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Antibiotic resistance in hospital-acquired ESKAPE-E infections in low- and
lower-middle-income countries: a systematic review and meta-analysis
Olaniyi Ayobami a*, Simon Brinkwirtha*, Tim Eckmannsa and Robby Markwart a,b*
aUnit for Healthcare Associated Infections, Surveillance of Antimicrobial Resistance and Consumption, Department of Infectious Disease
Epidemiology, Robert Koch Institute, Berlin, Germany; bJena University Hospital, Institute of General Practice and Family Medicine, Jena,
Germany

ABSTRACT
Antimicrobial resistance (AMR) and hospital-acquired infections (HAIs) are global health challenges. The burden of
antibiotic resistance in HAIs is still unclear in low- and lower-middle-income countries (L-LMICs). This study
summarizes recent data on antibiotic resistance in priority HAIs (ESKAPE-E) in L-LMICs and compares them with data
from high-income countries (HICs). EMBASE, Web of Science, and Global Index Medicus were searched for studies on
AMR patterns in HAIs published from 01/2010 to 10/2020. Random-effects meta-analyses were performed to obtain
pooled estimates. In total, 163 eligible studies were included in the review and meta-analysis. The pooled methicillin
resistance proportion in Staphylococcus aureus was 48.4% (95% confidence interval [95%CI] 41·7-55·2, n = 80). Pooled
carbapenem resistance proportions were high in Gram-negative pathogens: Escherichia coli: 16·6% (95%CI 10·7-23·4,
n = 60); Klebsiella pneumoniae: 34·9% (95%CI 24·6-45·9, n = 50); Pseudomonas aeruginosa: 37.1% (95%CI 24·6-45·9, n =
56); Enterobacter spp.: 51·2% (95%CI 27·5-74·7, n = 7); and Acinetobacter baumannii (complex): 72·4% (95%CI 62·1-
81·7%, n = 36). A higher resistance proportions were observed for third-generation cephalosporins: Klebsiella
pneumoniae: 78·7% (95%CI 71·5-85·2, n = 46); Escherichia coli: 78·5% (95%CI 72·1-84·2%, n = 58); and Enterobacter spp.:
83·5% (95%CI 71·9-92·8, n = 8). We observed a high between-study heterogeneity (I2 > 80%), which could not be
explained by our set of moderators. Pooled resistance proportions for Gram-negative pathogens were higher in L-
LMICs than regional and national estimates from HICs. Patients in resource-constrained regions are particularly
affected by AMR. To combat the high resistance to critical antibiotics in L-LMICs, and bridge disparities in health, it is
crucial to strengthen local surveillance and the health systems in general.
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Introduction

The declining effectiveness of antibiotics against bac-
terial infections is undermining the previous gains of
the last century. Antimicrobial resistance (AMR)
imposes significant health and economic toll on the
individual and population health [1]. This challenge
becomes more acute with diminishing numbers of
new antibiotics in the drug development pipeline [2].

The leading cause of hospital-acquired infections
(HAIs) worldwide includes Enterococcus faecium, Sta-
phylococcus aureus, Klebsiella pneumoniae, Acineto-
bacter baumannii, Pseudomonas aeruginosa,
Enterobacter spp., and Escherichia coli (ESKAPE-E)
infections [3]. ESKAPE-E pathogens embody the top
five bacterial families – with relevant intrinsic resist-
ance and expansive capacity to acquire multi-drug
resistance – prioritized as a global health threat
urgently in need of new antibiotic research and devel-
opment by the World Health Organization (WHO)

[2]. Even though comprehensive data are scarce, pre-
vious studies suggest the low- and lower-middle-
income (L-LMICs) are most likely to be the worst
hit by the declining effectiveness of antibiotics due
to pre-existing developmental challenges, including
specific health system challenges [4,5].

