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Abstract

Ecological rationality represents an alternative to classic frameworks of rationality. Extending on
Herbert Simon’s concept of bounded rationality, it holds that cognitive processes, including simple
heuristics, are not per se rational or irrational, but that their success rests on their degree of fit to
relevant environmental structures. The key is therefore to understand how cognitive and environmental
structures slot together. In recent years, a growing set of analyses of heuristic—environment systems
has deepened the understanding of the human mind and how boundedly rational heuristics can result
in successful decision making. This article is concerned with three conceptual challenges in the study
of ecological rationality. First, do heuristics also succeed in dynamic contexts involving competitive
agents? Second, can the mind adapt to environmental structures via an unsupervised learning process?
Third, how can research go beyond mere descriptions of environmental structures to develop theories
of the mechanisms that give rise to those structures? In addressing these questions, we illustrate that a
successful theory of rationality will focus on the adaptive aspects of the mind and will need to account
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for three components: the mind’s information processing, the environment to which the mind adapts,
and the intersection between the environment and the mind.

Keywords: Decision-making; Heuristics; Ecological rationality; Adaptive rationality; Environmental
structures; Risk-reward structures; Strategic games

1. Studies in ecological rationality

Both organism and environment will have to be seen as systems, each with properties
of its own, yet both hewn from basically the same block. [....] It follows that, much
as psychology must be concerned with the texture of the organism ..., it also must be
concerned with the texture of the environment ....

Egon Brunswik (1957/2001, p. 300)

Traditional theories of rationality commonly assume that a single universal decision policy
determines the best course of action. Accordingly, theories such as expected utility theory or
Bayesian decision theory are not concerned with when and where this universal tool works
better or worse than other approaches. From these perspectives, there is only one tool or
approach. Optimal is optimal—case closed. In addition, these theories do not conceptualize
the mind as consisting of cognition—environment systems in which the processes and strate-
gies of the human mind are closely intertwined with the environment. This does not imply
that Bayesian decision models do not make assumptions about the environment; standard
Bayesian models (e.g., conditional independence) frequently do. Yet Bayesian decision mod-
els are not necessarily valid in the natural environment and appear to be primarily driven by
mathematical convenience—and less so by Brunswik’s argument (1957/2001; Dhami, Her-
twig, & Hoffrage, 2004) that cognition and environment are indivisible, like a married couple
who have come to terms with each other through mutual adaptation. Simon (1956) likewise
emphasized the collaborative relationship between cognition and environment. He suggested
that the structural properties of the environment can come to the rescue of a computationally
and otherwise bounded mind by facilitating the use of simpler decision mechanisms without
a prohibitive loss in efficiency. In this view, the environment is not an obstacle complicating
formalisms or an incontestable fact that the mind has to reckon with; rather it can ideally
become an important ally of any organism whose computational and cognitive powers will,
inevitably, be limited relative to the complexities of the physical and social world. This idea
is the foundational premise of the ecological rationality framework (see also Kozyreva &
Hertwig, 2021; Kozyreva, Pleskac, Pachur, & Hertwig, 2019).

Before we turn to this framework, and to appreciate the notion of a cognition—environment
system beyond the domain of rationality, let us consider Duncker’s (1945) work on functional
fixedness. Gestalt psychologist Duncker presented participants with a rather odd problem: He
asked them to mount a candle on a wall in such a way that, when the candle was lit, the melting
wax did not drip onto the table below. They could use only the objects in front of them: a small
candle, a book of matches, and a box of thumbtacks. To solve the problem, participants had
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to figure out that the box of thumbtacks can function not only as a container but also as a
flat surface that can be tacked to the wall, providing a mount for the candle. Yet participants
were less likely to arrive at this solution than to attempt other, unsuccessful approaches—not
because they were engaged in a process of trial and error (see Newell, 1985), but because
they generated solutions from the “concrete, specific substratum of its problem situation”
(Duncker, 1945, p. 20). In the candle experiment, the artifact required for the solution—the
box—has an established use and design function (containment) that hinders the discovery of
a new function (as a supporting plane). Functional fixedness can be seen as arising from the
co-occurrence of an environmental artifact and its conventional use. The statistical structure
of the environment thus thwarts efficient solutions (see also German & Barrett, 2005).

Yet the opposite can also hold: The statistical structure of the environment can facilitate
efficient solutions. Just imagine if human reasoning were a blank slate, free of functional
fixedness. When opening a toolbox and looking for something to tighten a screw, a person
would need to test out every tool in the box; with functional fixedness, they can just grab a
screwdriver. Functional fixedness thus reflects the frequency and recency of past use of arti-
facts (see Anderson & Schooler, 1991). In technologically sophisticated environments popu-
lated with countless artificial objects with highly specific functions (e.g., olive pitters, com-
puter track pads, cordless impact drivers; Tomasello, 1999), functional fixedness is likely to
be an indispensable ingredient of cognition—environment systems. That said, as Lévi-Strauss
(1962) pointed out, the ability to transcend functional fixedness in the service of innovation
by making do (“bricolage”) and applying existing resources and tools to new problems and
opportunities can also be very important, both in nonindustrial societies and in contemporary
organizations (Duymedjian & Riiling, 2010).!

Although an environment-informed approach to cognition is not the default approach in
the cognitive sciences, there have been important theoretical attempts to describe cognition—
environment systems (e.g., Anderson, 1990; Brunswik, 1952; Gibson, 1966; Greeno, 1994;
Shepard, 1994). Modeling the mind in terms of cognition—environment systems also effects
a shift in the conceptualization and measurement of rationality: If intelligent reasoning and
behavior emerge from the interaction of mind and the world, their rationality can be described,
predicted, and evaluated only by taking this entrenchment and the associated mind-world
coevolution into account. Research on ecological rationality (Gigerenzer, Todd, & the ABC
Research Group, 1999; Hertwig, Pleskac, & Pachur, 2019; Todd, Gigerenzer, & the ABC
Research Group, 2012) seeks to describe, analyze, and model such cognition—environment
systems (Kozyreva et al., 2019), with a particular focus on the role and environmentally con-
tingent success of simple cognitive strategies: heuristics. In this article, we first outline the
study of ecological rationality, and then turn to three conceptual challenges on which notable
progress has recently been made:

How do heuristics fare in competitive and strategic worlds? Can heuristics succeed
even when interactive, competing agents engage in dynamically shifting behaviors? If
so, what are the environmental structures that render possible the ecological rationality
of heuristics in social games?
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How do people learn environmental structures? Is it conceivable that the mind adapts to
ecological structures by means of the incidental, unsupervised learning that is common
in many real-world contexts?

