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Abstract Spreading dynamics and complex contagion processes on networks are important mechanisms
underlying the emergence of critical transitions, tipping points and other non-linear phenomena in com-
plex human and natural systems. Increasing amounts of temporal network data are now becoming available
to study such spreading processes of behaviours, opinions, ideas, diseases and innovations to test hypothe-
ses regarding their specific properties. To this end, we here present a methodology based on dose-response
functions and hypothesis testing using surrogate data models that randomise most aspects of the empirical
data while conserving certain structures relevant to contagion, group or homophily dynamics. We demon-
strate this methodology for synthetic temporal network data of spreading processes generated by the
adaptive voter model. Furthermore, we apply it to empirical temporal network data from the Copenhagen
Networks Study. This data set provides a physically-close-contact network between several hundreds of
university students participating in the study over the course of 3 months. We study the potential spread-
ing dynamics of the health-related behaviour “regularly going to the fitness studio” on this network. Based
on a hierarchy of surrogate data models, we find that our method neither provides significant evidence for
an influence of a dose-response-type network spreading process in this data set, nor significant evidence
for homophily. The empirical dynamics in exercise behaviour are likely better described by individual fea-
tures such as the disposition towards the behaviour, and the persistence to maintain it, as well as external
influences affecting the whole group, and the non-trivial network structure. The proposed methodology is

generic and promising also for applications to other temporal network data sets and traits of interest.

1 Introduction

Spreading and complex contagion processes shape the
dynamics of diverse complex ecological, societal and
technological systems studied in many fields of research
[1-3]. Examples include biological infections [4,5] such
as the spreading of the COVID-19 pandemic [6]; cas-
cading failures in interdependent infrastructure sys-
tems [7]; diffusion of innovations and technologies [8—
10]; evolutionary processes [11,12]; social norms [13],
behaviours [14], and other social, political and tech-
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nological innovations relevant for sustainability tran-
sition and rapid decarbonisation [15-18]; political
changes [19]; or religious missionary work [20,21].
These spreading processes on complex networks often
give rise to non-linear dynamics and the emergence
of macroscopic phenomena, such as phase transitions
and tipping points that separate qualitatively differ-
ent dynamical regimes [22]; for example, a transition
between regimes where a local infection or innovation
is locally contained, and those where it spreads globally
to a large part of the network [1,2,10,23,24]. Further-
more, spreading processes can interact with the under-
lying complex network structures, e.g. through the pro-
cess of homophily, giving rise to complex coevolutionary
feedbacks between dynamics on and structure of these
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networks [25-28]. Better understanding of such com-
plex spreading processes, based on improved methods
for data analysis and modelling, is highly relevant for
finding robust approaches to identify, analyse, influence
or govern their dynamics. This way, harmful impacts
may be avoided, or desirable outcomes reached, e.g.
for containing pandemic outbreaks [6,29,30], prevent-
ing cascading failures in power grids [7,31], or foster-
ing the spreading of social-cultural-technological inno-
vations towards a rapid sustainability transformation
[15-17,22].

In recent years, temporal network data has become
more abundantly available from social media platforms
such as Facebook [32] and Twitter [33], or long-term
health studies such as the Framingham Heart Study [34]
that have been leveraged for studying spreading and
contagion processes, e.g. in the dynamics of obesity [35],
smoking [36], happiness [37], loneliness [38], alcohol con-
sumption [39], depression [40], divorce [41], emotional
contagion [42] and political mobilisation [43]. So far
such studies of empirical temporal network data mainly
relied on standard statistical methods such as gener-
alised linear models, generalised estimating equations
or spatial autoregressive models [3]. However, these
methods are typically not well equipped to deal with
network dependencies [44]. Furthermore, analogous to
the problem of identifying causal associations in mul-
tivariate time series data [45,46], there are challenges
in extracting possible causal effects induced by conta-
gion processes, and in separating their imprints from
other mechanisms such as homophilic rewiring of net-
work structure, common external forcing from the sys-
tem’s environment and other confounding effects. After
all, most studies rely on observational data and not on
controlled experiments [44].

Here, we contribute to this field by developing a
methodology for the analysis of complex spreading pro-
cesses in temporal network data sets based on dose—
response functions (DRFs) that have been used in the
theoretical description of simple and complex contagion
processes [2,23]. Among others, they have been applied
to the study of behavioural contagion in animal sys-
tems such as startling cascades in fish schools [47] and
the spread of information on social media networks [48].
Dose-response functions encode a network nodes’ prob-
ability of being infected with a new trait, given the
level of exposure to this trait in its network neighbour-
hood. We propose an algorithm including Gaussian fil-
tering to robustly estimate DRFs from synthetic and
empirical temporal network data, including the possi-
bility of propagating various types of uncertainties. To
test for the possibility of an actual causal spreading
process being involved in generating the data, and to
identify confounding effects, we also develop a hierar-
chy of temporal network surrogate models. These mod-
els comprise a family of methods that rely on partial
data randomisation to analyse specific features of (net-
worked) processes without assuming particular under-
lying mechanisms and have been proven highly useful
in exploratory data analyses [49,50]. In particular, they
have been used extensively to investigate temporal net-
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works [51,52], including epidemic and social contagion
processes [53,54]. A conceptually related application for
surrogate models is the study of time series data [55,56].
Here, we combine methods from both temporal network
and time series surrogate models. This enables us to
investigate which features and structures in the data
are possibly sufficient to explain the obtained dose—
response functions.

We apply our methodology to synthetic data from
the adaptive voter model as a proof of concept, and
to empirical observational temporal network data from
the Copenhagen Networks Study. Based on the latter
we analyse the spreading dynamics of the illustrative
behaviour of “regularly going to the fitness studio” on
a physically-close-contact network between university
students participating in the study over the course of
3 months with daily time resolution. We do not find
robust evidence of a causal spreading process underly-
ing the observed dynamics. This suggests that possible
social contagion effects in this context are limited, and
dominated by other factors or shadowed by excessive
noise. This is in agreement with findings from health
behaviour psychology [57]. Hence, this first applica-
tion study suggests that the proposed methodology is
generic and promising for investigations of other data
sets and possibly spreading traits of interest.

This paper is structured as follows: we first intro-
duce the synthetic and empirical temporal network data
sets, obtained from the adaptive voter model and the
Copenhagen Networks Study, respectively (Sect. 2).
In a next step, we describe the methodology devel-
oped here for data analysis, including estimating dose—
response functions and generating surrogate data sets
for testing hypotheses on underlying data generating
processes (Sect. 3). Finally, we report results obtained
for the synthetic and empirical data sets (Sect. 4), dis-
cuss these findings and conclude (Sect. 5).

2 Data

Here, we describe the data sets used in this study to
test our proposed dose-response function methodology.
The data has the form of temporal networks (Sect. 2.1),
it includes synthetic temporal network data generated
by the adaptive voter model (Sect. 2.2) and empirical
temporal network data from the Copenhagen Networks
Study (Sect. 2.3).

2.1 Temporal social networks

The data sets investigated in this work are structured
as temporal networks G(t) with a fixed number of nodes
N and a time-dependent set of links described by the
adjacency matrix A;;(t), where i,5 € {1,...,N} [52],
sampled at discrete time steps t. In addition, node traits
0;(t) are time-dependent as well, for example encoding
different opinions or behaviours.
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Fig. 1 Temporal network snapshots throughout a typical
day during the first semester of the Copenhagen Networks
Study. Each dot represents an individual, colour coded
according to cluster size from single nodes (dark blue) to

2.2 Synthetic temporal network data: adaptive
voter model

One prototypical model of temporal network dynamics
is the adaptive voter model (AVM) [25] that incorpo-
rates core processes in social systems, i.e. homophily
[568] and social learning of traits [59]. As such, the
AVM can be interpreted as a straightforward gener-
alisation of the so-called voter model [60] to any pre-
scribed initial social network topology and the ability of
the represented individuals to deliberately change their
neighbourhood structure. It thereby aims to explain the
emergence of like-minded communities within a larger
social network and the extent to which individuals (i)
become like-minded because of shared social ties or (ii)
form such social ties because they are like-minded.
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large clusters (dark red). Node clusters evident in the snap-
shots correspond to students engaging in joint activities,
such as lectures or eating lunch in a cafeteria

We use an AVM to generate synthetic temporal net-
work data that resembles the experimental data from
the Copenhagen Networks Study. This choice has sev-
eral motivations: first, it matches our initial hypothesis
that a quasi-symmetric social learning process underlies
the spread of “active” and “passive” behaviours of indi-
viduals. Under this hypothesis, individuals can equally
imitate active or passive behaviour occurring in their
network neighbourhood. This is in contrast to stan-
dard SI(S/R)-type models [61,62], where only one trait
spreads infectiously, and a spontaneous recovery pro-
cess is assumed. Furthermore, the AVM also includes
both the processes of social learning and homophilic
social network rewiring that we hypothesise to be
present in the empirical data. Finally, the AVM is one
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of the simplest and best understood models that has
these desired properties [27,61].