A previous systematic review by Allengranzi and
colleagues [5] showed that the burden of HAIs is
higher in resource-limited countries than it is in the
high-income countries (HICs). However, no study
has comprehensively assessed the magnitude of anti-
biotic resistance pattern of HAIs in L-LMICs –
much needed to benchmark, plan and evaluate inter-
ventions. Therefore, this systematic review estimated
the proportion of antibiotic resistance in hospital-
acquired ESKAPE-E infections in L-LMICs as well as
the associated mortality. We further compared these
estimates from L-LMICs with national and regional
estimates from high-income countries.
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Methods

This systematic review and meta-analysis were con-
ducted according to a protocol published a priori in
the Prospective Register for Systematic Reviews
(CRD42020210481) and followed the updated guide-
lines from the Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) statement [6].

Study outcomes

The primary outcome of this study is the antibiotic
resistance proportion in bacterial isolates from
patients with hospital-acquired infections in L-
LMICs (World Bank classification) [7]. The antibiotic
resistance proportion is defined as the total number of
isolates tested as resistant or intermediate against a
given antibiotic among all tested isolates. We analysed
antibiotic resistance proportions in ESKAPE-E organ-
isms: vancomycin-resistant E. faecium (VRE), methi-
cillin-resistant S. aureus (MRSA), vancomycin-
resistant S. aureus (VRSA), vancomycin-resistant
MRSA (VR-MRSA), carbapenem-resistant
K. pneumoniae (CRKP), third-generation cephalos-
porin-resistant K. pneumoniae (TGCR-KP), carbape-
nem-resistant A. baumannii (complex) (CRAB),
carbapenem-resistant P. aeruginosa (CRPA), carbape-
nem-resistant Enterobacter spp. (CREnt), third-gener-
ation cephalosporin-resistant Enterobacter spp.
(TGCR-Ent), carbapenem-resistant E. coli (CREC)
and third-generation cephalosporin-resistant E. coli
(TGCR-EC). The secondary outcome is the attribu-
table or all-cause mortality of patients with HAIs
due to any of the above-mentioned antibiotic-resistant
bacteria.

Search strategy

The electronic databases EMBASE (including MED-
LINE databank), Web of Science, and Global Index
Medicus (Africa, Eastern Mediterranean, South-East
Asia, Latin America and the Caribbean, and Western
Pacific Region) were searched for studies published
from 1st January 2010 to 22nd October 2020 (date
of the last search). The detailed search strategy is pro-
vided in the Supplementary document. Title, abstract
and full-text screening were independently performed
by at least two authors (OA, SB, RM) using Covidence,
a software tool recommended by the Cochrane Com-
munity [8]. All disagreements were resolved by discus-
sion or by a third reviewer.

Study selection criteria

Studies were included if they met the following cri-
teria: (i) studies reported quantitative data (number
of resistant isolates + number of tested isolates) for at

least one of the predefined antibiotic-pathogen combi-
nations with at least 10 tested isolates per combi-
nation; (ii) bacterial isolates were derived from
hospital-acquired infections; (iii) the study was con-
ducted in low- or lower-middle-income countries;
(iv) data collection was completed after 12/2009; (v)
the patient cohort represented a largely unselected
population in the healthcare facility, i.e. not only
high-risk patients (such as low birth weight neonates)
or those with a specific underlying disease; (vi) the
study was written in English, French, German, Span-
ish or Portuguese. Studies with the following design
were excluded: narrative or systematic reviews, case
reports, and case series.

Data extraction and risk of bias assessment

The data of all eligible studies were independently
extracted by at least two authors (OA, SB, RM)
using standardized forms. All disagreements were
resolved through discussion or by a third reviewer.
The data extraction included the primary and second-
ary outcomes and the following study characteristics:
First author, year of publication, study period,
country, city, WHO region, continent, national
income level category, study design, regional or
national representativeness, hospital setting, age
group, hospital type, antimicrobial susceptibility test-
ing (AST) guideline used, and HAI type. In cases
where studies reported resistance data for several anti-
biotics from one antibiotic class (e.g. meropenem, imi-
penem, and ertapenem for carbapenem resistance),
the data with the highest resistance proportion were
extracted. All included studies were assessed for risk
of bias by at least two authors (OA, SB, RM). The
risk of bias was judged for three domains: (i) national
or regional representativeness of included patients/
HAI isolates, (ii) sample selection method, and (iii)
use of a sound microbiological method for pathogen
identification and AST. The risk of bias for national
or regional representativeness was judged as “low” if
the study explicitly used an appropriate method. The
risk of bias for sample selection was judged as “low”
if the study included all patients/HAI isolates in the
study period (e.g. by consecutive inclusion of all
patients/isolates) or used some form of random selec-
tion. If the study used established methods for patho-
gen identification and AST (e.g. automated systems,
such as Vitek, Phoenix, or BacTec, as well as AST
guidelines, such as CLSI and EUCAST), the risk of
bias was judged as “low”. Otherwise, the risk of bias
was adjudged as high for the three criteria.

