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Abstract

Aim: Analysis of cerebrospinal fluid (CSF) is essential for diagnostic workup of patients

with neurological diseases and includes differential cell typing. The current gold standard

is based on microscopic examination by specialised technicians and neuropathologists,

which is time-consuming, labour-intensive and subjective.

Methods: We, therefore, developed an image analysis approach based on expert annota-

tions of 123,181 digitised CSF objects from 78 patients corresponding to 15 clinically

relevant categories and trained a multiclass convolutional neural network (CNN).

Results: The CNN classified the 15 categories with high accuracy (mean AUC 97.3%). By

using explainable artificial intelligence (XAI), we demonstrate that the CNN identified

meaningful cellular substructures in CSF cells recapitulating human pattern recognition.

Based on the evaluation of 511 cells selected from 12 different CSF samples, we vali-

dated the CNN by comparing it with seven board-certified neuropathologists blinded for

clinical information. Inter-rater agreement between the CNN and the ground truth was

non-inferior (Krippendorff’s alpha 0.79) compared with the agreement of seven human

raters and the ground truth (mean Krippendorff’s alpha 0.72, range 0.56–0.81). The CNN

assigned the correct diagnostic label (inflammatory, haemorrhagic or neoplastic) in

10 out of 11 clinical samples, compared with 7–11 out of 11 by human raters.

Conclusions: Our approach provides the basis to overcome current limitations in auto-

mated cell classification for routine diagnostics and demonstrates how a visual explana-

tion framework can connect machine decision-making with cell properties and thus

provide a novel versatile and quantitative method for investigating CSF manifestations

of various neurological diseases.
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INTRODUCTION

The analysis of cerebrospinal fluid (CSF) is a key procedure for the

diagnosis of central nervous system diseases. An indispensable ele-

ment of CSF analysis remains the microscopic analysis of cytocentri-

fuged CSF samples to obtain differential cell counts [1, 2]. Cell type

determination and quantification are still crucial for the differential

diagnosis of acute and chronic infections (e.g., the prevalence of gran-

ulocytes, activated lymphocytes and plasma cells) and subarachnoid

haemorrhage invisible on CT and MRI imaging (e.g., detection of ery-

throphages, haemosiderophages and haematoidin crystals) as well as

neoplastic meningitis [1, 3–6].

Gold-standard morphological profiling of CSF cells relies on visual

inspection by highly specialised technicians and/or board-certified

neuropathologists, and manual counting is only feasible for high-

quality samples of intermediate or low cell density [1, 2]. While the

results are highly dependent on experience and expertise and prone

to observer bias and oversights, procedures are labour-intense and

time-consuming with limitations for quality control and economic scal-

ability. Furthermore, specialised personnel is usually not available

24/7 for time-critical decisions in emergency situations [2].

Absolute quantification of CSF cells and erythrocytes by auto-

mated cytometry is applied in many laboratories for a rough orienta-

tion of the cell density. However, current commercial cytometers

developed for blood cell analysis are unable to reliably count low cel-

lularity CSF samples (<30 cells/μl; normal: <5 cells/μl), to differentiate

CSF cell types and to provide differential cell counts [2]. Deep learn-

ing algorithms have been developed for cell detection and differentia-

tion in blood and bone marrow specimens. Recently, the detection of

epithelial tumour cells has been demonstrated in CSF samples by a

neural network, but no holistic approach addressing all relevant diag-

nostic questions in CSF diagnostics is currently available [7–9].

Although some algorithms for specific diagnostic tasks, like the

identification of blast cells in acute myeloid leukaemia in bone marrow

samples, have reached human-level performance [10], very few have

been clinically implemented. Besides the lack of generalisability of the

algorithm to external data sets, one essential issue is that training data

may not be representative of samples encountered in daily clinical

work, which demonstrate higher variability in quality and specimen

preservation [11]. Moreover, pathology and medicine, in general, are

characterised by “long tail” distributions of diagnoses, that is, only a

few disease entities make up the majority of the cases and a plethora

of differential diagnoses exist that are very rare. Most current alleged

“clinical grade” AI approaches perform well for frequent diseases, but

are unable to properly classify rare cases [12]. Furthermore, the clini-

cal value of algorithms is limited by oversimplification and reducing

the complexity of the pathologists’ tasks by incorporating several

layers of information into the decision-making and diagnostic labelling

of samples [13].

We, therefore, set out to compile a real-world CSF dataset con-

taining several sources of variation (e.g., different laboratory sample

pre-processing, staining protocols, scanners, sample qualities, cell

preservation states, object densities and common artefacts) and all

diagnostically relevant cell types/objects to train a robust algorithm

for cell type differentiation with the potential to solve complex diag-

nostic tasks. We developed a convolutional neural network (CNN),

which reliably recognises 15 categories of diagnostically relevant CSF

cell types and objects. To validate our model and assess its realistic

usefulness in diagnostic practice, we validated the CNN-based

approach by comparing its performance to that of seven board-

certified neuropathologists from different academic institutions. By

using explainable AI methods, we identified morphological features

learned by the model to discriminate between specific cell types,

which allowed us to further validate the model and explain its current

limitations.

MATERIALS AND METHODS

CSF dataset collection, processing and annotation

We selected 128 CSF specimens from 78 patients, which were diag-

nostically evaluated at the Department of Neuropathology Charité –

Universitätsmedizin Berlin between 2008 and 2020 (Table S1). Diag-

noses included pleocytosis (n = 8), inflammation (n = 6), chronic hae-

morrhage (n = 20) and neoplastic meningitis (n = 44; Figure 1A).