Specifically, the AVM considers a temporal network
G(t) with a fixed number of N nodes and M links. Each
node v; holds one of I" opinions or traits o; that are ini-
tially distributed at random among them. The M links
are initially distributed uniformly at random as well,
thus mimicking the configuration of an Erdés-Rényi
graph. At each discrete time step ¢, a single node v;
with opinion or trait o; is randomly chosen. If its degree
k;, i.e. the number of directly connected neighbours, is
non-zero, either of two processes takes place:

1. Homophilic rewiring. With fixed probability ¢, we
select one of the edges that are attached to v; and
move its other end to a randomly selected node vy,
that holds the same trait o as v;, and is not con-
nected to v; yet. v; thereby adapts its neighbourhood
structure to align more with its own trait o;.

2. Social learning: Otherwise, with fixed probability
1 — ¢, we pick a random neighbour v; of v; and set
v;’s trait equal to that of v;, i.e. v; < v;. Hence, v;
imitates the trait oy of vy to become more alike to
its immediate neighbourhood.

The model reaches a steady state once only one trait per
connected network component remains. In this case, no
additional updates to the nodes’ states or their neigh-
bourhood structure are possible. The fixed probability
¢ is a model parameter that allows to scale the rela-
tive frequencies of imitation and adaptation events. For
@ = 0, only imitation, and for ¢ = 1, only adaptation
takes place. The model displays a phase transition at
intermediate values of ¢ where the system’s steady state
qualitatively shifts from a large connected component
of a single remaining trait to a fractionalized configu-
ration of multiple disconnected components that each
show distinct predominant traits [25].

In our specific study, we set the number of nodes
to N = 619, the number of edges to M = 5724 and
the number of traits to I' = 2 to ensure consistency
with the (filtered) empirical data from the Copenhagen
Networks Study (CNS), see below.

2.3 Empirical temporal network data: Copenhagen
Networks Study

In the following, we present the Copenhagen Networks
Study as our main empirical data source (Sect. 2.3.1)
and describe the methodology used for extracting a
temporal social network with time-dependent node
traits from this data set (Sect. 2.3.2).

2.3.1 Description of data sources

The data analysed here originates from the Copen-
hagen Networks Study (CNS) [63,64]. CNS was carried
out from 2012-2016 and focussed on collecting tempo-
ral network and demographic data on a densely inter-
connected cohort of nearly 1000 individuals. To collect
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the temporal network information, the study handed
out state-of-the-art smartphones to consenting fresh-
man students at the Technical University of Denmark.
Specifically the study collected information on networks
of physical proximity (using Bluetooth signals), phone
calls, text messages, and online social networks. In addi-
tion to the network data, the study also collected infor-
mation on the participants’ mobility, using the phones’
GPS sensors—and demographic and personality data,
using questionnaires. The study was approved by the
Danish Data Protection agency, the appropriate legal
entity in Denmark. In terms of research, data from CNS
have been used in a number of contexts e.g. epidemiol-
ogy [65-67], mobility research [68,69], network science
[70,71], studies of gender-related behaviour [72], and
education research [73,74].

In addition to the data from the Copenhagen Net-
works Study, and in view of our aim to investigate
the illustrative behaviour “regularly going to the fit-
ness studio”, a data set was generated with the loca-
tions of fitness studios in the vicinity of Copenhagen.
The studios were selected from the locations provided
by Open Street Map [75] and listed with the keys
‘leisure=fitness_center’ or ‘sport=fitness’. A compre-
hensive list of all considered studios can be found in
Appendix C.

2.3.2 Generation of empirical temporal social network

The empirical temporal social network is generated as
a physically-close-contact network between the study’s
participants. A network edge is created when two par-
ticipants are in close proximity to each other once dur-
ing day ¢. The network’s adjacency matrix A;;(t) is then
defined as

o J 1 sii(t)] > 80dBm
A1) = {0, otherwise ’ (1)

where time ¢ is in units of days and s;;(¢) is the max-
imum Bluetooth signal strength between participants
1 and j measured during day ¢, while measurements
where performed every five minutes. The threshold
80dBm corresponds to a distance of about 2m and
maximises the ratio of social interactions to transient
and unimportant connections [76].

To minimise noise from the beginning and end peri-
ods of data collection, i.e. noise due to participants join-
ing late or dropping out early, in this study we focus on
the period from the first of February 2014 to the end
of April 2014, which corresponds to the spring semester
and is in the middle of the “SensibleDTU 2013” data
collection, the second deployment of CNS.

Much of human behaviour proceeds in weekly cycles
[77]. To account for this periodicity in the data, we
define a time window T'(¢,¢’) using a Gaussian kernel:

T(t,t') = e (1-t07/ (21, (2)
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X() =3 a(t) - T(t 1), (3)
t’'=0

where t. = 7 days is the characteristic time. Equation 3
illustrates how T'(¢,t’) is functioning as temporal weight
in a sum over an arbitrary time-dependent variable
x(t"). We suppose that t. = 7 days introduces the least
additional assumptions as it coincides with the typi-
cal seven-day rhythm of study, work, leisure and exer-
cise activities and behaviours (e.g. a university student
would attend a particular lecture at a particular day of
the week, visit the fitness study on another particular
day etc.). The Gaussian kernel is a preferable choice to
a rectangular kernel, as the latter can produce artefacts
due to discontinuities. It is also a preferable choice to
an exponential kernel because it decreases slowly for
t —t' < t. and then tends to zero quickly. In contrast,
an exponential kernel quickly falls towards zero and is,
therefore, not suitable for a time window that repre-
sents typical horizons of human short-term activity.

The raw data contain students with no or fluctuating
social interaction. Reasons might be that they have left
campus or spend time with people not participating in
the study. To minimise their influence onto this study’s
results, two filters were applied to the data. The first
sorts out participants who had no or very few contacts
over the whole study period by setting a lower limit for
the average degree k; > kyin = 4. Variations of ki, in
the interval 1 < ki, < 5 were tested, and showed no
significant influence on this study’s results. The second
filter compensates for the fluctuating contact behaviour
of the participants. Some participants have a regular
number of contacts on average, but occasionally this
number drops to only a few or no contacts (e.g. ill-
ness could be a plausible explanation). These absences
could confound the results of the study. Therefore, we
only consider students who had at least one contact in
the last week. For this purpose, the participants were
filtered according to their average node degree in the
past week:

ki(t) = S0 ki) Tt ) (4)
i Zi/zo T(t,t/) .

Here, k; is the node degree and T'(¢,t') is the time win-

dow defined in Eq. 2. We, therefore, interpret k;(t) as
the average number of daily contact events in past week,
and we consider only students in our analysis that had
in the order of one contact in the last week, i.e. we set

the lower bound to l::l(t) > fomin = 1 /7. Variations of

kmin in the interval 1/7 < kyin < 1 were tested, and
showed no significant influence on this study’s results.

To investigate possible spreading dynamics of the
illustrative behaviour “regularly going to the fitness
studio”, we match stop-locations with the locations of
fitness studios (Appendix C). Here, stop-locations are
coordinates generated from the GPS data, where the
participants spent at least 15 min [78]. The accuracy
chosen for matching is 10 m, which corresponds to the
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precision of GPS [79]. Hence, we record for each node 4
at the time ¢ the behaviour:
~J 1, if node i visited a studio at day ¢
bi(t) = {0, otherwise - (5)
To distinguish between students who go to the studio

occasionally and students who go regularly, we intro-
duce the past-week behaviour:

with T'(¢,t") the 1-week time window defined in Eq. 2.
We interpret b;(t) as typical behaviour during the last
week.

Finally, for each point in time ¢, we split the partic-
ipants into two groups: (i) students going occasionally
or not at all to the fitness studio, and (ii) students going
more often to the studio. A typical behaviour of regu-
larly going into the fitness studio would be to go once
a week. This suggests to select b;(t) = 1 as a threshold
criterion, and to explore the following time-dependent
trait o;(t) for each node in the network:

0i(t) = {1’ bilt) > 1 . (7)

0, otherwise

Indeed, there is a clear boundary in the cumulative
distribution of b(t) plotted in Fig. 2 for b(¢) ~ 1 and for
all . The boundary indicates that b(¢) > 1 is occurring
less frequently than b(t) < 1. This supports the choice
to separate participants with the threshold b(t) = 1. In
the following, the students going to gyms at least once
in the last week (0;(t) = 1) are referred to as “active”
nodes, while the others (0;(t) = 0) are referred to as
“passive” nodes.

The procedure presented here generates a social net-
work consisting of 619 nodes with an average degree of
k; = 19. The nodes change their trait o;(t) on average
5.94 times over the course of the considered 3-month
period.