How to theorize rather than describe environmental structures ? What kind of theories of
environmental structures are needed to predict, rather than merely describe, how human
reasoning and behavior are a function of specific environments?

We begin with a brief history of the notion of ecological rationality.

2. Ecological rationality: Process simplification enabled by the environment

The study of ecological rationality builds and extends on Herbert Simon’s notion of
bounded rationality (Todd et al., 2012). Simon aimed to formulate a psychologically real-
istic theory of rational choice capable of explaining how people make decisions and achieve
their goals under internal (cognitive) and external (environmental) constraints. His objection
to the classical models of rational choice (e.g., the family of expected utility approaches) was
that their norms, postulates, and commitment to optimization make unrealistic demands on
decision makers, expecting them to be able to specify all possible outcomes, rank their qual-
ity, and then assign them probabilities. In real life, people often have access to only some of
the information or are unable to integrate that information in the sophisticated way mandated
by expected utility theory; consequently, they may rely on simplifying procedures. What do
these constraints mean for the quality of people’s choices? Simon (1956) conjectured that
real organisms’ behavior probably “falls far short of the ideal of ‘maximizing’ postulated in
economic theory” (Simon, 1956, p. 129).

Decision scientists sometimes argue that humans “obviously” maximize some function and
that it is the scientist’s job to find out which function that is. This was not Simon’s position.
In view of the formidable demands on decision makers, which render the ideal of maxi-
mization and optimization unrealistic irrespective of the underlying function, he suggested
a different rationality ideal, namely, that of “good enough decisions” or satisficing (Simon,
1979, p. 498; see also Artinger, Gigerenzer, & Jacobs, in press). According to this approach,
“satisficing models ... provide good enough decisions with reasonable costs of computation.
By giving up optimization, a richer set of properties of the real world can be retained in the
models.” Simon’s (1956) work also took a second, complementary direction, proposing that
“the environments to which [an organism] must adapt possess properties that permit further
simplification of its choice mechanisms” (p. 129). In other words, structural properties of
the environment enable the use of cognitive processes that ease the cognitive demands on
decision makers.

This is where the study of ecological rationality begins. It aims to identify the environmen-
tal properties that permit the simplification of the decision strategy and to ascertain the poten-
tial price of that simplification in terms of measures such as accuracy (Schurz & Hertwig,
2019). The key class of simplifying strategies is that of heuristics (e.g., Hertwig & Pachur,
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2015). A heuristic is a strategy that “ignores part of the information, with the goal of making
decisions more quickly, frugally, and/or accurately than more complex methods” (Gigeren-
zer & Gaissmaier, 2011, p. 454). Ecologically rational heuristics benefit from environmen-
tal structures that support the policy of foregoing part of the information and computation.
Extensive work on the ecological rationality of heuristics (e.g., Gigerenzer & Brighton, 2009;
Gigerenzer, Hertwig, & Pachur, 2011; Hertwig, Woike, Pachur, & Brandstitter, 2019; Todd
et al., 2012) has produced two major findings: First, less information, computation, and time
can still lead to surprisingly high levels of success. Second, there is evidence for a growing
set of environmental structures that fit the cognitive architecture of specific heuristics, thus
facilitating their success.

Interestingly, the observation that computational and informational simplicity can result in
highly successful outcomes dates back to a time in psychology in which the currently domi-
nant view that heuristic decision making is associated with systematic and severe errors was
evolving. Dawes and Corrigan (1974) showed that simple prediction models assuming equal-
weight regression coefficients (predictors, cues) perform surprisingly well, yielding more
accurate predictions than models with regression weights obtained by the least-squares algo-
rithm under some conditions. The study of the conditions under which improper (unit-weight)
models succeed (see, e.g., Davis-Stober, Dana, & Budescu, 2010; Einhorn & Hogarth, 1975)
can be understood as one of the first lines of research into ecological rationality (see Davis-
Stober et al., 2010; Dawes & Corrigan, 1974; Einhorn & Hogarth, 1975).

Analyses of the interdependency of cognitive and environmental structures continued to
be exceptions in psychology (for another example, see the influential work on the adaptive
decision maker in the domain of preferential choice; Payne, Bettman, & Johnson, 1993). Yet
interest in environmental structures intensified with the emergence of work on fast and frugal
heuristics (Gigerenzer & Goldstein, 1996; Gigerenzer et al., 1999). Studies demonstrating
that simple heuristics using limited search, stopping rules, and aspiration levels can some-
times lead to more accurate outcomes than their more sophisticated competitors (e.g., logistic
regression, classification, and regression trees) accumulated, and the key question was now
another one: Which statistical structures—that is, patterns of information distribution in the
environment—are conducive to the success of informational and computational simplicity
and, equally importantly, which are not? In other words, returning to Simon (1956), which
environmental properties permit simplification of the choice mechanism without compromis-
ing its success?

