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SUMMARY In healthcare settings, contaminated surfaces play an important role in 
the transmission of nosocomial pathogens potentially resulting in healthcare-associ­
ated infections (HAI). Pathogens can be transmitted directly from frequent hand-touch 
surfaces close to patients or indirectly by staff and visitors. HAI risk depends on 
exposure, extent of contamination, infectious dose (ID), virulence, hygiene practices, 
and patient vulnerability. This review attempts to close a gap in previous reviews on 
persistence/tenacity by only including articles (n = 171) providing quantitative data on 
re-cultivable pathogens from fomites for a better translation into clinical settings. We 
have therefore introduced the new term “replication capacity” (RC). The RC is affected 
by the degree of contamination, surface material, temperature, relative humidity, protein 
load, organic soil, UV-light (sunlight) exposure, and pH value. In general, investigations 
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into surface RC are mainly performed in vitro using reference strains with high inocula. 
In vitro data from studies on 14 Gram-positive, 26 Gram-negative bacteria, 18 fungi, 4 
protozoa, and 37 viruses. It should be regarded as a worst-case scenario indicating the 
upper bounds of risks when using such data for clinical decision-making. Information 
on RC after surface contamination could be seen as an opportunity to choose the most 
appropriate infection prevention and control (IPC) strategies. To help with decision-mak­
ing, pathogens characterized by an increased nosocomial risk for transmission from 
inanimate surfaces (“fomite-borne”) are presented and discussed in this systematic 
review. Thus, the review offers a theoretical basis to support local risk assessments and 
IPC recommendations.

KEYWORDS replication capacity, viability, inanimate surfaces, fomites, persistence, 
resilience, tenacity, bacteria, fungi, protozoa, viruses, transmission, HAI, fomite-borne risk 
pathogens

INTRODUCTION

I nformation about pathogen replication capacity (RC) after surface contamination is an 
important basis for infection prevention and control (IPC) including the risk assess­

ment of healthcare-associated infections (HAI) and nosocomial outbreaks. In addition, 
this information is of high importance for outpatient settings and community outbreaks.

Pathogens can be spread from contaminated surfaces by direct patient contact, 
airborne dispersal (small and large aerosols), or indirectly via hand and medical devices 
after contamination from hand-touch surfaces (Fig. 1a). Exogenous transmission of HAIs 
in Europe corresponds to only about 5%–20% of the total number of HAI incidents 
(1), making the hand the main vector for pathogen transmission from contaminated 
inanimate surfaces (2–31). Consequently, international guidelines assign a key role in 
cleaning/disinfection of areas beside patients, especially surfaces receiving frequent 
hand/skin contact (32–35). An additional benefit is the relatively low cost of interventions 
aiming at controlling this source as opposed to many others, for example, impregna­
ted catheters (36). However, as recently witnessed during the severe acute respiratory 
syndrome coronavirus type 2 (SARS-CoV-2) pandemic, the role of decontamination 
of inanimate surfaces can also be overrated (37). Inappropriate use of disinfectants 
leads to costly interventions alongside risk of disinfectant tolerance and even antibiotic 
resistance, environmental pollution (38–40), and adverse effects for humans (41–44). 
Therefore, it would be useful to obtain greater insight into the RC of pathogens on 
inanimate surfaces to implement the most appropriate, risk-assessed decontamination 
procedures.

Since hands are the main vehicle for potential nosocomial pathogens, hand hygiene 
and surface cleaning should complement each other to prevent HAI (45).

Defining terms of cultivable pathogens from inanimate surfaces

Resilience is the quality to withstand or recover quickly from environmental challenges 
and therefore being able to keep or come back to the standard or previous condition. 
Resilience is a positive characteristic from the perspective of the microbes, which in the 
medical context can have negative implications from the patients’ perspective. To 
determine the environmental resilience of pathogens, different methods of recovery are 
available to describe their burden on inanimate surfaces. For viruses, only indirect 
cultivation is possible because cells are needed for replication. Unfortunately, reverse 
transcriptase polymerase chain reaction (RT-PCR) does not allow a conclusion to be 
drawn about the remaining infectivity of viruses [e.g., plaque-forming units (PFU)]. 
Pathogen-dependent, different terms with different meanings are used for the ability of 
pathogens to be recovered from inanimate surfaces. To have the same understanding, 
some common terms will be preceded by a brief explanation. Von Sprockhoff (46) 
proposed “survivability” synonymously to “tenacity” as the robustness of 
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microorganisms to defined exogenous factors. The term “tenacity” refers to the resist­
ance of bacteria, fungi, protozoa, and viruses to environmental influences. In the Anglo-
American language, the term “tenacity” is uncommon; instead, terms such as 
“resistance,” “sensitivity,” or “survival” are used more often (47). The Latin origin “tenacitas 
= to hold on” is not helpful for understanding what the term means. In the broader 
sense, tenacity means, “the determination to continue what you are doing” (48). Another 
comprehensive definition is “the quality or state of being tenacious” (49). Professionals in 
clinical disciplines are unaware of the term “tenacity” for microorganisms. Therefore, we 
need something that linguistically expresses the viability of bacteria, fungi, protozoa, and 
viruses when they contaminate surfaces, to be able to assess the risk of onward spread of 
nosocomial pathogens emanating from that surface.

Since bacteria, fungi, and protozoa function autonomously, the terms “persistence,” 
that is, “viability,” and “survival” are used synonymously. Survival can be understood 
as persisting viability under disadvantageous circumstances (50). Some microorgan­
isms persist through an adaptive reaction to survive in the environment by reducing 
metabolism and by morphological, biochemical, and/or genetic adaptations, especially 
for bacteria in biofilms and/or as bacterial spores (51–53). Another mode of adaptation 
is the transition to viable but non-cultivable (VBNC) cells, which can only be converted 

FIG 1 (a) Transmission routes from contaminated inanimate surfaces and environmental influences. (b) Examples of the 

variety of different replication capacities depending on the pathogen and surface material.
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back to a replicative, virulent state through certain stimuli (54, 55). Protozoan cysts act as 
a survival niche and protective shelter (56). The criterion for determining the persistence 
of microorganisms is whether they can replicate after it has contaminated a surface.

Unlike bacteria, viruses need the synthetic apparatus of intact host cells for their 
replication. Viruses have neither their own metabolism and energy production nor the 
possibility of protein synthesis. Therefore, strictly speaking, they are not living beings. 
The criterion for viral infectivity is the ability to replicate in host cells so that quantifica­
tion in vitro is possible by resuspension from the surface, transfer to the cell culture and 
counting dead cells, the so-called cytopathic effect (CPE). Not every virus is capable 
of inducing CPE while demonstrating other significant features. The viral ability to 
replicate is referred as “replication capacity” (57), which is used in different contexts, 
for example, for change under antiviral therapy (58). In parallel, the ability of vectors 
to transfer antibiotic resistance genes can also be termed “replication capacity” (59). 
Viral persistence, on the other hand, is understood as the genetic information of viruses 
presenting in cells of the host organism and the possibility of a virus reactivation under 
certain circumstances, for example, in the case of immunosuppression of the host (e.g., 
herpes viruses).

In summary, only RC reflects the viral load on a surface because viral RC correlates 
with viral infectivity (60). Given that for microorganisms and protozoa, as well as viruses, 
the criterion of replication determines infectivity and because the term “replication 
capacity” does not allow different interpretations, the term “replication capacity” (instead 
of tenacity, persistence, survival, or viability) is proposed to describe recovery from 
inanimate surfaces.

Risk assessment from inanimate surfaces as the origin of HAI

Information on RC of pathogens on inanimate surfaces could assist with the following 
aims:

– To determine the most effective decontamination strategy, first, for known 
nosocomial pathogens, and second, in the event of the emergence of a new 
pathogen with initially unknown properties and potential for epi- or pandemic 
spread;

– Generally, to provide a risk assessment for IPC measures after pathogen release 
from patients to interrupt further transmission;

– To provide a risk assessment of the need for final disinfection measures required 
after hospital discharge of pathogen carriers, especially for isolated patients;

– To inform control methods for nosocomial outbreaks;
– To help determine standard operating procedures (SOP) for surface cleaning 

and/or disinfection, especially hand-touch sites without any knowledge about the 
presence of potential pathogens;

– To help determine SOP for surface cleaning and/or disinfection, following 
incidents such as sewage or floodwater spillage, building works, etc.;

– To assess the risk of the possibility of further spread of pathogens after hand 
contact with contaminated surfaces and medical devices especially for research 
purposes;

– To assess the risk­benefit between disinfection efficacy, expense and environmen­
tal impact, and thus finally IPC; and

– To analyze the RC under the influence of probiotic cleaning as a new option for IPC 
(61).

Walther and Ewald (62) distinguished a highly virulent long-lasting group contain­
ing variola (smallpox) virus, Mycobacterium tuberculosis, Corynebacterium diphtheriae, 
Bordetella (B.) pertussis, Streptococcus (Str.) pneumoniae, and (avian) Influenza A Virus 
(virulence determined from mortality rate or case mortality). These pathogens have 
a mean percent mortality of ≥0.01% and a mean survival time of >10 days (d). By 
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contrast, a low-virulence and low-persistent group (mean percent mortality <0.01% 
and time of survival <5 d) includes viruses such as Rubeola, Mumps, Parainfluenza, 
Respiratory syncytial, Varicella-zoster, Rubella, and Rhinovirus, alongside the bacteria 
Mycoplasma pneumoniae and Haemophilus (H.) influenzae. This is even more interesting 
since these bacteria and viruses belong to totally different species, families, and genera, 
respectively. While our review focuses on transmission modes via inanimate surfaces 
[“fomite-borne”; e.g., from materials such as glass, stainless steel, textiles (Fig. 1b)], 
also other transmission modes (e.g., airborne, waterborne/foodborne) of pathogens are 
relevant for risk assessment. The longer a nosocomial pathogen persists on a surface, the 
longer the surface may be a source of transmission and endanger a susceptible patient 
or healthcare worker. Furthermore, a correlation between virulence and persistence is 
reported (63), the sit-and-wait hypothesis predicts that virulence should be positively 
correlated with persistence in the external environment because persistence reduces 
the dependence on host mobility for transfer to a patient. This has been confirmed for 
respiratory tract pathogens (63). The virulence of pathogens, including factors, such as 
infectious dose (ID), RC, and risk of transmission, determines the outbreak potential and 
should be considered as the basis for the IPC strategy. For surfaces as (temporary) origin 
of HAI, the RC of pathogens from fomites is essential. The main focus in this context 
was the transmission mode from inanimate surfaces. High virulent pathogens with 
outbreak potential due to low ID, long-lasting RC require additional to the non-targe­
ted near-patient (high touch) surface disinfection, a targeted cleaning and disinfection 
as patient-remote (low touch) surface disinfection, and final surface disinfection. Such 
pathogens with increased “fomite-borne risk,” characterized by an increased nosoco­
mial risk for transmission from inanimate surfaces, are marked in gray in Tables 3 to 
7. Of course, disinfection measures are only one part of the IPC strategy combined 
with the other standard precautions such as hand hygiene and additional pathogen-
related measures such as barrier nursing, isolation, antimicrobial chemotherapy, and 
antiseptic decolonization. With growing knowledge, the classification of “pathogens with 
nosocomial risk for spread from inanimate surfaces” can be further developed.