3 Methods

In this section, we describe the methodologies used to
estimate empirical dose-response functions from tem-
poral network data (Sect. 3.1) and for generating sur-
rogate data sets to test hypothesis on the processes and
structures underlying specific features of the empirical
dose-response functions (Sect. 3.2).

3.1 Estimating dose—response functions from
temporal network data

Dose-response functions (DRFs) represent the func-
tional dependence between the probability of changing
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Fig. 2 Cumulative distribution of the past-week
behavioural function b(t) plotted as a heat map over
the period of the entire “SensibleDTU 2013” data col-
lection. Our study analyses the 3-month subperiod from
February to April 2014. A clear boundary is visible at
b(t) = 1 for all t, with values of b(t) > 1 being much less
frequent than b(t) < 1. Therefore, b(t) = 1 is a reasonable
choice to separate the participants into two groups. Mem-
bers of the group with b(t) > 1, who visited the fitness
studio at least once in the past week are referred to as
active nodes, while individuals with b(t) < 1 are referred to
as passive nodes

a trait p,_., and the exposure K, which is defined as
the joint influence of all contacts with a given trait, or
more formally as the superposition of all received doses
from neighbouring nodes. We assume that the influ-
ence of each node is equal and that the recent influ-
ence from the last week has a greater impact on the
decision-making process than the influence from the dis-
tant past, i.e. it contributes more to the exposure K.
To measure the exposure to which a single node i is
subjected, we put

Ki(oa t) = ZM(Oa tl) : T(t7t/)7 (8)
t'=0

where N;(o0,t') is the number of neighbouring nodes
with trait o at time ¢’ and T'(¢,t’) is the weight of the
encounter as defined in Eq. 2, which down-weights the
influences from encounters from further back than 1
week.

From the time series of each node’s traits o;(t), the
received exposures K;(o,t) can be computed, allowing
us to estimate the DRFs as relative frequencies as

C(K)

S 9)

Po—o’ (K) ~ N(K)

Here, C(K) is the number of nodes that have changed
their trait between ¢ — 1 and ¢ and having experienced a
certain level of exposure K. Furthermore, N(K) is the
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total number of nodes that have experienced exposure
level K. C(K) and N(K) are the result of an aggrega-
tion over all time steps and are thus time-independent.

p(K) is an estimator of the actual probability of
changing trait when experiencing an exposure level of
K. If the reactions (changing trait or not) to subsequent
exposures are assumed to be independent, this estima-
tor is simply the empirical success rate of an N(K)
times repeated Bernoulli experiment, and its standard
error can thus be estimated by

In the present study, we adopt

0f = /OK) (N(K) + C(K))N(K)P (1)

as a conservative upper bound to this error. Where mul-
tiple data sets are used for one result, as is the case
when multiple simulation runs or surrogate model real-
isations are computed using the same parameters, the
data are considered as one ensemble for further analy-
sis. The error estimation in Eq. 11 is thus performed on
these pooled data sets where applicable.

3.2 Generating surrogate data sets for hypothesis
testing

To probe the empirical data from the Copenhagen Net-
works Study for contagion effects relating to the studied
behaviour, we use the method of surrogate data sets.
The surrogate data approach is a statistical method for
identifying non-linearity, such as contagion effects, in
time series. This is achieved by performing hypothesis
tests on data sets that are generated from the empiri-
cal data by using Monte Carlo methods [51,52,55,56].
Surrogate data sets have been used in the past to study
a wide range of time series [80-82] and network data
[83-85]. The method is described in the following para-
graph, followed by the description of the surrogate data
studies examined in the present contribution.

First, a class of processes that may potentially be suf-
ficient in explaining the empirical data, is specified as a
composite null hypothesis Hy. To test this hypothesis, a
new, “surrogate” data set is derived from the empirical
data in a way that is consistent with Hy. Any struc-
tures that the null hypothesis excludes are destroyed in
this process, while other features of the original data
are retained.

One algorithm which can be used to produce such
surrogate data sets is the creation of random permu-
tations of the original data, for example by permut-
ing the nodes’ time series or network connections. The
product resembles the empirical data, but lacks the fea-
tures excluded by the null hypothesis, such as contagion
processes. This method, known as Constrained Realisa-
tions [86], represents a parameter-free way of producing
surrogate data sets without the use of a specific model.
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A discriminating statistic is then computed on the orig-
inal data and surrogate data sets alike. If there is a
significant difference between the value or distribution
computed for the original data, and the ensemble of
values or distributions computed for the surrogate data
sets, the null hypothesis is rejected. Put simply, the
empirical data are permuted in a way that is consistent
with a composite null hypothesis, and if this substan-
tially changes a statistical measure of interest, the null
hypothesis can be rejected. Through the careful choice
of iteratively more complex null hypotheses, preserving
different sets of data properties, the nature of the true
underlying non-linear process can be investigated.

Six surrogate data sets are produced for this anal-
ysis. The first four investigate the influence of differ-
ent assumptions about the node dynamics on the dose—
response functions, by permuting the node traits o;(t)
and keeping the network component A;;(t) unchanged.
The last two surrogate models address the effect of the
network component, by permuting the network edges
A;;(t) and keeping the node dynamics o;(t) unchanged.
An overview of the investigated null hypotheses is dis-
played in Fig. 8B. In this figure, arrows from a surrogate
test at a higher to one at lower location indicate a higher
degree of randomisation in the former than in the latter.
This illustrates the hierarchical nature of surrogate ran-
domisation models. To describe the surrogate data sets
P associated with the null hypotheses Hg, the canonical
naming convention from [51] is used. This convention
is based on defining surrogate data sets by the quanti-
ties they conserve with respect to the original data. In
the following, the estimated DRF of the empirical data
is referred to as the empirical DRF p,_,,, while the
one estimated for surrogate data may be referred to as
the surrogate DRF p,_., . To reduce statistical uncer-
tainties, ten surrogate data realisations are performed
for each null hypothesis. They are considered as one
ensemble to compute the dose-response functions and
their error bars. The following surrogate data test were
conducted:

1. H: P(Ai;(t),0). The empirical DRF can be repro-
duced with a class of models that is based only on
the global mean activity level O = (0;(t));. Here,
the overline and brackets represent the time and
ensemble average, respectively. This null hypothesis
represents the most basic assumption, correspond-
ing to an underlying process that is completely ran-
dom. For this surrogate data set, all traits o;(t) are
permuted randomly. Only the average activity level
across the entire ensemble and observation period is
conserved.

2. H3: P(A;i;(t),0;). The empirical DRF can be repro-
duced with a class of models that is based only on
each node’s individual activity level O; = 0;(t). This
null hypothesis leaves room for an activity factor
unique to each individual node, while still assum-
ing otherwise random node dynamics. For the cor-
responding surrogate data set, the activity levels are
permuted in time, separately for each node.
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3. H3: P(A;j(t),{Ti,01}). The empirical DRF can be
reproduced with a class of models that is based
only on the distribution of time intervals for which
the node stays in either activity state T;.0,1, which
implicitly conserves O; and the number of activity
level switches as well. This null hypothesis builds
on the previous one by also conserving each node’s
overall persistence, defined as the inverse of a node’s
number of switches between behaviours, and the
corresponding distribution of time intervals. This is
realised by permuting the length of intervals with
a constant activity level, separately for periods of
active and passive behaviour, for each node. E.g.
the sequence (active for 2 steps, inactive for 5 steps,
active for 3 steps, inactive for one step) may be
turned into (active for 3 steps, inactive for one step,
active for 2 steps, inactive for 5 steps). The num-
ber of activity level switches is a constraint on the
randomisation space for this surrogate model. How-
ever, the average number of activity level switches
allows for sufficient randomisation in our data (see
Appendix B).

4. Hy: P(A;(t),0(t)). The empirical DRF can be
reproduced with a class of models that is based
only on the mean time-dependent activity level
O(t) = (0i(t)); of the ensemble. This null hypothe-
sis assumes a non-stationary temporal dynamics of
the ensemble’s behaviour, while excluding any non-
random individual node characteristics. The surro-
gate data set is produced by permuting the activity
states of all nodes, separately for each time step.

5. Hy: P(A,0;(t)). The empirical DRF can be repro-
duced with a class of models that is based only on
indiwvidual activity dynamics and the average net-
work edge density A = (A;;(t)); ;. In this case,
the null hypothesis contains the assumption that
the observed DRF is independent of the specific
topology of the connection network, and arise solely
based on the individual nodes’ behaviour. The cor-
responding surrogate data set is produced by ran-
domly permuting all edges across nodes and time.

6. HS: P(ki(t),0:(t)). The empirical DRF can be
reproduced with a class of models that is based only
on the individual node dynamics, and each node’s
time-dependent network degree k;(t) = Z;V:O A ().
This null hypothesis builds on the previous one by
randomising the neighbourhood of the nodes, but
preserving each nodes connectivity in the network.
This can serve as a check for homophilic effects in
the network dynamics. To produce the surrogate
data set, we use the random link switching algo-
rithm [87,88]. Pairs of connections (4,7) and (k,I)
are drawn randomly, and are transformed into the
connections (4, k) and (j,1). This procedure ensures
that each node’s degree remains unchanged.