Slides were stained in two different laboratories according to standard

procedures with May–Grünwald–Giemsa. The quality of each slide

was assessed prior to digitisation, allowing for a mix of high, interme-

diate and low quality depending on the extent of autolytic and artifi-

cial changes (Table S1). Slides were scanned at a magnification of 40�
using two different slide scanners: Hamamatsu NanoZoomer HAT 2.0

and 3D Histech P150.

Whole slide images were tiled in 2000 � 2000 pixel pictures

(Figure 1B). Fifteen clinically relevant object categories were defined:

Key Points

• We compiled a real-world dataset of 123,181 digitised

CSF objects from 78 patients, annotated into 15 diagnos-

tically relevant categories

• Deep learning can accurately classify different cell types

and shows high agreement with human experts

• Interpretable visualisation allows explaining the machine

predictions in an intuitive manner
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lymphocyte (A), activated lymphocyte (B), plasma cell (C), monocyte

(D), activated monocyte/macrophage (E; subcategories activated

monocyte and macrophage), haemosiderophage (F), erythrophage (G),

neutrophilic granulocyte (H), eosinophilic granulocyte (I), tumour cell

(J; subcategories: carcinoma, melanoma, lymphoma, leukaemia), mito-

sis (M), haematoidin crystal (N), erythrocyte (O; Figure 2). A total of

123,181 objects were annotated using the object-based image analy-

sis framework CognitionMaster (https://sourceforge.net/projects/

cognitionmaster/, Figure 1C).

Data partitioning for model selection

The dataset was partitioned into three subsets: a training set for

learning of the DNN weights, a validation set for model selection and

a test set for evaluation of the generalisation performance on unseen

data. The partitioning was performed on a case level; that is, samples

of one case belong to one partition (either training, validation or test)

only, so that generalisation performance across patients can reliably

be estimated (Appendix).

F I GU R E 1 Data set and strategy. The pipeline of CSF cell detection. (A) The number of whole-slide images per diagnosis (i.e., tumour,
pleocytosis, acute and chronic haemorrhage and inflammation) was influenced by the prevalence of rare cell types. (B) Image processing: scanning
and tiling of whole-slide images. (C) Annotation of 15 object categories. (D) Patches are extracted from the image and used to train an ensemble
of four convolutional neural networks (CNN) for multiclass prediction. The predicted class is based on the average of the four individual
predictions.

ANALYSING CSF WITH EXPLAINABLE DEEP LEARNING 3 of 16
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Pre-processing and data augmentation

Around each cell annotation, a 128 � 128 px image was cropped from

the tile. For annotations close to the boundary, mirror padding was

applied to yield crops of the same size. From these crops, the training

images were extracted by cropping 112 � 112 px patches at random

locations and applying random blur with a Gaussian kernel, random

rotation, mirroring and random colour variation (brightness and con-

trast). Following Tellez et al. [14], a rather strong augmentation was

used. For evaluation purposes, patches were centred around the

annotation, and no random transformation was applied. The patches

were standardised by subtracting the mean and dividing by the stan-

dard deviation of each colour channel in the training set.

Model architecture and training

As a backbone for our model, we used a VGG16 model pre-trained

on ImageNet and fine-tuned it on our data [15]. The main training

objective was a cross-entropy loss function, where the contribution

of each class was weighted by the inverse of its relative frequency

in the training set. For early stopping based on the validation set

performance, macro-averaged sensitivity (i.e., balanced accuracy)

was chosen to account for the imbalanced class distribution. Com-

plementary to the cross-entropy, a consistency term was added to

the loss function, similar to Bortsova et al. [16]. Each patch was pre-

dicted by the network in four different versions: original, horizon-

tally flipped, vertically flipped and both horizontally and vertically

flipped. The consistency term is then the average mean squared

error of each of the four predictions to their mean. This incentivises

the model to be invariant to rotation, in addition to random data

augmentation. For evaluation, the predictions were always averaged

across the four transformed versions. Tuning of the training hyper-

parameters was exclusively done using the validation set. The test

set was only used to evaluate the generalisation performance of the

final models. We used PyTorch (version 1.10.0) for all our experi-

ments. The models were trained on machines with Tesla P100 and

Quadro RTX 6000 GPUs. One training run took an average of 11 h,

which equals a carbon footprint of 2.5 kg CO2 assuming average

emission values for Germany [17].

F I G UR E 2 Cerebrospinal fluid (CSF)
object categories and diagnostic labels.
Five examples are given per category to
illustrate variance in scan quality, staining
intensity and intraclass variability.
(Categories A–C) Lymphoid lineage with
common precursor cell. (Categories D–I)
Myeloid lineage with common precursor
cell. For diagnostic evaluation, only the
categories lymphocyte (category A) and
monocyte (category D) are considered
normal cell types in CSF samples.
Increased prevalence of categories B, C, H
and I indicate an inflammatory process.
Categories F, G, N and O are observed in
acute and chronic haemorrhage. The
presence of any cancer cells (category J)
qualifies for the diagnosis of neoplastic
meningiosis. Category M (mitosis) may be
seen in neoplastic CSF as well as in
inflammatory samples. Scale bar = 20 μm.

4 of 16 SCHWEIZER ET AL.
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Model evaluation, visualisation and explainability

Four individual models (CNN1–4, Figure 1D) were trained, each

using one partitioning of the data. To evaluate the performance of

the models on unseen data, a joint confusion table of the predic-

tions of all four models on their respective test sets was computed.