There is a practical way of looking at this. For example, admission to a room 
previously occupied by a patient infected and/or colonized with a pathogen is a known 
risk factor for the acquisition of that pathogen (64). This risk can be quantitated and it 
appears that the relative differences in acquisition risk between the pathogens mirror 
environmental longevities. As expected, organisms such as Acinetobacter baumannii 
complex and C. difficile present the highest risk for acquisition, and they also happen to 
be the most resilient in the healthcare environment (65). This begs the question even 
over the need for cleaning/disinfection priorities for a recently vacated room, depend­
ing on which pathogen infected the previous patient. So, in accordance with survival 
and replicative properties, decontamination strategies could range from a quick wipe 
over the hand-touch surfaces for methicillin-resistant Staphylococcus (S.) aureus (MRSA), 
disinfection of the sink/shower for ESBLs and comprehensive air and surface disinfection 
for C. difficile, etc. If pathogens are released from the respiratory tract, knowledge of 
the RC makes it possible to assess whether patient-remote surfaces should also be 
included in the final disinfection, for example, wall surfaces and slatted curtains. A focus 
on targeted cleaning and disinfection allows pathogen-related risk to dictate the most 
appropriate decontamination practice for all patient spaces (45). This risk assessment is 
the logical consequence of a basic risk without the knowledge of existing pathogens and 
enables a—in theory—most effective strategy.

To assess the timeline of RC for risk of further spread, it is necessary to consider RC in 
more detail. This includes baseline inoculum, the surface material, temperature, relative 
humidity (RH), protein load, organic soil, light exposure, and pH value. Thus, it is not 
just the type of pathogen or evidence for them (e.g., DNA, RNA), but whether they are 
capable of being transmitted to, and replicating in, the host (Fig. 1a and b). Transmission 
potential of pathogens on surfaces is not restricted to the direct and indirect contact 
transmission route. Some, but not all potential pathogens on inanimate surfaces can 
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be aerosolized and transmitted contact-free. This potential additional risk is not within 
the scope of this review. But if the RC is known, the infection risk can be estimated for 
respiratory released and airborne transmissible pathogens.

This review aimed to collect and assess published data related to RC of all types 
of nosocomial pathogens contaminating inanimate healthcare surfaces as the basis for 
evaluating healthcare-associated infection risk by fomite-borne risk assessment. For the 
determination of IPC strategies, both RC and ID should be considered. These data might 
assist in evaluating the transmission and infection risk and therefore guide the most 
appropriate IPC measures.

METHOD

Literature from three reviews (66–68), with at least partly similar aims, was screened 
and examined as a basis for the current review. Then a systematic literature search 
was conducted in accordance with the PRISMA guideline and the German Manual for 
Literature Research in Databases (69).

Based on the modified PICO scheme (Table 1), the search terms were compiled. 
The search was restricted to publications from 2020 onwards to obtain hits that were 
not already included in the latest review (68). The language was limited to German 
and English. PubMed and Web of Science were both used for the search, which was 
conducted on 26th January 2023.

Duplicates were removed using Citavi 6 (Swiss Academic Software GmbH). Four 
reviewers carried out the screenings blinded (two reviewers per article) using an online 
document to record the decisions. The articles were compared against predetermined 
inclusion and exclusion criteria (Table 2).

In the case of different assessments, a third reviewer joined the discussion, and a 
consensus was reached. First, the titles and abstracts were screened and then the full 
texts of the included records. Eligible reviews were not included but searched for primary 
studies, which were then also screened as above.

The data were extracted into an online table by the reviewers. A cross-check was 
conducted afterwards.

Tables 3 to 7 were modified from the informative appendix (only in German) (71) of 
the recommendation of the Commission for Hospital Hygiene and Infection Prevention 
(KRINKO) on Hygiene requirements for cleaning and disinfection of surfaces (72). Table 8 
was modified from Jawad et al. (73).

EVALUABLE PUBLICATIONS

There were 145 publications taken from three previous reviews, with an additional 495 
records identified via the databases (Fig. 2). In all, 152 duplicates were removed. The 
title and abstract of the remaining 343 records were screened, leading to the inclusion 
of 40 reports. Of these, 32 were excluded during the full-text screening. Four primary 
studies and four reviews were included. The reference lists of the reviews were screened 
for other eligible studies which led to the inclusion of another 22 primary studies. Within 
the scope of the systematic search, a total of 26 primary studies were included. Together 
with studies from the three initial reviews, a total of 171 publications were included.

This review does not claim to include all pathogens with the ability to induce 
outbreaks, for example, Mycobacterium chimera. The priority was to gauge transmission 
potential from near-patient inanimate surfaces. We did not consider pathogens in other 
hospital hygiene-relevant settings (e.g., water, air, and food).

TABLE 1 Search strategy: segments and search terms

Segment Search terms

Pathogens Bacteria, viruses, fungi, protozoa
Conditions Surface, fomite, inanimate, temperature, humidity, light
Setting Nosocomial, hospital acquired
Outcome Persistence, survival, transmission, tenacity
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Tables 3 to 7 focus on the most important pathogens in the healthcare setting 
and the most important parameters for transmission potential (temperature, RH, 
light, surface material). For better clarity, inocula were reported by waiving applica­
tion conditions. Due to differences in the choice of units used to report results, 
the initial inoculum (starting point) was converted into a decadic logarithm. For 
additional data and details of recultivation and expanded environmental conditions, 
please see supplementary material (Tables A–E). Pathogens with an increased fomite-
borne transmission potential were highlighted in gray. For this tentatively introduced 
classification, we used a simple scoring system: Pathogens are characterized by (i) a 
high virulence and/or (ii) a long RC and/or (iii) a high potential for nosocomial spread. A 
pathogen belongs to the fomite-borne risk group if at least two of the three statements 
are fulfilled. This is to be understood explicitly as a basis for discussion and is summarized 
illustratively in Fig. 3.

Replication capacity of bacteria

Microorganisms responsible for colonized or infected patients may be isolated from 
the near-patient environment, especially when surface cleaning or disinfection is 
inadequate. To clarify transmission routes, screening has been carried out primarily 
for species such as MRSA (236, 237), vancomycin-resistant enterococci (VRE) (236, 
238), carbapenem-resistant enterobacteriaceae (CRE) (239, 240), Acinetobacter bauman­
nii complex (241), Clostridioides (C.) difficile (241, 242), and recently for the high patho­
genic yeast Candida (C.) auris (243). For species detected in nosocomial outbreaks, 
or which frequently colonize or infect newly admitted patients, understanding RC is 
useful because intensified surface cleaning/disinfection within an intervention bundle 
has proved effective in controlling cross-infection and even outbreaks. This has been 
proven for VRE (18, 25), C. difficile (16), MRSA (244), Acinetobacter (A.) baumannii (4, 8, 
22, 28), CRE (14, 25), and C. auris (243, 245). The acquisition of pathogens from previous 
patients caused by deficiencies in final disinfection is well known (5–7, 9, 15, 23, 246) 
and evaluated in meta-analyses (21, 31). However, none of these studies used genomic 
surveillance to link isolates from the previous occupant and the new patient admitted 
into the same room. Recent work suggests that pathogen identity cannot be assumed, 
but there is a high likelihood of genotypic identity depending on the species (247).

In most reports, RC was studied on dry surfaces using artificial contamination of a 
standardized surface in a laboratory. Bacteria were prepared in broth, water, or saline 

TABLE 2 Inclusion and exclusion criteria

Inclusion Exclusion

Narrative review, rapid review, scoping review, systematic review, randomized 
controlled trial, quasi-randomized controlled intervention study, not randomized 
controlled studies, pro- and retrospective cohort studies, case-control studies, 
historically controlled studies, cross-sectional studies

Single-arm follow-up studies (case reports, case studies, etc.), 
commentaries, study protocols, conference abstracts, books, 
editorials, model studies

Human pathogenic species within the following groups: viruses, bacteria, protozoa, 
and fungi that are relevant for hospital-acquired infections from surfacesa

Other pathogens

Inanimate surfaces—specifically surfaces relevant in hospital settings (e.g., materials 
such as glass, stainless steel, polymers, textiles). Cave: if the only information found 
was not on hospital-relevant surfaces, the information is reported to give insight into 
the possible tenacity of the pathogen.

Animate surfaces (e.g., hands, hair, wounds)

Persistence, tenacity, survival, temerity, recultivable, and replicable; a resuspension 
has to be made from the test surface and then transferred to the cell culture or 
nutrient medium

Anything concerning the treatment, symptoms, or genetic 
surveillance; studies on the effect of disinfectants; studies on 
the effect of antibacterial/antiviral surfaces

Since 2020 Before 2020
English, German Other languages
Relevant data/methodology (e.g., inoculum concentration) are given Relevant data/methodology (e.g., inoculum concentration) not 

given
aAlthough ectoparasites can also be transmitted nosocomially (70), they were excluded because they are multicellular arthropods reproducing outside humans.
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TABLE 3 Replication capacity of Gram-positive bacteria from inanimate surfacesa

Pathogen Initial inoculum Replication capacity Surface Ref.