Some answers to this question are now clear: Structural properties such as the degree of
uncertainty or predictability (how well the available cues predict the criterion), sample size
of available data, number and dispersion of alternatives, variance (distribution of outcomes
and probabilities), functional relations between cues and criterion (e.g., linear or nonlinear),
distribution of weights (e.g., compensatory or noncompensatory), cue redundancy (level of
intercue correlations), and dominance all affect the performance of simpler cognitive strate-
gies (see DeMiguel, Garlappi, & Uppal, 2007; Hertwig et al., 2019; Hogarth & Karelaia,
2006, 2007; Katsikopoulos & Martignon, 2006; Katsikopoulos, Schooler, & Hertwig, 2010;
Marewski & Schooler, 2011; Martignon & Hoffrage, 2002; Pachur, Hertwig, & Rieskamp,
2013; Simsek, 2013; Todd et al., 2012). Yet the benefits of simplicity remain counterintuitive

8508017 SUOLIWIOD BA 81D 8(qeat|dde au Aq peussnob a1 S3jole O ‘38N 4O S9N 104 AReIq17 3UIIUO A3]IM UIO (SUORIPUOD-PUE-SWBILIOD" A3 1M AReJd 1 BU1UO//SA1I) SUORIPUOD PUe SWIS L 8U1 385 *[7202/80/7T] Uo AreiqiTauluo A81IM ' LNLILSNI HOOM Ly380Y Ad 29521 'SdOYTTTT OT/I0p/w00 A3 | 1M Aseiqijeutjuo//sdny wol papeojumod '€ ‘220e ‘59/89G.T



472 R. Hertwig et al. / Topics in Cognitive Science 14 (2022)

to many scholars of the mind. In the next section, we turn to a key controversy over the merits
and limits of simplicity.

3. How do heuristics fare in competitive and strategic worlds?

Social environments populated with intelligent individuals acting strategically are thought
to be much more complex and cognitively demanding than nonsocial ones (e.g., Whiten &
Byrne, 1988, 1997). The philosopher Sterelny (2003) argued that environments in which sim-
ple heuristics perform well “rarely involve competitive, interacting, responsive aspects of the
environment” (p. 208) and that heuristics will flounder in socially competitive and dynamic
worlds:

We need to see some experimental (or modeling) work on, for example, judgments about
whether others are lying to you; on whether others will be reliable partners in coopera-
tive tasks; on whether a partner is engaging in extra-pair copulation. (p. 208)

For it is precisely in such situations that simple rules of thumb will go wrong .... Catch-
ing a ball is one problem; catching a liar is another. (p. 53)

But is Sterelny’s (2003) intuition correct? To find out, Spiliopoulos and Hertwig (2020)
conducted an extensive analysis involving an enormous collection of strategic interactions,
namely, the population of all (1,828,915,200) types of one-shot 3 x 3 normal-form games
with simultaneous moves. Substantial experimental evidence has demonstrated that people
rarely play the Nash equilibrium in one-shot games; rather, they appear to rely on various
simple heuristics (see table 3 in Spiliopoulos & Hertwig, 2020). Does this mean that these
“deviations from equilibrium decisions” (Costa-Gomes, Crawford, & Broseta, 2001, p. 1193)
simply signal lower levels of strategic sophistication and are the price of humans’ limited
cognitive capacity (Polonio, Di Guida, & Coricelli, 2015)? If one accepts the assumptions
of the normative game-theoretic framework (i.e., the concept of the Nash equilibrium), one
cannot help but conclude that people’s use of heuristics reflects second-best processes and
solutions. Yet according to the notion of ecological rationality, if simple heuristics are adapted
to the presence of strategic and payoff uncertainty in these interactions, their use could be
highly beneficial. In which types of social games does a particular heuristic succeed, and in
which does it fail?

4. Why heuristics may be indispensable in complex social worlds

One key discovery in the study of ecological rationality has been that, ceteris paribus, the
greater the uncertainty, the more likely simple heuristics will be to perform on par with—or
even outperform—more complex strategies (see the analysis of the bias—variance dilemma;
Gigerenzer & Brighton, 2009; Katsikopoulos et al., 2010). Strategic environments typically
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manifest as less stable and thus more uncertain than nonstrategic environments because the
behavior of cognizant agents is arguably less predictable than that of entities populating a
stable nonsocial environment (what economists often call “nature”). Their payoffs depend
on the actions of others, which introduces immense strategic uncertainty, which is in turn
amplified by the heterogeneity and stochasticity of agents’ preferences and decision-making
strategies. This renders it virtually impossible to infer the type of agent one is facing in one-
or limited-shot interactions and, by extension, to predict their behavior.

Note that strategic uncertainty is also a challenge to normative solutions for at least two
reasons. First and foremost, the Nash equilibrium is optimal only if one’s opponent is also
playing Nash. Under strategic uncertainty, a player may be competing (or believe themself
to be competing) against an opponent who is not playing Nash. Second, many games admit
more than one Nash equilibrium. Many simpler normative solutions, such as rationalizability
(Bernheim, 1984; Pearce, 1984) and correlated equilibrium (Aumann, 1974) suffer even more
than the Nash equilibrium from the problem of solution nonuniqueness, that is, suggesting
more than one action to be rational. This makes it even less likely that players will coordinate
on the same equilibrium. Simple heuristics, which are especially suited to coping with uncer-
tainty, may thus represent particularly successful and robust tools for navigating competitive
worlds. One such candidate heuristic is Level 1 (L1). This heuristic recommends playing the
best response under the assumption that the opponent is playing randomly or, equivalently,
choosing the action with the highest average payoff computed over the opponent’s possible
actions. Another candidate heuristic is Dominance 1 (D1). This heuristic differs from L1 by
assuming that an opponent randomizes over their nondominated actions, that is, that the oppo-
nent would never play an action that is necessarily inferior to another, regardless of the other
player’s choice.

5. Mapping the success of heuristics in uncertain strategic worlds

The goal of Spiliopoulos and Hertwig’s (2020) computer tournament was to investigate
the success of simple heuristics in strategic one-shot interactions and to map simple decision
policies to environmental niches. Three properties of the environment were systematically
varied:

1. the number of actions available to each player in a game (from 2 to 20);
the degree of correlation, p, between the randomly drawn payoffs of games: discordant
or competitive environments, p = —0.5; neutral environments, p = 0; and harmonious
or cooperative environments, p = 0.5;

3. the payoff uncertainty experienced by the players, operationalized as the percentage of
payoffs that were unavailable to the players, from 0% (perfect knowledge of the game)
to 80%.

