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Abstract

Phages are among the most abundant and diverse biological entities on earth. Phage prediction from sequence data is a crucial first
step to understanding their impact on the environment. A variety of bacteriophage prediction tools have been developed over the
years. They differ in algorithmic approach, results, and ease of use. We, therefore, developed “What the Phage” (WtP), an easy-to-
use and parallel multitool approach for phage prediction combined with an annotation and classification downstream strategy, thus
supporting the user’s decision-making process by summarizing the results of the different prediction tools in charts and tables. WtP
is reproducible and scales to thousands of datasets through a workflow manager (Nextflow). WtP is freely available under a GPL-3.0
license (https://github.com/replikation/What_the_Phage).
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Background
Bacteriophages (phages) are viruses that infect prokaryotes and
replicate by utilizing the host’s metabolism [1, 2]. They are
among the most abundant and diverse organisms on the planet
and inhabit almost every environment [2]. The double-stranded
DNA–tailed phages possibly make up the majority of phages on
the planet [3]. Single-stranded DNA, single-stranded RNA, and
double-stranded RNA viruses are minor groups [4].

Phages drive and maintain bacterial diversity by perpetuating
the coevolutionary interactions with their bacterial prey, facilitat-
ing horizontal gene transfer and nutrient turnover through con-
tinuous cycles of predation and coevolution [5, 6]. They directly
impact the microbiome (e.g., the human gut) and can influence
human health [7]. At the same time, phages in aquatic habitats
are responsible for the mortality of nearly 20–40% of prokaryotes
every day [8]. However, despite having considerable impacts on
microbial ecosystems, they remain one of the least understood
members of complex communities [9].

Sequencing the entire DNA of environmental samples (metage-
nomics) is an essential approach to gaining insights into the mi-
crobiome and functional properties.

It should be noted that due to the genome size of phages
ranging from 5 to 500 kbp [10], their entire genome can be se-
quenced via long-read technologies (e.g., Oxford Nanopore Tech-
nologies or PacBio) [11]. These sequencing techniques facilitate
phage genome recovery in their natural habitat without the need
to culture their hosts to isolate the phages [2] and sequencing of

soil or ocean samples on-site (e.g., with the portable MinION se-
quencing device). Such technological developments led to a rapid
increase in human gut virome studies [12] and the discovery of
novel, uncharacterized phages from environmental metagenomes
[13, 14].

These advances demand reliable and easy-to-use phage predic-
tion tools and workflows that can be directly used on assembled
sequencing data. However, predicting phages from metagenomes
and their differentiation from prophages remains a challenge as
there is no established computational gold standard [13].

Existing prediction tools rely on direct comparison of sequence
similarity [15, 16], sequence composition [17, 18], and models
based on these features derived through learning algorithms [15,
16, 19]. The phage prediction tool DeepVirFinder uses a k-mer–
based deep learning method using convolutional neural networks
and builds on its predecessor, VirFinder [18, 20]. PPR-Meta also uti-
lizes convolutional neural networks to identify phages and plas-
mids [19]. Metaphinder integrates BLAST hits to multiple genomes
in a database to identify phage sequences in assembled contigs
[21]. Seeker and VirNet work with a deep learning framework that
uses long short-term memory models that do not depend on se-
quence motives [22, 23], while Vibrant utilizes deep learning neu-
ral networks based on protein signatures [15]. Virsorter2 builds
on the strategy of Virsorter (first iteration) by applying machine
learning to evaluate the viral content using genomic features [16,
24]. Phigaro uses precomputed sets of pVOG profile hidden Markov
models (HMMs) [25].
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The performance of each prediction method varies [26] depend-
ing on the sample type or material, the sequencing technology,
and the assembly method, which makes the correct choice for any
given sample difficult without having to install and test several
tools.

The user can choose from many tools based on different
calculation strategies, software dependencies, and databases to
further complicate matters. We observed various installation
issues and conflicts while working with these phage predic-
tion tools, making a multitool screening approach complex and
time-consuming.

To overcome these obstacles and issues, we developed “What
the Phage” (WtP), a reproducible, accessible, and scalable work-
flow utilizing the advantages of multiple prediction tools in paral-
lel to detect and annotate phages.