We choose the dose-response function, introduced
in Sect. 3.1, as the discriminating statistic used to
compare empirical and surrogate data sets. The com-
parisons of surrogate DRFs p,_,, and empirical p,_.,
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DRFs are presented in Sect. 4.2. To test our method-
ology, we also create the hierarchy of surrogate models
for the synthetic AVM data with realistic parameter
choices (see Appendix (A)). To quantify the difference
between p,_., and p,_.,, we use a test statistic ¢ that
combines the k& many individual z-scores (denoted as
zi,i = 1,...,k) of the DRFs into a single score simi-
lar to Stouffer’s z-score method [89,90], but using the
sum of squared z-scores instead of their simple sum
so that negative and positive deviations cannot cancel
out. Since under the null hypothesis, that sum has a x?-
distribution with & degrees of freedom, which depends
in a non-trivial way on k, we additionally normalise the
sum of squares by dividing it by the 95th percentile of
that distribution, so that a value of ¢ > 1 indicates a
significant deviation from the null hypothesis:

k
(=3 2/Quas (). (12)

4 Results

Here, we report on the results obtained by applying
our proposed dose-response function methodology. As
a first step, we analyse synthetic data generated by the
adaptive voter model as a proof of concept (Sect. 4.1).
Building on these insights, we then investigate the
empirical temporal network data obtained from the
Copenhagen Networks Study (Sect. 4.2). Our findings
are summarised in Sect. 4.3.

4.1 Synthetic data

As a first application of our methodology, we anal-
yse synthetic temporal network data generated by the
adaptive voter model (Sect. 2.2). Figure 3 shows the
estimated DRFs for the AVM with ¢ = 0 (green
dots), which includes only imitation dynamics, and
with ¢ = 0.6 (blue crosses), involving both imitation
and homophily dynamics. Two cases are simulated: In
Fig. 3A, model parameters are chosen to align the aver-
age frequency of behaviour switches across the system,
and the number of time steps, with the data from the
CNS study. To display the effects of more progressed
network adaptation, Fig. 3B displays the DRF of a
similar simulation, where the model updates per time
step, and the total number of simulated time steps, are
significantly increased. Each plot contains data from
ten independent model runs. The probabilities for the
change of trait p,_. are generated for equally sized
bins with a width of K = 2. Only bins with at least
30 data points were considered. For increasing K, the
DRF p,_ is subject to increasing uncertainties, since
exposures K > 30 are very rare in the network.

As suggested by the imitation rule in the model,
we observe that p,_., depends monotonically, but
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non-linearly, on K. Moreover, the plots for ¢ = 0.6
clearly show the impact on p,_.(K) of the additional
homophily compared to the plot of ¢ = 0. For K = 15,
the DRF of these data is significantly larger then for
those with ¢ = 0. For K 2 30, the difference between
the DRFs is obscured by the increasing errors in case A,
but it is still clearly showing for the longer simulations
in panel B.

From this first proof of concept application, we can
conclude that contagion dynamics such as the imita-
tion rule in the model [2,23] leads to positive correla-
tion of p,_., and K. However, from the estimated DRF
for ¢ = 0.6, we learn that homophily is reflected in
the DRFs as well. To distinguish between the different
dynamics, we use a surrogate analysis in the following
investigation of the empirical temporal network data
(Sect. 3.2).

To validate our data analysis methodology, we com-
puted the complete hierarchy of surrogate models
(described in Sect. 3.2) on the synthetic AVM data
set with CNS-aligned parameter choices. The details
of this study are given in Appendix A, while the results
are summarised in Fig. 8A. In line with our expecta-
tions, we find evidence for contagion effects in both
the ¢ = 0.0 and ¢ = 0.6 cases. Significant homophilic
effects are only found where the network adaptation
process of the AVM was active (¢ = 0.6), also confirm-
ing our expectations. This demonstrates the sensitiv-
ity and appropriateness of our methodology for detect-
ing contagion and homophily in the studied empirical
data set. A detailed exposition of the approach is now
given for the empirical data on the Copenhagen network
study. Subsequently, the results for both the synthetic
and the empirical data are discussed in Sect. 4.3.

4.2 Empirical data

In the following, we apply our methodology to empiri-
cal temporal network data from the Copenhagen Net-
works Study (Sect. 2.3) to investigate possible spread-
ing dynamics of the illustrative behaviour “regularly
going to the fitness studio”. The DRF p,_,o (K) is esti-
mated for equal-sized bins with a width of K = 5. Only
bins with at least 30 data points were considered. The
resulting DRF's are shown in Fig. 4.

We observe that the probabilities for becoming active
Pp—a (Fig. 4A) and for becoming passive p,—., (Fig. 4B)
do not behave in a symmetric way. Since the initiation
and the maintenance of an activity represent two rather
distinct phases [57], this is not necessarily surprising.
To test whether we observe significant monotonic rela-
tionships of pp—.q(K) and p,—,(K) with K, we calcu-
late Spearman’s rank correlation coefficient p [91]. For
a perfect monotonic increase (decrease), the coefficient
is equal to p = 1 (p = —1), while p = 0 indicates the
absence of a monotonic relationship. For p,—., a slight
but significant monotonic decrease can be identified
with p = —0.89 and a p value of p = 3.5 - 10~7. Going
to the gym more often than contacts (large K) could
potentially be an incentive to maintain active behaviour
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Fig. 3 Average estimated dose-response functions

(DRFs) for synthetic temporal network data generated
by ten runs of the adaptive voter model for rewiring
probability ¢ = 0 and ¢ = 0.6. Error bars are computed as
described in Sect. 3.1. In A the number of nodes N = 619,
the average degree k; = 19 and the number of simulated
time steps 7 = 90 were chosen analogously to the empirical
temporal network from the Copenhagen Networks Study.
The number of model updates per time step was adjusted
to align with the average number of behaviour changes per
time step with the CNS data. The error for the data point
at K =~ 41 could not be estimated due to a lack of mea-
surements; a large error is plausible. In B, the simulations
are repeated for a larger network with N = 851 nodes, an

and lead to the observed monotonic decrease. However,
we address in this study the switching between active
and passive behaviour as a consequence of social conta-
gion, and therefore, focus on the probability of becom-
ing active p,_., in the following analysis.

The probability p,_., is subject to large errors for
K > 100. The low occurrence of large K seems to be
the main reason. However, we find a significant mono-
tonic increase of p,_.,, with Spearman’s rank correla-
tion coeflicient p = 0.61 and p value p = 0.007. This cor-
relation could indicate contagion or homophilic dynam-
ics. To pursue this indicator further, we examine the
DRF using the surrogate data set method (Sect. 3.2).
First, we investigate the possible influence of conta-
gion dynamics (Sect. 4.2.1), then for group dynam-
ics or external influences (Sect. 4.2.2) and finally for
homophily dynamics (Sect. 4.2.3).

4.2.1 Investigation for contagion dynamics

For investigating the possible influence of contagion
dynamics on the DRF, we employ the surrogate data
tests Hy, HZ, and Hj introduced in Sect. 3.2, i.e. con-
sider surrogate models in which explicitly no conta-
gion takes place and we explore if they nevertheless
reproduce the empirically observed DRF. To do so, we
permute the traits of the nodes o0;(t) and leave the
network component A;;(t) unchanged. These permu-
tations destroy possible temporal correlations of expo-
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average degree of k; = 13.5 and significantly more model
updates per time step. Here, the system was simulated until
consensus (i.e. all nodes having the same trait for ¢ = 0,
while for ¢ = 0.6 the model converges to two distinct
groups with consensus each) was reached at 7 = 190 steps.
Both A and B show a monotonic increasing relationship
between pp—., and K, while in B this trend is clearer due
to the larger number of data points. The DRFs for ¢ = 0
differ significantly from those for ¢ = 0.6, owing to the
more progressed network adaptation in the latter case.
This difference shows that their form is not only influenced
by contagion (imitation or social learning) effects, but also
by homophily (network adaptation) dynamics

sure K with changes in traits and, thus, any trace
of contagion dynamics. In three steps, we analyse the
impact of different assumptions about the node dynam-
ics on the dose-response functions and show step by
step which assumptions are necessary to explain the
observed DRF.

First data test. Hypothesis H{: P(4;;(t),0). The
empirical DRE' can be reproduced with a class of models
that is based only on the global mean activity level O =
(0i(t))i-

We test the most basic assumption of whether the
empirical DRF can be explained by uncorrelated traits.
To do so, all traits were uniformly permuted at random
and only the global mean activity level O = (0;(¢));, was
conserved. Here, the overline and the brackets represent
the time and ensemble mean, respectively. All possible
contagion dynamics are destroyed in the model due to
the random permutations.