The analysis covered 10 decision strategies, ranging from the highly complex Nash
equilibrium via moderately complex heuristics (e.g., level-k models; for a detailed descrip-
tion of all strategies, see table 2 in Spiliopoulos & Hertwig, 2020) to simple heuristics
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Indifference Wald Composition-Robustness

Random— B -
MaxMax— - -
MaxMin— - -
Level-1+ - B
Level-2— B B

Level-3 B B

Strategy

Social maximum- - |
Equality— B B
Dominance-1- B B

Nash equilibrium+ . |

T T L T B I R R B
0 10 20 30-10 -5 0 5 10 -20 0 20 40 60 80

Performance

Fig. 1. Summary of the performance of the decision strategies tested in Spiliopoulos and Hertwig (2020), pooled
across all environments investigated (competitive, neutral, and cooperative) and all levels of payoff uncertainty
according to three performance criteria (panel columns): indifference criterion (i.e., all opponent strategies are
equally likely), Wald criterion (i.e., paired with the worst-case opponent strategy), and composition-robustness
criterion (i.e., percentile ranking of a strategy’s performance averaged across all possible population mixtures).
Strategies are sorted in increasing order of complexity. Their policies are described in table 2 in Spiliopoulos and
Hertwig (2020); the results plotted are based on data reported in table 4 of Spiliopoulos and Hertwig (2020).

(e.g., MaxMax and MaxMin). The policies were pitted against each other in randomly drawn
games while varying the three environmental properties mentioned above, for a total of 969
different environments. The success of the decision policies was measured by three perfor-
mance criteria, all of which average the payoffs accruing from all possible games in an envi-
ronment: The indifference criterion is the average expected performance of a policy if the
population of opponents’ decision policies is uniformly distributed. The Wald criterion is the
performance of a given policy if it is unlucky enough to be paired with its worst possible
opponent (i.e., the opponent that minimizes a policy’s performance). This criterion indicates
a policy’s robustness to extreme strategic uncertainty. Finally, the composition-robustness cri-
terion allows for every possible mixture (composition) of opponent policies in the population
and is calculated using the percentile ranking (in terms of the expected payoffs) of a decision
policy in an environment, averaged across all possible compositions of opponent policies.?
Let us consider three of the main results. First, which of the 10 decision strategies per-
formed well across the game environments? Fig. 1 plots the performance of each policy aver-
aged over all possible environments. Contrary to Sterelny’s (2003) intuition, the L1 heuristic,
a relatively simple heuristic that is often observed in games (see table 3 in Spiliopoulos &
Hertwig, 2020) performed very well across a wide range of environments and opponent types.
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Fig. 2. Robustness of selected decision strategies and environments in face of uncertainty about payoffs (ranging
from 0% to 80% missing payoffs). Consistency is defined as the percentage of choices made by a strategy across
games that are identical to the choices that would have been made had there been full knowledge of payoffs
(i.e., 0% missing payoffs). From Spiliopoulos and Hertwig (2020). Copyright 2020 by American Psychological
Association. Reproduced with permission.

That is, the L1 heuristic was robust to uncertainty (as was the similar, but more complex, D1
heuristic). Relative to the normative Nash equilibrium solution, the L1 heuristic makes two
simplifications: It completely ignores the opponent’s payoffs, and it assumes equal weighting
when calculating the expected payoffs for each action, choosing the action with the maxi-
mum expected payoff. Equal weighting ensures that a heuristic will not choose a dominated
strategy, which would be suboptimal regardless of the type of opponent. This is an example
of a heuristic adhering to a property that is beneficial regardless of the environmental charac-
teristics. Second, as Fig. 1 shows, the Nash equilibrium was not the best performer by any of
the three criteria and was dominated by both L1 and D1. This result is diametrically opposed
to Sterelny’s (2003) argument about competitive environments. Recall that the Nash equilib-
rium is the best response to an opponent also playing Nash; it is not guaranteed to perform
well against other heuristics. Third, as Fig. 2 illustrates, the L1 heuristic also proved to be
much more robust than the Nash equilibrium in the face of uncertainty caused by incom-
plete knowledge about payoffs. Spiliopoulos and Hertwig (2020) also produced, separately
for each strategy, maps of ecological rationality, that is, descriptions of ecological niches
(defined by the extent of payoff uncertainty and the size of the action set) in which a given
strategy performs well and where it falls behind other strategies. Fig. 3 shows the maps for
the L1 heuristic and the Nash equilibrium.

To conclude, this analysis shows that (some) simple heuristics can also perform very well
in highly competitive and strategic environments. Complexity in social environments does
not spell doom for heuristic approaches. As detailed in Spiliopoulos and Hertwig (2020), the
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Fig. 3. Ecological map of the performance of the L1 heuristic and the Nash equilibrium (NE) in neutral envi-
ronments according to the indifference criterion. The darker the shading, the better the performance. A white dot
means that in these niches the respective strategy belongs to the top-performing policies. From Spiliopoulos and
Hertwig (2020). Copyright 2020 by American Psychological Association. Reproduced with permission.

heuristics commonly used by participants in experimental studies of games (e.g., L1 and D1)
proved to be ecologically rational policies for those specific environments. Thus, abandoning
normative axioms and Bayesian principles in strategic interactions is not a recipe for disas-
ter and should not be summarily dismissed as irrational. But how do decision makers learn
about environmental structures and become able to select cognitive tools appropriate to the
environment in question?

6. How do people learn environmental structures?

For cognitive strategies to be successful, their use needs to be matched to the structure of
the environment. But how does the mind learn and adapt to relevant environmental structures?
The process of learning can take different paths. One path is for the mind to piggyback on the
experiences of others (see Katsikopoulos et al., 2010, for a related discussion of how proba-
bilistic cues enter the mind). That is, evolution, culture, and vicarious experience can trans-
mit knowledge about environmental structures. Yet sometimes people find themselves with
nobody to consult, observe, or imitate, with no explicit instruction, and even without feedback
on the consequences of their choices. Can they nevertheless learn important environmental
structures in an unsupervised or self-supervised manner? If this were the case, the coupling
of a heuristic with a particular environment would not have to be learned through explicit
instruction. The question of how people learn environmental structures has been investigated
in the context of risk-reward environments.
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Risks and rewards are typically inversely related: Large rewards tend to be rare, whereas
small to medium rewards tend to occur more often. This inverse risk-reward relationship is a
ubiquitous structure in the world (Pleskac & Hertwig, 2014). Being cognizant of this inverse
relationship offers an enormous return: It lifts the veil of ignorance about the likelihood that
an uncertain event (e.g., winning the lottery) will happen. As Pleskac and Hertwig proposed,
people can harness the risk—reward structure by applying a heuristic that infers the probability
that an event will occur from the payoff associated with that event. This heuristic can be
operationalized as follows:

For gambles that offer a single positive payoff and otherwise nothing, infer the proba-
bility of winning a payoff, p;, from the ratio of the cost of playing [/] to the total amount
of possible winnings [g] as follows: p,, = /(I + g). (p. 2006).