Statistical analysis

For data analysis and presentation, data were grouped
according to the antibiotic-pathogen combination
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(e.g. carbapenem resistance in E. coli isolates). Pooled
estimates were calculated using random-effects
models with a Tukey Double Arcsine transformation
[9] of the raw proportions. The DerSimonian-Laird
estimator was used to define τ² (between-study var-
iance). I2 statistics quantified the statistical heterogen-
eity of the selected studies. We performed pre-planned
subgroup analyses for WHO regions, national income
level, hospital setting, and age groups (adults vs. pae-
diatrics i.e. age less than 18years). Subgroups were
only included in subgroup analyses if they included
at least three studies. In order to study the potential
influence of covariates (moderators) on the pooled
effect sizes and the between-study variance, we con-
ducted a moderator analysis [10]. The following mod-
erators were considered: Study design (multicentre,

single centre), WHO region, national income level,
patient age group and HAI type. All statistical analyses
were performed using “R” (v. 4.0.2) [11] using
the packages meta [12] (v. 4.18-0) and metafor [13]
(v. 2.4-0).

Results

In total, 163 studies were included in this systematic
review and meta-analysis (see Figure 1 and Sup-
plementary Table 1). Comprehensive overviews of
the results of this study are presented in Tables 1
and 2, and forest plots of the main analyses in Sup-
plementary Figures 1–11. A comparison of our data
with regional and national resistance data from
upper-middle and HICs is presented in Table 3. The

Figure 1. Flow chart of study selection.

Table 1. Summary of resistance proportions in HAIs reported from studies conducted in low- and lower-middle-income countries.

Pathogen
Pooled proportion
in % (95% CI)

Number of studies, range
of study estimates (median %) Heterogeneity (%)

Gram-positive pathogens
Methicillin resistance in S. aureus (MRSA) 48.4

(41.7–55.2)
n = 80
0–100 (47.9)

I2 = 97.3, Q = 2935, p < 0.0001

Vancomycin resistance in S. aureus 0.6%
(0–1.8)

n = 39
0–30.4% (0%)

I2 = 82.5%, Q = 217, p < 0.01

Vancomycin resistance in MRSA 1.7%
(0–9.5)

n = 23
0–58.8% (0%)

I2 = 98.4%, Q = 1338, p < 0.01

Vancomycin resistance in E. faecium – n = 1
23%

–

Carbapenem resistance proportions in Gram-negative pathogens
K. pneumoniae 34.9

(24.6–45.9)
n = 50
0–100 (33.3)

I2 = 95.3, Q = 1043, p < 0.01

A. baumannii (complex) 72.4
(62.1–81.7)

n = 36
0–100 (83.4%)

I2 = 96.3, Q = 943, p < 0.01

P. aeruginosa 37.1
(29.3–45.2)

n = 56
0–88.5 (41.2)

I2 = 94.9, Q = 1071, p < 0.01

E. coli 16.6
(10.7–23.4)

n = 60
0–100 (14.0)

I2 = 95.9, Q = 1431, p < 0.01

Enterobacter spp. 51.2
(27.5–74.7)

n = 7
5.4–97.4 (51.1)

I2 = 96.2, Q = 156, p < 0.01

Third-generation cephalosporin resistance proportions in Gram-negative pathogens
K. pneumoniae 78.7

(71.5–85.2)
n = 46
16.7–100 (75.0%)

