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A B S T R A C T   

Shiga toxin-producing Escherichia coli (STEC) can cause severe human illness, which are frequently linked to the 
consumption of contaminated beef or dairy products. However, recent outbreaks associated with contaminated 
flour and undercooked dough in the United States and Canada, highlight the potential of plant based food as 
transmission routes for STEC. In Germany STEC has been isolated from flour, but no cases of illness have been 
linked to flour. 

In this study, we characterized 123 STEC strains isolated from flour and flour products collected between 2015 
and 2019 across Germany. In addition to determination of serotype and Shiga toxin subtype, whole genome 
sequencing (WGS) was used for isolates collected in 2018 to determine phylogenetic relationships, sequence type 
(ST), and virulence-associated genes (VAGs). 

We found a high diversity of serotypes including those frequently associated with human illness and out
breaks, such as O157:H7 (stx2c/d, eae), O145:H28 (stx2a, eae), O146:H28 (stx2b), and O103:H2 (stx1a, eae). 
Serotypes O187:H28 (ST200, stx2g) and O154:H31 (ST1892, stx1d) were most prevalent, but are rarely linked to 
human cases. However, WGS analysis revealed that these strains, as well as, O156:H25 (ST300, stx1a) harbour 
high numbers of VAGs, including eae, nleB and est1a/sta1. 

Although STEC-contaminated flour products have yet not been epidemiologically linked to human clinical 
cases in Germany, this study revealed that flour can serve as a vector for STEC strains with a high pathogenic 
potential. Further investigation is needed to determine the sources of STEC contamination in flour and flour 
products particularly in regards to these rare serotypes.   

1. Introduction 

Shiga toxin-producing Escherichia coli (STEC) are important food
borne pathogens (Caprioli et al., 2014), that can cause severe human 
diseases like diarrhoea, haemorrhagic colitis and the haemolytic- 
uraemic syndrome (HUS) (Scheutz, 2014). Early investigations on 
human clinical cases mainly focused on serotype O157:H7, but a variety 
of non-O157 serogroups like O26, O45, O91, O103, O111, O121, O145 
and O146 have also been isolated regularly from human clinical samples 
(Mathusa et al., 2010; Smith et al., 2014). However, STEC exhibit 

diversity of genome content, with a complex population structure 
resulting from horizontal gene transfer (Denamur et al., 2021). Indi
vidual strains of the same serotype apparently vary in their potential to 
cause severe illness, and the virulence-associated genes (VAGs) they 
carry. The pathogenic potential of STEC strains has been correlated with 
the Shiga toxin subtype, as well as, the (co-)occurrence of other VAGs 
(Bugarel et al., 2011; Fuller et al., 2011; Mathusa et al., 2010; Santos 
et al., 2020; Soderlund et al., 2016). Furthermore, so-called hybrid 
strains displaying virulence characteristics of STEC together with those 
of other E. coli pathotypes, such as enteropathogenic E. coli (EPEC), or 
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enterotoxigenic E. coli (ETEC), are not as rare as previously thought (Bai 
et al., 2019; Bibbal et al., 2014; Blanco et al., 2005; Feng et al., 2010; 
Granobles Velandia et al., 2012; Nyholm et al., 2015; Wieler et al., 
1996). 

Cattle and small ruminants are important hosts for STEC (Brashears 
and Chaves, 2017; Bruyand et al., 2019; Gyles, 2007). As such, many 
human outbreaks are linked to the consumption of contaminated beef 
and dairy products (Farrokh et al., 2013; Hussein and Bollinger, 2005; 
Hussein and Sakuma, 2005). However, STEC are also increasingly re
ported in non-animal food products such as fresh produce and flour 
(Crowe et al., 2017; Feng, 2014; Gill et al., 2019; Olaimat and Holley, 
2012). In 2011 a large outbreak occurring in Germany and France was 
linked to sprouts as the most likely source of infection (Buchholz et al., 
2011; Soon et al., 2013). Furthermore, between 2009 and 2017 flour, 
raw or undercooked dough and baking products were identified as STEC 
transmission vehicles for several human cases in the United States and 
Canada (Crowe et al., 2017; Gieraltowski et al., 2017; Gill et al., 2019; 
Morton et al., 2017; Neil et al., 2012). 