Expectation. We expect to observe no correlation
between the DRF p,_., of the surrogate and K due to
the permutations. Moreover, p,_.q(K) should be equal
to the fraction of active states in the whole observed
period.

Result. In Fig. 5A, the DRF p,_., of the surrogate
is contrasted with the empirical DRF p,_.,. We find
our expectations confirmed, p,_., is quantitatively and
qualitatively different from p,_.,. Moreover, p,—., is
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Fig. 4 Empirical dose-response functions computed from
the Copenhagen Networks Study temporal network data,
representing the probability to become active (A) or passive
(B), as a function of the absolute exposure to these respec-
tive activity levels. Error bars are computed as described

approximately equal to the share of active states. We
quantify the observed difference using the { test statis-
tic introduced in Sect. 3.2. For the here discussed DRFs,
the score is ( = 328 > 1. Therefore, the model is
not sufficient to explain the empirical dynamics and we
reject the first null hypothesis.

Second data test. Hypothesis HZ: P(A;;(t),0;).
The empirical DRF can be reproduced with a class of
models that is based only on each node’s individual
activity level O; = 04(t).

We test the effects of the individual activity level
of each node O; = o0;(t). Analogous to the previous
model, the traits per node are randomly permuted in
time, but this time only within each node’s time series.
Therefore, O; is conserved. As in the previous model,
any possible contagion dynamics are destroyed due to
the permutations.

Expectation. Due to the permutation in the surro-
gate, the individual probability of the node to change
its trait is equal to O;. In particular, this probability is
independent of the exposure K. Therefore, we do not
expect any correlation between p,_., and K.

Result. Contrary to our expectations, in Fig. 5B, we
find the probability p,—., and K positively correlated,
qualitatively similar to the correlation of p,_,, and K.
However, for K > 100, the probability p,_.,(K) con-
tinues to increase, while p,_.(K) appears to saturate.
Furthermore, p,_., and p,_,, differ quantitatively by a
factor of about six. Thus, the conservation of O; is not
sufficient to explain the empirical DRF ¢ = 309 > 1,
and we also reject the second null hypothesis.
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in Sect. 3.1. For the probability to become active pp—q, a
clear upward trend is noticeable (p = 0.61; p = 0.007),
which might be caused by contagion. For the probability to
become passive p,—p, a monotonic decrease can be identi-

fied (p = —0.89; p=3.5-10"")

In the second considered model, we found that the
DRFs of the surrogate and the empirical data behave
in a qualitatively similar way. This could be the result
of pre-existing clustering in the data set: contacts j of
nodes ¢ would have similar activity values O; ~ O;
over the entire observation period. A node ¢ with e.g.
low O; thus has contacts j with low Oj;, and there-
fore, receives low exposure K. A positive correlation
would be the result. Even without fully understanding
the cause of the correlation found, it can be concluded
that the individual activity level O; is an essential fea-
ture in the empirical network. In addition to the cor-
relation, we found a shift of the DRF p,_,(K) by a
factor of six compared to p,_,. We suspect the rea-
son for this shift to be the non-preserved persistence of
the nodes (inverse number of individual activity state
changes). Due to the random permutations, the nodes
change their trait more frequently than in the empirical
network. In the following surrogate, this hypothesis is
analysed in more detail.

Third data test. Hypothesis H3: P(A;;(t), {Ti.01})-
The empirical DRF can be reproduced with a class of
models that is based only on each node’s individual
activity level Oy, and its individual persistence (inverse
number of individual activity state switches).

In addition to O;, the effect of individual persistence
is tested. To achieve this, both the intervals with active
trait 0;(t) = 1 and the intervals with passive trait
0;(t) = 0 were permuted at random. Hence, O; and
the persistence are conserved. Similar to the previous
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Fig. 5 Comparison of DRFs computed on empirical data
(black triangles) and surrogates of the node traits (green
crosses), corresponding to the null hypotheses Hg through
H3. It can be observed that neither A the preservation of the
average trait O (), nor B the additional preservation of
each individual node’s average trait O; (H3) is sufficient to
reproduce the data. C However, when the individual node

models, the random permutations remove any possible
contagion dynamics.

Expectation. Due to the additional conservation of
individual persistence, we expect p,—, to be quali-
tatively similar to p,—, from the second model, but
shifted closer to the empirical DRF on the y-axis.

Result. In Fig. 5C, we find, consistently with our
expectations, that the DRF of the surrogate is shifted.
Moreover, the probability p,_., saturates for K > 100,
analogous to the empirical DRF. Using the ( test statis-
tic, no significant deviation ¢ = 0.79 < 1 between p,_.,
and p,_., can be found. Therefore, we do not reject the
third null hypothesis.

The third model showed that individual persistence is
a main feature in the empirical network. Moreover, the
model reproduces the empirical DRF in the model even
without contagion. Thus, the third model shows that
the data are not sufficient evidence that contagion plays
a significant role in the empirical network, contrary to
the hypothesis we formed when we first observed the
correlation of p,_., and K.

4.2.2 Investigation for group dynamics

In the previous section, we tested the effects of indi-
vidual properties such as the individual activity level
O; or the individual persistence with our models. To

200 300 0 100 200 300

absolute exposures K

persistence, defined as the inverse of the number of trait
switches, is also conserved (H§), the surrogate and empirical
data show good agreement. Thus, we do not find sufficient
evidence that contagion plays a significant role. Error bars
are computed as described in Sect. 3.1. Confidence bounds
for surrogate DRFs are the 95 % confidence interval of the
distribution of p,_, ./ (K) over all surrogate realisations

investigate the importance of group dynamics, in this
section, we discard all individual properties and test the
following null hypothesis:

Fourth data test. Hypothesis Hg: P(A;;(t),0(t)).
The empirical DRF can be reproduced with a class of
models that is based only on the mean time-dependent
activity level O(t) = (0,(t)): of the ensemble.

We test the relevance of the mean time-dependent
activity level O(t) = (0;(t)); for the empirical dynamics.
To do this, the traits between nodes were permuted at
random for each time point separately, and only O(t)
is preserved.

Expectation. Given the permutations, both the prob-
ability of becoming active p,—, and the exposure K
depend on O(t). Thus, a correlation between p,_.,
and K is to be expected. Furthermore, we expect
Pp—a(K) > ppq(K) resulting from the destruction
of the persistence of the nodes.

Result. Figure 6A compares the DRF p,_., obtained
from the surrogate data to the empirical DRF p,_.,.
Figure 6b shows the same DRFs, but the DRF of the
surrogate (green, left y-axis) is offset by 0.25 to better
compare the shape of the functions. In line with our
expectations, P, is correlated with K. For K < 100,
the probability p,—,(K) increases linearly. The empiri-
cal pp—.q(K) also increases for K < 100, but slightly
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Fig. 6 Comparison of the DRF for empirical (black trian-
gles) and surrogate (green crosses) data for null hypothesis
H§. To investigate external influences that affect all nodes
simultaneously, the node traits were randomised in a way
that conserves the time-varying mean activity level O(t) of
the group. The two figures contain the same data: A com-
pares the absolute values of the data points, while in B
the surrogate data y-axis (green, left side) is offset by 0.25

non-linearly. Quantitatively, we observe p,_.q(K) >
Pp—a(K). Thus, without individual traits, the model is
not able to reproduce the empirical DRF ¢ = 326 > 1.
Therefore, we reject the fourth null hypothesis.

Although the surrogate model DRF is quantitatively
significantly different from the empirical DRF, the
model predicts a qualitatively similar functional form.
Temporal group dynamics thus seems to be another
important feature in the empirical temporal network
data. Apparently, participants change their behaviour
collectively, as is also evident from the fluctuations
observed in the mean activity level (Fig. 2). Such
non-stationarities could emerge from internal collective
dynamics or be due to external influences such as, for
example, exam periods, weekends or holidays. A more
detailed analysis is needed to distinguish these possible
effects.

4.2.3 Investigation for homophily dynamics

Continuing our investigation, we look for homophily
dynamics in the network. Analogously to the analysis
testing for contagion effects, we create surrogate mod-
els in which explicitly no homophily takes place. With
these, we attempt to reproduce the empirical dynam-
ics. To this end, we permute the network edges A;;(t)
and keep the properties of the nodes o;(t) unchanged.
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to facilitate comparison of the functional forms. While the
absolute values differ strongly, similarities in the functional
forms are apparent, pointing to the importance of exter-
nal influences on the collective group dynamics. Error bars
are computed as described in Sect. 3.1. Confidence bounds
for surrogate DRFs are the 95 % confidence interval of the
distribution of p,_./ (K) over all surrogate realisations

This approach removes any homophily dynamics from
the network, since the drawing and breaking of edges
is randomised. The investigation is carried out in two
steps, testing the following null hypotheses:

Fifth data test. Hypothesis H5: P(A,O;(t)). The
empirical DRF can be reproduced with a class of models
that is based only on individual activity dynamics and
the average network edge density A = (A;;(t))i ;.