The heuristic is premised on people having learned the statistical regularity with which
risk and rewards are related—and being able to identify when they are unrelated (see Pleskac,
Conradt, Leuker, & Hertwig, 2021, for examples). To find out how such an awareness can
arise, Leuker, Pachur, Hertwig, and Pleskac (2018; see also Pleskac, Hertwig, Leuker, &
Conradt, 2019) conducted a series of experiments. One presented participants with three dif-
ferent risk-reward environments—one negatively correlated, one positively correlated, and
one uncorrelated—in which the events in question were represented as monetary gambles
(see Fig. 4). In each environment, gambles were constructed using the same marginal distri-
butions of payoffs and probabilities but different construction rules (e.g., high rewards linked
to low probabilities in the negatively correlated environment), plus noise.

In an initial learning phase, participants were presented with gambles (each consisting of
a reward and its associated probability) and asked to state the price at which they would be
willing to sell each gamble. Each participant was exposed to one of the three environments.
In a test phase, they were asked to choose between, for instance, a 100% chance of winning
E$50 and an unknown chance of winning E$100. In addition, they estimated each gamble’s
probability. Importantly, people were not explicitly instructed to pay attention to the relation-
ship between payoffs and probabilities, neither did they receive any feedback. Are there any
indications that they nevertheless figured out the structure of the risk—reward environment
they were facing?

Fig. 5 shows observed choices and estimates in the test phase. Participants’ preference,
as revealed through their choices of the option with an unknown probability, matched the
environment they had experienced. When the uncertain option offered a high payoff, partici-
pants chose this option about three out of five times in the positively correlated environment,
but only about one out of five times in the negatively correlated environment. Relatedly,
participants’ estimates of the unknown probability largely tracked the structure of the
risk—reward environment that they experienced in the learning phase.

These findings suggest that people can learn about risk—-reward structures, and presum-
ably other environmental structures, via incidental, unsupervised learning (Love, 2002). The
learning process may thus be similar in nature to the largely effortless one underlying concept
learning (e.g., Nelson, 1984; Ward & Scott, 1987). Note also that the positive risk—reward
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Fig. 4. Three experimentally manipulated risk—reward relationships. Payofts were made in laboratory currency
E$ to minimize the risk of participants enlisting risk-reward knowledge from real-world sources. Recreated from
Leuker et al. (2018). Copyright 2018 with permission from Elsevier. This version from Pleskac et al. (2019).
Reprinted courtesy of The MIT Press.

structure proved to be more difficult to learn than the negative one—perhaps because people
rarely, if ever, encounter positive relationships outside the laboratory, and thus require more
evidence to pick it up. After all, in the real world, there is “no free lunch.” It would therefore
seem that people’ experiential priors may inform and anchor this process of unsupervised
learning.

Implicit learning processes can thus be an important aspect in building a representation of
the environment that, in turn, guides choice behavior. Other mechanisms that are likely at play
at this intersection between environment and cognition are reinforcement learning processes
(Rieskamp & Otto, 2006) and memory processes (Marewski & Schooler, 2011). Revealing
how representations of the environment are formed is a necessary step toward understanding
which strategies work where. If the risk—reward structure were frequent and recurrent, but
decision makers were unable to learn and represent this structure, any fit between environment
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and heuristic architecture would be difficult to attain. Next, we address an equally important
issue: A theory of ecological rationality also requires a theory of the environment.

7. How to theorize rather than describe environmental structures?
Simon (1990) characterized the study of bounded rationality as follows:

Since we can rarely solve our problems exactly, ... [w]e must find techniques for solving
our problems approximately, and we arrive at different solutions depending on what
approximations we hit upon. Hence, to describe, predict and explain the behavior of a
system of bounded rationality, we must both construct a theory of the system’s processes
and describe the environments to which it is adapting. (pp. 6—7; emphasis added)

Simon’s call to analyze systems of bounded rationality has been heeded. Since the
mid-1990s, models of boundedly rational heuristics and, admittedly to a lesser extent, the
ecological structures to which these heuristics are adapting have been identified (see Hertwig
et al., 2019; Todd et al., 2012). There is now a growing catalog of environmental structures
conducive to the success of one heuristic or a class of heuristics: structures such as number of
alternatives, intercorrelations between cues (redundancy), and variability in the importance
of cues (see Todd et al., 2012). But the risk of simply listing these environmental structures
is that it impedes the ability to predict where and when decision-making tools should or
should not be applied. Moreover, a taxonomy of environments implies that the underlying
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structures are stable and that the plasticity of the cognitive process enables adaptation to
recurrent structures. Yet environmental structures—especially if they have coevolved with
the mind—need not be in a state of equilibrium. A cognitive process seeking to exploit a
specific structure may therefore make the wrong bet. It is important to study these boundary
conditions, as analyses of cognition—environment systems also need to find out when a
system stutters or breaks apart. A theory of the mechanisms that give rise to environmental
structures is therefore needed. Only then will it be possible to predict if a given heuristic will
succeed or fail. These considerations were the starting point for Pleskac et al. (2021), who
proposed that Simon’s (1990) objective be reframed as follows:

In order to describe, predict, and explain the behavior of a system of bounded ratio-
nality, one must construct theories of the system’s processes as well as theories of the
mechanisms behind the environmental structures to which the system is adapting (p.
326, emphasis added).