The confusion table was then normalised such that each row sums

to 1. This yields the sensitivity for each class on the diagonal. The

average of these class-wise sensitivities is defined as mean sensitiv-

ity (macro-average sensitivity). For the combined categories acti-

vated monocyte/macrophage (E) and tumour cell (J), we additionally

report the sensitivity on the subgroups respectively (e.g., activated

monocyte and macrophage for E; carcinoma, melanoma, leukaemia

and lymphoma for J) and report the precision and the F1 score for

each class (see Table S2). Note that these metrics are not defined

for the subgroups of E and J since the subclasses are not predicted

by the model.

In order to verify that the models have learned meaningful repre-

sentations, we projected the 4096-dimensional feature vectors (out-

put of the penultimate layer of the CNNs) of the test samples into 2D

by Uniform Manifold Approximation and Projection for Dimension

Reduction (UMAP) [18]. To complement the evaluation, explanation

heatmaps were computed using Layer-wise Relevance Propagation

(LRP) applying Zennit [19–21]. The explanation heatmaps were com-

puted on each of the four models (CNN1–4) individually (for details,

see Appendix).

Validation set (CSF500) for performance comparison
to neuropathologists

To compare the performance of the CNN head-to-head to neuro-

pathologists, we created a completely independent evaluation data-

set (i.e., CSF500) consisting of 12 different patients with non-

specific, inflammatory, haemorrhagic and neoplastic diagnoses (for

original diagnosis, see Table S2). As for the training set samples,

the CSF500 samples were scanned with Hamamatsu NanoZoomer

HAT 2.0 (n = 4) and 3D Histech P150 scanners (n = 8). We

selected 511 cells out of 12 digitised whole slide images

(Supplementary CSF500.pptx). All 511 cells were evaluated by

seven board-certified neuropathologists and assigned to one of the

15 annotation categories (A-O; P: not applicable). Raters were

blinded for clinical information. A specialised and certified CSF

technician provided with clinical information served as ground truth

(GT) annotation. For CNN predictions of the CSF500 objects, an

ensemble of the four models CNN1–4 (Figure 1D) was used by

averaging the predicted probability vectors (ranging between 0 and

1) for each cell. Individual results of each rater, the GT, the ensem-

ble CNN and the four individual CNNs for all 511 objects are sum-

marised in Table S3.

Raters were also asked to assign a diagnostic label to each CSF

sample (i.e., inflammatory, haemorrhagic, neoplastic or a combination

of two labels). For diagnostic labelling of the CNN, samples were

determined as haemorrhagic (>8 h) in case an erythrophage, haemosi-

derophage or haematoidin crystal was detected and as inflammatory

upon the presence of either plasma cells or granulocytes. In case both

haemorrhagic and inflammatory cells were present, the most abun-

dant cell types determined the diagnosis, in case of equality, “haemor-

rhagic” was chosen, because granulocytes may be derived from

peripheral blood. The presence of a single tumour cell resulted in the

additional label “neoplastic.” In cases where tumour cells were the

most abundant cell types, the sample was diagnosed as

“neoplastic” only.

Performance evaluation and statistics

Statistical analysis was conducted using R (version 3.6.3). For perfor-

mance evaluation, precision (true positives/(true positives + false pos-

itives)) and sensitivity (true positives/(true positives + false

negatives)) were calculated. Overall, inter-observer reliability was

measured using Krippendorff’s alpha coefficient as it is recommended

in case of missing observations (label P: not applicable) [22]. Calcula-

tion of Fleiss’ Kappa coefficients additionally allowed the comparison

of inter-rater reliability for individual cell type categories. Both coeffi-

cients were calculated applying the R package irr (v0.84.1) and yielded

highly similar results (mean difference 3.05 � 10�5). Coefficient matri-

ces were visualised using corrplot v0.92 [23]. Class-wise receiver

operating characteristics (ROC) curves were computed in a one-vs-

rest fashion. The average AUC was calculated using the one-vs-one

approach by Hand et al. [24]. ROC analysis was performed using

scikit-learn (version 1.0.2; http://scikit-learn.sourceforge.net).

Data and code availability

The dataset of the study is available at Zenodo (DOI 10.5281/zenodo.

6543147, https://zenodo.org/record/6543147). The code is available

at https://github.com/pseegerer/csf_cell_classification.

RESULTS

Multiclass prediction

After training the neural network, we first used the test set to esti-

mate the performance on unseen data. We repeated the training four

times on different partitions of the dataset (four-fold cross-validation,

that is, CNN1–4, see Figure 1D). Confusion matrices of the four CNNs

were summarised and are shown in Figure 3A (for details, see

Section 2). The trained neural networks demonstrate accurate predic-

tion performances for most cell types with an average area under the

ROC curve (AUC) of 0.973 (range for individual categories 0.90–1.00,

Figure S2). The average sensitivity for classes A–O was 76% (range

45%–96%; sensitivity, precision, and F1 scores for individual catego-

ries are given in Table S4).

ANALYSING CSF WITH EXPLAINABLE DEEP LEARNING 5 of 16
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Very good performance was noted for physiological cell types (sen-

sitivity for lymphocytes 87% and monocytes 82%) as well as key cell

classes relevant for diagnostic labelling (e.g., neutrophilic granulocytes

96%, tumour cells 79% and haemosiderophages 78%). The confusion

matrix shows that misclassification mainly occurred in related morpho-

logical classes of the lymphoid or myeloid lineage representing a

challenge also to human evaluators. For example, a substantial overlap

was noted between plasma cells and activated lymphocytes belonging

to amorphological continuumof B-cells with signs of cellular activation.

