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Abstract

Molecular-based diagnostic assays are the gold standard for infectious diseases today, since they allow a rapid and sensitive
identification and typing of various pathogens. While PCR can be designed to be specific for a certain pathogen, a
subsequent sequence analysis is frequently required for confirmation or typing. The design of appropriate PCR-based assays
is a complex task, especially when conserved discriminating polymorphisms are rare or if the number of types which need
to be differentiated is high. One extremely useful but underused method for this purpose is the multiplex pyrosequencing
technique. Unfortunately there is no software available to aid researchers in designing multiplex pyrosequencing assays.
Here, we present mPSQed (Multiplex PyroSeQuencing EDitor), a program targeted at closing this gap. We also present the
design of an exemplarily theoretical assay for the differentiation of human adenovirus types A–F using two pyrosequencing
primers on two distinct PCR products, designed quickly and easily using our software.
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Introduction

Today the identification of infectious pathogens is usually based

on the PCR-amplification and detection of stretches of the

pathogen’s genome [1]. These stretches can be either selected to

be highly pathogen-specific or to encompass a whole group, genus

or family of pathogens. Particularly in this setting, a subsequent

typing of the pathogen may be required for the completion of the

diagnosis. With carefully designed probes, this can be achieved

thanks to characteristic single nucleotide polymorphisms (SNPs)

using methods such as fluorescence curve melting analysis [2].

Alternatively, the PCR product can be sequenced to obtain

information on such polymorphisms. Since Sanger sequencing is

well established but still comes along with some drawbacks, like the

inability to sequence extremely short PCR amplicons often used in

diagnostic PCR, and still some hours to obtain a result,

pyrosequencing has evolved to be a promising alternative. In

pyrosequencing, a linear amplification of the template is

performed and the synthesis of the reverse complement strand

can be monitored online. The reaction mix contains sulfurylase,

luciferase, APS and luciferin in addition to classical PCR reagents.

When a dNTP is incorporated into the strand, the resulting

pyrophosphate is used by the sulfurylase to convert APS to ATP,

which in turn provides the energy necessary for luciferase to

generate light while converting luciferin to oxyluciferin. The

resulting light signal is captured by a camera. In order to correlate

the light signals created during the strand synthesis with specific

bases, no dNTP mix is provided during the reaction. Instead,

individual dNTPs are added to the reaction mix and then removed

by addition of apyrase at pre-determined points of time. A

recorded light signal can therefore be interpreted as proof for the

incorporation of the currently present dNTP. The order in which

light signals are detected in combination with the knowledge of the

dNTP dispensation order can be used to reconstruct the exact

sequence of the synthesized strand and thus also that of the

template [3].

In contrast to Sanger sequencing, pyrosequencing only provides

short sequence reads of up to 60 bases in regular runs, however,

results can be obtained online subsequently to a completed PCR

run in less than one hour. For any sequencing strategy, there are

cases where no suitable stretches of sequence can be found that

contain SNPs characteristic for all species of interest. To

circumvent this problem, multiplex pyrosequencing can be used,

wherein several PCR products with several pyrosequencing

primers are sequenced simultaneously [4]. In this case, the signals

created from each of the pyrosequencing primers overlap, creating

a unique fingerprint pyrogram. While the fingerprint alone cannot

be used to reconstruct the original sequences, it can be predicted

given a priori knowledge of the expected sequences. Since each

base in each of the sequences contributes to the final fingerprint,

the presence of SNPs leads to different fingerprints for different

species. Thus matching the pyrogram from a multiplex pyrose-

quencing experiment with a predicted fingerprint allows the

identification of the corresponding species based on discriminating

SNPs without explicit reconstruction of the underlying sequences

(see Figure 1).

The design of primers for such multiplex pyrosequencing assays

is a challenging task. Especially when reference genomes are large

and numerous, the amount of data which needs to be considered

can be overwhelming. Also, positioning pyrosequencing primers in

a way which leads to unique fingerprints for each species of

interest becomes harder with an increasing number of species.
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Since the fingerprint is a combination of signals from several

sequences, incorrectly positioned pyrosequencing primers may

lead to competing signals from SNPs in different sequences that

cancel each other out (Figure 1). Manually calculating the

fingerprints for many different primer positions is, while not

infeasible, highly laborious and error-prone.