Methods
Design and implementation
WtP was implemented in Nextflow, a portable, scalable, and par-
allelizable workflow manager [27]. At the time of writing, 11 dif-
ferent tools to predict phage sequences and other annotation and
classification programs are included in WtP. WtP uses so-called
containers (Docker or Singularity [Apptainer]) for an installation-
free workflow execution without dependency or operating sys-
tem conflicts for each of the currently over 21 programs included.
All containers are prebuilt, version controlled, online available
at the dockerhub website, and automatically downloaded. Addi-
tionally, all 9 different databases (belonging to the corresponding
tools) and datasets used by the workflow are managed automati-
cally. The modular code structure and functionalities of Nextflow
and Docker/Singularity (Apptainer) allow easy integration of other
phage prediction tools and additional analysis steps in future re-
leases of the pipeline. The workflow consists of 2 main phases,
which are executed subsequently or, if specified, individually
(Fig. 1):

1. Prediction: The prediction of putative phage sequences
2. Annotation & Taxonomy: The gene annotation and taxo-

nomic classification of phage sequences

Prediction and visualization
The first stage takes a multi-fasta file as input (e.g., a metage-
nomic assembled contigs), formats it to the demands of each
tool, and filters sequences below a user-defined length threshold
(1,500 bp by default) via SeqKit v0.10.1 (RRID:SCR_018926) [28].
Sequences that are too small usually generate false-positive hits,
as Gregory et al. [29] observed. The phage prediction process
is performed by 11 different tools (14 approaches) in paral-
lel: VirFinder v1.1 [18], PPR-Meta v1.1 (RRID:SCR_016915) [19],
VirSorter v1.0.6 (with and without virome mode) [16], Deep-
VirFinder v1.0 [20], Metaphinder with no release version (using
default database and own database (Zheng et al. database,
GitHub commit ID bebc447d00ec9ff9f4960f38b627d8651262ff72)
[21], sourmash v2.0.1 [17], Vibrant v1.2.1 (with and without
virome mode) [15], VirNet v0.1 [23], Phigaro v2.2.6 [25], Vir-
sorter2 v2.0 [24], and Seeker [22] with no release version (GitHub
commit ID 9ae14887dcd4295f4340626d06d8848cead2102d).
Tool outputs are collected in a detailed result report (see
Result Report section, Fig. 2; Data Availability section
[30]).

Functional annotation & taxonomy
For this step, Prodigal v2.6.3–1 (RRID:SCR_011936) [31] is used in
metagenome mode to predict open reading frame (ORFs) and HM-
MER v3.3 (Default cutoff: -E 1e-30; RRID:SCR_005305) [32] to iden-
tify homologs via the pVOG database [33]. All annotations are
summarized in an interactive HTML file via chromoMap [34] (see
Fig. 4). Additionally, WtP classifies all contigs via sourmash and
provides a probability score to the corresponding taxonomic clas-
sification based on the Zheng et al. database [35].

Result report
WtP streamlines the detection of phage sequences across multi-
ple tools in their default settings, thus balancing some drawbacks
(e.g., relying on updated databases, only predicting phages avail-
able in databases). To ease the data interpretation for the user,
WtP collects the results in a detailed summary report HTML file
for simplified interpretation (Fig. 2, Data Availability section [30]).
The report contains an UpSet plot summarizing the prediction
performance of each tool (Fig. 2). Finally, the “phage prediction by
contig table” (Fig. 2) summarizes tool outputs for each contig. WtP
assigns numeric values to tools that do not generate P values or
scores between 0 and 1 (see Result Report, “phage prediction by
contig section”) and sorts them based on phage likelihood. All the
results are individually filterable so that the user can consider ad-
ditional insights or information provided by community platforms
such as IMG/VR [36] or iVirus [37].

Other features
All mandatory databases and containers are automatically down-
loaded when the workflow is started and stored for the following
executions. Additionally, the workflow can be pre-setup to ana-
lyze sequences offline subsequently. WtP provides the raw output
of each tool to support a transparent and reproducible mode of
operation. Maximum execution stability is ensured by automat-
ically excluding phage prediction tools that cannot analyze the
input data without failing the workflow (e.g., file too large, not the
scope of an individual tool). We also provide a detailed user man-
ual that is regularly updated [38].