In Germany, STEC outbreaks linked to flour and flour products have 
not been reported. Nevertheless, 39% of flour samples collected in a 
study in Germany between 2014 and 2017 were found stx-gene positive 
by real-time PCR (Mäde et al., 2017), but the genetic diversity of these 
STEC strains has not been determined. 

In this study, we analyzed STEC isolated from flour, ready-mixes and 
flour products thereof isolated between 2015 and 2019 by official lab
oratories in the framework of food surveillance programs in Germany. 
These strains were collected to the strain collection of the National 
Reference Laboratory for Escherichia coli (NRL-E. coli) at the German 
Federal Institute for Risk Assessment (BfR) and the Robert Koch Institute 
(NRC-RKI). The aim of this study was to investigate the genetic diversity 
of these flour-derived STEC strains using serological, molecular, and 
whole genome sequencing (WGS) analysis and to assess their pathogenic 
potential. 

2. Materials and methods 

2.1. Strains 

Shiga toxin-producing Escherichia coli (STEC, n = 123, without 
duplicate samples) were isolated from flour, ready-mixes and flour 
products thereof, collected during official food surveillance between 
2015 and 2019 across Germany (supplementary table). STEC were iso
lated by official laboratories and sent to the NRL-E. coli or the NRC-RKI 
for confirmation and further characterization. In 2018, a Federal Sur
veillance Program (FSP) coordinated by the Federal Office of Consumer 
Protection and Food Safety (BVL) targeted the voluntary microbiological 
analyses of various flour types and flour products derived from mills, 
food retailers and bakeries. Isolates were derived from ten out of 16 
German federal states. 

2.2. Laboratory analyses 

Samples were streaked on selective agar plates, i.e. Endo agar (Oxoid, 
Germany), Sorbitol MacConkey agar (Oxoid, Germany), Fluorocult® E. 
coli O157:H7 agar (Merck, Germany), CHROMagar™ STEC (Mast 
Diagnostica GmbH, Germany), and Enterohemolysin agar (SIFIN GmbH, 
Germany) to test for mixed cultures. Serotypes and virulence genes for 
the obtained isolates were determined for single colonies as part of our 
routine testing (Beutin et al., 2007a; Prager et al., 2011). Serotyping of 
the O antigen was carried out according to Ørskov and Ørskov (Ørskov 
and Ørskov, 1984), the H type was identified by serotyping or by using 
conventional PCR of the flagellin gene fliC and subsequent enzymatic 
digestion of the PCR product as well as Sanger sequencing (Machado 
et al., 2000). Shiga toxin genes stx1 and stx2 (including stx subtyping), 
intimin gene eae (for enteropathogenic E. coli, EPEC), hemolysin A gene 
(hlyA, also known as ehxA) and the non-LEE (locus of enterocyte 

effacement)-encoded effector gene nleB were determined by real-time 
PCR and conventional PCR as described (Beutin et al., 2007b; Gunzer 
et al., 1992; Leung et al., 2003; Scheutz et al., 2012; Tzschoppe et al., 
2012). 

2.3. DNA preparation and whole genome sequencing 

Total genomic DNA of 56 isolates from 2018 was prepared using the 
PureLink® Genomic DNA Mini Kit (Invitrogen, USA) according to the 
manufacturers’ instructions. Sequencing libraries were prepared with 
the Nextera DNA Flex Library Prep kit (Illumina, San Diego, USA) and 
paired-end sequencing was performed on the Illumina MiSeq benchtop 
sequencer (Miseq Reagent v3, 600 cycle Kit) or on the Illumina NextSeq 
500 benchtop sequencer (NextSeq 500/550 v2.5, 300 cycle Kit). Raw 
Illumina reads were trimmed and de novo assembled using the AQUAMIS 
pipeline (https://gitlab.com/bfr_bioinformatics/AQUAMIS/), devel
oped in-house, which implements fastp for trimming (Chen et al., 2018) 
and unicycler (Wick et al., 2017) or shovill (https://github. 
com/tseemann/shovill, based on Spades) for assembly. The AQUAMIS 
pipeline performs mash v 2.1 for reference search (Ondov et al., 2016), 
as well as quast v 4.6.3 for assembly quality control (https://github. 
com/ablab/quast). Assembled genome data were deposited at the Na
tional Center for Biotechnology Information database https://www. 
ncbi.nlm.nih.gov/ under the BioProject PRJNA715185 (Accession 
numbers SAMN18335720 to SAMN18335775). 