When applying a more tolerant classification scheme allowing for con-

fusion for these two categories, sensitivity for activated lymphocytes

increased to 90% and for plasma cells to 96% (Table S2).

F I GU R E 3 Confusion matrix: Influence of cell density, CSF quality and number of annotations on predictions. (A) Confusion matrix for the
multiobject classifier identifying 15 CSF categories. Percentages represent (row-wise normalised) sensitivities of the ensemble network evaluated
on the test set. Cells of the same derivation (lymphoid vs myeloid lineage) and belonging to a morphological continuum were more often mixed
up. (B) A higher sensitivity was achieved in samples with low cell density in which objects were not overlapping. CSF samples with inferior quality
and artificial changes due to cell deterioration demonstrated lower sensitivity. (C) The number of training samples per class correlates with
sensitivity. For category J (tumour cell), the sensitivity of tumour subtypes is highlighted in red. The combined category activated monocyte/
macrophage (category E) highlighted in orange represents a large spectrum from activated monocytes (small to intermediate cells, single
intracytoplasmatic vacuoles) to macrophages (highly variable size, few to numerous intracytoplasmatic vacuoles) with low sensitivity.

6 of 16 SCHWEIZER ET AL.
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F I GU R E 4 UMAP visualisation of the dataset. (A) The last hidden layer representation of the test samples (4096D) of CNN1 is visualised in
2D by UMAP (uniform manifold approximation and projection). (B) Tumour classes: Only the tumour samples are shown and coloured by their
tumour type. Overlapping subclusters are formed by carcinoma and melanoma as well as lymphoma and leukaemia. Circled inlet: Several samples
were misclassified as cell shadows due to autolytic changes. (C) Examples of the original input images with the colour of the cross representing
the prediction and the colour of the frame corresponding to the annotation label.
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Overall sensitivity was significantly better in samples of low cellu-

larity (e.g., distinctly localised cells without overlapping or abutting cell

borders) and high or intermediate quality (Figure 3B). We also saw a

high correlation of sensitivity to the number of training samples avail-

able for each category (Figure 3C).

Morphological class features learned by neural
networks form distinct clusters

To analyse if the models learned meaningful representations, the

high-dimensional feature vector of CNN1 was visualised in 2D by

applying UMAP, which shows that morphologically defined cell types

were projected in discrete clusters in the 2D representation

(Figure 4A, see also Figure S3).

While cell shadows and mitosis formed discrete clusters apart from

other object categories, we observed overlap in variable degrees

between the remaining classes. The transition between clusters not only

corresponded to the observed misclassification of related categories as

mentioned above (Figure 3A) but also reflected biologically meaningful

difficulties encountered in daily clinical work: the overlap of the catego-

ries activated lymphocyte and plasma cell potentially reflects on the diffi-

culties in discriminating these transitioning and consecutively developing

cell types derived from a common lymphoid precursor cell. Furthermore,

it also draws attention to a possible underlying annotation problem

based on the difficulty of defining clear cut-offs for the correct designa-

tion of cells in continuous transition. A similar overlap was noted for cells

of myeloid derivation. Finally, the proximity of activated lymphocytes to

B-cell lymphoma cells in the 2D representations hints towards the well-

known diagnostic dilemma of distinguishing between neoplastic and

inflammatory lymphocytes. Interestingly, normal lymphocytes (usually T-

cells in CSF) did not overlap with activated lymphocytes and plasma cells

(B-cell lineage) which may be due to the extremely scarce cytoplasm in

(naïve) T cells in comparison to activated lymphocytes.

Within the large tumour cluster, tumour cells of different origins

were locally aggregated (Figure 4B): melanoma and epithelial tumour

cells showed substantial overlap but weremore disjunct comparedwith

haematopoietic tumour cells (e.g., lymphoma and leukaemia cells),

which holds great potential for tumour subtype prediction in future. Of

note, several tumour cells and other cells fell into the cell shadow group

(Figure 4C). Upon re-evaluation, these cells demonstrated highly auto-

lytic features which potentially masked the neoplastic or cell-type spe-

cific character of the deteriorating and highly artificially altered cells,

and would probably have resulted in the classification as autolytic cells

by human raters without clinical information (for further examples of

misclassified and projected cells, see Supplementary Sprite Figure).

Cell type recognition by the CNN is based on
comprehensible and visualisable cytological features

To further elucidate the most relevant image regions for the CNN pre-

dictions, we used layer-wise relevance propagation (LRP) to identify

image regions (down to pixel resolution) and features with high infor-

mative value for classification. Figure 5 shows the LRP heatmaps for

selected samples of the CSF500 set for the four different CNNs. Here,

evidence in favour of the predicted class is highlighted in red whereas

counter-evidence is highlighted in blue; neutral areas are highlighted

in grey. In correctly classified examples, the LRP heatmaps highlighted

pathognomonic cytological substructures, such as the segmented

nucleus and perinuclear halo. Interestingly, for some categories, dis-

crimination of cell borders contains highly relevant information for the

correct classification (e.g., 156, 88 and 171), while for other cell types,

intracytoplasmic structures (e.g., hemosiderin deposits in 158 and

cytoplasmic vacuoles in 293) are more relevant.