Dependencies and version control
WtP requires the workflow management software Nextflow [27]
and either Docker [39] or Singularity (Apptainer) [40] installed
and configured on the system. The pipeline was tested on Ubuntu
16.04 LTS, Ubuntu 18.04 LTS, and Windows 10 (via Windows Sub-
system for Linux 2 using Docker). The installation process is de-
scribed in detail in the WtP user manual [38]. Each workflow re-
lease specifies the Nextflow version to avoid any version conflicts
between the workflow code and the workflow manager. A specific
Nextflow version can be directly downloaded as an executable file
from the Nextflow website.

Additionally, each container used in the workflow is tagged
by the accompanying tool version, prebuilt, and stored on
hub.docker.com.

Data description
To demonstrate the utility and performance of WtP, we ana-
lyzed a described metagenome data set (ENA Study PRJEB6941,
ERR575692) using a local desktop machine (24 threads, 60 GB RAM,
Ubuntu 18.04.4 LTS) and WtP release v1.1.0. Kleiner et al. [41] gen-
erated an artificial microbiome via bacteria and phage cultures in
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Figure 1: Simplified “What the Phage” workflow flowchart. Sequence input (yellow) can either be first run through the “prediction” and subsequently
“Annotation & Taxonomy” as a whole or used directly as an input for the “Annotation & Taxonomy” only. Each of the multiple phage prediction tools
can be individually controlled if needed (tool control).

Figure 2: Example figure of the “Phage prediction by contig table” section of the result report. The “Phage prediction by contig table” section
summarizes the tool outputs for the analyzed sample ERR575692. The full result report can be found in the Data Availability section [30]. All tables
can be exported as Excel, PDF, or CSV files by using the buttons above the tables.
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Figure 3: UpSet plot summarizing the prediction performance of each tool for the sample ERR575692. The total amount of identified phage contigs per
tool is shown in blue bars on the left. Black, vertical bars visualize the number of contigs that each tool or tool combination has uniquely identified.
Each tool combination is shown below the vertical barplot as a dot matrix. How to read the diagram: for example, 53 phage contigs are found by 6
tools (DeepVirFinder, Metaphinder-own-DB, Metaphinder, PPRmeta, Seeker, and VirFinder). Another 42 contigs are found by these tools but also Virnet.

Figure 4: Visual annotation of phage contigs and annotated protein-coding genes via chromoMap. Annotations are colored based on the categories of
capsid genes (orange), tail genes (red), and other genes (blue). Other contigs without either capsid or tail genes have been removed from this figure for
better readability.
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mice feces (germ-free C57BL/6 J mice) and sequenced the sam-
ple. The group added 6 phages (P22, T3, T7, φ6, M13, and φVPE25)
and 2 bacteria (Listeria monocytogenes and Bacteroides thetaiotaomi-
cron) to germ-free feces. We, therefore, expect the prediction of
the 6 known phages and possibly other phage sequences related
to both bacteria strains. Still, false-positive hits and tool disagree-
ments are plausible results during the phage prediction process.
The dataset analyzed in this study (ERR575692) is derived from
Illumina HiSeq data.

Analysis
The raw read data sets composed of 8 samples were downloaded
from the ENA server and individually assembled via metaSPAdes
v3.14 using the default settings [42]. The resulting assembly files,
stored in the GigaScience GigaDB database [43], were analyzed with
WtP (release v1.1.0, default settings). As WtP uses multiple tools
for phage prediction, an UpSet plot summarizes for each sample
the performance of all approaches executed successfully (Fig. 3
for sample ERR575692).

The complete result report for sample ERR575692 can be found
in the Data Availability section [30].

In general, the prediction values (P values, scores, and outputs
generated by the phage prediction tools) were >0.7 for the first
4 sequences/contigs (NODE_14, NODE_13, NODE_12, NODE_30),
indicating high consensus among the prediction tools, although
in some cases, tool prediction values were below 0.5 (Phigaro:
NODE_30, Seeker: NODE_12 and NODE_30, Virnet: NODE_12 and
Virsorter2: NODE_30). Prediction values for NODE_6 were below
0.67, and Virsorter2 and Phigaro showed high values >0.99. The
same applied to NODE_8 and NODE_5, indicating dissonance for
these 3 contigs. Surprisingly, Virsorter and Virsorter-virome only
predicted the sequence, NODE_14, as a phage. In case of disso-
nance and when tools coincided, validation of contigs via phage
annotations and CheckV [44] simplified further assessment. In the
case of sample ERR575692, phage genes (like tail and capsid genes)
were annotated on all 7 contigs (Fig. 4).