2.4. Phylogenetic analyses and detection of virulence genes 

In silico analysis of multi locus sequence types (MLST) (Wirth et al., 
2006) and core-genome (cg) MLST based on 2513 loci (https://enter 
obase.warwick.ac.uk/species/index/ecoli) were carried out using 
Ridom Seqsphere+ v7.0.4 (Ridom GmbH, Germany). For four strains 
new MLST STs were assigned by uploading the raw sequencing data to 
the Enterobase database (https://enterobase.warwick.ac.uk) (Zhou 
et al., 2020). A minimum spanning tree (MST) was calculated based on 
the E. coli cgMLST v1.0 data using Ridom Seqsphere+ v7.0.4. The MST 
was distance based on 2513 loci with pairwise ignoring missing values. 
The cluster alert distance (AD) was set to 10 alleles. 

In addition to routine testing of isolates for stx1, stx2, eae, and nleB 
genes, whole genome sequences were further analyzed for 297 putative 
virulence genes incoporated in the Ridom Seqsphere+ v7.0.4 software 
(Ridom GmbH, Germany; required identity to reference sequence: 80%, 
required percentage aligned to reference sequence: 60%) and the 
BioNumerics 7.6.3 E. coli functional genotyping plug-in version 1.2 
(Applied Math, Belgium; Blast minimum sequence identity 90%, Blast 
minimum length for coverage 60%) based on databases from the Viru
lence Factor Database (VFDB, http://www.mgc.ac.cn/cgi-bin/VFs/gen 
us.cgi?Genus=Escherichia) and the Center for Genomic Epidemiology 
(http://www.genomicepidemiology.org). 

3. Results 

3.1. STEC strains 

Between 2015 and 2019, 138 isolates from flour, ready-mixes and 
flour products thereof were sent to the NRL-E. coli and NRC-RKI for sero- 
and molecular typing (supplementary table). Duplicate isolates with the 
same serotype and virulence genes (stx1, stx2, eae and nleB determined 
by routine testing) and derived from the same sample were excluded 
from further comparisons (except those from 2018 to determine the 
intra sample diversity by WGS). For seven samples, presumptive dupli
cate isolates were assigned to different serotypes and/or harboured 
different stx gene variants. In total, 123 isolates were included in the 
presented study. Numbers of investigated isolates each year are shown 
in Table 1. 

Isolates were sent to the NRL-E. coli and NRC-RKI between 2015 and 
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2019 from laboratories in ten different German Federal states. In 2018 
the FSP was carried out resulting in a higher number of isolates being 
sent to the NRL-E. coli for further investigation. Numbers and distribu
tion of STEC across the German Federal states are shown in Fig. 1. Of 
note, the numbers of STEC isolated are not correlated to a contamination 
rate, as STEC isolates were sent to the NRL-E. coli on a voluntarily basis. 

STEC strains characterized in this study were isolated from different 
flour, ready-mixes and flour products, of which wheat flour was most 
frequent (Table 2), totalling nearly two thirds of the analyzed isolates. 

3.2. Serotypes 

Analyses of the 123 STEC strains identified the presence of 20 
different serogroups, primarily belonging to a single serotype, except 
O79 and O8, where two different serotypes were identified each (O79: 

Table 1 
Numbers of isolates investigated in the study.  

Year Isolates 
provided 

Isolates excluded from further 
analysisa 

Final 
number 

2015  13  2  11 
2016  11  3  8 
2017  48  8  40 
2018  58  2  56b 

2019  8  0  8 
Total  138  15  123  

a Duplicate isolates with the same serotype and virulence genes derived from 
the same sample. 

b Isolates for whole genome sequencing. 

Fig. 1. Numbers of STEC isolates collected by the German Federal states and sent to the NRL-E. coli and NRC-RKI between 2015 and 2019. States displayed in white 
did not sent isolates to the NRL-E. coli or NRC-RKI. 
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H14, O79:H23, O8:H9, O8:H19). Of the 27 different serotypes 
(including O not typeable/rough) O187:H28, O154:H31, O11:H48, and 
O36:H14 were predominant (Fig. 2, supplementary table). Interestingly, 
strains of these four serotypes were isolated from at least three different 
flour matrices. In addition, STEC of serotypes O157:H7, O145:H28, 
O146:H28, and O103:H2 were isolated. 