I2 = 91.2, Q = 512, p < 0.01

E. coli 78.5
(72.1–84.2)

n = 58
19.7–100 (79.5%)

I2 = 94.6, Q = 1053, p < 0.01

Enterobacter spp. 83.5
(71.9–92.8)

n = 8
67.8–100 (79.8)

I2 = 85.3, Q = 48, p < 0.01

CI, confidence interval.
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main characteristics of the included studies are sum-
marized in Supplementary Table 1. The 163 included
studies were conducted in 24 different countries
(eight in Low-income and 16 in Lower-middle-
income countries) and were distributed over four
WHO regions: African Region (31), Eastern Mediter-
ranean Region (56), South-East Asian Region (67),
and Western Pacific Region (9) (Figure 2). In our
study set, the most represented countries were India
(n = 61) and Egypt (n = 36). The majority of studies
were conducted hospital-wide (n = 78) or in intensive
care units (ICUs: n = 64), and the remaining 21 studies
were conducted in specialized wards with or without
ICUs.

The overall risk of bias was judged as “moderate”
(88/163, 54.0%) or “high” (74/163, 45.4%) in almost
all studies (162/183, 99.4%), while it was judged as
“low” in only one study (Supplementary Table 2).
Apart from two studies from Benin [14] and Ghana

[15] that explicitly included nationally representative
hospital/patient samples, the risk of bias for the
regional or national representativeness of the studied
hospital population was assessed as “high” in all
studies (n = 161).

The pooled TGCR proportion was 78.5% (95%CI
72.1–84.2%, range: 19.7–100%, median: 79.5%, n =
58), 78.7% (95%CI 71.4–85·2%, range: 16.7–100%,
median:75.0%, n = 46) and 83.5% (95%CI 71.9–
92.8%, range: 67.9–100%, n = 8) for E. coli,
K. pneumoniae and Enterobacter spp., respectively
(Table 1, Figure 3).

Regional subgroup analyses revealed that pooled
TGCR proportions in E. coliHAI isolates were statisti-
cally significantly lower in WHO Africa (58.3% [95%
CI 45.5–70.6%], n = 18) compared to WHO Eastern
Mediterranean (90.9% [95%CI 72.9–100%], n = 8; Q
= 8. 02, p = 0.005) and WHO South-East Asia (83.0%
[95%CI 76.5–88.8%], n = 16; Q = 12.73, p = 0.0004).

Table 2. Pooled resistance proportions (% with 95% confidence interval and number of studies) in hospital-acquired infections in
low- and lower-middle-income countries per WHO region.
Pathogen WHO Africa WHO Eastern Mediterranean WHO South-East Asia WHO West-Pacific

S. aureus
Methicillin resistance in S. aureus (MRSA) 49.6 (37.4–61.7, n = 22) 56.6 (43.2–69.5, n = 21) 41.0 (29.9–52.5, n = 33) 63.2 (42.8–81.6, n = 4)
Vancomycin resistance in S. aureus 0.6% (0–3.7, n = 6) 3.9% (0–14.8, n = 10) 0.0% (0–0.7, n = 23) –
Vancomycin resistance in MRSA 0.6% (0–5.6, n = 3) 3.1% (0–10.5, n = 7) 1.5% (0–16.4, n = 13) –
Carbapenem resistance proportions in Gram-negative pathogens
K. pneumoniae 28.4 (0–87.0, n = 4) 54.1 (32.5–74.9, n = 13) 29.6 (18.4–42.0, n = 27) 26.3 (1.7–63.8, n = 6)
A. baumannii (complex) 1·6 (0–10.8, n = 3) 77.0 (53.8–94.2, n = 12) 76.8 (63.1–88.3, n = 13) 82.8 (71.5–91.8, n = 8)
P. aeruginosa 13.7 (0–57.3, n = 5) 32.7 (19.6–47.1, n = 17) 38.4 (28.3–49.0, n = 27) 60.6 (43.9–76.2, n = 7)
E. coli 7.1 (0–19.4, n = 11) 16.5 (6.4–29.5, n = 14) 20.7 (12.3–30.4, n = 33) 12.1 (0–71.7, n = 2)
Enterobacter spp. 5.3 (0–21.2, n = 1) 65.3 (21.0–98.0, n = 2) 57.8 (16.6–93.4, n = 3) 54.6 (24.2–83.3, n = 1)
Third-generation cephalosporin resistance proportions in Gram-negative pathogens
K. pneumoniae 61.8 (45.9–76.5, n = 9) 93.5 (85.6–98.7, n = 8) 79.7 (70.3–87.8, n = 26) 70.2 (33.8–96.3, n = 3)
E. coli 58.3 (45.5–70.6, n = 16) 90.9 (72.9–100, n = 8) 83.0 (76.5–88.8, n = 32) 91.4 (62.2–100, n = 2)
Enterobacter spp. 80.1 (65.7–91.6, n = 2) 93.8 (75.1–100, n = 1) 84.1 (66.4–96.2, n = 4) 72.7 (42.1–95.6, n = 1)