What would such a theory look like? Focusing again on the family of risk—-reward struc-
tures, Pleskac et al. (2021) proposed the competitive risk—reward ecology theory (CET) to
derive a set of boundary conditions for this structure in contexts in which humans compete
over limited resources. CET builds on a formal framework from behavioral ecology, the ideal
free distribution (IFD) principle (Fretwell & Lucas, 1969). In modern human-made environ-
ments, including those analyzed by Pleskac and Hertwig (2014), the driving forces between
risk—reward structures can typically be traced back to the marketplace. Buyers want high
rewards with minimal risks (at low costs), and sellers want the opposite. It is not only in insti-
tutionalized markets that agents have competing interests and compete over limited resources,
however. Both of these features characterize many formal and informal choice environments.

The IFD principle predicts on the level of the population how competitors distribute them-
selves in such choice environments to optimize their chances of success. Competitors in this
process are assumed to be ideal and free, meaning that they are capable of detecting the
patches with the highest rate of consumption and are free to move between patches. This,
in turn, means that they will move to patches that promise a higher consumption rate and
that, given time, the entire system will reach an equilibrium. At this point, the number of
competitors n, is proportional to the amount of resource r, in that patch:

ny O Fy. ()

As shown by Pleskac et al. (2021), based on two reasonable assumptions, this property of
the IFD specified in Eq. 1 can imply a risk-reward structure. The first assumption is that the
total amount of a resource is proportional to the size s, and number of resources m,:

ny & Syhty (2)

The second is that the probability that a competitor is able to obtain a resource p, is related
to both the number of resources and the number of other competitors such that

Py X my/ny (3)
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Substituting Eq. 2 into Eq. 3 reveals that the probability of successfully obtaining a resource
(or “success probability”) is inversely proportional to the size of the resource in a patch:

py x 1/s,

That is, if there is variation in the size of each resource between patches but not within patches
(e.g., because different patches consist of different habitat types), then individual competitors
will face a choice between patches that trades off resource size for the probability of obtaining
an item: a risk—-reward structure.

Having established this link between the risk—reward structure and the IFD principle,
Pleskac et al. (2021) then employed the CET framework to identify conditions under which
the coupling of risk and rewards will change, or not emerge at all. For example, let us con-
sider, one by one, the boundary conditions of a state of equilibrium, unlimited resources, and
ideal competitors. An IFD of competitors can be expected when the average consumption
of resources is equal across patches, that is, when the system is in equilibrium. If the sys-
tem cannot reach this state, or has yet to reach it, the distribution of competitors cannot be
expected to conform to an IFD, and a reliable inverse relationship between risk and reward
should not be assumed. This means, for instance, that a newly forming competitive market
will not have a risk—reward structure. The same holds when resources are unlimited. When
a resource is unbounded (e.g., air), there is no need to compete over it. Ergo, no risk-reward
structure should be expected.

The third boundary condition refers to the competitor’s ability to discriminate between the
quality of the patches. The IFD assumes that ideal competitors are perfectly sensitive to the
patches’ rate of consumption and are able to move to patches that maximize their success rate.
This assumption bears an uncanny similarity to the idea that homo economicus has unlimited
cognitive resources to maximize expected utility (Simon, 1955). What happens if we temper
competitors’ ability to detect differences in the quality of a patch, such that they overuse poor
patches and underuse rich patches? Fig. 6 shows how the risk-reward structure changes when
the number of resources is fixed between patches. As sensitivity to patch quality lessens, the
risk—reward structure flattens. A similar pattern occurs when there is variability in the number
of resources between patches, with the added characteristic that there is greater variability in
the success probabilities for lower-quality patches. Overall, this pattern of a flattening of the
risk—reward structure and increased variability in the success probability for smaller resources
(i.e., rewards) is also consistent with people’s empirical intuitions of the risk—reward structure
in Pleskac et al. (2021) experimental studies. This mapping suggests that key aspects of an
ecology of competition shape people’s representation of the risk—reward structure.

To conclude, CET enables researchers to go beyond blanket statements such as “the risk—
reward heuristic fits a risk—reward environment.” Analyzing the dynamics behind the evolu-
tion of an environmental structure reveals conditions that make it possible to predict when
the risk—reward heuristic will be less or not at all successful. On this basis, it is possible to
empirically test if and to what extent people employ the heuristic or suspend its use when
they encounter specific boundary conditions. Pleskac et al. (2021) conducted a set of empiri-
cal tests and found that people’s beliefs about the probabilities of diverse set of rewards (e.g.,
money, rental apartment) map onto the properties predicted by CET, and that beliefs change
systematically as a function of the experienced environment. CET affords the opportunity not
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Success probability

Resource size

Fig. 6. Success probability as function of resource size for different levels of sensitivity to patch quality. As sensi-
tivity to patch quality lessens and competitors become less ideal (indicated by lighter lines), success probabilities
become less extreme for small resources and more extreme for large resources. From Pleskac et al. (2021). Copy-
right 2021 by American Psychological Association. Reproduced with permission.

only to explain human behavior, but also to identify a priori conditions in which a particular
strategy or heuristic should or should not be used. It can thus serve as a key component, we
contend, in extending notions of rationality.

More generally, the vision of ecological rationality, with its core assumption of fit between
a decision making process (e.g., heuristic) and a particular environment—be it physical, bio-
logical, social, or cultural—requires theories about the environment. In our view, such theo-
ries can originate in a wide range of disciplines, including behavioral ecology (as in the case
of the IFD), economics, sociology, and physics. These theories will not be ready to use but
represent starting points for the cognitive modeler. Returning to the example of CET, Pleskac
et al. (2021) identified eight ecological conditions that directly impact whether or not and to
what extent a risk—reward structure is to be expected in a given environment. Only then was it
possible to investigate to what extent people’s cognition is indeed adapted to the risk—reward
structure as well as to these conditions. Another question when enlisting theories from other
fields is whether the environmental structure in question is part of the individual’s subjective
ecology, that is, the ecology that emerges through the interaction of the individual’s cogni-
tive, sensory, and body systems with the physical environment (akin to von Uexkiill’s, 1957,
notion of Umwelt). In other words, taking an ecological rationality perspective does not mean
that psychological research will be reduced to those disciplines from which theories of the
environment can be sourced.

