presence of 
sarU and sarT (both present in t084, t304, t991). Immune evasion genes 
like sak, scn, aur, flr, chp, as well as staphylococcal superantigen-like 

protein genes (ssl) are commonly present in all the isolates’ genomes. 
Even though, particularly t021, t4983 and t19795 isolates are lacking 
many immune evasion genes. The arginine catabolic mobile genetic 
element (ACME) was not found in any of the isolates. 

3.6. Phylogeny 

The genome sequences were computed to an USA300-rooted 
phylogenetic tree comprising all nine isolates (see Fig. 2). Herein spa- 
type t18794 clusters together with the two t304 isolates and t991 
clusters together with the t084 isolates. For identical spa-types the ge-
netic deviation was calculated using single nucleotide polymorphisms 
(SNPs). The two isolates of spa-type t084 differed in 260 SNPs, the two 
isolates of spa-type t304 differed only in 116 SNPs, respectively. As-
sembly gaps have been discounted for SNP calculation. 

4. Discussion 

S. aureus has become a global threat to healthcare, due to its 
enhanced virulence and increasing resistance. Studies observing 
S. aureus prevalence are still, in most instances, performed within health 
care context, although in the last decade studies in healthy communities 
were getting in focus of attention [34–40]. The on-hand study was 
performed in a non-health care setting, thus the isolates can be cate-
gorized as community-acquired. Moreover, the isolates phenotypically 
appear as expected for CA-strains: All MRSA strains harbor SCCmec 
element type IV, which is most common in CA-MRSA strains. All isolates 
are susceptible to fluoroquinolones and ciprofloxacin. And, except for 
t021, the strains are also susceptible to clindamycin. In Germany, the 
prevalence of S. aureus among the healthy population is almost 30%, and 
the rate of MRSA is about 0.3–0.7% [34,37]. According to the sample 
size of 161 participants, one could extrapolate about 48 S. aureus carriers 
and one MRSA carrier in the cohort. The quote of nine S. aureus carriers 
in combination with four MRSA carriers among them, reveals a 
discrepancy between the healthy German general population and the 
small population of refugees residing in North Rhine Westphalia. Higher 
rates of MRSA in refugee populations in contrast to the European host 
countries, have been described before. Both, in health care context 
(10.3–21.3% [41,42]) and even in generally healthy refugees: In the 
Netherlands refugees were screened for MRSA in course of registration. 
Among the refugees the rate of MRSA carriage was calculated to 

Fig. 2. Phylogenetic relation among the 
S. aureus isolates, illustrated by a rooted phylo-
genetic tree. Strain USA300 (NC_07793.1) was 
set as root. The branch length indicates the 
phylogenetic distances between the strains. Each 
isolate is represented by only one clone (labelled 
with spa-type, MLST type, MLST clonal complex, 
and in chambers the origin of the participant 
from whom the strain was isolated). Isolates 
belonging to the same spa-type cluster together. 
The phylogenetic tree was computed with CSI 
Phylogeny based on SNPs in the whole genome 
sequences.   
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4.5–13% within the first year after arrival, and to 5.1% among refugees 
who lived in the Netherlands for more than one year. In contrast, the rate 
is 1.3% among the Dutch [43]. In Switzerland, a study screened for 
MRSA in four refugee accommodation centers. The total colonization 
rate was 15.7%, but with significant differences among the centers, 
ranging between 2.7 and 25.4% MRSA carriage [44]. These differences 
suggest an influence of the refugees’ accommodation situation on MRSA 
prevalence, which might also affect the prevalence rates in the refugee 
population concerned in the on-hand study. The antimicrobial resistance 
situation in Europe varies depending on the bacterial species, antimi-
crobial group, and geographical region. In general, lower resistance 
percentages are reported by countries in the north while higher per-
centages are reported in the south and east of Europe. Most refugees are 
from or travelled through countries with a high prevalence of 
multidrug-resistant organisms (MDRO) in hospital- and 
community-settings. The Commission for Hospital Hygiene and Infec-
tion Prevention at the RKI recommends MRSA-screening at hospital 
admission for refugees within the first 12 months after arrival. Screening 
for other MDROs at hospital admission is only recommended if the pa-
tient was treated in a hospital abroad in a country with high MDRO 
prevalence [45]. 

Due to study design and sampling procedure, some cases of S. aureus 
carriage might remain undetected. Although, S. aureus is detectable in 
the nasal cavity in most cases, there might be a few exceptions in which 
S. aureus only colonizes distinct body sites [46]. Screening of only one 
body site, like the nasal cavity, might reduce the screening sensitivity for 
asymptomatic S. aureus carriage [47]. Another reason for the discrep-
ancy in S. aureus prevalence might be the technically required freezing 
step between sampling and isolation. S. aureus usually survives the 
procedure, but there might be a reduction in the viable S. aureus pop-
ulation. The cross-sectional design of the study also does not allow a 
distinction of persistent carriers and transient carriers. 