Table 3. Comparison of resistance proportions in ESKAPE-E organisms between resource-limited countries and upper-middle-
income and high-income countriesa.

Pathogen
L-LMIC countries (pooled

estimates)
United Statesb

[41]
ReLAVRAc

[50]
EU/EEAd

[39] Germanye
Japanf

[42]
Chinag

[43,51]

S. aureus
MRSA 48.2% 40.6% 47.7% 15.5% 9.9% 46.1% 31.4%
VRSA 0.6% – – – 0.0% 0.0% 0.0%
VR-MRSA 1.7% 0.1% – – – 0.0% –
Carbapenem resistance in Gram-negative pathogens
K. pneumoniae 34.8% 4.7% 16.5% 7.9% 0.6% 0.5% 20.9%
P. aeruginosa 37.1% 13.3% – 16.5% 12.9% 20.0% 23.6%
E. coli 16.6% 0.6% – 0.3% 0.0% 0.2% 1.9%
Enterobacter spp. 51.2% 4.6% – – 0.5% 4.7% –
A. baumannii 72.4% 33.9% – 32.6% 4.7% 1.8% 70.7%
Third-generation cephalosporin resistance in Gram-negative pathogens
K. pneumoniae 78.7% 22.9% 62.2% 31.3% 13.1%% 11.4% 47.3%
E. coli 78.6% 22.0% – 15.1% 11.8% 28.9% 59.3%
Enterobacter spp. 83.5% 9.5% – – 25.6% 37.2% –

L-LMICs, Low- and lower-middle-income countries.
aAll data are for nosocomial infections unless otherwise stated.
bNational surveillance data (2019), Acinetobacter and Klebsiella not speciated.
cRegional surveillance including surveillance data from 19 South American countries (2016), K. pneumoniae data included both nosocomial and non-noso-
comial isolates.

dRegional surveillance data (2019) from the European Antimicrobial Resistance Surveillance Network (EARS-Net), invasive nosocomial and non-nosocomial
infections (CSF + bloodstream), Acinetobacter not speciated.

eNational surveillance data (2019) from the Antibiotika-Resistenz-Surveillance (ARS).
fNational surveillance data (2019), Acinetobacter not speciated.
gNational surveillance data for 2017 except MRSA which included only 2019 data, nosocomial and non-nosocomial infections, Acinetobacter not speciated.
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Similarly, pooled TGCR proportions were also lower
in K. pneumoniae in WHO Africa (61.8% [95%CI
45.9–76.5%], n = 9) compared to WHO Eastern Med-
iterranean (93.5% [95%CI 85.6–98.7%], n = 8; Q =

14.85, p = 0.0001) and WHO South-East Asia (79.7%
[95%CI 70.3–87.8%], n = 26; Q = 4.05, p = 0.0443).
While no significant differences in pooled TGCR pro-
portion between adults and paediatrics (< 18 years)
were found for E. coli (Q = 0.95, p = 0.3292), TGCR
proportion in K. pneumoniae were higher in paedia-
trics (88.4% [95%CI 76.2–96.9%], n = 6) compared to
adults (67.6% [95%CI 49.9–83.2%], n = 11; Q = 4.56,
p = 0.0327).