Currently, a wide range of nucleic acid sequence editors is

available. One popular example is the free cross-platform

sequence viewer SeaView that is geared towards multiple sequence

alignment and phylogeny [5]. BioEdit, which is available for free

for Windows, offers a wide range of tools for multiple sequence

alignment, phylogeny, sequence analysis and interfaces to several

online databases [6]. The cross-platform freeware MEGA offers an

impressive array of tools for phylogenetic analysis [7]. In addition

to free programs, many comparable commercial products such as

Geneious [8], CLC Workbench [9] or Lasergene [10] exist. These

programs focus on easy access to a large number of powerful

analysis tools and visualisation of large datasets. Some of the

mentioned programs integrate facilities for the design of primers

and probes, be it through proprietary algorithms (as in the case of

CLC Workbench) or through the integration of primer3 [11].

However, none of these programs offers support for either finding

discriminating SNPs for diagnostic assays in general or for the

design of multiplex pyrosequencing assays in particular.

Therefore, we have developed the mPSQed sequence editor

which implements these aligned sequences can be grouped which

allows the automatic identification of SNPs discriminating

between groups. A tool for the design of multiplex pyrosequencing

assays using the SNP information is further included. Thereby,

multiplex pyrosequencing can be applied to a broader range of

challenging diagnostic applications. In this publication we

introduce the design ideas of mPSQed and give an introduction

to its usage. Using the example of human adenovirus, we provide a

step-by-step description of the analysis steps performed within

mPSQed on the way from a sequence alignment to a complete

discriminating multiplex pyrosequencing assay. Complete source

code, binaries and all exemplary data are available from http://

sourceforge.net/projects/mpsqed.

Design and Implementation
In order to ensure cross-platform capability, the software was

developed in Java. Thanks to Java’s extensive standard class

libraries, this also allows online visualisation using only the

language’s on-board capabilities. The online help system was

designed using HelpSetMaker [12].

An open source license was chosen for mPSQed to allow all

users to adapt the software to their specific wishes. As such,

installation can take one of two routes: The source code can be

downloaded from http://sourceforge.net/projects/mpsqed and

compiled locally, or a runnable.jar archive can be obtained from

the same address. The adenovirus alignment with annotated PCR

and PSQ primers is also available on the sourceforge project page.

Results and Discussion

The identification of discriminating SNPs is an important step

in the creation of diagnostic assays. To facilitate the selection of a

set of discriminative SNPs several steps are required to be

performed. After an alignment containing all relevant sequences

has been loaded into the program the sequences can be grouped,

Figure 1. Principle of multiplex pyrosequencing. In multiplex pyrosequencing, several primers are used simultaneously in the sequencing
reaction so that their signals overlap. A1: In this example, primer 1 (upper part) reads the sequence TTAACCT and primer 1 (middle part) reads the
sequence CGCCGTC. Since the signals overlap, the fingerprint (lower part) represents the sequence TTCAAGCCCCGTTC. It is important to note that in
this fingerprint, it is not possible to tell which base was read by which primer. A2: The TRC mutation after primer 1 and the CRT mutation after
primer 2 are used as targets for differentiating between two species. However, they cancel each other out, causing the fingerprints for A1 and A2 to
be identical. B: Moving primer 1 one base to the left alleviates this problem: the fingerprints for B1 and B2 are now different. This demonstrates the
importance of correct pyrosequencing primer positioning relative to all utilized SNPs.
doi:10.1371/journal.pone.0038140.g001
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and consensus sequences can be calculated both for the alignment

globally and for each group individually. Groups can be collapsed,

leaving only the conservation graph and the consensus sequence

visible. This allows the user to work with a significantly reduced

amount of visible data while still retaining easy access to all

relevant information (see Figure 2). SNPs which are conserved

within a single group and are thus candidates for use in a

differentiation assay can be automatically detected and highlighted

(see Figure 3). Some basic primer design functionality (such as Tm

calculation, product size calculation, degeneration etc.) is support-

ed. Novel functionality is provided for the design of multiplex

pyrosequencing assays. Primers can be marked as pyrosequencing

primers and the predicted pyrograms which would be generated

using these primers in a multiplex pyrosequencing assay can be

displayed. When pyrosequencing primers are moved, the predict-

ed pyrograms are updated in realtime, allowing for a quick

optimisation of primer positioning. If the expected pyrogram is not

unique for each of the defined groups, a warning is displayed (see

Figure 4).