In this study, nine cases of asymptomatic carriage of S. aureus were 
intensively investigated. It was shown that the isolates are highly 
diverse. Diversification in the hostal environment, like the nasal cavity 
seems to be a strategy of species to enhance the likelihood to succeed in a 
niche (‘insurance hypothesis’) and to overcome changing conditions 
[48,49]. The isolates with the same spa types were isolated from carriers 
from the same country of origin. Those pairs turned out to be the most 
related. At the time of sampling, the participants who carried the same 
spa-types have not lived in the same accommodation, although it cannot 
be excluded that they had been in contact. Their genomes differ in 260 
SNPs in t084 and 116 SNPs in t304. Coll et al. calculated a cutoff value of 
25 SNPs indicating a transmission of MRSA strains in the previous six 
months [50]. This calculation does not allow an assumption of trans-
mission events that date back several years. Anyhow, a high similarity of 
the genomes could be an indication that the isolates have a common 
genetic ancestor in the country of the refugee carriers, especially since 
both spa-types are nowadays common around the world. 

The most common CA-lineages in Europe (ST1, ST8, ST80) are not 
represented in the refugee cohort. Whereas, rare or by know unknown 
spa-types occurred. Presumably, t304 strains originate from Iraq and co- 
travelled with the participants or the participants got colonized with it 
by having contact with compatriots in Germany. However, t304 in 
Germany was only described for Iraqi refugees [51]. Likewise, MRSA 
t991 appears to be a Middle East local spa-type [52], hence it has most 
likely co-travelled with the refugee. The occurrence of lineage ST291 
(new spa-type t18795), which is associated with hospitals in Iran [53, 
54] promotes the idea of a co-travelling, too. Detection of some strains, 
which are supposed to originate from the middle east, support the 
assumption that the strains colonizing refugees can co-travel with their 
carriers and are able to persist in terms of a transition of the host’s 
environment and living conditions. Carriers of t304 and t991 lived in 
Germany since 3–4.5 years and their escape lasted up to 8 months. 
Assuming, that the strains co-travelled with the refugees, they must be 
colonized with the strains since at least 3–5 years. In other studies, a 

colonization with persistent S. aureus strains over several years has been 
demonstrated [55–58]. 

In order to evaluate the virulence potential of the isolates collected 
from the nine refugees, it is reasonable to take a closer look at the 
functions of the virulence gene products. In contrast to hospital strains, 
the isolates seem to be faintly resistant against therapeutic antibiotics. 
Nevertheless, they are equipped with a large amount of multidrug efflux 
proteins, allowing the efflux of a broad spectrum of potentially cell- 
damaging molecules, like antibiotics, chemotherapy agents, dyes, anti-
septics, disinfectants, organic solvents, and detergents [59]. Further-
more, the strains harbor a remarkable set of genes encoding for cell wall 
anchored surface proteins, which mediate adhesion or binding to host 
surfaces and evasion of host defenses. Adhesins play a role in coloni-
zation of extra-body tissue (e.g. squames), binding of intra-body ligands 
(e.g. fibrinogen and collagen), and bacterial cell-cell attachment in order 
to form biofilms [60]. CA-MRSA are often associated with the produc-
tion of cytolytic toxins (PVL, α-toxin and PSMs; [61]). PVL genes were 
not detected among the isolates, while α-toxin and PSM-β2 genes are 
present. In contrast to PSM-α, PSM-β is a barely cytolytic toxin [62]. In 
three of the strains, even genes encoding for enterotoxins G, I, M, N, O, P 
and U were detected. Moreover, a high prevalence of superantigen-like 
proteins has been found. Superantigens, including enterotoxins are 
suspected to promote colonization and pathogenicity of the strains [63, 
64]. 