Misclassified cells represent common difficulties with segmenta-

tion (e.g., define borders in a complex environment with abutting or

overlapping objects in 379, 404 and 293), feature similarity

(e.g., segmented vs multilobulated nucleus in 379), rare and blurred

objects with misfocus on isolated sharp structures ignoring cell con-

text and borders (404) and methodological/technical issues like small

image patches which prevented recognition of the class defining

morphological feature (e.g., intracytoplasmic erythrocyte in 293).

Note, in example 404 the extracellular structure which led to the

misclassification as “Haemosiderophage” in CNN1, 2 and 4 was

identified by CNN3 as counter-evidence for the correct prediction

“Mitosis”.

CNN performance compared with neuropathologists

We evaluated the performance of the ensemble CNN (average of

CNN1–4) on an independent dataset of 511 cells and compared it

with seven raters blinded for clinical information. Overall inter-

observer agreement compared with ground truth (GT) varied among

neuropathologists (average Krippendorff’s alpha = 0.72, range 0.56–

0.81; Figure 6A). One of the raters represented a negative outlier

(rater 4 vs GT, Krippendorff’s alpha = 0.56), which can be mainly

attributed to the omission to diagnose tumour cells in any of the sam-

ples (Figures 6A and 7A).

We found that the highest overall inter-rater agreement (0.79,

measured by Krippendorff’s alpha) as well as individual cell categories

(mean 0.79, range 0.44–0.98, measured by Fleiss’ kappa) of human

raters was observed for the GT annotation. We also noticed a ten-

dency to a higher agreement among raters who belonged to the same

diagnostic centre (also same centre as the GT: mean 0.74, range 0.71–

0.79) compared with raters of other diagnostic institutions (mean:

0.63, range 0.55–0.73).

Overall, neuropathologists, the GT and the ensemble CNN

showed very high agreement for categories neutrophilic granulocyte

(H), cell shadow (K), mitosis (M), haematoidin crystal (N) and erythro-

cyte (O; Fleiss’ kappa ≥ 0.93) and high agreement on categories lym-

phocyte (A) and eosinophilic granulocyte (I; Fleiss’ kappa ≥ 0.78;

Figure 6B). Lower inter-rater agreement was mainly observed for

those cell types belonging to a morphological continuum (e.g., to the

lymphoid or myeloid lineage). Strikingly, there was a very low

8 of 16 SCHWEIZER ET AL.
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F I GU R E 5 Pixel-level image regions relevant for classification. Shown is the original image (with object ID, ground truth label and ensemble
prediction) as well as a feature heatmap calculated for each of the four individual CNNs based on layer-wise relevance propagation (LRP). Pixels
highlighted in red are evidence in favour of the predicted class whereas blue pixels are evidence against it (e.g., counter-evidence). The degree of
confidence is given as probability (p, range 0–1) with high numbers representing high confidence. Examples of correctly (✔) and incorrectly (✖)
classified objects are selected and the respective cytological feature relevant to human recognition is specified. Misclassified cells represent

common difficulties with segmentation (e.g., define borders in a complex environment with abutting or overlapping objects; 379, 404 and 293),
feature similarity (379), rare and blurred objects with misfocus on isolated sharp structures ignoring context (404) and too small image patches
(293).
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agreement between raters 1–7 and the GT as well as the CNN for the

categories activated lymphocyte (B) and shrunken cell (L), which may

be attributable to institutionally defined and non-standardised mor-

phological cut-offs and consensus in continuous cellular categories,

especially relevant for shrunken cells (i.e., delineation of artificially

condensed cells from naked-nucleic lymphocytes).

Most CSF samples were correctly diagnosed by the
ensemble CNN

CSF samples were correctly labelled based on the CNN predictions

in 10/11 cases (Figures 7A and S4). The CNN showed a high capa-

bility to identify haemorrhagic samples (3/3; 100%) as well as neo-

plastic samples (4/4; 100%) with 68–100% of the tumour cells in

these samples being correctly identified. The ensemble CNN cor-

rectly identified acute inflammatory conditions dominated by neu-

trophilic and eosinophilic granulocytes (2/2; 100%). The

differentiation of inflammatory vs neoplastic lymphocytes

represents a known diagnostic pitfall and dilemma, especially in the

absence of clinical information. In CSF sample 3 (diagnosis: neuro-

borreliosis), the ensemble CNN wrongly classified a single plasma

cell as a tumour cell. The misclassified plasma cell, demonstrating

artificial cytoplasmic blebs, a feature often observed in epithelial

tumour cells, was classified with low probability scores by three of

the four CNNs (Figure 7B). Of note, rater 7 also incorrectly classi-

fied three cells as tumour in this sample. In sample 9 (diagnosis:

viral meningoencephalitis), three of the seven raters incorrectly

classified cells as tumour (10, 14 and 51 cells, respectively), while

the CNN only predicted six activated lymphocytes as tumour cells

(Figure 7C). Misclassification of CSF sample 1 (diagnosis: low to

moderate pleocytosis with iatrogenic blood contamination) by some

raters and the CNN as inflammatory was most likely caused by

very limited cytological contextual information as well as the

design of the CSF500 dataset with an arbitrary selection of four

eosinophilic granulocytes attributable to slight haemorrhagic con-

tamination in an otherwise non-specific sample (Supplementary

CSF500).