The workflow was able to detect contigs that corresponded to
the phages P22 (NODE_12), T3 (NODE_14), and T7 (NODE_13). In
addition, the phage for the internal Illumina control (phiX174:
NODE_30) was also predicted. The M13 phage [41] could not be
identified as it was not assembled via metaSPAdes due to the low
read abundance and low coverages (below 0.55×, determined by
Kleiner et al. [38]). The same applies to phage φ6, which was not
detectable by Kleiner et al. [38]. However, VPE25 (NODE_6) was
initially not taxonomically classified by WtP as it was not repre-
sented in the taxonomic database (Zheng et al. database) at this
time; however, the corresponding contig was annotated with es-
sential phage genes (Fig. 4). Therefore, the unclassified contig was
analyzed manually via blastn (nr/nt database) and resulted in the
genome sequence of VPE25 (PRJEB13004).

Furthermore, CheckV determined a phage completeness score
of over 89% for all 7 contigs (Table 1). In addition to the phages
mentioned above, 2 more large contigs with capsid and tail gene
annotations indicate prophage(s) of Salmonella enterica (contig
NODE_5 and NODE_8). Both contigs showed tail and capsid genes
and were labeled as prophages via CheckV with estimated com-
pleteness of over 99.99%.

These results were manually confirmed using NCBI’s blastn
(nr/nt database). The sequences matched with 100% identity to
S. enterica (Salmonella enterica strain FDAARGOS_768 chromosome,
complete genome) but not to prophage sequences. Furthermore,
NODE_8 had 1.37 times the contig length of the matched refer-

ence (from CheckV), and NODE_5 had 3.24 times the contig length
of the matched reference, which may have influenced the NCBI
blastn search. S. enterica is known to host prophages [45]; there-
fore, the identified prophage sequences of CheckV are plausible
results.

Performance assessment
The WtP meta-workflow utilizes several phage identification tools
and allows simple execution of a single tool or multiple tools at
once. WtP does not favor or disadvantage any prediction tools
based on their performance but collects each raw tool output in a
user-friendly, easy-to-read result overview.

We did not additionally benchmark the tools integrated into
our workflow because the performance of most of them has re-
cently been benchmarked independently [26].

Ho et al. [26] tested Virfinder v1.0, MetaPhinder, PPR_Meta
v1.1, Seeker v1.0.3, Virfinder v1.1, VirSorter v1.06, and VirSorter2
v2.2.3 and utilized near-identical commands, parameters, and
databases across the benchmarked prediction tools as WtP. An-
other benchmark would thus only duplicate prior work.

Most tools performed well in the benchmarking of Ho et al.
[26], detecting the majority of phage sequences while keeping
false positives low. PPR-Meta and VirSorter2, which use 2 differ-
ent machine learning methods, had the best performance across
the tools.

However, k-mer tools outperformed reference similarity and
gene-based tools when tested on positive and negative phage
datasets. Tests with randomly shuffled phage sequences showed
a clear difference between machine learning and conventional
tools.

The performance of most tools dropped significantly when
a real metagenomic dataset was used compared to the RefSeq
benchmark. The k-mer prediction tools showed a smaller drop in
F1 score based on their RefSeq benchmark compared to reference
similarity/gene-based tools as described by Ho et al. [26].

The group also pointed out that the tools with machine/deep
learning algorithms can detect novel phages. However, their per-
formance may be unpredictable when exposed to novel data with
features that differ from those used in the training sets [26].

Therefore, we believe that a combination of phage prediction
algorithms (machine/deep learning and similarity/gene based) is
a good compromise for unknown and novel datasets.

WtP deploys the benchmarked tools by default (WtP v1.2.0). If
users wish to deploy other tools that were not benchmarked by
Ho et al. [26], they can activate them easily.

While a sensical approach, multiple tools can be combined in
the prediction step to yield an “ensemble” approach. To bench-
mark this approach, however, against individual tools is beyond
the scope of this work, which aimed to facilitate the accessibility
to phage prediction tools.

Limitations
Some limitations must be noted. No specialized phage assembly
strategy or any cleanup step was included during the assembly
step. Therefore, some smaller mice host contigs (below 5,000 bp)
produced false-positive hits. However, these contigs were distin-
guishable after the “Annotation & Taxonomy” step both in CheckV
and due to the lack of typical genes related to, for example, capsid
or tail proteins, showing the application of WtP also for contam-
inated datasets. WtP does not filter the output of phage predic-
tion tools for prophages, although the CheckV output indicates if
a contig could be a prophage.
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Table 1: Summary of the CheckV output for the sample ERR575692. All contigs with a completeness >89% and a length >5,000 bp are
shown.