8. Ecological rationality and other approaches to bounded rationality: How do they
relate?

The progress that has been achieved in the study of ecological rationality does not mean
that no challenges remain. One important challenge resides in the notion of “fit” between
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cognition and environment. Is the required fit best understood in terms of a lock-and-key rela-
tionship in which a small mismatch disables the function? This is unlikely, not least because
environmental structures are subject to perturbation and because the perception and learning
of structures are imprecise. One avenue for future research is to characterize or even quantify
the necessary and sufficient degree of fit for a heuristic to succeed. Another key question is
how the mind selects a heuristic from the adaptive toolbox. As the analysis by Spiliopou-
los and Hertwig (2020) as well as other analyses (see, e.g., Gigerenzer & Brighton, 2009;
Hertwig et al., 2019) have shown, there is typically great variability in the performance of
heuristics in a given environment. Choosing the wrong heuristic may prove costly. How then
do individuals learn which heuristics to select? Various answers have been proposed, includ-
ing individual reinforcement learning (Rieskamp & Otto, 2006), social learning (Hertwig,
Hoffrage, & the ABC Research Group, 2013), ecological niches that do some of the work in
strategy selection (Marewski & Schooler, 2011), and meta-inductive strategies that consider
heuristics’ past success (Schurz & Thorn, 2016). Recent work on resource rationality repre-
sents another important approach to analyzing and modeling the issue of strategy selection.

Before we turn to the other approaches of (bounded) rationality presented in this special
issue, let us mention another insight relevant to strategy selection. In a simulation of preferen-
tial choice heuristics, Hertwig et al. (2019) observed that a simple heuristic, the equiprobable
heuristic, on average performed very well relative to competitor strategies when knowledge
about the kind of environment faced was very limited. Similarly, its strategic counterpart, the
L1 heuristic, exhibits significant robustness to high levels of payoff uncertainty and strategic
uncertainty (Spiliopoulos & Hertwig, 2020). Resigning oneself to the existence of irreducible
uncertainty by adopting the principle of indifference is often better than denying its existence
and engaging in a futile attempt to attach highly specific probabilities to events. It thus seems
possible that some heuristics may offer good fallback options when an informed strategy
selection is not possible.

8.1. Resource rationality

Like the ecological rationality program, the resource rationality program (e.g., Lieder &
Griffiths, 2020; Prystawski & Lieder, 2022) models the operation of simple cognitive pro-
cesses as an adaptive response to cognitive and external constraints, and acknowledges the
key role of environmental structures for behavior. How do these two approaches relate? To a
large extent, they make complementary contributions. For instance, resource rationality anal-
ysis provides a computationally fleshed-out framework for modeling cognitive strategies and
the mind’s natural constraints as well as processes of strategy selection. The study of eco-
logical rationality, in turn, pinpoints the specific properties of the environment that permit
information processes to be simplified while maintaining accuracy.

There are also important differences between the two programs. First, although both pro-
grams would predict that the mind will choose a simple heuristic that works well in a partic-
ular environment, the study of ecological rationality also emphasizes the importance of theo-
rizing and modeling the structure of the environment. This has led, for instance, to insights on
how risks and rewards are associated in many environments shaped by competition (Pleskac
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& Hertwig, 2014; Pleskac et al., 2021). In contrast, the study of resource rationality focuses on
the problem of strategy selection, based on an accuracy—effort trade off. In addition, whereas
resource rationality assumes that strategy selection is based on the mind “trad[ing] off accu-
racy against effort in an adaptive, nearly optimal manner” (Lieder & Griffiths, 2020, p. 5),
ecological rationality does not assume such optimality. Rooted in Simon’s notion of satis-
ficing, strategy selection will be ecologically rational even if the strategy is merely “good
enough” in the given context.

8.2. Quantum models of cognition

Another approach that can be understood as reflecting Simon’s bounded rationality, but less
so ecological rationality, is that of quantum cognitive models (Busemeyer & Bruza, 2012;
Pothos & Busemeyer, 2013). These models are constructed not on the basis of classical prob-
ability theory, as is the conventional approach, but on the basis of quantum probability the-
ory (e.g., Anderson et al., 2004; Gershman, Horvitz, & Tenenbaum, 2015; Griffiths, Chater,
Kemp, Perfors, & Tenenbaum, 2010). This approach permits the models to better respect the
mind’s computational limits. Consider, for illustration, Tversky and Kahneman’s (1983) stud-
ies on the conjunction fallacy. Participants were told about a woman, Linda, who majored in
philosophy and was concerned with issues of discrimination and social justice. They were
then asked to judge the probability that Linda was, among other options, a bank teller or a
feminist bank teller. Classical theory assumes that this narrative generates a sample space
for all possible combinations of characteristics for Linda, including unfamiliar ones such as
feminist bank teller (Pothos & Busemeyer, 2013). In contrast, quantum probability and, by
extension, quantum models of cognition only require a representation for each question or
trait under consideration, a property that would seem to become more cognitively signifi-
cant as additional questions are considered (other interpretations of the Linda task challenge
the assumption of a probability judgment altogether; see, e.g., Hertwig & Gigerenzer, 1999).
Thus, in this sense, quantum models of cognition are concerned with and aim to respect the
mind’s computational constraints, a concern they share with models of ecological rationality.

However, there are also differences. One is that the adaptive toolbox of ecological ratio-
nality is largely composed of distinct and independent tools (Hertwig, Pleskac, & Pachur,
2019), even if respective heuristics are constructed from the same cognitive building blocks.
Quantum models of cognition as well as models grounded in classical probability theories,
in contrast, are woven around a coherent set of axioms (Busemeyer & Bruza, 2012). Such
an approach can be advantageous as it makes it possible to show how quantum models of
cognition can meet coherence criteria of rationality like the Dutch Book Theorem (Pothos,
Busemeyer, Shiffrin, & Yearsley, 2017). A future challenge for the heuristics of the adap-
tive toolbox is whether a core set of principles or building blocks can be identified. There
have been some suggestions (Gigerenzer & Gaissmaier, 2011), but more work is needed to
establish how heuristics are derived from those building blocks. Quantum information the-
ory may provide such a starting place (Kvam & Pleskac, 2017). At the same time, ecolog-
ically rational heuristics are clearly more process-oriented, specifying how search for infor-
mation unfolds, when search is stopped, and how people integrate the information into a
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response (Gigerenzer & Gaissmaier, 2011). A challenge is for quantum models of cognition
will be to be more explicit about such elementary processes (see, e.g., Busemeyer, Kvam,
& Pleskac, 2020; Kvam, Busemeyer, & Pleskac, 2021; Kvam, Pleskac, Yu, & Busemeyer,
2015).