F I GU R E 6 Substantial inter-rater agreement between the CNN, seven neuropathologists and the ground truth annotation. (A) Based on the
evaluation of 511 cells in 12 different CSF samples, inter-rater reliability between the CNN and the ground truth was non-inferior (Krippendorff’s
alpha 0.79) compared with the agreement of seven human raters and the ground truth (mean Krippendorff’s alpha 0.72, range 0.56–0.81). Raters
highlighted in red letters in Figure 6A belong to the same diagnostic centre. (B) Fleiss’ kappa values for individual object categories (for details of
categories A–O, see Figure 2) were higher for discrete categories (e.g., categories H, K, M, N and O) compared with cells of a common lineage

derivation belonging to a morphological continuum (e.g., categories B + C as well as D–G). A substantially lower agreement was achieved for
activated lymphocyte (category B) and artificial cell (category L) when incorporating human classifications, which may be influenced by centre-
specific category definitions. Abbreviations: GT, ground truth; R, rater
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F I GU R E 7 Legend on next page.
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DISCUSSION

Deep learning approaches have shown promising results in the analy-

sis and classification of histopathological images [11, 25]. However,

only a few of these have been translated into clinical applications and

are currently used in diagnostic settings [11, 26, 27]. In this study, we

aimed to develop an AI-based automated cytological/CSF image anal-

ysis approach for which we compiled a large dataset with 123,181

annotations of digitised CSF samples from 78 patients and trained a

deep neural network capable of multiclass recognition of diagnosti-

cally relevant CSF cells and diagnostic labelling of CSF specimens. Our

aim was to create a routine diagnostic-grade AI tool and real-world

dataset that can serve as a reference to design and improve machine

learning solutions for CSF as well as other cytological diagnostics but

also to consider and address obstacles in the dataset design and parti-

tioning strategy that may hamper clinical translation.

Several machine learning approaches have been developed for

the analysis of peripheral blood smears and bone marrow samples and

were capable of differentiating different categories of cells, for exam-

ple, leukocyte subtypes, as well as normal and neoplastic cells [7, 28].

Furthermore, deep learning models even proved feasible in discrimi-

nating between different haematopoietic cancer subtypes [29].

Recently, the proficiency in identifying epithelial cancer cells of a

CNN in CSF samples was shown by Yu et al. [9]. The authors demon-

strated that the accuracy of the CNN was similar to experts and the

CNN was superior in predicting the carcinoma origin compared with

humans while reducing the working time by 90%. However, none of

these works addressed the full spectrum of diagnostically relevant

CSF objects and provided an in-depth explanation of the model

behaviour, as presented in this study.

One of the reasons for limited utility in clinical settings is that

models are developed on high-quality samples that differ from those

encountered in daily diagnostic routines and that do not consider the

numerous sources of variance that influence morphological represen-

tation in images: laboratory-specific sample handling, staining proto-

cols, scanner setting and especially degree of cell deterioration over

time. Instead of compiling a dataset consisting of optimal quality sam-

ples which may achieve high-performance metrics, but result in low

generalisability of the model, we aimed to design a real-world dataset

reflecting the realistic and full spectrum of samples encountered in

daily work, including samples of different quality and object density

(see Figure 3). We paid special attention to representing the full vari-

ability of the data including rare cell types. Hence, we over-

represented tumour samples in our training dataset since these fea-

ture a high degree of variability, e.g., due to different tumour origins

and degrees of differentiation, such that a large number of samples is

required to train a deep neural network. For this reason, the preva-

lence of cell types in the training set does not reflect a real-world situ-

ation in daily diagnostics, e.g., tumour cells are usually recognised in

only 5–10% of CSF samples [30–32], but were over-represented in

our dataset with 56% of CSF samples (see Figure 1). Even though this

led to a slight over-sensitivity to tumour cells (see Figure 7), we argue

that in a clinical setting, false positive tumour predictions are less

severe than false negative ones.

In clinical settings with a wide prevalence distribution of common

and very rare conditions (i.e., long-tail distribution) [11], datasets are

usually highly imbalanced, which represents a potential further limita-

tion to external validity. In imbalanced datasets, the allocation of a

limited number of clinical samples with multiple categories into train-

ing, test and validation set is complicated as the assignment of one

patient to more than one set may result in overfitting. Compared with

previous work [7], we allocated samples of individual patients exclu-

sively to one set (e.g., training, validation or testing set), which is cru-

cial for an accurate performance estimation because samples of one

case cannot be considered statistically independent and partitioning

per sample rather than per case will optimistically bias performance

metrics [33]. However, due to this restriction, it is complicated to

divide the dataset in such a way that classes are balanced. We address

this issue by proposing a novel data partitioning strategy (see Appen-

dix and Figure S1).