We test the most basic assumption that the empir-
ical dynamics can be explained by a random network.
For this purpose, all edges were permuted uniformly at
random. Only the average temporal network edge den-
sity A = (A;;(t));; was conserved. In this model, any
homophily dynamics is removed, as the formation and
breaking of edges is randomised.

Expectation. Since the traits have been kept
unchanged, we expect the DRF of the model and the
empirical DRF to be of the same order of magnitude.
Due to the randomisation of the network, the neigh-
bourhoods of the nodes are randomised as well. Thus,
no correlation between the exposure K received from
the neighbours and the probability p,_., of changing
the trait is to be expected.

Result. The DRF of the model and the empirical DRF
are compared in Fig. 7TA. Contrary to our expectation,
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we can observe a correlation between p,_, and K.
Moreover, for the model, the case pp—.q(K) for K > 100
does not exist. Both DRF's have the same order of mag-
nitude, which is in line with our expectations. However,
only a few bins of the empirical DRF lie within the 95%
confidence interval of the DRF from the surrogate and
calculating the ( test statistic gives ( = 61 > 1. Conse-
quently, we reject the fifth null hypothesis.

When analysing our model based on a random net-
work, we observed a positive correlation between p,_.,
and K. This correlation was significantly different from
the correlation found for the empirical DRF. Therefore,
the non-trivial network structure and dynamics appear
to be essential for reproducing the empirical dynam-
ics. One explanation for the correlation found could be
the external influences already described in Sect. 4.2.2.
Nodes may change their traits in synchrony, indepen-
dently of the network and caused by an external influ-
ence. This would affect K as well and could explain
the correlation found. A further analysis is necessary
here. Another feature of the surrogate model’s DRF is
that no large exposure K > 100 occurred. This is likely
caused by a much smaller variance of the degree dis-
tribution in the random network than in the empirical
one. In the following surrogate, this hypothesis is anal-
ysed in more detail.

Sixth data test. Hypothesis H{: P(k;(t), O;(t)). The
empirical DRF can be reproduced with a class of mod-
els that is based only on the individual node dynam-
ics, and each node’s time-dependent network degree
hilt) = 32500 A (1)

Building on the previous model, we test whether the
time-dependent network degree of the nodes k;(t) =
Z;VZO A;;(t) has a significant impact on the network
dynamics. For this purpose, the edges of the network
are permuted at random, but k;(t) is preserved. Anal-
ogous to the previous model, the homophily dynamics
are removed by the permutations.

Expectation. For the correlation of p,_., and K, we
expect it to be similar to the one of the previous model.
However, for this model we conserved the node’s degree.
Thus, the progression of the DRF should also extend
over K > 100.

Result. In Fig. 7B, we compare the DRF of the model
with the empirical one. In agreement with our expecta-
tion, we find pp_q(K) for K > 100. However, the cor-
relation of p,_., and K is different from the previous
model (Fig. 7A). No significant difference ( =0.31 < 1
to the empirical DRF can be found anymore, using the
¢ test statistic. Therefore, we cannot reject the sixth
null hypothesis.

With this final surrogate model, we were able to
reproduce the empirical DRF by conserving the node
degree sequence in the temporal network data. Accord-
ingly, node degree k;(t), the number of social contacts
a student has at a given time t within the student pop-
ulation covered by the study, seems to be an impor-
tant feature in the empirical data set. Furthermore, the

3323

reproduction succeeded without including the dynam-
ics of homophily. Thus, we do not detect a significant
influence of contagion (see the results for Hg reported
above), but neither a significant influence of homophily.

4.3 Summary

In Sects. 4.1 and 4.2, we presented the results of our
methodology, which we applied first to synthetic data
from the Adaptive Voter Model (AVM) and second to
empirical data from the Copenhagen Networks Study
(CNS). For both the synthetic and the empirical DRF,
we found a monotonic functional dependency. In the
synthetic case, it arises from the dynamics of the model:
homophilic rewiring and social learning. To investigate
whether contagion and homophily are the main driver
for the empirical DRF, six null hypotheses H} to H$
were tested. The tests were conducted by analysing two
classes of surrogate models. In one, the traits o;(¢) and
in another, the edges A;;(t) were randomly permuted.
Each class consists of a hierarchy of surrogate mod-
els. Starting with the most basic model, in which all
traits resp. edges are randomly permuted, we gradually
conserve parts of the system until the surrogate DRF
DPp—a(K) and the empirical DRF p,,_.,(K) are consid-
ered equal within an error margin. As proof of concept,
this methodology was applied to the synthetic DRF of
an adaptive voter model (see Appendix A for detailed
results). In Fig. 8, we present a result compilation of the
test hierarchy for the synthetic data (A) of the AVM
(¢ = 0.6) as well as for the empirical data (B). The red
and the blue branches give the class of surrogate tests
with permuted traits o;(t), while for the yellow branches
the edges A;; were permuted at random. An arrow from
a surrogate test at a higher location to a lower one
indicates that the former shuffles more than the latter.
The differences between p,_.q(K) and p,—.q(K) are dis-
played on the horizontal axis and was quantified using a
test statistic ¢ introduced in Sect. 3.2. For the synthetic
data (A), the yellow and the red branches end with H}
and ‘HS outside the grey area (¢ > 1), indicating a
significant difference between py,_.,(K) and pp_(K).
Since we test with H3 (HS) whether the DRF can be
explained without contagion (homophily), but both are
core dynamics in the underlying model, this result was
expected. In contrast, for the empirical data (B) H}
and ‘H§ lie within the grey area, indicating no signifi-
cant difference between p,_.,(K) and p,_q(K). Conse-
quently, this leads to the conclusion that we find nei-
ther significant evidence for an influence of contagion
nor significant evidence for homophily in the CNS data.
Considering all the tests performed on the empirical
data, individual activity level, individual behavioural
persistence, the effects of a possibly externally forced
collective group dynamic and the individual number of
social contacts (the node degree sequence) are sufficient
to explain the estimated empirical DRF.
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Fig. 7 Comparison of DRFs computed on empirical data
(black triangles) and surrogates of the network topology
(green crosses) for null hypotheses Hg and H§. In A, only
the mean node degree k is conserved (?—{8)7 leading to a
significant difference between empirical and surrogate data.
In B, each node’s time-varying degree k;(t) is conserved
as well (H$), corresponding to a test for homophily in the

5 Discussion and conclusion

In this paper, we proposed a methodology for estimat-
ing dose-response functions (DRFs) from temporal net-
work data. We developed a hierarchy of surrogate data
models to evaluate to what degree the observed DRFs
can be explained by underlying processes such as social
contagion, collective group dynamics and homophily.
These surrogate models test the effects of distinct data
features, such as overall and individual node activity
levels, individual node trait persistence, overall network
link density and individual node degrees. We applied
this methodology to empirical temporal network data
from the Copenhagen Networks Study, focussing on the
illustrative health-related behaviour “regularly going to
the fitness studio” in a physically-close-contact network
of 619 university students, observed over the course
of 3 months. We find neither significant evidence
for an influence of contagion, nor significant evidence
for homophily. The individual activity level, individ-
ual behavioural persistence, effects of possibly exter-
nally forced collective group dynamics, and individual
number of social contacts (the node degree sequence)
are sufficient to explain the estimated empirical dose—
response function. These findings are underlined by
a validation study performed using synthetic data, in
which the sensitivity of our methodology to contagion
and homophilic effects is demonstrated.
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network, with good agreement between the DRFs. It can
be concluded that, while the non-trivial network structure
appears to be of importance, no significant evidence for
homophilic dynamics can be found. Error bars are computed
as described in Sect. 3.1. Confidence bounds for surrogate
DRFs are the 95 % confidence interval of the distribution of
Po—o (K) over all surrogate realisations

In the context of the application case considered in
the present study, our findings contradict the perspec-
tive that social interactions influence adopted behaviour,
for example via subjective norms [92], as supported
by psychological research [93]. In particular, the ability
of social norms to influence individual decision-making
has been identified previously as a potential tool for
large-scale group behaviour transformations [13,94].
However, in the present context of exercise behaviour
a person may only be susceptible to social influence
during particular stages of their decision process, while
being almost “immune” at other times [57,95]. At any
time, too few people may be in this socially susceptible
state to rise above the noise threshold in the data.

Overall, our results demonstrate that care needs
to be taken in interpreting dose-response functions
obtained from empirical temporal network data; in par-
ticular when considering observational data that did
not emerge from experiments in more controlled envi-
ronments [42,43]. Even pronounced positive correla-
tions between exposure to a trait and the probability to
adopt this trait can arise from structures in the tempo-
ral network data that do not need to be related to con-
tagion and spreading processes, or homophily. Applying
and further developing methodologies based on hierar-
chies of surrogate models, such as the one proposed in
this article, provides a way forward to discern the spe-
cific imprints of complex spreading processes in tem-
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Fig. 8 Comparison of (-scores for a hierarchy of surrogate
tests, for A the synthetic AVM data (¢ = 0.6) and B the
empirical CNS data. Each circle in the figure represents a
single surrogate data test. The horizontal location of the
circle reports the (-score of the tested hypothesis. An arrow
from a surrogate test at a higher location to a lower one
indicates that the former randomises more structure in the
data than the latter. The null hypothesis name of each test

poral network data. Cases where the presence of such
processes is not supported by the data can thus be
excluded.