To demonstrate the power of the described features, an

exemplarily multiplex pyrosequencing assay has been designed

which theoretically allows the identification of all human

pathogenic adenoviruses (human adenovirus A to human adeno-

virus F). In this assay, two regions of the adenovirus are amplified

using two sets of PCR primers, and a total of four SNPs across

these amplicons is sequenced using two pyrosequencing primers.

This allows the generation of a unique fingerprint for each of the

mentioned adenovirus types within only five cycles of the

pyrosequencing machine. To design this assay, all genomic

sequences of these adenovirus types available from NCBI were

aligned using mafft [13]. The alignment was loaded into the

software, sequences were grouped according to type (Figure 2) and

discriminating SNPs were automatically calculated (Figure 3).

Then, regions with sufficiently high conservation were determined

and pyrosequencing primers were positioned so as to allow the

sequencing of several SNPs. Finally, the position of the pyrose-

quencing primers was manually optimized using the realtime

prediction of pyrograms and PCR primers were added. These

steps are illustrated in (Figure 4), with the predicted pyrograms for

all adenovirus types shown in Figure 4A. Once the alignment was

calculated, the whole design process took approximately 30

minutes on a regular desktop computer. This demonstrates the

usefulness of this software in the otherwise complex task of

designing multiplex pyrosequencing assays. To allow novice users

easy access to this functionality, an extensive online help

describing all features is available from within the program.

The alignment which was used in the creation of the assay,

including annotations for both PCR and pyrosequencing primers,

is available for download as supporting information.

Availability and Future Directions
Precompiled binaries for Windows, Linux and Mac computers

and source code for the software can be obtained from http://

sourceforge.net/projects/mpsqed without any restrictions. The

binaries are provided as a zip file containing a runnable jar file and

all necessary libraries. We also provide the data used in this

contribution to allow users to follow through this example analysis.

Further development will now focus on extending the tools for

Figure 2. View of alignment with consensus sequence displayed for each group. Zoomed in view of an alignment where groups have been
defined. The number of sequences which need to be displayed in order to capture the essential differences between the groups is significantly
reduced (the five shown groups contain 94 sequences), but drilling down to the single sequence level is still easily possible, as visible in group
‘‘advC’’. Bases which are identical to the consensus sequence (or reference sequence, which can be chosen manually) are gray, differing bases are
colored based on the selected coloring scheme – ‘‘BioEdit’’ in this case.
doi:10.1371/journal.pone.0038140.g002
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Figure 3. Display of SNPs which can be used to differentiate between groups. SNPs which can be used to differentiate between the defined
groups must be perfectly conserved within each group (green column in the group’s consensus graph) and must differ between the groups (orange
or red column in the global consensus graph at the top). These positions can be automatically identified and are marked by red columns in the
alignment.
doi:10.1371/journal.pone.0038140.g003

Figure 4. Design of multiplex pyrosequencing assay with display of predicted pyrograms. Display of an alignment with two
pyrosequencing primers, one of which is visible on the screen (green annotation), and four PCR primers, one of which is also visible (blue annotation).
For each primer, the melting temperature is displayed at the 59 end and the length is displayed at the 39 end. A line connects the forward PCR primer
with its reverse counterpart (not visible, offscreen). The product size is shown in the middle of the connecting line, and the red color warns of a high
difference in predicted melting temperature. In subfigure A, the predicted pyrograms from the two pyrosequencing primers are shown for each
group – with just 5 cycles of the pyrosequencing machine, a unique pyrogram can be obtained for each of the groups. In subfigure B, the
pyrosequencing primer has been moved one base to the left, thus preventing sequencing of one SNP. This leads to the predicted pyrograms for advE
and advB being identical.
doi:10.1371/journal.pone.0038140.g004
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primer design, such as providing Tm graphs for the sequences,

secondary structure prediction and the prediction of primer-

primer interactions. Furthermore, functionality for automatic

assay design is planned: Since discriminating SNPs are already

automatically identified, sets of SNPs which could be used together

in an assay and are located close to conserved regions suited for

primers should also be automatically determined and presented to

the user as suggestions.

Since the software is open-source, modifications can be made by

anyone. The easiest and most practical place is likely the extension

of supported file formats. By implementing the interfaces

LoadFilter and SaveFilter in the package org.rki.sequenceeditor.-

model.filters, capability to read and/or write arbitrary file formats

can easily be added to the program.
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