Bacillus subtilis spores ~8 lg CFU After 15 d: reduction by 0.3 lg, after

56 d: reduction by ~0.7 lg

Glass (74)

7.1–9.5 lg CFU >200 d: reduction by ~2 lg Polycarbonate (75)

6 lg CFU ≥1 d: 5 lg Stainless steel (76)

Clostridioides (C.) difficile spores 6 lg CFU After 2 d: reduction by ~2 lg, after 

4 wk: 8 CFU, after 5 mon 1 CFU

Floor (77)

6–7 lg CFU After 6 wk: reduction by ~0.5–0.8 lg; 

after 12 wk: reduction by <3 lg

Steel (78)

C. difficile veg. ~6 lg CFU 15 min: reduction by ~4 lg Glass (79)

Corynebacteria generic 2.7–3.8 lg CFU ≥ 48 h: mean recovery 3.6% Cotton (80)

Corynebacterium diphtheriae Up to 155 CFU 7–90 d (strain-dependent) Dust (81)

Corynebacterium pseudotuberculosis ~6 lg CFU 3 d Plastic (82)

Corynebacterium striatum 6 lg CFU After 48 h: 7.7 lg/6.8 lg/2.6 lg Polyvinyl chloride (PVC)/silicone/stain­

less steel

(83)

Enterococcus faecium 6–7 lg CFU After 12 wk: reduction by <3 lg Steel (78)

~6.5 lg CFU 49 d/51 d/49 d Cotton/wool/silk (84)

250 CFU 7 d up to 28 d: 250–70 CFU/250 to 

~32 CFU/250–160 CFU/250 to ~50 

CFU

Glass/PVC/stainless steel/aluminum (85)

8 lg CFU 1 to 16 wk PVC (86)

8 lg CFU <4 mon: ~2 lg recultivable Ceramic/PVC/rubber/steel (87)

~5 lg CFU 33/>90/>90 d Cotton/polyester/polypropylene (88)

5–6 lg CFU ≥7 d (3 lg/3 lg) Polyester/Terrycloth (89)

10 lg CFU ≥21 d (4–5 lg) Cotton (90)

Enterococcus faecalis 6–7 lg CFU After 6 wk: reduction by <1.8 lg Steel (78)

7.5 lg CFU After 8 wk: 6.5 lg Ceramic/cotton/synthetic fibers (91)

5.2 lg CFU After 1 d: survival of 3% Cotton (92)

~5 lg CFU >90/>90/>90 d Cotton/polyester/polypropylene (88)

6 lg CFU ≥1 d: 5 lg Stainless steel (76)

Enterococcus spp. 7.2 lg CFU Mean survival rate 3 d

(dried in water), 43 d

(dried in egg white)

Glass (73)

Vancomycin-resistant Enterococcus

(VRE)

~6 lg CFU After 6 wk: reduction by ~3 lg Steel (78)

5 lg CFU ≥7 d Furnishings (93)

E. faecalis 4.5 lg Dried 60 min: 3 lg CFU; dried 90 min: 

3.6 lg CFU

Stainless steel (94)

8 lg CFU 1 to 16 wk PVC (95)

E. faecalis: ~5 lg CFU 22/>80/>80 d Cotton/polyester/polypropylene (88)

E. faecium: ~5 lg CFU >90/>90/>90 d

Micrococcus luteus 7.1–9.5 lg CFU After 120 d: reduction by ~6 lg Polycarbonate (75)

5.2 lg CFU After 2 d: survival of 20% Cotton (92)

Mycobacterium tuberculosis 0.1 mg/mL Recultivable in daylight after 1 d, 

recultivable in

darkness for 9 d, not recultivable after 

40 d

Coverslip (96)

Staphylococcus aureus, methicillin-

susceptible (MSSA)

7.3 lg CFU ≥11 d Glass (73)

5.2 lg CFU After 25 d: survival of 0.8% Cotton (92)

7.5 lg CFU After 8 wk: ~6.5 lg CFU/mL Ceramic/cotton/synthetic fibers (91)

8 lg CFU 2 d/18 d/>45 d/43 d Latex/cotton/vinyl flooring/

granite

(97)

(Continued on next page)
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TABLE 3 Replication capacity of Gram-positive bacteria from inanimate surfacesa (Continued)

Pathogen Initial inoculum Replication capacity Surface Ref.

~6.5 lg CFU 37 d/37 d/41 d/37 d Cotton/cotton polyester/wool/

silk

(84)

6 lg CFU 9 d/10 d/3 d Formica/stainless steel/enamel (98)

250 CFU After 21 d: 5 CFU/after 7 d: ~5 CFU/

after 21 d: 0 CFU

/after 7 d: ~10 CFU

Glass/PVC/stainless steel/aluminum (85)

7.2 lg CFU Mean survival 26 d (dried in water), 

35 d (dried in egg white), after 12 

d: ~3 lg CFU loss (water); after 18 

d: ~5.7 lg loss (egg white)

Glass (73)

Desiccation:

7.3 lg CFU

Wet: 3–4 lg CFU

After 25 d desiccation: 4.4 lg; wet: 

after 7 d not recultivable

Aluminum (99)

6–7 lg CFU Dry < 7 mon, at 32% RH >5 mon Dust (100)

a. Dry inoculum: 5–6 lg CFU

b. Liquid inoculum: ~6 lg CFU

a. After 24 h: 6.7 lg CFU, after 7 d: 22 
CFU /after 24 h: 6.3 lgCFU, after 7 d: 1 
CFU

b. After 7 d: 16.2 lg/6.1 lg Polymer without silver/with silver (36)

8 lg CFU With dust: <28 d, without dust: <35 d Bottles with and without dust (101)

7 lg CFU ≥ 12 d/12 d/≥14 d Plastic/laminated plastic/polyester (102)

5–6 CFU (mattress cover)

14–34 CFU (drapes)

5–6 CFU (bed sheets)

Recovery after 72 h at 22°C: 

98 CFU/1 CFU/17 CFU/3 lg/1 CFU/1 

CFU

Dry mattress cover/wet mattress 

cover/dry drapes/wet drapes/dry bed 

sheets/wet bed sheets

(103)

8 lg CFU <21 d/≥21 d (6 lg) Polyester/cotton (104)

5–6 lg CFU ≥206 d/25 d/11 d/≥206 d Mattress inner foam/PVC/cotton/poly­

ester

(105)

9 lg CFU ≥21 d : 4–5 lg CFU Cotton (90)

5.7 lg CFU ≥11 d: 4 lg CFU PVC (76)

5.7 lg CFU ≥11 d: 3 lg CFU/≥11 d: 3 lg CFU/≥

11 d: 3 lg CFU

Aluminum/plastic/stainless steel

6 lg CFU ≥1 d: 6 lg CFU Stainless steel

0.05 OD600 ≥7 d: survival rate: 4% Polypropylene (106)

Staphylococcus aureus, methicillin-

resistant, epidemic (EMRSA)

8.7 lg CFU ≤ 60 min/270 min/≥360 min Copper/brass (80% Cu, 20% Zn)/

stainless steel

(107)

Staphylococcus aureus, methicillin-

resistant (MRSA)

6–7 lg CFU After 6 wk: reduction by 5–6 lg CFU Steel (78)

8 lg CFU 1 d/18 d/41 d/40 d Latex/cotton/vinyl flooring/tile (97)

3.2–4.9 lg CFU After 7 d: recovery 59%–125%; after 

14 d: 26%–42%; after 28 d: 0.2%–

16%; after 56 d: 0%–1%

Dry mop (108)

9 lg CFU <318 d Plastic (109)

8 lg CFU With dust: <126 d; without dust:

<175 d

Bottles with and without dust (101)

5.6 lg CFU) <21/14/3/40/>51 d Cotton/cotton terry/cotton and 

polyester/polyester/polypropylene

(88)

~7.3 lg CFU <96 d Glass (110)

6 lg CFU ≤63 d/≤56 d/≤21 d/≤14 d/≤14 d/

≤3 d/≤5 min

Vinyl/plastic/ceramic/bed sheets/

towels/wood/razors

(111)

7 lg CFU ≥12 d/11 d/9 d Plastic/laminated plastic/

polyester

(102)

6.3–6.7 lg CFU or 4.3–4.7 lg CFU ≤8 d or <2 d Polypropylene (112)

5–6 lg CFU ≥7 d: <1 lg/1 lg Polyester/terrycloth (towel) (89)

(Continued on next page)
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and removed from the germ carrier by different rinsing solutions, for example, dist. water, 
physiol. NaCl, phosphate­buffered salt solution (PBS), or Triton X-100, sometimes in 
combination with ultrasound (Tables 3 and 4).

After this preparation, members of the Gram-positive genera enterococci (e.g., VRE) 
and staphylococci (e.g., MRSA) survive for months on dry surfaces. Among streptococci, 
RC differs depending on the species, that is, for Streptococccus (Str.) pneumoniae <24 h, 
Str. pyogenes 1–3 d, and Str. salivarius >88 h. Corynebacterium pseudotuberculosis survives 
1–4 d on dry plastic surfaces. By contrast, C. diphtheriae, isolated from dust in patient 
rooms, survives 7–90 d, depending on the species. In daylight, Mycobacterium tuberculo­
sis survives for 2–5 d, but in darkness, recovery is possible for up to 200 d (Table 3).

There are only a few studies where wild-type and antibiotic-resistant representa­
tives of the same species were compared against each other. For enterococci, VRE 
has higher RC compared with susceptible enterococci. Similarly, methicillin-sensitive S. 
aureus (MSSA) in dust demonstrated a shorter survival time on surfaces than MRSA (Table 
3).