Our analysis has limitations in several dimensions
that should be considered. First, in terms of data
limitations, the empirical temporal network data set
extracted from the Copenhagen Networks Study depends
on multiple assumptions on thresholds and other param-
eter values. The definition of social contacts as links in
a physically-close-contact network could be too unspe-
cific for discerning social contagion effects. Social con-
tagion might be expected to require a more permanent
and intense social relationship such as friendship to be
effective. Likewise, the chosen 1-day timescale of the
contact network may need to be reconsidered, as clus-
tering in the CNS data has been shown to disappear
at time scales greater than 1 h [70]. Furthermore, the
definition of node traits as active or passive may suffer
from noise and missing data issues, since most likely
some fitness studios and other relevant exercise insti-
tutions (e.g. university gyms, swimming pools etc.) are
missing from our list. Also, using GPS coordinates to
determine whether a student is visiting a fitness studio
introduces uncertainties: in a densely populated urban
area like the city of Copenhagen, a café or a library
might be located right next to, or even above or below
a fitness studio, introducing additional noise into our
data set.

(b) (-scores for the CNS data.

is given above each circle, and the conserved features of the
surrogate model below it (see Sect. 3.2). The link and circle
colour indicate which dynamics were investigated with the
tests. The red and the blue branches give the class of sur-
rogate tests with permuted traits o;(¢), while for the yellow
branches the edges A;; were permuted at random. The grey
rectangle marks the area where the empirical DRF does not
differ significantly from the surrogate DRF

Second, considering methodological limitations, DRFs
are a highly aggregate statistical indicator describing a
complex temporal network data set. They might not be
specific enough to detect subtle spreading processes or
to discriminate different types of complex contagions.
Arguably this calls for higher order statistics with larger
statistical power. Moreover, the proposed methodology
based on a hierarchy of surrogate data sets is limited in
that it allows only for indirect inference on the possible
presence of spreading or contagion processes. In this
respect, it is desirable to augment the present analy-
sis with more direct investigations including generative
models of complex network spreading processes.

In summary, we suggest that our methodology is
promising for applications to other systems and tem-
poral network data sets. This can, among other appli-
cations, possibly aid our understanding of the social
dynamics, spreading potentials and possible social tip-
ping points in behaviours and social norms relevant for
the adoption of healthy and sustainable diets [96] that
can help to feed the world within planetary boundaries
[97]. Efforts should be directed towards providing high-
quality empirical temporal network data sets that can
be leveraged for understanding complex spreading pro-
cesses in these relevant domains. Promising directions
of methodological developments include higher order
statistics such as multi-node correlations for discerning
the effects of longer contagion chains, spreading conta-
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gion waves, or the imprints of network motifs on com-
plex spreading processes. Astute surrogate data models
can provide detailed insights into such spreading pro-
cesses. Connecting empirical network data to genera-
tive statistical and dynamical adaptive network mod-
els more directly, e.g. via maximum likelihood meth-
ods, appears similarly promising. Hence, one can open
new perspectives to predict future spreading dynam-
ics. Ultimately, this research thus aids in designing tar-
geted interventions for fostering desirable or suppress-
ing unwanted contagions in diverse complex systems
including pandemics, the brain, traffic and sustainabil-
ity transformations.
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A Surrogate method validation with
synthetic data

To evaluate how well the surrogate model method performs,
we apply it to the two synthetic data sets created with CNS-
aligned parameters for Fig. 3A. This data set is generated
using the Adaptive Voter Model (AVM), once with (¢ = 0.6)
and once without (¢ = 0.0) the network adaptation process.
Other model parameters are chosen to align with the fil-
tered data extracted from the Copenhagen Networks Study
(CNS): the number of nodes N = 619, the average degree
ki = 19 and the number of simulated time steps 7 = 90. The
number of model updates per time step is determined empir-
ically, to align the average number of behaviour switches per
time step across the entire system with the value found in
the CNS data (40.24 £+ 0.96 behaviour switches per time
step). To maintain the comparability to the CNS data, a
single simulation run of the AVM model is used, based on
which ten surrogate model realisations are computed.

Using AVM-generated data to test the surrogate meth-
ods is a natural choice; when compared with e.g. SI(R)
models, the AVM can best describe the processes and
conditions of the system. For example, the behaviour is
already rather common in the population; there is no
“patient zero.” Furthermore, we assume that contact with
“infected” (high activity level) individuals may increase
infection probability—but also vice versa, that contact with
“uninfected” (low activity level) individuals makes “recov-
ery” more likely. However, even when aligning the model
parameters to the CNS data, it should be noted that the
AVM model does not necessarily represent a “best guess” for
the real-world dynamics, but only an over-simplified stand-
in.

In the following, we create the hierarchy of surrogate
models, which is described in detail in Sect. 3.2. In this
chapter, “AVM data” refers to the synthetic data set gen-
erated by the Adaptive Voter Model with the parameters
described above, and “surrogate data” refers to surrogate
data sets created using the AVM data. To quantify the dif-
ference between surrogate DRF and AVM DRF, we calcu-
late the (-score (Eq. 12). A graphical presentation of the
test hierarchy can be found in Fig. 12 for ¢ = 0.0, while the
corresponding figure for ¢ = 0.6 is presented in Sect. 4.3.

First AVM test. Hypothesis H§ : P(A;;(t),0): Dis-
played in Fig. 9A and D for ¢ = 0.0 and ¢ = 0.6, respec-
tively. As could be expected in this complete randomisation
of activity states, the DRF becomes flat in both cases, at
a level corresponding to the fraction of active nodes in the
network. The (-score for the run with ¢ = 0.0 is ( = 1281
and the score for ¢ = 0.6 is ¢ = 1299.

Second AVM test. Hypothesis 13 : P(A;;(t),0;): Dis-
played in Fig. 9B and E for ¢ = 0.0 and ¢ = 0.6, respec-
tively. In this randomisation that conserves the individ-
ual node’s activity levels, the surrogate DRF is still much
higher than the AVM DRF. A likely explanation for the
rising trends in the surrogate DRF's is the formation of net-
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Fig. 9 Comparison of DRFs computed on AVM data
(black triangles) and surrogates of the node traits (green
crosses), corresponding to the null hypotheses g through
H3. A-C are for the ¢ = 0.0 case, while D-F correspond

work regions that have relatively homogeneous activity lev-
els through the AVM process. Such regions, which consist of
nodes that lean towards one activity level and whose neigh-
bourhood comprise a majority of nodes with the same activ-
ity level, are not destroyed by the H3 shuffling. This effect
can be expected to be stronger for the ¢ = 0.6 case, where
homophilic rewiring is an additional driver in the formation

absolute exposures K

absolute exposures K

to the ¢ = 0.6 case. Error bars are computed as described
in Sect. 3.1. Confidence bounds for surrogate DRFs are the
95% confidence interval of the distribution of p,_ . (K) over
all surrogate realisations

of such regions. The greater slope in Fig. 9E supports this.
The (-score for the run with ¢ = 0.0 is ¢ = 955 and the
score for ¢ = 0.6 is ¢ = 890.

Third AVM test. Hypothesis Hy : P(Ai;(t), {Ti.01}):
Displayed in Fig. 9C and F for ¢ = 0.0 and ¢ = 0.6,
respectively. As expected, when conserving the number of
behaviour switches, the average switching probability dis-
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Fig. 10 Comparison of DRFs computed on AVM data
(black triangles) and surrogates of the node traits (green
crosses), corresponding to the null hypothesis Hi. A and B
are for the ¢ = 0.0 case, while C and D correspond to the
@ = 0.6 case. B and D display the same data as A and C,
respectively, but with the range of the vertical axes indepen-
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dently shifted for AVM and surrogate data, to facilitate the
direct comparison of the DRFs. Error bars are computed
as described in Sect. 3.1. Confidence bounds for surrogate
DRFs are the 95% confidence interval of the distribution of
Po—o (K) over all surrogate realisations
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Fig. 11 Comparison of DRFs computed on AVM data
(black triangles) and surrogates of the node traits (green
crosses), corresponding to the null hypotheses H§ (A, C)
and Hj (B, D). A and B are for the ¢ = 0.0 case, while

played in the DRF is very similar for the AVM and sur-
rogate data. However, clear differences between the AVM
and surrogate DRFs can be discerned. The (-score for the
run with ¢ = 0.0 is ( = 1.8 and the score for ¢ = 0.6
is ¢ = 2.7, indicating a significant difference ¢ > 1. The
upward trend of the AVM data DRF's is significantly greater
than in the surrogate in both the ¢ = 0.0 and ¢ = 0.6 cases.
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C and D correspond to the ¢ = 0.6 case. Error bars are
computed as described in Sect. 3.1. Confidence bounds for
surrogate DRFs are the 95 % confidence interval of the dis-
tribution of p,_.. (K) over all surrogate realisations