3.3. Shiga toxin subtyping and virulence genes 

All 123 isolates carried either Stx1- or Stx2-encoding genes but none 
were positive for both Shiga toxin variants. Shiga toxin gene variants 
were detected as follows: stx1a (n = 8), stx1c (n = 1), stx1d (n = 44), 
stx2a (n = 1), stx2b (n = 17), stx2c/d (n = 2, the typing method used was 
not able to distinguish between stx2c and stx2d), stx2e (n = 3) and stx2g 
(n = 47). 

Ten STEC stains were found to carry both eae and nleB genes. 
Interestingly, seven out of these ten isolates carried stx1a and belonged 
to serotypes O156:H25 (n = 5) and O103:H2 (n = 2). The remaining 
three isolates were of serotype O157:H7 (n = 2) and O145:H28 (n = 1) 
harbouring stx2c/d and stx2a, respectively. 

WGS was applied to the 56 STECs isolated in 2018 and the 
sequencing data was screened for 297 putative VAGs as incorporated in 
the Ridom and BioNumerics software (supplementary table). The 
number of VAGs detected in individual strains varied between 35 and 

114. The isolated O157:H7 strain from 2018 was found to carry the 
highest number of putative VAGs (n = 114), followed by O156:H25 
strains (n = 87, 84, 82), and the O103:H2 strain (n = 83). In addition, 21 
isolates (37.5%) were positive for the gene encoding the heat stable 
toxin (estIa/sta1) commonly found in ETEC (Blanco et al., 1991; 
Dubreuil et al., 2016). Twenty-five strains (44.6%) were found to carry 
the enteroaggregative E. coli heat stable enterotoxin-1 gene (astA) and 
15 isolates (26.8%) were positive for both estIa/sta1 and astA. In 28 
isolates (50%) the enterohemolysin gene (ehxA/hlyA) was detected and 
20 isolates (35.7%) were positive for F17 fimbriae. Afimbrial adhesins- 
encoding genes (afaA/B/F) were detected in the four O11:H48 isolates 
and the gene encoding the enterohemorrhagic E. coli factor for adher
ence (efa1) in the O103:H2 isolate from 2018. The catalase-peroxidase 
gene katP was found in the O157:H7 and three O187:H28 isolates. 
The genes escC-V (type III secretion system), esp/ces (type III secretion 
system), etgA (muraminidase), etpD (type III secretion system), paa 
(porcine attaching and effacing-associated gene), sep (type III secretion 
system) and tir (translocated intimin receptor), as well as, eae and nleB 
genes were detected in six STEC strains belonging to serotypes O157:H7 
(n = 1), O103:H2 (n = 1) and O156:H25 (n = 4). The iha gene (adhesion) 
was found in the five O146:H28 isolates, as well as, the O157:H7 isolate. 
The toxB gene was exclusively detected in the O157:H7 isolate. Based on 
combined BLAST analyses of 15 contigs (88,250 bp) of the O157:H7 
strain toxB, katP, ehxA and espP appear to be located on a single plasmid 
showing a 99% coverage and 99.99% sequence identity to plasmid 
pO157 (Acc.no. CP040317.1). 

3.4. Phylogenetic analysis 

Using WGS the 56 isolates were assigned to 18 different MLST 
(Warwick scheme) of which ST200 (Cplx40) was most prominent (n =
13). These isolates belonged to serotypes O187:H28 (n = 11) or O175: 
H28 (n = 2) all of which harboured stx2g. Strains of the same serotype 
were found in most cases to share a common MLST (Fig. 3). Interest
ingly, four STEC were assigned a new MLST, ST10828 (serotype O11: 
H48) not previously described. 

Table 2 
Numbers of isolates investigated in the study and distribution across the 
different types of flour and flour derived products.  

Matrix Numbers of isolates (%) 

Wheat flour 75 (60.9) 
Rye flour 30 (24.4) 
Spelt flour 5 (4.6) 
Spelt shortcrust 1 (0.8) 
Ready-mixes 5 (4.6) 
Other flour productsa 7 (5.7)  

a Grain or flour product not further specified. 