Spores of Bacillus and Clostridioides (C.) spp. survive for >6 months depending on the 
material. By contrast, the vegetative form of C. difficile drops to the detectable threshold 
within 15 minutes (min) (Table 3).

An initial comment is that neither Gram-positive nor Gram-negative organisms 
represent a uniform group regarding recultivation potential from inanimate surfaces 
(Tables 3 and 4). Some species can survive for a month, such as Escherichia (E.) 
coli, Klebsiella spp., Pseudomonas aeruginosa, Serratia marcescens, Enterococcus spp., 
Acinetobacter ssp. and Clostridioides ssp. This is also reflected in infection epidemiology 
since these pathogens can cause ongoing transmission incidents and outbreaks. The 
Salmonella genus behaves very differently: Salmonella (S.) typhimurium is still present in 
garden soil 280 d after contamination (248), S. paratyphi B survives in soil up to 259 d 
(249), and S. enteritidis for more than 11 months, whereas S. typhi survives only 4 d.

Conversely, Mitscherlich and Marth (250) demonstrate the persistence of Proteus spp. 
in the environment with 1–2 d. P. morganii, P. rettgeri, P. vulgaris, and P. mirabilis survive in 
sterile clay loam at 18–20°C species-dependent 35–40 d. The decimal reduction time was 
about 6 d (251). Shigella flexneri persists for 6 d (252). B. pertussis, H. influenzae, and Vibrio 
cholerae persist only a few days [(253); Table 3]. Aerosolized H. influenzae is characterized 
by short survival on glass (0.29 d), wood (0.08 d), and fabric (<1 d) (250, 254).

TABLE 3 Replication capacity of Gram-positive bacteria from inanimate surfacesa (Continued)

Pathogen Initial inoculum Replication capacity Surface Ref.

Staphylococcus aureus, vancomycin 

intermediate (VISA)

8 lg CFU 1 d/3 d/>45 d/>45 d Latex/cotton/vinyl flooring/

granite

(97)

Streptococcus faecalis Desiccation: 6.9 lg CFU

Wet: 3–4 lg CFU

After 25 d desiccation: 4.6 lg; wet: 

after 10 d not recultivable

Aluminum (99)

Streptococcus pyogenes ~7.7 lg CFU <2 h Plastic and ceramic/plastic/

stainless steel (113)

8 lg CFU Planktonic: 3 d; as biofilm: >120 d Plastic/textiles (114)

5–6 lg CFU ≥206 d/25 d/11 d/≥206 d Mattress inner foam/PVC/cotton/poly­

ester

(105)

Streptococcus pneumoniae 2.8–3.6 lg CFU ≥48 h: mean recovery 0.2% Cotton (80)

Streptococci, staphylococci from saliva; 

combined analysis

5.3 lg CFU for Staphylococ­

cus aureus; 5.9 lg CFU for 

Streptococcus pyogenes; 5.8 lg 

CFU for Streptococcus salivarius

> 88 h Glass/latex/wood (115)

aTable modified from reference 71. Pathogens with fomite-borne transmission potential, characterized by an increased nosocomial risk for transmission from inanimate 
surfaces, are marked in gray; for additional data and details of recultivation and environmental conditions, see the supplemental material (Table A). Legend: CFU = colony 
forming units, lg = decadic logarithm, min = minute, h = hour, d = day, wk = week, mon = month, PVC = polyvinyl chloride.
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TABLE 4 Replication capacity of Gram-negative bacteria from inanimate surfacesa

Pathogen Initial inoculum Replication capacity Surface Ref.

Acinetobacter baumannii

(complex)

~6.5 lg CFU 19 d/19 d/7 d/19 d Cotton/cotton polyester/wool/silk (84)

6–7 lg CFU After 6 wk: reduction by 4–5 lg Steel (78)

6 lg CFU 11 d/12 d/6 d Formica/stainless steel/enamel (98)

250 CFU After 28 d: ~112 CFU/~112 CFU/~18 CFU/

~20 CFU

Glass/PVC/stainless steel/aluminum (85)

7.1–9.5 lg CFU After 20 d: reduction by about 5.5 lg Polycarbonate (75)

1,200 resp. 1,100 CFU Biofilm­forming <36 d/non­biofilm­form­

ing <15 d

Glass (116)

7.3 lg CFU 3 d Glass (117)

7.3 lg CFU Up to 33 d Glass (118)

7.3 lg CFU 7–70 d (strain-dependent) Glass (119)

~8 lg CFU) 3–90 d (strain-dependent) Polystyrene (120)

~7.3 lg CFU <96 d Glass (110)

8 lg CFU 50% of strains mean survival of at least 

2 wks (<2 lg recultivable), strain-depend­

ent <4 mon (7 lg recultivable)

Ceramic/PVC/rubber/steel (87)

4.1 lg CFU Dried 60 min: 4 lg; dried 90 min: 3.9 lg Stainless steel (94)

6 lg CFU ≥1 d: 4 lg Stainless steel (76)

7 lg CFU ≥60 d: survival rate: 10%, 40%, 40% Cotton/plastic/glass (121)

5–6 lg CFU ≥7 d: 2 lg/3 lg Polyester/Terrycloth (89)

7.2 lg CFU Mean survival rate strain-dependent 2–29 d 

(dried in water); <59 d (dried in egg white); 

after 18 d ~ 5.5 lg loss

Glass (73)

Acinetobacter johnsonii Mean survival rate 3 d (dried in water); 12 d 

(when dried in egg white)

Acinetobacter junii Mean survival rate 2 d (dried in water); 13 d 

(dried in egg white)

Acinetobacter lwolffi Mean survival rate 6 d (dried in water); 8 d 

(dried in egg white)

7.3 lg CFU 3 d Glass (117)

Acinobacter calcoaceticus anitratus 4 lg CFU After 1 h: 3 lg Hardboard (122)

5.2 lg CFU After 25 d survival of 0.6% of the CFU/after 

7 h survival of 40% of the CFU

Cotton/glass (92)

Acinetobacter calcoaceticus lwoffii 4 lg CFU/sample After 1 h: 3 lg CFU Hardboard (122)

5.2 lg CFU After 7 d not recultivable Cotton (92)

Acinetobacter radioresistens 7.3 lg CFU 157 d Glass (117)

Bordetella pertussis 8 lg CFU (0.01 mL) <0.04 h–5 d/3–5 d/<0.04 h–5 d/<0.04–4 d/

0.2–1 d

Glass/plastic/rubber/fabric/paper (123)

Campylobacter jejuni 0.1 mL contaminated

water from screw 

coolers

  4 h/4 h/7 h/7 h Aluminum/stainless steel/formica/

ceramic

(124)

8–9 lg CFU After 28 d: ~5 lg (without wood 0 lg after 2 

d)/polyurethane and glass: ~survival for 2 d 

(pore-size-dependent)

Wood/polyurethane/glass (125)

7 lg CFU ≤250 min (4 lg)/≥250 min (3 lg)/<250 min (1 

lg)/<180 min

Stainless steel/formica/ceramic/cotton (126)

Enterobacter cloacae 250 lg CFU After 3 d: ~14 CFU/after 2 d: ~12 CFU/after 3 

d: ~13 CFU/after 2 d: ~5 CFU

Glass/PVC/stainless steel/aluminum (85)

Escherichia coli 6 lg CFU After 48 h: ~1.5 lg/after 24 h: ~1.5 lg Plastic/carton (127)

9 lg CFU After 100 d: 1 lg Plastic (128)

(Continued on next page)
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TABLE 4 Replication capacity of Gram-negative bacteria from inanimate surfacesa (Continued)

Pathogen Initial inoculum Replication capacity Surface Ref.

7.3 lg CFU After 7 d (dry): not recultivable; after >28 d 

humidity

Wood/steel (129)

7–8 lg CFU <120 min Plastic/wood (130)

5.2 lg CFU After 7 h: not recultivable/after 7 h: survival

of 0.8% of CFU

Cotton/glass (92)

7.5 lg CFU After 8 wk: ~6.5 lg CFU/mL Ceramic/cotton/synthetic fibers (91)

7–9 lg CFU After 2 h: reduction by: 1.7 lg/

0.37 lg/1.09 lg/0.44 lg/after 24 h:

0.06 lg

New dry wood/new wet wood/

used dry wood/used wet wood/plastic

(131)

8 lg CFU <4 mon (~ 2 lg recultivable) Ceramic/PVC/rubber/steel (87)

~6.5 lg CFU 45 d/37 d/45 d/45 d Cotton/cotton-polyester/wool/silk (84)

250 CFU After 1 d: ~5 CFU/after 1 d: 2 CFU/after 2 day: 

1 CFU/after 2 d: 1 CFU

Glass/PVC/steel/aluminum (85)

7.1–9.5 lg CFU After 6 h: reduction by about 6.5 lg Polycarbonate (75)

7.2 lg CFU Mean survival rate 1 d (dried in water), 3 d 

(dried in egg white)

Glass (73)

6–7 lg CFU At 58% RH >8 mon Dust (100)

Desiccation:

6.9 lg CFU

Wet: 3–4 lg CFU

After 25 d desiccation: 0.7 lg CFU/cm2; 

wet: >12 d

Aluminum (99)

5–6 lg CFU After 24 h: 0.2 CFU, after 7 d: not recultiva­

ble/after 7 d: 8 CFU

Polymer without silver/with silver (36)

1–2 CFU (mattress 

cover)

2 CFU (drapes)

1–2 CFU (bed sheets)

Recovery after 72 h at 22°C: 4 lg/4 lg/3.7 

lg/5.7 lg/3.2 lg/4.2 lg

Dry mattress cover/wet mattress 

cover/dry drapes/wet drapes/dry bed 

sheets/wet bed sheets

(103)

8 lg CFU <10 d/≥21 d (6 lg) Polyester/cotton (104)

5–6 lg CFU ≥206 d/11 d/7 d/≥206 d Mattress inner foam/PVC/cotton/poly­

ester

(105)

2.7–3.2 lg CFU ≥48 h (mean recovery too

numerous to count)

Cotton (80)

5.7 lg CFU ≥1 d: 2 lg Vinyl chloride (76)