8.3. What about alternative standards of rationality?

Let us conclude this comparative discussion with a final remark. The concept of rationality
appears to imply a single universal standard against which it is possible to assess rationality.
Almost by definition, it is therefore impossible to endorse alternative standards of rationality,
because of the conundrum of potentially being rational according to one standard but devi-
ating from rationality according to the other. Does the ecological rationality framework, like
rationality concepts with a universality ambition, imply that alternative notions of rationality
must be abandoned? Our answer is no for at least three reasons. First, the notion of ecological
rationality builds on the assumption of different ecological niches and structures in the world.
This implicates, by definition, distinct benchmarks of adaptive behavior and, by extension,
rationality. Take, for instance, the notion of coherence. Undoubtedly, the ecological ratio-
nality framework strongly challenges the assumption that coherence is a universal, domain-
general criterion of rationality; and yet there are, of course, environments in which reasoning
in accordance with norms of coherence is absolutely crucial in the service of an organism’s
goals—for example, in the exercise of transitive inference to infer status hierarchies or coher-
ence in the service of safeguarding equal protection of the law (see the discussion on the
“ecological rationality of coherence” in Arkes et al., 2016). Second, the ecological rationality
framework acknowledges the major distinction between risk and (numerically immeasurable)
uncertainty (Keynes, 1937; Kozyreva et al., 2019), with the former permitting optimization
frameworks and the latter rendering optimization impossible. Third, the ecological rational-
ity framework challenges any notion of a universal, domain-general criterion of rationality.
Therefore, its solution to the apparent conundrum of potentially being rational according to
one standard but not another is that there is not or need not be any such conundrum. It is quite
possible that one framework is best suited for one class of environments and misaligns with
another. The putative conundrum originates in the claim of universality. Once this claim is
suspended, conflicts can be resolved by identifying the environments in which a given stan-
dard is the most “fitting” and those in which it is misplaced.

One future challenge for the ecological rationality framework is to investigate its utility and
its implications in domains in which relevant cognitive strategies and the texture of the envi-
ronment are still relatively little understood. Recently, for instance, the process of language
understanding has been interpreted as a process of Bayesian inference and a special case of
social cognition in which listeners assume that speakers choose their utterances in an approx-
imately optimal way; listeners, in turn, interpret an utterance by using Bayesian inference
to “invert” the speaker’s model (e.g., Goodman & Frank, 2016; Goodman & Stuhlmiiller,
2013). An alternative view would be to think of the process of utterance production and
understanding as a heuristic process. For instance, in Wilson and Sperber’s (2004) theory,
the “relevance-theoretic comprehension procedure” (a) follows the “path of least effort in
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computing cognitive effects”—that it, it tests interpretive hypotheses “in order of accessibil-
ity” and (b) stops “when expectations of relevance are satisfied” (p. 613). It can be seen as
“a ’fast and frugal heuristic,” which automatically computes a hypothesis about the speaker’s
meaning on the basis of the linguistic and other evidence provided” (p. 625).

From this perspective on heuristic strategies for inferential comprehension, an important
next step would be to identify relevant environmental structures and to model the fit of the
strategies (or lack thereof) to those structures.

9. Conclusion

We are not advocating for a theory of rationality to be grounded solely in the structure
of the environment. Our emphasis lies in the study of the cognition—environment system.
Clearly, studying the environment can be immensely important. When trying to predict the
shape gelatin will take when it solidifies, *“...we do not study the gelatin; we study the shape
of the mold in which we are going to pour it” (Simon, 1990, p. 6). This is true enough, but
the shape of the mold does not explain why gelatin can take the shape of the container, nor
does it explain why gelatin wiggles when shaken. It was only by examining gelatin in depth
that chemists discovered that a netting formation of protein chains allows the gelatin to hold
the shape of the mold. Investigating the mold and the gelatin in tandem helped chemists to
understand its behavior. In the same way, the mind is shaped not only by the environment in
which it is placed, but also by the neural and cognitive structures of which it is composed. Let
us study them in tandem.
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Notes

1 Lévi-Strauss (1962) described the “bricoleur” as follows: They are “adept at performing
a large number of diverse tasks; but, unlike the engineer, [they do] not subordinate each
of them to the availability of raw materials and tools conceived and procured for the
purpose of the project” (p. 11). A similar image was proposed by Wimsatt (2007), who
characterized the mind and its competences as akin to that of a “parts dealer and crafty
backwoods mechanic, constantly fixing and redesigning old machines and fashioning
new ones out of whatever comes easily to hand” (p. 10). Neither the bricoleur nor the
crafty backwoods mechanic fit the assumption of a single universal decision policy that
determines the best course of action as implied by, for instance, expected utility theory.
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2 By abandoning the ideal of a universal framework of rationality such as expected utility
theory, the ecological rationality framework faces the question of how to define the suc-
cess of a heuristic or of any cognitive strategy. Clearly, this framework no longer assumes
a single success criterion or even a family of criteria such as internal consistency stan-
dards that concern purely syntactical relations between behaviors (e.g., property «; Sen,
1993). More generally, the ecological rationality framework focuses on correspondence
criteria (Hammond, 1996) that concern relations between behavior and the environment,
using measures such as how healthy, rich, successful in school, happy in marriage, or
accurate, frugal, or fast a behavior such as a choice, judgment, or inference is (see Arkes,
Gigerenzer, & Hertwig, 2016; Schurz & Hertwig, 2019). One important methodological
imperative when testing the success of cognitive strategies is comparative testing, that is,
testing simpler processes against computationally more complex alternatives and com-
petitors and, ideally, using multiple success criteria to examine the extent to which results
converge. This imperative also guided Spiliopoulos and Hertwig’s (2020) analysis.
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