Fig. 2. Numbers of STEC serotypes identified in flour/flour products in Germany (2015–2019); OgN: novel O genotype, ONT: O-antigen not typeable, Or: O-an
tigen rough. 
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The determined cgMLST and the calculated MST are shown in Fig. 3 
(a-c). Calculated allelic distances between strains range from 23 to 2181 
except for the 14 isolates from duplicated samples in 2018 where the 
maximum distance is 4 (cluster 1 to 14). Greatest distances were 
observed between the various MLST’s except for the one ST8919 isolate 
which grouped together with the ST200 isolates (distance to the next 
ST200 isolate = 75). 

When looking at the isolation source of the STEC there is a wide 
distribution across the German federal states (Fig. 3b). Furthermore, no 
association between the cgMLST and the matrices from which the iso
lates originated could be observed (Fig. 3c). 

3.5. Comparison of serotype and stx subtype prevalence among flour and 
clinical isolates 

To gain more insights into a possible human health risk posed by the 
STEC isolates included in this study, strains of selected serotypes were 
compared to 5370 clinical STEC from the NRC-RKI surveillance strain 
collection of the same time frame 2015–2019 (Fig. 4). 1105 human 
isolates were identified for 14 out of the 21 distinct flour serotypes 
including high prevalent human serotypes O103:H2, O145:H28, O146: 
H28, O157:H7 and O8:H19. No clusters for human and flour isolates of 
highly prevalent human serotypes were determined by cgMLST. Distri
bution of stx-gene subtypes in the human strain setting (n = 1105) was 
stx1a (13.8%), stx1c (10.6%), stx1d (0.5%), stx2a (25.8%), stx2b 
(23.9%), stx2c (14.9%), stx2d (2.4%), stx2e (6.4%), stx2f (2.1%) and 
stx2g (0%). In comparison, in human derived isolates stx2a and stx2b 
were most prevalent whereas in isolates from flour and flour products 
thereof the subtypes stx1d and stx2g were detected most frequently. 

4. Discussion 

STEC are zoonotic pathogens which are frequently detected in 
contaminated ground beef, beef and dairy products (Farrokh et al., 
2013; Hussein and Bollinger, 2005; Hussein and Sakuma, 2005). How
ever, recent investigations highlight fresh produce and flour as impor
tant source of infection for human outbreaks (Crowe et al., 2017; Feng, 
2014; Gill et al., 2019; Kindle et al., 2019; Olaimat and Holley, 2012). In 
Germany, flour-associated outbreaks have not been reported to date. 
However, the risk should not be underestimated as Mäde et al. found 
39% of their flour samples stx-positive. A Federal Surveillance Program 
in 2018 further confirmed the occurrence of STEC in flour in Germany 
(https://www.bvl.bund.de). 

In our study we analyzed the molecular diversity of 123 STEC iso
lates from flour, ready-mixes and flour products collected between 2015 
and 2019 by official laboratories in Germany including isolates of the 
FSP. This study not only revealed the occurrence of STEC in flour across 
Germany, but showed that these STEC are highly diverse in serotype, 
MLST and the distribution of VAGs. Due to the high genetic diversity a 
correlation of certain strains to a specific matrix/type of flour or a 
geographical location could not be determined. This might also be due to 
the fact that the Federal food inspection laboratories sent their isolates 
on a voluntary basis to the NRL-E. coli and NRC-RKI for further exami
nations as no legally fixed molecular surveillance exists. Genomic data 
from the 2018 strains confirmed the high diversity of the STEC strains as 
18 different MLST were determined including a new ST10828 for an 
isolate of serotype O11:H48. 