5.7 lg CFU ≥4 d: 1 lg/≥7 d: 1 lg/≥4 d: 1 lg Aluminum/plastic/stainless steel

6 lg CFU ≥1 d: 3 lg Stainless steel

5.7 lg CFU ≥7 d: 3 lg Plastic

Haemophilus influenzae 6 lg CFU After 1 h: 99.99% reduction Aerosol (132)

2.8–3.5 lg CFU ≥48 h: mean recovery 1.8% Cotton (80)

Helicobacter (H.) pylori 9 lg CFU After 30 min: 7.8 lg, after 60 min: ~1.1 lg/

after 30 min: 8 lg, after 60 min: ~1.3 lg

Plastic/ceramic (133)

Klebsiella pneumoniae 5.2 lg CFU After 1 h not recultivable Cotton (92)

7.5 lg CFU After 8 wk: ~6.5 lg CFU/mL Ceramic/cotton/synthetic fibers (91)

~6 lg CFU After 6 wk: ~1 lg Steel (78)

250 lg CFU After 3 d: ~25 CFU/after 3 d:

17 CFU/after 2 d: 21 CFU/after 2d: 13 CFU

Glass/PVC/stainless steel/aluminum (85)

7 lg CFU After 25 d desiccation: 1.8 lg Aluminum (99)

6–7 lg CFU At 58% RH >15 mon Dust (100)

3.9 lg CFU Dried 60 min: 3.4 lg; dried

90 min:

1.8 lg

Stainless steel/plastic (94)

5–6 lg CFU <3 d/<7 d Polyester/terrycloth (89)

Listeria monocytogenes 6 lg CFU After 48 h: ~3.4 lg/~1.2 lg Plastic/carton (127)

7–8 lg CFU After 180 min: 4 lg Wood/plastics (130)

(Continued on next page)
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TABLE 4 Replication capacity of Gram-negative bacteria from inanimate surfacesa (Continued)

Pathogen Initial inoculum Replication capacity Surface Ref.

6 lg CFU After 10 d: 5 lg/after 5 d: 1.5 lg Stainless steel/acrylonitrile butadiene

rubber (ABK)

(134)

9 lg CFU After 50 d: ~7.5 lg CFU; after 50 d 

(biofilm): ~7.3 lg CFU

Stainless steel (135)

8 lg CFU After 20 d: 2 lg Stainless steel (136)

7.3 lg CFU (biofilm) After 21 d: 5.3 lg Stainless steel (137)

Neisseria gonorrhoeae 2 x ~ 20 µL Patient 

exudate

(with proven infection)

At least until 24 h recultivable Plastic/cotton-polyester (138)

One drop of positive 

urethral secretion

Until 17 h: recultivable; after 24 h:

not recultivable/until 24 h: recultivable; after 

48 h: not recultivable

Glass/textile (139)

Pseudomonas aeruginosa a. Dry inoculum: 5–6 lg 
CFU

b. Liquid inoculum: ~6 lg 
CFU

a. After 7 d: 6.2 lg/6.2 lg

b. After 7 d: 7.8 lg/7.8 lg

Polymer without silver/with silver (36)

8 lg CFU After 48 h: average <2 lg Door handles/chairs/spirometer tubing (140)

7.5 lg CFU After 8 wk: 6.5 lg Ceramic/cotton/synthetic fibers (91)

5.2 lg CFU After 2 h: not recultivable Cotton (92)

~6.5 lg CFU 13 d/23 d/33 d Cotton/cotton polyester/wool/silk (84)

250 CFU After 2 d on all surfaces < 2 lg Glass/PVC/stainless steel/aluminum (85)

6 lg CFU 4 d/5 d/1 d Formica/stainless steel/enamel (98)

Desiccation:

6.4 lg CFU

Wet: 3–4 lg CFU

After 2 d desiccation: not recultivable; 

wet: >12 d

Aluminum (99)

6–7 lg CFU At 58% RH >8 mon Dust (100)

1–4 CFU (mattress 

cover)

2 CFU (drapes)

1 CFU (bed sheets)

Recovery after 72 h at 22°C: 3.9 lg/4 lg/3.5 

lg/5.5 lg/4 lg/4.1 lg

Dry mattress cover/wet mattress 

cover/dry drapes/wet drapes/dry bed 

sheets/wet bed sheets

(103)

8.7 lg CFU 20 d, 5 d, 4 d Cotton (90)

6 lg CFU ≥ 1 d: 4 lg Stainless steel (76)

5 lg CFU ≥7 d/24 h/24 h/24 h/24 h/

≥7 d/24 h/24 h/24 h/≥7 d/≥7 d/5 min/24 h/

≥7 d

Paper-backed wallcovering/vinyl 

composition tile/micro vented 

perforated vinyl wallcovering/latex 

paint/vinyl wallcovering, nonwo­

ven backing/linoleum/vinyl sheet 

goods flooring/rubber tile flooring/syn­

thetic­backed carpet/vinyl-backed 

carpet/fabric upholstery/polyester 

and acrylic blend upholstery/vinyl 

upholstery/100% polyester upholstery

(93)

Salmonella enteritidis (S. enterica) ~5 lg CFU After 8 h: 2 lg/not recultivable Plastic/carton (127)

7 lg CFU <1,680 min/≥1,920 min: 1 lg/<480 min/

<240 min

Stainless steel/formica/ceramic/cotton (126)

9 lg CFU Salmonella chester after 100 d: 3 lg; 

Salmonella oranienburg >200 d

Plastic (128)

∼9.3 lg CFU >48 h Petri dish (141)

Salmonella typhimurium 5.2 lg CFU After 7 h: not recultivable Cotton cloth/glass (92)

3.6 lg CFU <6 wk Stainless steel (142)

1 µL of overnight 

cultures inoculated on

ST19: after 1 mon 59.7 ± 12.3 % recultivable;

ST313: after 1 mon 13.1 ± 9.6 % recultivable

Plastic (143)

(Continued on next page)
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Replication capacity of fungi

For RC determination, fungi were removed from the germ carrier mostly by dipping or 
vortex in bouillon or tryptic-soy-broth (TSB), sometimes in combination with ultrasound, 
and by contact with an agar plate, overlaying with agar or smear (Table 5).

Molds occur ubiquitously in nature, are thermotolerant, and can survive on surfaces 
for 2 d to >30 d depending on the material (Table 5). Indoor airborne mold measure­
ments underline the survival for several months (255, 256). Molds can multiply at an 
RH of ≥75% at room temperature (RT), which can lead to mold infestation (257). The 
species Cladosporium, Aspergillus, and Penicillium are the most frequently detected molds 
on hospital surfaces (258–260). Mucor and Aspergillus (A.) spp. were isolated from room 
air and dust from an air-conditioning system with a defective filter and were linked 
with mycotic endocarditis in patients undergoing open heart surgery (261). Moreover, 
Mucorales (Rhizopus spp.) recovered from linen were associated with a Mucormycosis 
outbreak (262, 263) and even survived a certified healthcare laundry process (263). Other 
Mucorales (Mucor spp.) persisted on various materials for weeks (152).

The dermatophytes Epidermophyton (E.) floccosum, Trichophyton (T.) mentagrophytes, 
and Tricholosporum violaceum survived in skin scales for 10 years at −20°C, while T. 

TABLE 4 Replication capacity of Gram-negative bacteria from inanimate surfacesa (Continued)

Pathogen Initial inoculum Replication capacity Surface Ref.

agar and incubated at 

25°C

Two drops of bacterial 

suspension

Up to 50 mon Dust (144)

5.2 lg CFU After 1 d: not recultivable Cotton (92)

6 lg CFU After 3 d: 2 lg/after 1 d: 1.75 lg Stainless steel/acrylonitrile

butadiene rubber

(134)

6–7 lg CFU >30 d: reduction between 3 and 6 lg Stainless steel (145)

7–8 lg CFU ≥28 d: 2–3 lg/≥24 h: 3 lg/≥24 h: 4.5 lg Tile/wood/carpet (146)

Serratia liquefaciens 7.2 lg CFU Mean survival rate 3 d (dried in water), 43 d 

(dried in egg white)

Glass (73)

Serratia marcescens 250 lg CFU After 3 d: ~40 CFU/after 3 d: ~15 CFU/after 2 

d: ~1 CFU/after 3 d: ~2 CFU

Glass/PVC/stainless steel/

aluminum

(85)

7.2 lg CFU Mean survival 12 d (dried in water), 9 d

(dried in egg white)

Glass (73)

Desiccation:

7.3 lg CFU

Wet : 3–4 lg

After 25 d desiccation: 2.6 lg; wet: >12 d Aluminum (99)

5.2 lg CFU After 1 h: not recultivable Cotton cloth/glass (92)

6 lg CFU ≥1 d: 4 lg Stainless steel (76)

Shigella dysenteriae ~5 lg CFU After 4 h: not recultivable Plastic/glass/aluminum/wood/textile (147)

Shigella sonnei 9 lg CFU ≤10 d/≤27 d/≤23 d/≤9 d/≤28 d Glass/cotton/wood/metal/paper (148)

~5.7 lg CFU Survival after 24 h: 100%/100%/100%; after 

48 h: 75%/63%/50%; after 72 h: 13%/0%/0%

PVC/polystyrene/Sprelacart (synthetic 

resin)

(149)

Shigella flexneri Survival after 24 h: 100%/100%/83%; after 

48 h: 67%/58%/33%; after 72 h: 0%

Stenotrophomonas maltophilia ~6.5 lg CFU 7 d/7 d/7 d Cotton/cotton-polyester/wool/silk (84)

Vibrio cholerae 8.2 lg CFU Normal cultivable status 

1 h/1 h/1.5 h/1.5 h/3.5 h/4 h/4 h; VBNC 

status <7 d

Aluminum/glass/plastic/steel/iron/

paper/textile/wool

(150)

8.2 lg CFU 4 h: 2 lg/4 h: 2 lg/3.5 h: 3.5 lg/1 h:3 lg/1.5 h:

2.5 lg/1.5 h: 0.5 lg/1.5 h: 3 lg/1 h: 3 lg

Cotton/wood/paper/glass/plastic/stain­

less steel/iron/aluminum

(151)

aTable modified from reference 71. Pathogens with fomite-borne transmission potential, characterized by an increased nosocomial risk for transmission from inanimate 
surfaces, are marked in gray; for additional data and details of recultivation and environmental conditions, see the supplemental material (Table B). Legend: CFU = colony 
forming units, lg = decadic logarithm, min = minute, h = hour, d = day, wk = week, mon = month, PVC = polyvinyl chloride, VBNC = viable but non-culturable.
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rubrum and T. verrucosum could no longer be cultivated under the same conditions 
(264). Microsporum canis has been detected on hospital surfaces (260). In Germany, 
in the 1920s, E. floccosum and Microsporum (M.) audouinii dominated as pathogens of 
human dermatophytoses and T. rubrum was almost insignificant; dermatophyte isolates 
increased from 41.7% in 1950 to 82.7 % in 1993 so that T. mentagrophytes var. interdigitale 
was gradually replaced by T. rubrum as the main pathogen of tinea pedis and onychomy­
cosis. With the introduction of griseofulvin in 1958, both M. audouinii and T. schoenleinii 
were virtually eradicated (265). In the case of tinea pedis, T. rubrum was detectable in 
86% of patients and T. mentagrophytes in 81% of patients in house dust (266). Both 
dermatophyte species could also be detected and cultivated on the bare soles of the 
feet after leaving public baths. Washing and drying only did not result in complete 
elimination (267). Since the beginning of the 20th century, the incidence of Microspo­
rum canis infections in Europe, especially in Mediterranean countries and Slovenia, has 
been increasing sharply, with dogs and cats being the natural reservoirs (268). However, 
further spread is also possible via combs, brushes, hats, furniture, bedding, etc.

Candida (C.) albicans, the most common nosocomial yeast, can survive up to 4 months 
on surfaces. RC for C. glabrata (Nakaseomyces glabratus) was described to be similar but 
shorter for C. parapsilosis (Table 5). In the patient environment, C. glabrata (Nakaseomyces 
glabratus), C. parapsilosis, C. tropicalis, C. albicans, C. metapsilosis, and C. lusitaniae were 
detected on dry surfaces in ~3%, on moist surfaces in ~14% (154).

Several recent outbreaks have been caused by the new emerging multidrug-resistant 
C. auris (269, 270) which differs from other yeasts and dermatophytes in nosocomial 
spread (271, 272). C. auris is capable of colonizing patients and it can persist in a patient 
for over a year (245, 273). It can be transmitted through direct contact, for example, 
hands, but also through indirect contact via fomites, such as medical devices, other 
devices, and surfaces that directly contact the patient (272, 274, 275). From 2015 to 
2017, an outbreak with 70 patients occurred in a neuroscience intensive care unit of 
the Oxford University Hospitals, United Kingdom. The outbreak was linked to the use 
of reusable skin-surface axillary temperature probes, suggesting that C. auris persisted 
in the environment and initiated a large outbreak (276). By now, several outbreaks 
have been reported from different countries and hospitals reflecting the high relevant 
transmission capacity of this new pathogen. This is particularly important since this 
species is highly virulent, reflected by a substantial high proportion of invasive isolates 
leading to a high blood culture positivity rate in outbreaks. The risk of nosocomial spread 
through surfaces is represented by a higher RC in in vitro settings. Moreover, C. auris is 
often resistant to many antifungals which complement a higher risk of colonization and 
probable outbreak potential, with special regard to pan-resistant strains of C. auris (277). 
C. auris is now established in 43 countries across five continents (278).

Replication capacity of protozoa

Protozoa are unicellular heterotrophic eukaryotic organisms. They are considered to be a 
subkingdom of the kingdom Protista, although in the classical system, they were placed 
in the kingdom Animalia (279). The cultivation techniques for protozoa differ from those 
for bacteria and fungi, involve highly complex procedures, and depend on the life cycle 
stage (280, 281). The RC distinguishes between the vegetative stage (trophozoite), and 
the inactive infectious stage (oocyst or cyst) (Table 6).

The interruption of infection chains is the main strategy in the field of combating 
protozoonoses. Depending on habitat, hygienic measures for water and sewage and 
personal hygiene are of particular importance. Against this background, understanding 
the RC of protozoa relevant to human medicine is of particular interest.

One of the most common causatives for parasitic diarrhea in high-income countries is 
Giardia (G.) intestinalis. It shows also relevant prevalence in middle- and low-income 
countries and in the United States, it is described as the most common parasitic 
enteropathy. Entamoeba histolytica (Amoebiasis) has the most significant effect in 
low-income countries and has been globally labeled as the third leading cause of death 
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TABLE 5 Replication capacity of molds and yeasts from inanimate surfacesa

Pathogen Initial inoculum Replication capacity Surface Ref.

A. brasiliensis 4 CFU Recovery after 72 h at 22°C: 

0 CFU/0 CFU/0 CFU/3 CFU/0 CFU/2 CFU

Dry mattress cover/wet mattress cover/dry 

drapes/wet drapes/dry bed sheets/wet bed sheets

(103)

A. flavus 4–5 lg CFU 2 to >30 d/2–20 d/>30 d/8 to >30 d Cotton/polyester/polyethylene/polyurethane (152)

~5.5 lg

CFU

After 24 h: ~5.4 lg, after 48 h: ~5.2 lg, after 5 d: ~5.6 lg/after 

24 h: ~5.3 lg, after 48: h ~3.8 lg, after 5 d: 0 lg

Aluminum/copper (153)

A. fumigatus 4–5 lg CFU 1 to >30 d/5 to >30 d/>30 d/5 to >30 d Cotton/polyester/polyethylene/polyurethane (152)

~6.8 lg CFU After 24 h: ~6.3 lg, after 5 d: ~6.4 lg/after 48 h: ~6 lg, after 5 

d: ~1.7 lg

Aluminum/copper (153)

~6.5 lg CFU >30 d/>30 d/>30 d/27 d Cotton/polyester/wool/silk (84)

A. niger 4–5 lg CFU 3 to >30 d/>30 d/>30 d/2 to >30 d Cotton/polyester/polyethylene/polyurethane (152)

~5.3 lg CFU After 4 d: ~5.2 lg, after 24 d: ~5.5 lg/after 4 d: ~5 lg; after 5 

d: ~5.1 lg, after 24 d: ~5.4 lg

Aluminum/copper (153)

A. terreus 4–5 lg CFU 2 to >30 d/2 to >30 d/>30 d/12 to >30 d Cotton/polyester/polyethylene/polyurethane (152)

C. albicans 4–5 lg CFU 1–3 d/1 d/5–6 d/4–5 d Cotton/polyester/polyethylene/polyurethane (152)

6 lg CFU <7 d Stainless steel (dry)/moist agar without nutrients (154)

6 lg CFU Survival after 2 d: ~1%, after 3 d: ~0.2%/0.3%, after 7 d: 0% Stainless steel/glass (155)

~7.5 lg CFU After 5 d: ~6.5 lg/after 6 h: 5 lg, after 24 h: 0 lg Aluminum/copper (153)

6.5 lg CFU 6 d/6d/12 d/12 d Cotton/polyester/wool/silk (84)

~6.1 lg CFU 6 d Glass (156)

~4.8 lg CFU 48 d Textile

5–6 lg CFU After 7 d: 6.3 lg/after 7 d: 5.1 lg Polymer without silver/with silver (36)

C. auris 6 lg CFU Survival after 7 d: ~38%/~93% Stainless steel (dry)/moist agar without nutrients (154)

~4.8 lg CFU After 4 d: ~3.5 lg, after 14 d: ~0.4 lg Plastic (157)

8 lg CFU After 14 d: ~4.3 lg (biofilm formation) Plastic (158)

C. candidum ~6.5 lg CFU 21 d/6 d/12 d/6 d Cotton/polyester/wool/silk (84)

C. glabrata (Nakaseomyces 

glabratus)

6 lg CFU Survival after 7 d: ~60%/~90% Stainless steel (dry)/moist agar without nutrients (154)

~4.8 lg CFU 12 d/97 d Glass/textile (156)

~6.5 lg CFU >30 d Cotton/polyester/wool/silk (84)

C. krusei (Pichia kudriavzevii) 4–5 lg CFU 1 d/8 d/3–7 d/4 d Cotton/polyester/polyethylene/polyurethane (152)

~6.5 lg CFU 3 d/6 d/>30 d/21 d Cotton/polyester/wool/silk (84)

C. parapsilosis 4–5 lg CFU 9–27 d/27 to >30 d/>30 d/>30 d Cotton/polyester/polyethylene/polyurethane (152)

6 lg CFU Survival after 14 d: ~1.3%/~4.1% Stainless steel/glass (155)

6 lg CFU Survival after 7 d: 60%/100% Stainless steel (dry)/moist agar without nutrients (154)

~4.7 lg CFU After 21 d: ~2.5 lg, after 28 d: 0.4 lg Plastic (157)

~6.5 lg CFU >30 d Cotton/polyester/wool/silk (84)

~6.1 lg CFU 55 d Glass (156)

C. tropicalis 4–5 lg CFU 1–2 d/1–8 d/7–18 d/6–12 d Cotton/polyester/polyethylene/polyurethane (152)

~6.6 lg CFU 3 d/9 d/>30 d/21 d Cotton/polyester/wool/silk (84)

~6.1 lg 8 d Glass (156)

Cryptococcus neoformans ~6.5 lg CFU >30 d Cotton/polyester/wool/silk (84)

~6.1 lg CFU 27 d Glass (156)

Fusarium solani ~5.8 lg CFU After 5 d: ~4.4 lg/after 6 h: ~3.6 lg, after 24 h: 0 lg Aluminum/copper (153)

Mucor spp. 4–5 lg CFU 20–24 d Cotton/polyester/polyethylene/polyurethane (152)

Paecilomyces spp. 4–5 lg CFU <1 d/5 d/4 d/11 d Cotton/polyester/polyethylene/polyurethane (152)

Rhodotorula rubra ~6.1 lg CFU 40 d Glass (156)

~4.8 lg CFU 205 d Textile

Saccharomyces cerevisiae 6 lg CFU After 48 h: 3.9 lg/1.5 lg Plastic/carton (127)

1 CFU Recovery after 72 h at 22°C: 5 CFU/2.1 lg/3.3 lg/4 lg

/5 CFU 2.9 lg

Dry mattress cover/wet mattress cover/dry 

trilaminate drapes/wet trilaminate drapes/dry bed 

sheets/wet bed sheets

(103)

aTable modified from reference 71. Pathogens with fomite-borne transmission potential, characterized by an increased nosocomial risk for transmission from inanimate 
surfaces, are marked in gray; for additional data and details of recultivation and environmental conditions, see the supplemental material (Table C). Legend: CFU = colony 
forming units, lg = decadic logarithm, min = minute, h = hour, d = day, wk = week, mon = month.
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from parasitic infections. Another protozoa that shows increasing prevalence all over the 
world, especially among patients with AIDS and children under 5 years of age, is the 
Cryptosporidium spp. (282, 283). However, there are several other protozoa of relevance 
for the hospital setting. A number of reports have been published recently describing 
diarrheal outbreaks caused by Cyclospora (Cy.) cayetanensis (284, 285). Another protozoan 
is Trichomonas vaginalis which belongs to one of the most relevant non-viral venereal 
diseases—although fomite-borne transmission is relatively rare (286).