Because of the naturally limited number of rare objects in clinical

datasets, there is a need to develop not only suitable partitioning

strategies but also intuitive ways to leverage the data-derived repre-

sentations of learning systems to infer general concepts [11]. Identify-

ing the underlying substructures in a comprehensive image context

that resulted in the correct classification of an object by using expla-

nation heatmaps may help to approach new solutions to study algo-

rithmic understanding and transferable conceptualisation. To achieve

this, the field of explainable AI has recently advanced with methods

such as GradCAM, SmoothGrad and Layer-wise Relevance

F I GU R E 7 Performance of the ensemble CNN on the CSF500 dataset in comparison to neuropathologists. (A) Comparison of diagnostic
labels for the 12 CSFs assigned by the raters and the ensemble CNN. Sample 1* was not rated because of the selection of four eosinophilic
granulocytes misleading to inflammatory impression in a slightly sanguineous sediment with unspecific changes. For neoplastic CSFs, the number
of tumour cells detected compared with the ground truth is provided. Of note, clinical information was not provided to the raters before the
evaluation. The ensemble CNN proved capable of correctly classifying diagnostically relevant cell types and assigning the correct diagnostic label
in 10/11 cases. Misclassification of two inflammatory samples was based on the identification of one and six tumour cells in cases 3 and
9. (B) The single plasma cell misclassified as a tumour cell by the ensemble CNN is shown as well as the individual prediction and explanation
heatmaps of all four CNNs, which highlight a plasma cell with unusual cytoplasmic blebs. (C) An image example of case 9 is depicted with
individual votes of human raters, the ensemble CNN and the ground truth (GT). The CNN misclassified fewer cells as tumour cells compared with
the human raters. Correctly identified cells are highlighted in green in the table, yellow indicates cells that belong to a morphological continuum
and may be considered as correctly labelled, and red corresponds to incorrectly classified cells. Abbreviations: A, lymphocyte; B, activated
lymphocyte; C, plasma cell; E, activated monocyte/macrophage; J, tumour cell; M, mitosis
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Propagation [34, 35]. These methods have already been applied for

deep learning in pathology, for instance, tumour classification [36],

cytology [7] and morphological biomarker discovery [37].

Using explanation heatmaps allowed us to visualise cellular sub-

structures in correctly and incorrectly classified cells and align them to

features relevant to human object recognition in cytological speci-

mens. Furthermore, we identified specific features that provided

counter-evidence for a certain prediction (e.g., extracellular deposit

reminiscent of hemosiderin in a mitosis example, see Figure 5, 404).

The visualisations make the otherwise latent classification rules trans-

parent: They seem to be not only based on the recognition of features

in favour of a certain category, but also on information learnt to be

highly specific for other categories, resembling in some respects

human decision-making of weighing and integrating different sources

and layers of information to approximate a conclusion. The identifica-

tion of comprehensible morphological features as part of the basis of

algorithmic predictions rather than elusive criteria of a black box

model may further increase the acceptance of such applications in the

(neuro)pathological community and overcome resentments due to

lack of transparency [11, 38].

To gain further insight into the meaningfulness of the learned fea-

tures by the CNN and the definition of our predefined annotation cat-

egories, we additionally embedded the penultimate layer of the

VGG16 containing 4096 features into two dimensions via UMAP. As

has been demonstrated by Matek et al [7] before, morphologically

defined classes were separated well in the feature space and similar

cell types were projected to neighbouring positions. The unsupervised

dimensionality reduction and visualisation as image sprite (see Appen-

dix) allowed fast and systematic identification of misannotated images

which—in combination with the heatmaps—may serve as an easy

screening tool for dataset refinement, with the intention to reduce

label noise, which is mainly caused by human errors occurring during

highly repetitive and tedious tasks.

We observed a continuous transition in feature space between

cells derived from the same developmental lineage (e.g., myeloid cells).

On the contrary, normal lymphocytes and activated lymphocytes were

represented discretely in the feature map, the latter overlapping with

plasma cells and lymphoma cells. Although a biological reason cannot

be demonstrated based on our data, it is interesting to note that nor-

mal lymphocytes in CSF usually are T-cells and activated lymphocytes

forming a morphological continuum with plasma cells belonging to the

B-cell lineage. The intrinsic capacity to differentiate distinct lymphoid

cell populations may eventually help to further refine the landscape of

inflammatory CSF infiltrates in various neurological diseases. The

overlap of activated B-cells with lymphoma cells of the B-cell lineage

is pointing towards similar or shared features for these cells learnt by

the algorithm, which may include enlarged nuclear size and chromatin

heterogeneity, skewed nuclear-to-cytoplasmic ratio and increased

cytoplasmic basophilia [5, 39].

Among neuropathologists, it is well-known that lymphocytic acti-

vation in inflammatory conditions, such as viral meningoencephalitis

or neuroborreliosis, may be so pronounced that it mimics malignant

lymphoma [1]. Especially in cases where clinical information is not

provided, it represents an ongoing dilemma to distinguish between

neoplastic and inflammatory lymphocytes [5, 39], which is exemplified

in case 9 of the CSF500 set (e.g., viral meningoencephalitis) labelled

as neoplastic by three of seven neuropathologists and the CNN. Com-

pared with the CNN, neuropathologists were able to consider context

information of the 2000 � 2000 pixel images containing several other

cell types, information on preservation status, overall staining inten-

sity and cellularity of a sample, which is not available to the CNN that

classifies images only based on small patches containing a single item.

Implementing dynamic patch sizes similar to Hashimoto et al [40],

i.e., varying instead of fixed input size and resolution, in the design of

the CNN may potentially increase classification accuracy not only for

large cell types, which are currently insufficiently enclosed in the fixed

patches (see Figure 5, 293) but also by incorporating context informa-

tion available to human raters.