Our analyses of the 123 STEC revealed that strains of serotype O187: 
H28 were most common, all of which were found to harbour stx2g. These 
strains were isolated between 2015 and 2019 from different matrices 

which originate from different Federal states indicating a widespread 
distribution in Germany, rather than a common contamination source. 
Interestingly, this rare serotype also harbouring the stx2g gene was 
recently reported in a clinical setting in Sweden (Bai et al., 2019). 
Furthermore, Bai and colleagues identified their isolate as STEC-ETEC 
hybrid strain of ST200. In our study, 11 of the 12 O187:H28 isolates 
from 2018 analyzed by WGS were also of ST200 and tested positive for 
the est1a/sta1 gene. Strains of O187:H28 ST200 harbouring stx2g and 
est1a/sta1 genes were also isolated from flour samples in Switzerland 
(Boss and Hummerjohann, 2019). This highlights the importance of non- 
O157 and new emerging strains and shows that flour might serve as 
vehicle for possible human infections. 

The second largest group of strains isolated from the samples belong 
to serogroup O154:H31 all harbouring stx1d genes. Similar to STEC 
O187:H28 these strains were again isolated from different flour types 
and positive samples were collected from different Federal states. The 
five isolates from 2018 analyzed by WGS belong to ST1892 but were not 
positive for any additional VAGs except for F17 fimbriae which might be 
associated to potential pathogenic E. coli (Bihannic et al., 2014). 

A previous study from Germany reported the serogroups O157, O91, 
O26 and O103 as most commonly found in human infections between 
1997 and 2013 (Fruth et al., 2015). Among our isolates, we also iden
tified strains of serotypes O157:H7, O103:H2, O145:H28 and O146:H28. 
WGS analyses of the strains from 2018 showed that especially the O157: 
H7 and O103:H2 strains harboured high numbers of VAGs including 
astA, eae, ehxA/hlyA, esc, espP, nleB, and tir indicating a potential risk to 
humans of these isolates. Furthermore, strains of O157:H7 and O145: 
H28 were positive for stx2c/d and stx2a, respectively. Shiga toxin sub
types 2a and 2d were shown to be more potent for severe clinical 
symptoms than other subtypes underlining the potential risk of these 
strains to the consumer (Fuller et al., 2011). The combination of viru
lence genes eae and nleB was detected in all stx1a –positive O156:H25 
isolates as well as the O157:H7 and O145:H28 strains. Contig analyses of 
the O157:H7 isolate revealed the presence of the large pO157 plasmid 
containing the katP, ehxA/hlyA, espP, etpD and toxB virulence genes. 
This plasmid is highly conserved and frequently found in EHEC O157:H7 
isolates (Brunder et al., 1996; Lim et al., 2010; Nielsen and Andersen, 
2003) indicating that flour is a potential vehicle for human infections. 
However, three isolates of O187:H28 were also positive for katP. The 
catalase-peroxidase is proposed to protect pathogens from oxidative 
stress and it is known that katP is not exclusively found on pO157 
plasmids (Fan et al., 2019; Gonzalez-Escalona and Kase, 2019; Shridhar 
et al., 2018). 

In our study, STEC of serotype O103:H2 were recovered from the 
German flour samples. Strains of this serotype are known to cause severe 
infections in humans in Germany and elsewhere (Fruth et al., 2015; 
Mathusa et al., 2010), and have been linked to human outbreaks due to 
contaminated food (Karama et al., 2008; Mylius et al., 2018). Strains of 
serotype O146:H28 have been previously isolated from game meat, 
ground beef and faecal samples from deer and cattle (Bosilevac and 
Koohmaraie, 2011; Dias et al., 2019; Hussein and Bollinger, 2005; Miko 
et al., 2009) but also from clinical samples (Fierz et al., 2017; Nuesch- 
Inderbinen et al., 2018). Five isolates were sequenced and showed the 
presence of the toxin-encoding gene astA as well as the VAGs iha, ireA 
and iss (increased serum survival) which are known from extraintestinal 
pathogenic E. coli (ExPEC) and uropathogenic E. coli (UPEC) (Johnson 
et al., 2008; Marrs et al., 2005; Russo et al., 2001). In recent studies on 
STEC in flour in Switzerland, they also found a high diversity of STEC 
strains and reported isolates of serotypes O103:H2 and O146:H28 (Boss 
and Hummerjohann, 2019; Kindle et al., 2019). This again shows that 