Figure 2. Geographical distribution of included studies by country.

Figure 3. Third-generation resistance proportions in Gram-
negative pathogens from hospital-acquired infections in
low- and lower-middle-income countries (2010–2020). Box
plots indicate individual study estimates of third-generation
cephalosporin resistance proportions (red dots) and range
for first and third quartile. Medians are indicated as a black
line and pooled estimates from meta-analysis are displayed
as black squares. Whiskers indicate lower and upper end of
distribution. Resistance proportions are expressed as percen-
tages (%) of third-generation cephalosporin-resistant or
-non-susceptible isolates among all tested isolates.

Figure 4. Carbapenem resistance proportions in Gram-nega-
tive pathogens from hospital-acquired infections in low- and
lower-middle-income countries (2010–2020). Box plots indi-
cate individual study estimates of carbapenem resistance pro-
portions (red dots) and range for first and third quartile.
Medians are indicated as a black line and pooled estimates
from meta-analysis are displayed as black squares. Whiskers
indicate lower and upper end of distribution. Resistance pro-
portions are expressed as percentages (%) of carbapenem-
resistant or -non-susceptible isolates among all tested isolates.
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The pooled carbapenem resistance proportion was
16.6% (95%CI 10.7-23.4, n=60), 34.9% (95%CI 24.6-
45.9, n=50), 37.1% (95%CI 24.6-45.9, n=56), 51.2%
(95%CI 27.5-74.7, n=7), 72.4% (95%CI 62.1-81.7%,
n=36) forEscherichia coli, Klebsiella pneumoniae, Pseu-
domonas aeruginosa, Enterobacter spp., and Acineto-
bacter baumannii (complex), respectively (Figure 4).

Furthermore, pooled carbapenem resistance pro-
portions in A. baumannii (complex) were significantly
lower in WHO Africa (1.6% [95%CI 0.0–10.8%], n =
3) compared to WHO South-East Asia (76.8% [95%
CI 63.1–88.3%], n = 13; Q = 57.72, p < 0.0001), WHO
Eastern Mediterranean (77.0% [95%CI 53.8–94.2%],
n = 12; Q = 32.94, p < 0.0001), and WHO West-
Pacific (82.8% [95%CI 71.5–81.8%], n = 8; Q = 74.12,
p < 0.0001). The pooled proportion of carbapenem-
resistant E. coli was lower in studies from low-income
countries (1.1% [95%CI 0.0–6.9%], n = 6) compared to
lower-middle-income countries (19.0% [95%CI 12.4–
26.4%], n = 54; Q = 13.65, p = 0.002) (Table 2). Pooled
proportions of carbapenem resistance in the analysed
Gram-negative pathogens were not statistically signifi-
cantly different between isolates from adults and pae-
diatrics (< 18years).

The pooled proportion of methicillin resistance in
S. aureus was 48.4% (95% CI 41.7–55.2%, range: 0–
100%, median: 57.9%, n = 80) (Table 1). No statisti-
cally significant differences in MRSA proportions
were observed among the four WHO regions (Q =
4.93, p = 0.1767) and between studies from low-
income vs. lower-middle-income countries (Q = 0.01,
p = 0.9208). MRSA proportions were higher in
S. aureus isolates obtained from ICUs compared to
non-ICU wards (54.9% [95%CI 42.7–66.9%] vs.
35.5% [95%CI 236–48.2%], Q = 4.75, p = 0.0293). In
bloodstream HAIs, the pooled MRSA proportion
was 36.6% (95% CI 23.4–50.9%, median: 46.7%, n =
8) (Table 1). Vancomycin resistance in S. aureus iso-
lates from patients with HAI was observed in only
10 out of 39 studies, while no vancomycin-resistant
S. aureus HAI isolates were found in the remaining
studies. The pooled proportion for all 39 studies was
0.6% (95% CI 0.0–1.8%) (Table 1). However, five
studies from different WHO regions [16–20] reported
a vancomycin resistance proportion higher than 15%.
Similarly, only 7 out of 23 studies found vancomycin
resistance among MRSA HAI isolates and the pooled
resistance proportion for all 23 studies was 1.7%
(95%CI 0.0–9.5%). In our study set only one study
from Egypt [21] provided data for VRE and reported
a resistance proportion of 23%.