Phage name Contig_id Gene count CheckV quality Completeness, % Contig length, bp

unknown1 NODE_5 107 Complete 100.0 114,288
unknown2 NODE_8 71 High quality 100.0 63,147
VPE25 NODE_6 137 High quality 99.99 86,514
phiX174 NODE_30 8 Medium quality 89.35 5,441
T3 NODE_14 43 High quality 93.34 37,380
T7 NODE_13 53 Complete 99.48 39,820
P22 NODE_12 67 Complete 100.0 41,715

Furthermore, WtP uses default database(s) or the original
trained model(s) provided with each stand-alone prediction tool.
We note that most casual users are unlikely to retrain these tools
before their use.

Accurate gene prediction from the phage genome is still diffi-
cult [46]. This fact has affected both phage prediction and func-
tional gene annotation in virology. New phage gene databases and
algorithms could improve the quality of gene prediction in the fu-
ture. We, therefore, implemented the function to provide, for ex-
ample, more recent databases to improve gene annotation.

Discussion and Potential Implications
With the rise of metagenomics and the application of machine
learning principles for virus detection, several phage prediction
tools have been released over the past few years. All these tools
utilize a variety of prediction approaches, all with advantages and
limitations [26]. The user’s choice for using certain tools often de-
pends strongly on their usability and accessibility and less on per-
formance. While some tools already come with a packaging sys-
tem such as Conda or a containerized environment, there exists
no general framework for their execution database dependencies,
and installation issues prevent many potential users from using
certain tools. At least 1 multitool approach was implemented on
a smaller scale by Gregory et al. [29] (comprising only VirFinder
and VirSorter).

The overarching goal of WtP is to make phage prediction
tools more accessible for a broader user spectrum and non-
bioinformaticians, as culture-free sequencing has led to the
rapid increase of phage studies [12]. WtP acts as an ideal, all-
encompassing starting point for any given assembly and pro-
vides a searchable and filterable report of the analyzed data. The
user is provided with sufficient processed data (such as tool per-
formance comparisons, taxonomic assessments, and annotation
maps) to work reliably with the predicted sequences and support
the decision-making process if different prediction tools are not
in agreement with each other.

The meta-tool WtP allows the user to deploy current state-of-
the-art phage prediction tools very easily, all at once, or only a
selection of tools. WtP does not favor or disadvantage any pre-
diction tools based on their performance analyzed in the bench-
marking work of Ho et al. [26]. It is still the user’s task to select the
most likely phage contigs, extract them from WtPs output, and use
them for a more detailed and curated analysis.

Further information and guides are provided either via the
report or the hosted manual. WtP streamlines the prediction
of phage sequence recognition across multiple tools in a repro-
ducible and scalable workflow to allow researchers to focus on
their scientific questions instead of software implementations.

Future Directions
WtP is a workflow project that will be improved and extended as
the modular approach and containerization simplify the integra-
tion of new tools. The predictive scope of WtP can be extended to
other viruses (such as RNA viruses) and prophages by including
future tools specifically designed for such use cases and adjusting
filter and annotation steps. The modular nature of the workflow
using Docker and Nextflow allows the integration of new phage
prediction tools by request of users, thus allowing WtP to keep up
with the fast-developing field of bioinformatic tools. The version-
ing of WtP represents a well-functioning approach with tested and
up-to-date versions of the workflow. Thus, the correct functioning
of the workflow is always guaranteed and allows a reliable and
fast prediction of phage sequences.

Availability of Supporting Source Code and
Requirements
Project name: What the Phage (WtP)
Project homepage: https://github.com/replikation/What_the_Pha
ge
Programming language: Nextflow, Bash, Python, R
Other requirements: Ubuntu 18.04 LTS, Docker-version 20.10.12,
Nextflow-version 21.10.6
License: GPL-3.0
RRID: SCR_022 871

Data Availability
The WtP user manual [38] and Result Report are available in
GitHub [30]. The WtP result data storage [47] and WtP databases
are available in OSF [48]. Data used in this work are available in
GitHub [49]. All supporting data and materials are available in the
GigaScience GigaDB database [43].
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