This is consistent with the true contagion process underly-
ing the AVM simulation data. This shows the method to
be sensitive to contagion effects, implying that the inabil-
ity to reject Hj3 in the empirical data (see Fig. 5C) is likely
due to a lack of dominant contagion dynamics in the stud-
ied behaviour. It should be noted that the surrogate DRF's
do not become completely flat, but retain a more moder-
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Fig. 12 Comparison of
¢-score for the hierarchy of
surrogate tests on AVM
data, for the ¢ = 0.0 case.
Each circle in the figure
represents a single
surrogate data test. The
horizontal location of the
circle reports the (-score of
the tested hypothesis. An
arrow from a surrogate test
at a higher location to a
lower one means that the
former shuffles more than
the latter. The null 4
hypothesis name of each

test is given above each

circle, and the conserved Hg
features of the surrogate
model below it (see Sect.
3.2). The link and circle
colour indicate which
dynamics were investigated
with the tests. The grey
rectangle marks the area
where the empirical DRF
does not differ significantly
from the surrogate DRF
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ate upward trend. This can be explained analogously to the
upward trend in the surrogate DRFs of the second AVM
test, described above.

Fourth AVM test. Hypothesis Hg: P(A;;(t), O(t)): Dis-
played in Fig. 10 (A,B) and (C,D) for ¢ = 0.0 and ¢ = 0.6,
respectively. The surrogate and AVM DRFs have greatly
differing y-scales. The (-score for the run with ¢ = 0.0 is
¢ = 1269 and the score for ¢ = 0.6 is ¢ = 1295. How-
ever, in the ¢ = 0.0 case, the surrogate DRF retains an
upward trend, albeit smaller than the AVM DRF. Since H2
is essentially the mean-field approximation of the system,
this demonstrates how the network is densely, and relatively
homogeneously connected in this case. In the ¢ = 0.6 case,
the randomisation destroys any significant slope. Here, the
original AVM data apparently differs more strongly from
the mean-field approximation, which can be explained by
the greater degree of homophilic clustering in this case. The
network structure, with its additional rewiring mechanism,
thus appears more important in this case. The behaviour
seen in the evaluation of Hg in the empirical CNS data
(Fig. 6) resembles the ¢ = 0.0 case in AVM data, which can
be interpreted as an absence of clustering in the CNS data.

Fifth AVM test. Hypothesis H{: P(A, O;(t)): Displayed
in Fig. 11A and C for ¢ = 0.0 and ¢ = 0.6, respectively.
As expected, after completely randomising the network, the
surrogate model gives a nearly constant DRF. The (-score
for the run with ¢ = 0.0 is { = 2.7 and the score for ¢ = 0.6
is ¢ = 6.5. The difference between surrogate and AVM DRF's
is less significant for the ¢ = 0.0 case than for the ¢ =
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0.6 case, which can be explained by the additional network
processes at work in the latter case: the randomisation has
a larger effect here.

frequency

12 14

trait changes per node

Fig. 13 Distribution of the total number of activity level
changes per node during the studied time interval

Sixth AVM test. Hypothesis H: P(k;(t),0;(t)): Dis-
played in Fig. 11B and D for ¢ = 0.0 and ¢ = 0.6, respec-
tively. The (-score for the run with ¢ = 0.0 is ¢ = 0.49 and
the score for ¢ = 0.6 is ¢ = 1.25. The difference between the
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surrogate and original AVM DRFs is not nearly as big as
in many of the other surrogate tests, pointing to an effect
of homophily that is moderate at most. For the ¢ = 0.6
case, hints for homophily effects can be observed, since the
surrogate and original AVM curves are significantly sepa-
rated here. For the ¢ = 0.0 case, the curves are not sig-
nificantly separated (see also Fig. 12). This is consistent
with our expectations, since homophilic clustering through
preferential attachment is present, but not dominant in the
¢ = 0.6 model (see Fig. 3)

Figure 12 shows, analogously to Fig. 8, the significance
of the deviations between surrogate and AVM DRFs for
@ = 0.0. The case ¢ = 0.6 was already presented in Fig. 8A.
For the ¢ = 0.0 case (Fig. 12), only H§ cannot be rejected
based on the ( test statistic. For the ¢ = 0.6 case (Fig. 8A),
none of the hypothesis tests can be rejected. The difference
in the rejection of H3 to the empirical case (Fig. 8B) appears
to show that our method can detect contagion created by
the social learning within the AVM. Moreover, the difference
in the rejection of H§ between the ¢ = 0 and the ¢ = 0.6
cases suggests that our method can detect the small amount
of homophily created by the adaptive rewiring.

B Permutation space for H}

For the surrogate method to work, the shuffling algorithms
must provide sufficient randomisation, creating data sets
with significant differences to the original data. This is eas-
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ily achieved for most of the proposed surrogate models.
However, the randomisation space for g is the most con-
strained. Here, the number of possible permutations of the
activity intervals is limited by the total number of activity
level switches of each node. In this section, we demonstrate
that this randomisation space is sufficient for the method to
function.

Figure 13 displays the distribution of total activity level
(“¢rait”) changes per node in the studied time interval.
Nodes switch behaviour on average 5.94 times. Thus, on
average, there are 3—4 active and 3—4 inactive intervals for
each node. If a node has 3 active and 4 inactive intervals,
the shuffling can produce 3!4! = 144 different surrogates.
More than 43 percent of agents switch behaviour at least 7
times, thus having at least 4 active and 4 inactive intervals
and hence at least 4!4! = 576 different surrogates for each of
these nodes. From this, we conclude that there is sufficient
randomisation in 3. This is supported by the validation of
the methodology using synthetic AVM data, which shows
a deviation between AVM and surrogate DRFs for H; (see
Fig. 9C and F).

C List of considered fitness centres in
Copenhagen

See Table 1.

Table 1 List of the fitness centres in Copenhagen considered in this study, with their respective coordinates, as extracted

from Open Street Maps [75]

Name

Longitude [ E] Latitude [® N]

Fresh Fitness Hvidovre

Fitness.dk

FitnessDK

Fresh Fitness

Fresh

Fitness World

Fitness World Ballerup

Fitness World Brgndby

Fitness World Farum Park

Fitness World Frederiksberg Bernhard Bangs Alle
Fitness World Frederiksberg Forum

Fitness World Frederiksberg Peter Bangs Vej
Fitness World Gentofte

Fitness World Glostrup

Fitness World Greve Hundige Storcenter
Fitness World Greve

Fitness World Herlev

Fitness World Husum

Fitness World Kgbenhavn Baron Boltens Gard
Fitness World Kgbenhavn Ellebjergvej
Fitness World Kgbenhavn Emdrup Station
Fitness World Kgbenhavn Englandsvej
Fitness World Kgbenhavn Gasveerksvej
Fitness World Kgbenhavn Jagtve;j

Fitness World Kgbenhavn Lyngbyvej

Fitness World Kgbenhavn Lyongade

12.4691961 55.6415696
12.5618214 55.6614733
12.5114098 55.6647699
12.5404751 55.6975516
12.4199488 55.6493081
12.4418141 55.7231967
12.3579672 55.7296181
12.4383494 55.6673030
12.3513120 55.8172970
12.5104671 55.6844058
12.5524718 55.6830906
12.5131680 55.6795400
12.5378949 55.7386120
12.4008395 55.6640800
12.3274148 55.5987709
12.2984612 55.5905648
12.4160534 55.7253403
12.4810239 55.7095419
12.5848511 55.6820125
12.5108247 55.6507568
12.5409464 55.7218740
12.6043943 55.6569690
12.5570237 55.6708078
12.5509410 55.6964980
12.5604444 55.7116463
12.6099453 55.6613686
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Table 1 Continued
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Name

Longitude [ E] Latitude [° N]

Fitness World Kgbenhavn Nordre Fasanvej 12.5364747 55.6985181
Fitness World Kgbenhavn Strandvejen 12.5777058 55.7219712
Fitness World Kgbenhavn Vester Farimagsgade 12.5623173 55.6782088
Fitness World Kgbenhavn Arhusgade 12.5872772 55.7067752
Fitness World Lyngby 12.5039072 55.7688801
Fitness World Malgv 12.3187172 55.7485909
Fitness World Sgborg 12.4932893 55.7395909
Fitness World Taastrup 12.3017208 55.6529634
Fitness World Valby Mosedalvej 12.5134815 55.6674858
Fitness World Veerlgse 12.3615021 55.7821745
fitnessdk 12.4392816 55.7249089
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