A study [22] from Morocco showed that mortality
from HAIs due to MRSA and CRAB among adult
ICU patients was 80.0% and 52.5%, respectively.
Another study from Vietnam [23] conducted in neo-
natal ICUs reported case fatality rates of 31.8%,
32.5%, and 33.2% for HAIs due to CRAB, CRKP and

CRPA, respectively. Among patients with hospital-
acquired pneumonia due to CRAB [24] and MRSA
[25], all-cause mortality was 60.8% and 66.7%,
respectively.

We found a high between-study heterogeneity (I2 >
80%) in all our analyses. Our set of moderators
accounted for 0% (i.e. R2 = 0%) of the observed het-
erogeneity in MRSA, less than 5% (TGCR-KP and
TGCR-Ent), <20% (CREC, CRPA and CRAB), while
they accounted for 44.6% of the observed heterogen-
eity in TGCR-EC.

Discussion

Our analysis of 163 studies from L-LMICs showed that
pooled resistance proportions of hospital-acquired
ESKAPE-E infections to critical antibiotics (range:
16.6–85.5%) are generally high (Table 1). We found
cross-regional differences within L-LMICs, notably
with the WHO Africa region having a statistically sig-
nificant lower proportion of TGCR-KP, TGCR-EC,
CRAB and CRPA compared to other WHO regions
in the L-LMICs (Table 2). The highest antibiotic
resistance proportion among Gram-negative
ESKAPE-E infections in our study was to third-gener-
ation cephalosporins (TGC), with a pooled proportion
greater than 75% in E. coli, Klebsiella pneumoniae and
Enterobacter spp. This is higher than the estimates
from HICs (Table 3). The rapid evolution and global
spread of extended spectrum beta-lactamases (ESBL)
and the simultaneous increase in cephalosporin con-
sumption in L-LMICs may partly explain this differ-
ence [4,26,27]. The lower TGCR among
K. pneumoniae and E. coli isolates in the WHO Africa
region compared to other regions in the L-LMICs may
be due to variation in surveillance capacities, differen-
tial access and pattern of antibiotic consumption,
among other varying contextual factors [27,28].
Although antimicrobial consumption data in L-
LMICs are patchy and difficult to compare [29], avail-
able evidence suggests differential consumption of
Access and Watch category antibiotics within the L-
LMICs [26,30]. As an example, national estimate
from Tanzania showed Watch category antibiotics
(mainly ceftriaxone) accounted for less than 10% of
national consumption [31], while a very high level of
TGC consumption was recorded in India [26,30].

We found a high proportion of carbapenem resist-
ance in Gram-negative ESKAPE-E infections in L-
LMICs, especially in A. baumannii (complex) and
Enterobacter spp. Compared to other regions, it is
similar to carbapenem resistance proportion in
China but higher than the proportion recorded
among Acinetobacter spp. isolates tested in the US,
EU/EEA and Japan (Table 3). The expansive multi-
drug resistance mechanisms of A. baumannii,
P. aeruginosa, and K. pneumoniae, especially the global
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spread of carbapenemases [32], and a more rapid
increase in carbapenem consumption in the L-
LMICs [26], are driving increased carbapenem resist-
ance especially in the ICU where they are the leading
causes of invasive HAIs [5,26]. Compared to the
WHO Africa region, we suspect the higher TGCR we
found in other L-LMICs regions, possibly due to
increased spread of extended spectrum beta-lacta-
mases (ESBL) and the co-selection of carbapenemases,
is driving an increased reliance on carbapenems in
these regions [4]. The over-the-counter availability of
carbapenems and surge in its consumption has been
documented for India, Pakistan and Egypt [4,33].
While data on carbapenem consumption is very scarce
inWHOAfrica, available evidence suggests that access
and use of carbapenems is very low for various reasons
including its absence over-the-counter, and on the
essential medicine list of many African countries
before 2020 [31,34,35]. Other factors like underestima-
tion due to limited diagnostic stewardship and surveil-
lance as well as varying infection prevention and
control (IPC) capacity, may also contribute to the
differences observed within L-LMICs and when com-
pared to HICs [36].