Fig. 3. a-c. Minimum spanning tree (MST) for 56 STEC isolates from 2018 based on the E. coli cgMLST v1.0 (2513 columns, pairwise ignoring missing values, 
logarithmic scale, Cluster-Alert distance: 10 alleles; highlighting in colours the distributions of serotypes (A), the source of isolation (B) and states of isolation (C). The 
STs of the E. coli MLST Warwick v1.0 scheme were used for node description. Clusters highlighted in grey consisted of respective duplicated isolates only. Node sizes 
are according to the numbers of isolates with two being the maximum number of isolates. 
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the potential risk to humans should not be underestimated. 
In contrast, strains of the serotype O156:H25 might not be listed as 

one of the top five or six important clinical serotypes. O156:H25 strains 
have been isolated from cattle, goats and dromedary camels (Barth et al., 
2016; Baschera et al., 2019; Blanco et al., 2004; Cortes et al., 2005; 
Diarra et al., 2009) and have also been isolated from human cases in 
Germany (Fruth et al., 2015; Lang et al., 2019). The strains from 2018, 
investigated by WGS, harboured the stx1a gene and were assigned as 
ST300. They also showed high numbers of VAGs including astA, eae, 
ehxA/hlyA, esc, espP, etgA, etpD, nleB, paa and sep. STEC of the same 
serotype and ST were found to be persisting colonizing cattle resulting in 
a constant shedding of these strains (Barth et al., 2016). 

It remains unknown what the main route of contamination of flour 
and products thereof is but a possible explanation might be the 
contamination of grain in the field by wild animals (Boss and Hum
merjohann, 2019; Mäde et al., 2017). It can be assumed that strains that 
are able to colonize cattle and other small ruminants may also have the 
ability to colonize their wild relatives. For O146:H28 strains this is 
already known (Bosilevac and Koohmaraie, 2011; Dias et al., 2019; 
Hussein and Bollinger, 2005; Miko et al., 2009). Therefore, continuous 
monitoring of wild ruminants is needed to gain information about STEC 
prevalence and distribution of different types which may for example 
help to initiate control programmes or enable source attribution within 
outbreak scenarios. In addition to domestic and wild ruminants STEC 
have been isolated from a wide range of vertebrates, which could 
potentially serve as the source of initial contamination (Espinosa et al., 
2018; Kim et al., 2020). Another contamination source for flour could be 
contaminated water which is used to temper grain for breaking, or pests 
at the mills (Mäde et al., 2017). However, neither of these routes has yet 
been demonstrated as a source of STEC, but a correlation between in
dividual mills and the frequency of STEC isolation indicates that 

differences in mill process may play a role. (Mäde et al., 2018). There
fore, more data on STEC strains in flour production are needed to 
determine contamination routes and contribute to the consumers’ 
safety. 

Isolation of STEC from flour is challenging (Mäde et al., 2017). In our 
study, we found that individual samples could be contaminated with 
more than one STEC strain. Six pairs of strains isolated from a single 
sample, differed in serotype, stx-subtype or both. Therefore, it is 
important to improve the surveillance on STEC in flour and raise the 
awareness on rare serotypes and multiple contaminations. The imple
mentation of National surveillance plans are of major importance for 
systematic evaluation of the risk of contaminated flour on human health. 
The comparison of STEC serotypes identified in flour and human sam
ples further highlights the possible risk for humans. Most of the sero
types identified were found in both, flour and human samples, including 
high prevalent clinical strain serotypes but also more rare ones. 

This is the first comprehensive overview on the molecular diversity 
of STEC in flour, ready-mixes and flour products thereof. We determined 
a high diversity of STEC strains concerning serotypes, MLST and VAG 
distribution. A correlation to the type of grain or a geographical region 
was not possible. We identified strains of serotypes associated with cases 
of human illness, and other strains belonging to uncommon or rare se
rotypes. However, as the pathogenicity of STEC strains is based on the 
virulence factors, these rare serotypes should not be ignored as they 
harboured a high number of VAGs. This is underlined by high numbers 
of serotype matches between flour and human samples. Furthermore, 
more than half of the strains from 2018 investigated by WGS were 
hybrid strains like STEC-ETEC. This in general shows that flour should 
not be underestimated as source for severe human infections and further 
investigations are needed to determine contamination and transmission 
routes of STEC in flour, and flour derived products. 

Fig. 4. Distribution of STEC serotypes isolated from flour and human samples between 2015 and 2019 in Germany. OgN: novel O genotype.  
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Supplementary data to this article can be found online at https://doi. 
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