G. intestinalis and Cryptosporidium (Cr.) spp. survive in both aquatic and terrestrial 
environments. Giardia cysts may remain infectious for months in water or in cool damp 
areas (287). At temperatures below 15°C, Cryptosporidium oocysts can maintain high 
levels of infectivity in water for at least 24 wks (162, 288–290) and up to 120 d in 
soil (291). The survival of oocysts of Cr. parvum and G. muris was inversely correlated 
with the storage temperature and porosity of the surface (Table 6). Under various test 
conditions, the overall trends of the Cryptosporidium oocysts die­off were similar to 
the one of Giardia cysts (160). Outbreaks of Cryptosporidium spp. and G. intestinalis 
generally occur via drinking water and food which were inadequately treated to kill or 
to remove these parasites (292). Other less frequent water-associated outbreaks include 
Entamoeba (E.) histolytica/E. dispar, Balantidium (Bal.) coli, Cy. cayetanensis, Microsporidium 
spp., Toxoplasma (T.) gondii, and the free-living Acanthamoeba species. Cryptosporidium 
spp. can also be transmitted nosocomial via hands and indirectly via surfaces (293). 
In China, an outbreak of cryptosporidiosis was associated with HAI by G. intestinalis, 
Enterocytozoon bieneusi, and C. difficile infection. Poor diaper changing and hand hygiene 
were probably responsible for this multi-pathogen outbreak (294).

Survival of anaerobic Entamoeba spp. in environments is highly dependent on 
temperature. Survival was determined in feces and soil at 28°C–34°C for 8–10 d, in 
water and sewage sludge at 0°C–4°C for 60–365 d, in surface water resp. wastewater at 
20°C–30°C for 15 d resp. 10 d (295).

Multiple experiments in soils showed that T. gondii oocysts may remain viable for 
at least 1 year when covered and in cool temperatures (4°C). Under warm climate 
conditions in dry soils from Kansas, USA, oocysts remained viable for 18 months. In 
fresh or marine waters, oocysts were shown to be viable for at least 4.5 and 2 years, 
respectively, reviewed by reference (296). To determine the survival dynamics, 2.5 g of 
soil is inoculated with 1 mL of suspension containing 2 × 105 oocysts. The proportion of 
oocysts surviving after 100 d was estimated to be 7.4% under dry conditions and 43.7% 
under damp conditions (297).

TABLE 6 Replication capacity of protozoa from inanimate surfacesa

Pathogen Initial inoculum Replication capacity Surface Reference

Acanthamoeba trophozoites 

morphological group II

Large numbers of 

trophozoites

2–21 years After amoebae differentiated into 

cysts, agar plates were tightly 

wrapped with parafilm

(159)

Cryptosporidium parvum 

oocysts

(Oo)cysts Survival at 25°C: >60 d/>60 d/>60 d Stainless steel/formica/fabric (160)

Oocysts Recovery at 21°C up to 75 d Water (161)

6 lg/mL oocysts Recultivation rate after 0 h: 76.3%; after 2 h: 3%; 

after 4 h: 0%

Glass slide (162)

7 lg oocysts After 30 min: 4.1 lg; after 60 min: 3.2 lg; after 

90 min: <3 lg

Stainless steel (163)

≥100 oocysts After 24-h desiccation: no infectivity after 1–4 d Cryptosporidia-laden calf feces (164)

Giardia muris cysts (Oo)cysts Recovery at 25°C: 45 d/21 d/21 d Stainless steel/formica/fabric (160)

Trichomonas vaginalis 

trophozoites

2–3 lg for human samples; 

3–4 lg from culture

Recultivation rates after 120 min: 5.1%/30.5%; 

survival 24 h

Textile/plastic (165)

Trophozoites Recultivation rates after 15 min at 26°C: <10% Water (166)
aPathogens with fomite-borne transmission potential, characterized by an increased nosocomial risk for transmission from inanimate surfaces, are marked in gray; for 
additional data and details of recultivation and environmental conditions, see the supplemental material (Table D). Legend: lg = decadic logarithm, min = minute, h = hour, 
d = day.
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TABLE 7 Replication capacity of viruses after isolation from inanimate surfacesa,b

Pathogen Initial inoculum Replication capacity/residual virus titer Surface Ref.

Predominant contact transmission

  Adenovirus ~7 lg CCID50 >12 wk; after 8 wk: 3.4–5.7 lg Glass/plastic/porcelain/stainless steel (167)

2,000 PFU <49 d; after 14 d: ~8%/~3% Plastic/aluminum foil (168)

~6 lg PFU 15 d/15 d/30 d/>30 d Aluminum/porcelain/latex/paper (169)

  Adenovirus type 3 ~7 lg TCID50 >9 d: 4.2 lg Polystyrene (170)

  Cytomegalovirus 4–6.9 lg PFU 1–2 h/4–8 h Cotton/plexiglass (171)

  Ebola virus 4–6 lg TCID50 At 4°C > 50 d: 2 lg Plastic/glass/stainless steel (172)

7 lg PFU; 6.2 d Paper (173)

7.3 lg PFU >5.9 d: 4 lg Glass/silicone/aluminum (174)

6–7 lg TCID50 14 d/8 d/11 d Tyvek/stainless steel/plastic (175)

7 lg TCID50 >192 h/>192 h/<24 h/>192 h; 3–4 lg Stainless steel/surgical mask/cotton/plastic (176)

  Hendra virus (HeV) ~6.25 lg TCID50 60 min, after 30 min: ~2.7 lg Polystyrene (177)

  Lassa virus 7.1 lg PFU >9.7 d: 4 lg Glass/silicone/aluminum (174)

  Mpox Household setting after 

disease

At least 15 days: ≤2 lg/0 to ≤ 2 lg Porous surfaces/non-porous (178)

  Marburgvirus 4–7 lg TCID50 >50 d: 2 lg Plastic/glass (172)

  Nipah virus (NiV) ~6.25 lg TCID50 After 60 min: ~2.7 lg Polystyrene (177)

  Sindbis virus 7.2 lg PFU >14.6 d: 4 lg Glass/silicone/aluminum (174)

  Vaccinia virus 7 lg CCID50 >4 wk: 2 lg Glass (167)

8 lg CCID50 14 wk: 3 lg/up to 10 wk: 3.5. lg Wool/cotton (179)

8 lg CCID50/mL 1 wk: 4 lg Cotton (180)

2.8 lg TCID50 14 d: <1 lg Gauze bandage (181)

8 lg PFU <56 d: ~4.5 lg Stainless steel (182)

6–6.5 lg KID50 <20 wk: 4.3 lg Glass (183)

Contact transmission, starting from the gastrointestinal tract (+ surrogate viruses)

  Adenovirus type 40 5–5.7 lg IU >7 d: 3.8 lg Paper/porcelain (184)

  Astrovirus, serotype 4 5–5.7 lg IU 60 d/after 7 d: 1.7 lg Paper/porcelain (184)

  Coxsackie virus 6.8 lg CCID50 2 wk: 2 lg Glass (167)

6.5 lg TCID50 <6 wk Petri dish (185)

  Echovirus max. 300 PFU 42 h Cellulose (186)

  Feline calicivirus 9 lg PFU >7 d: 2 lg Laminate/ceramic/stainless steel (187)

7 lg TCID50 90% reduction in viral titers: up to 24 h Computer/brass/telephone (188)

6 lg PFU <15 d/<3 d/<7 d Wool/nylon/glass (189)

     Hepatitis A virus

     (HAV)

6 lg PFU >1 mo Wood/stainless steel (190)

3–4 lg PFU 4 h to >7 d Stainless steel (191)

5–5.7 lg IU After 7 d: ~3.3 lg/~5 lg Paper/porcelain (184)

6.4 lg After 90 d on PVC: 10% of initial loading Stainless steel/PVC (192)

~6 lg PFU >60 d/>60 d/>60 d/>30 d Aluminum/porcelain/latex/paper (169)

  Hepatitis E virus (HEV) ~4 lg FFU After 28 d: ~1 lg/1 lg/0.4 lg/0 lg Plastics/ceramics/stainless steel/wood (193)

3.9 lg FFU D value: 5.95 d Stainless steel (194)

  Escherichia virus (MS2 phage) 6 lg PFU D value: 19.8 d/13.2 d Wood/stainless steel (190)

     Murine hepatitis virus and 

(MHV)

     Transmissible gastroenteritis 

virus (TGEV)

4–5 lg PFU MHV: after 5 d 3 lg; TGEV: after 3 d 2 lg Stainless steel (195)

  Murine norovirus 4–4.5 lg PFU >120 min except copper; after 120 min:

3.1 lg for stainless steel

Copper 100%/95%/70%/stainless steel (196)

  Poliovirus type 1 4.4 lg PFU >90 min; after 20 min: 2.6 lg Worktop (197)

~6 lg PFU 3 d/1 d/30 d/>30 d Aluminum/porcelain/latex/paper (169)

max. 300 PFU 42 h Cellulose (186)

~12 lg PFU >3 wks on all surfaces; 99% reduction after 

5.2 d/7.4 d/5.9 d

Steel/cotton/plastic (198)

(Continued on next page)
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TABLE 7 Replication capacity of viruses after isolation from inanimate surfacesa,b (Continued)

Pathogen Initial inoculum Replication capacity/residual virus titer Surface Ref.