To obtain differential cell counts, determination of the exact cell

type is necessary. However, neuropathological assessment of CSF

samples usually does not involve the classification of every single cell

in a sample, but relies on summarising the cellular picture in a descrip-

tive diagnostic category often based on the predominance of a cell

type, allowing for recognising a mix of cells: some with high and

others with low confidence. An important exception is the identifica-

tion of a single unequivocal tumour cell which results in the diagnosis

of neoplastic meningitis (label: neoplastic) [30, 31, 41]. For instance,

the misclassification of one plasma cell in sample 3 (Figure 7B) was

based on the summary of the classifications of the four individual

CNNs. The ensemble predicted “tumour cell” with a reduced probabil-

ity of p = 0.41 followed by the correct category “plasma cell” with a

slightly lower probability of p = 0.38. However, two of the CNNs pro-

vided only intermediate confidence scores (p = 0.84 and p = 0.78) for

the class tumour cell and highlighted cytoplasmic blebs in the explana-

tion heatmap, CNN3 identified an activated lymphocyte with low con-

fidence (p = 0.57) and CNN4 the correct label plasma cell with high

confidence (p = 0.99), highlighting and recognising the decisive peri-

nuclear region in addition to blebs. The result indicates a differing

capability of CNNs, trained on a variable selection of the training data-

set, to identify specific classes more or less correctly, which suggests

that the variance of the data is very high and the model would benefit

from even larger and more diverse datasets. Furthermore, providing

confidence values together with the class predictions to diagnosti-

cians will help overcome algorithmic aversion and increase the safety

of using CNNs as screening tools in CSF diagnostics. A valuable exten-

sion of the current model will be the implementation of a calibration

model with class-wise thresholds and labelling of unclassifiable

objects, which could be directly delegated to human evaluation, simi-

lar to what has been introduced with the concept of calibrated classi-

fier scores in the DKFZ brain tumour classifier [26].

In this work, we validated the capability of our model to classify

CSF cells based on an independent dataset of 511 cells. Although

the performance was already good enough to derive broad diagnos-

tic labels for 11 clinical cases, a thorough and detailed prospective

clinical validation period cannot be replaced and needs to be con-

ducted in parallel with routine diagnostics in the future. Our
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algorithm provides the basis to develop an automated, transparent

and validated diagnostic assist system, which may be available 24/7

also in emergency situations, e.g., at night or the weekend when

neuropathological diagnostic service is usually not provided. Further-

more, the estimated time to whole slide image classification in a

fully automated workflow is expected to last only a few minutes

(e.g., scan time: 1–3 min, whole slide image tiling: 10 seconds, CNN-

based cell classification: 2 ms per cell), which will mainly depend on

the cellularity of the sample and reduce the turnaround time from

lumbar puncture to diagnosis as has been shown by Yu et al.

recently [9]. The integration of our system with further improve-

ments in handling images from portable microscopes or even smart-

phones may translate cytological CSF diagnostics from laboratories

to clinical bedside applications.

Besides automation and improvement of diagnostic routine pro-

cesses, machine learning algorithms have already demonstrated profi-

ciency in refining tumour classification and determining cancer origin

based on methylation profiles [26, 27]. Analysing epigenetic patterns

in large cohorts of various brain cancers even proved capable of iden-

tifying new cancer subtypes and new tumour entities that went

unrecognised in small datasets and previous histology-based tumour

diagnostics [42, 43]. Similarly, extending the reference dataset of the

CSF classifier and applying unsupervised machine learning approaches

could result in the identification of new, clinically and prognostically

meaningful cell types or delineate novel distinct cell states along a

common lineage and differentiation trajectory in neoplastic and

inflammatory CSF samples, which could have been missed by human

microscopic analysis so far.
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APPENDIX

Data partitioning for model selection

We aimed at distributing classes evenly across the partitions. This

requirement is complicated to fulfil by the fact that the dataset is

partitioned on case level in a multi-class setting but the number of

cases is relatively low and the classes are not distributed evenly

among the cases. Therefore, we used the following partitioning

scheme as an approximation: We quantified the amount of imbal-

ance by the mean difference of the Jensen-Shannon divergence

(JSD) of the class distribution of a partition to the mean class dis-

tribution over all folds. Furthermore, a partitioning was considered

invalid if not all partitions contained samples of all classes or if the

samples of at least one class came from only one case. The four

partitionings with the lowest JSD after a search of over 5000 ran-

dom partitionings (discarding invalid ones) were selected

(Figure S1). Note that this partitioning strategy does not necessarily

yield disjoint train, validation and test sets across partitionings

(e.g., a case could be used in the train set of both partitions 1 and

2), in contrast to standard stratified cross-validation without group-

ing (e.g., used in [7]).

Explanation heatmaps

For the computation of LRP heatmaps, we followed the recom-

mendations by Montavon et al. [21]: The ϵ-rule is used for dense

layers and the (α = 2, β = �1)-rule for convolutional layers. The

input to the LRP-backpropagation is a vector that is 1 for the pre-

dicted class and 0 elsewhere, thereby focusing the heatmap

on the predicted class. For visualisation, the resulting

heatmaps are clipped at the 95th percentile of positive relevance

values, such that the colour mapping is robust against outlier

values.

Similar to Matek et al. [7], we experimented with GradCAM

heatmaps but found that the resolution of these is too coarse to

capture the fine details that are important to understand the

models [44]. For instance, for the 112 � 112 input images used in

this work, the GradCAM heatmap would be only 7 � 7 pixels wide

(16� coarser resolution than the input). In comparison, our LRP

heatmaps have the same resolution as the input image and allow

us to examine the predictions at the pixel level. Moreover, pixel-

level heatmaps of the common ResNet architecture—as the

SmoothGrad heatmaps used by Matek et al. [7]—have a peculiar

grid pattern; that is, the heat is concentrated on pixels that lie on

an equally spaced grid. This issue has been discussed previously in

Hui et al. [45] and is not an artefact of heat mapping, but can be

directly linked to the architecture. Thus, the grid artefact is visible

both in LRP and SmoothGrad heatmaps [7]. Since this artefact

impedes the interpretation of the heatmaps, we opted to use the

more conservative VGG16 architecture that does not show this

artefact.
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