The on-hand nine-cases study allows to take a closer look on viru-
lence by detecting the presence or absence of chromosomally encoded 
genes associated with virulence. Due to sequencing of the chromosomal 
DNA, genes encoded on plasmids and resistances mediated by gene 
mutations have been neglected. However, the detection of virulence 
genes does not give full information about an isolate’s virulence prop-
erty. For a cell, redundant genes mean an enhanced metabolic burden 
[61,65]. CA-MRSA achieved to balance methicillin resistance with 
enhanced virulence and fitness. As suspected by Michael Otto, there 
might be an evolutionary achieved “trade-off” between maintaining 
sufficient levels of methicillin resistance and obtaining enhanced viru-
lence [61]. Nevertheless, it remains unclear whether 
community-acquired S. aureus are more, or less virulent than 
hospital-acquired strains. CA-MRSA strains are not more virulent than 
many MSSA strains [61]. HA- and CA-strains form no genetically related 
clusters, sharing a directed evolution towards increased virulence. 
Rather, an HA-strain’s combination of virulence and resistance is 
increasing the likelihood to succeed in infecting humans and surviving 
therapeutic treatment. In contrast, strains that succeed in the commu-
nity, in theory, are well adapted for colonization, persistence and 
transmission. Corresponding with this hypothesis, the nine isolates lack 
most of those virulence factors, that are strongly associated with disease 
(like PVL genes, enterotoxin A or exfoliative toxins), but they seem to be 
well equipped for persistent colonization of the human host. In theory, 
colonization depends on genes for adhesion and attachment. Persistence 
requires genes for the evasion of the host immune response (as staph-
ylokinase and coagulase). While invasion of human tissue and causing 
infections is rather mediated by toxin genes. 

Virulence of CA-strains has been disproportionately often investi-
gated only for USA300, which had an unique career as an epidemic CA- 
strain, causing life threatening infections and circulating in hospitals, 
primarily on the American continent [66,67]. It remains questionable, if 
research made on USA300 virulence, can be generalized for other 
CA-MRSA or CA-MSSA strains. The on-hand study tries to picture an 
impression of the virulence potential of nine diversified MRSA and 
MSSA isolates from healthy (non-hospitalized) individuals, who are 
refugees accommodated in Germany. The examination of the genome 
enables an outlook on the virulence potential of the isolates regarding 
skills in colonization, resistance, immune evasion, and host cell 
damaging. To finally evaluate the effective virulence of the refugees’ 
isolates, a further analysis of gene mutations, gene regulation and 
expression, as well as in vivo assays are required. With the exception of 
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the very virulent epidemic lineages, such as USA 300, typing and clas-
sifying into CA- and HA-strains does not provide any information about 
the virulence of an isolate. For this to be possible in the future, the 
various lineages must be compared and examined in more detail, 
especially those that are not associated with human disease. 
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[4] Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, 
et al. Attributable deaths and disability-adjusted life-years caused by infections 
with antibiotic-resistant bacteria in the EU and the European Economic Area in 
2015: a population-level modelling analysis. Lancet Infect Dis 2019;19:56–66. 
https://doi.org/10.1016/S1473-3099(18)30605-4. 

[5] Layer F, Strommenger B, Cuny C, Noll I, Klingeberg A, Werner G. Häufigkeit und 
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[44] Piso RJ, Käch R, Pop R, Zillig D, Schibli U, Bassetti S, et al. A cross-sectional study 
of colonization rates with Methicillin-Resistant Staphylococcus aureus (MRSA) and 
Extended-Spectrum Beta-Lactamase (ESBL) and carbapenemase-producing 
Enterobacteriaceae in four Swiss refugee centres. PLoS One 2017;1–12. https:// 
doi.org/10.1371/journal.pone.0170251. 

[45] Robert Koch Institut. Stellungnahme des Robert Koch-Instituts zu Frage des 
Screenings von Asylsuchenden auf Multiresistente Erreger. MRE; 2016. https: 
//www.rki.de/DE/Content/GesundAZ/A/Asylsuchende/MRE-Screening_Asyls 
uchende.pdf?. 

[46] Girou E, Pujade G, Legrand P, Cizeau F, Brun-Buisson C. Selective screening of 
carriers for control of methicillin-resistant Staphylococcus aureus (MRSA) in 
high-risk hospital areas with a high level of endemic MRSA. Clin Infect Dis 1998; 
27:543–50. 

[47] Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. Emergence and 
resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. 
Lancet 2006;368:874–85. https://doi.org/10.1016/S0140-6736(06)68853-3. 

[48] Goerke C, Gressinger M, Endler K, Breitkopf C, Wardecki K, Stern M, et al. High 
phenotypic diversity in infecting but not in colonizing Staphylococcus aureus 
populations. Environ Microbiol 2007;9:3134–42. https://doi.org/10.1111/ 
j.1462-2920.2007.01423.x. 

[49] Boles BR, Thoendel M, Singh PK. Self-generated diversity produces “insurance 
effects” in biofilm communities. Proc Natl Acad Sci Unit States Am 2004;101: 
16630–5. 

[50] Coll F, Raven KE, Knight GM, Blane B, Harrison EM, Leek D, et al. Definition of a 
genetic relatedness cutoff to exclude recent transmission of meticillin-resistant 
Staphylococcus aureus : a genomic epidemiology analysis. The Lancet Microbe 
2020;1:e328–35. https://doi.org/10.1016/S2666-5247(20)30149-X. 

[51] Kossow A, Stühmer B, Schaumburg F, Becker K, Glatz B, Möllers M, et al. High 
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