The proportion of MRSA in our study is similar to
Japan (46.1%), the United States (40.6%) and the
regional estimates from South America (47.7%), but
lower than the national estimates from South Korea
(69.4%) [37] (Table 3). It is however higher than the
national estimate from other upper-middle and
high-income regions like China and the Europe
(Table 3). Our analysis showed no significant differ-
ence in MRSA proportions across the four WHO
regions and even when disaggregated by national
income levels. In line with previous studies from
high-income settings, MRSA is prominent in the
ICU as the proportion of MRSA in our study was stat-
istically significantly higher in the ICU relative to the
non-ICU wards [38]. These findings point to the per-
vasive nature of MRSA globally in hospital settings
despite being the most frequent HAI targeted for
IPC interventions [36]. MRSA in bloodstream infec-
tions is an important indicator for monitoring the
progress towards the attainment of the Sustainable
Development Goals (target 3.d.2). Our results showed
a somewhat higher median proportion of MRSA in
bloodstreams infections (46.7%) compared to a
median proportion of 33.3% and 15% reported in
the 2021 WHO GLASS report for low and middle-
income countries (LMICs) and HICs, respectively
[27]. It is noteworthy that our study included only
data from patients with HAIs while the data submitted
to GLASS included both HAIs and community-
acquired infections [27,39]. Similar to findings from
a recent review [40], our results showed MRSA
remains generally susceptible to vancomycin. How-
ever, the pooled prevalence of 1.7% is higher than

estimates (≤ 0.1%) from upper-middle and high-
income countries like the United States, Japan,
China and South Korea (Table 3) [37,41–43].

Similar to other reviews on hospital-acquired infec-
tions and associated antibiotic resistances [5,44–46],
we found a large variance across the individual study
estimates. Therefore, other variables not determinable
from our data account for the large heterogeneity. A
complex interwoven of biologic, socio-demographic,
economic, political and environmental factors, with
regional and local peculiarities, are known to influence
the emergence and spread of AMR [47]. In addition,
variability in study settings, sample selection, meth-
odological differences in pathogen identification and
AST, surveillance and antibiotic stewardship may
also explain the high heterogeneity. Following revi-
sions since 2010, it is possible some studies applied
outdated EUCAST and CLSI carbapenem breakpoints
that might have underestimated carbapenem resist-
ance in Enterobacteriaceae [48]. The varying AMR
patterns we found in HAIs among regions underline
the need for local surveillance to better understand
the observed differences, and in turn, develop appro-
priate recommendations on antibiotic use and anti-
biotic stewardship measures.

To our knowledge, our study represents the first
systematic review of resistance patterns in HAIs
from the L-LMICs. The majority of studies were
based on routine HAI surveillance data, including
data from unselected patient cohorts treated in hospi-
tals. However, we noted some limitations in our study.
Firstly, despite including a large number of studies,
our data covered only 24 out of 82 L-LMICs with lim-
ited national and regional representativeness. This
potentially limits the external validity of our results
to some extent. Nevertheless, the overall quality of
the studies and thus, the quality of evidence, was mod-
erate to high. Secondly, there is a general dearth of
data on VRE, and a relatively low number of studies
were available from countries in the Western Pacific
WHO region and for some pathogens from WHO
Africa, which limits the robustness of the evidence
of certain AMR patterns in these regions. Therefore,
our pooled effect estimates should be interpreted
with caution.

In conclusion, the high resistance of clinically
important bacterial infections to important antibiotics
highlights its potential impact on health systems and
livelihoods in resource-constrained regions that
already suffer from wider socio-economic challenges.
While the overarching strategies to combat AMR are
well described at the global level [49], the varying
regional AMR patterns we found suggest the need
for priorities to be redirected to increased understand-
ing of AMR dynamics at the regional and local levels
and the use of such evidence to tailor sustainable
solutions.
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