3–4 lg PFU 12 h Stainless steel (191)

  Poliovirus type 2 8.1 lg PFU After 14 d: >3 lg Glass (167)

5–5.7 lg IU >7 d Paper/porcelain (184)

  Rotavirus ~6 lg PFU >60 d Aluminum/porcelain/latex/paper (169)

3–4 lg PFU <90 min Worktop (197)

7 lg PFU >10 d Glass/smooth plastic/rough plastic (199)

5–5.7 lg IU >7 d Paper/porcelain (184)

  Tulane virus (Rhesus enteric calicivirus) 4.7 lg PFU D value: 18.8 d/13.3 d Acrylic/stainless steel (200)

Respiratory and/or aerogenic transmission (+ surrogate viruses)

  Endemic human coronaviruses 5.7 lg TCID50 HCoV-229E: >12 h, >12 h, >6 h; HCoV-

OC43: >3 h, >1 h, >1 h

Aluminum/cotton/latex (201)

3 lg PFU 3 d/5 d/≤40 min/120 min/30 min Silicone/PVC, ceramic, glass, steel/brass/70% 

copper/90% copper

(202)

~7 lg TCID50 48 h: 2 lg Polystyrene (170)

  Influenza A virus 3.1 lg TCID50 (A/

NC-H1N1); 4.8 lg TCID50 

(A/Br-H1N1)

7 d Stainless steel (203)

5.5 lg TCID50 >24 h/>48 h/>24 h/8 h Stainless steel/wood/plastic/cotton (204)

5.3 lg TCID50 ≥60 min/30 min/15 min/<15 min/<15 min Cotton/formica/vinyl/stainless steel/facial tissue (205)

5 lg TCID50 <5 d Petri dish (185)

4–6 lg PFU After 7.3 d/17.7 h/34.3 h 99% reduction Stainless steel/cotton/microfiber (206)

3–4 lg TCID50 48 h/72 h/24 h/24 h/12 h Plastic/stainless steel/magazine/cotton/paper (207)

6 lg PFU 2–9 h Telephone receiver/wood/keyboard/stainless 

steel/dishcloth

(208)

6 lg TCID50 <4 h Stainless steel/plastic (209)

  Influenza B virus 4 lg TCID50 48 h/48 h/8 h/12 h/8 h Plastic/stainless steel/magazine/cotton/paper 

handkerchief

(207)

     Middle East respiratory 

syndrome coronavirus

     (MERS-CoV)

6 lg TCID50 <72 h Stainless steel/plastic (209)

  Parainfluenza virus 3.2 lg TCID50 4 h Stainless steel/laminate (210)

  Respiratory syncytial virus 5 lg TCID50 8 h; ~2.5 h; ~5.3 h; 1 h; 1 h Laminate/cotton-polyester/rubber/paper/

hands

(211)

  Rhinovirus type 14 7 lg PFU <25 h; TCID50: 0.55 h Stainless steel (212)

  Rhinovirus type 2 2 lg PFU After 3 d: ~0.6 lg Stainless steel (213)

  SARS-CoV-1 6 lg TCID50 4 d/4 d/4 d/5 d/5 d Wood/glass/paper/metal/textile (214)

7 lg TCID50 28 d: ~2 lg Plastic (215)

3.4 lg TCID50 72 h/48 h/8 h/8 h Plastic/stainless steel/paper/copper (216)

6 lg TCID50/mL 1 h/24 h/2d Paper/cotton/disposable gown (217)

7 lg TCID50 After 13 d: 2.3 lg Plastic (215)

~7 lg TCID50 After 9 d: 2 lg Polystyrene (170)

6 lg TCID50 4 d/4 d/4 d/≥5 d/≥5 d/4 d Plastic/wood/glass/metal/cloth/paper (214)

  SARS-CoV-2 5.5 lg TCID50 D values: ~6 d/~6.9 d/~9.1 d/~6.3 d/~5.6 d/

~6.3 d

Stainless steel/paper/polymer/glass/cotton/

vinyl

(218)

7.9 lg TCID50 After 7 d: ~2.7 lg/2 lg/2.8 lg/not detecta­

ble/2.3 lg/2.3 lg/1.1 lg/not detectable

Stainless steel/face shield/nitrile glove/chemical 

glove/N95 mask/N100 mask/Tyvek suit/cotton

(219)

3.6 lg TCID50 72 h/48 h/24 h/<4 h Plastic/stainless steel/cardboard/copper (216)

7.8 lg TCID50 <3 h/<3 h/<2 d/<2 d/4 d/4 d/<7 d/<7 d/7 d Paper/handkerchief/wood/clothes/

glass/paper/stainless steel/plastic/surgical mask

(220)

6.2 ± 5.9 lg TCID50 13 min at 0.3 W/cm2: 90% reduction Stainless steel (221)

6.5 lg TCID50 <20 min exposed to sunlight Stainless steel (222)

~2.8 lg TCID50 ≤18.6 h Stainless steel/plastic/nitrile (223)

(Continued on next page)
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Babesia (B.) spp. are intraerythrocytic protozoan parasites transmitted primarily by tick 
vectors, rare also congenital, and by blood transfusion (298). Normally, it has its origin in 
endogenously infected blood donors. A nosocomial transmission in blood products is 
only indirectly imaginable during the preparation process of blood products in blood 
banks via hands contaminated from surfaces. Refrigeration decreases the parasite 
numbers, but parasites survive 31 d at 2–4°C and yield high end-point parasitemia, 
proofed by inoculation of hamsters (299). B. microti survives in red cells at 4°C in EDTA-
coated blood collection tubes for at least 21 d. Blood held at room temperature did not 
infect any hamsters (300). Under normal blood bank conditions, a 35-day-old red cell unit 
was caused by transfusion-transmitted babesiosis (TTB) (301). Similarly, TTB case reports 
implicating cryopreserved red cell units indicate that B. microti can survive indefinitely in 
the presence of glycerol cryopreservation (302, 303), but in the absence of cryopreserva­
tion, the parasite is rapidly killed by pathogen reduction technology, which uses 
riboflavin (RB) and ultraviolet (UV) light (304). Theoretically, a single parasite is capable of 

TABLE 7 Replication capacity of viruses after isolation from inanimate surfacesa,b (Continued)

Pathogen Initial inoculum Replication capacity/residual virus titer Surface Ref.

5.23 lg TCID50 2 d: ~1.2 lg Glass (224)

Contact transmission (predominant sexually; also vertically)

  Herpes simplex virus type 1 7.9 TCID50 After 2 h: 6.7 lg Plastic/chrome (225)

After 2 h: 5.2 lg (226)

5.6 lg PFU After 1 d: 4 lg Glass (167)

~7 lg TCID50 After 9 d: 1.9 lg Polystyrene (170)

  Herpes simplex virus type 2 4.2 lg TCID50 4.5 h: 2.9 lg TCID50 Polystyrene (227)

  Human immunodeficiency virus (HIV) Liquid/dry inoculum: 

128,000/25,000

cpm/mL reverse 

transcriptase

>20 d/~10 d Petri dish (228)

  Papillomavirus ~100–434 FFU <7 d Pipe/cotton/microcentrifuge tube (229)

Blood-borne transmission

  Hepatitis B virus (HBV) 0.1 mL HBsAg-positive 

plasma

1 wk Silanized tube (230)

0.1 mL HBV-positive 

blood

>2 wk Stainless steel/cotton swab (231)

>6 lg TCID50 After 28 d: ~10% reduction PCR tubes (232)

  Hepatitis C virus (HCV) 4–6 lg IE >40 d 24-well plates (233)

~4.75 lg TCID50 After 7 d: ~1.5 lg Stainless steel (234)

aTable modified from reference 71. Pathogens with fomite-borne transmission potential, characterized by an increased nosocomial risk for transmission from inanimate 
surfaces, are marked in gray; for additional data and details of recultivation and environmental conditions, see the supplemental material (Table E). Legend: cmp = counts 
per minute, D value = time in which the virus titer is reduced by 1 lg.
bZ value (thermal death time) = number of degrees the temperature has to be increased to achieve a 10-fold decrease in decimal reduction time (D-value), ATCC = 
American Type Culture Collection, BSA = Bovine Serum Albumin, CCID = cell culture infectious dose, CPE = cytopathic effect, d = day, FFU = focus forming units, h = hours, 
HBsAg = Hepatitis B surface Antigen, HBVcc = HBV derived from cell cultures, IU = infectious units, lg = decadic logarithm, min = minute, mon = month, N/A = not available, 
PBS = phosphate­buffered saline, PCR = polymerase chain reaction, PFU = plaque forming unit, PPE = personal protection equipment, PVC = polyvinyl chloride, RH = relative 
humidity, RIA = radioimmunoassay, RT = room temperature, TCID50 = 50% tissue culture infectious dose, US = ultrasound, W = watt, wk = week.

TABLE 8 Persistence of different A. baumannii strains suspended in water or bovine serum albumin (BSA) 
and dried on glass at different RHa

Average persistence Strain(s) Conditions (RH 28%–34%, RT)

≤5 d ATCC 9955 Suspended in water
6–10 d ATCC 17978, ATCC 19606, R 0211019
>10–30 d ATCC 17904, 18, 49, 16/48, 16/49, R 447
<10 d ATCC 9955 Suspended in 7% BSA
>10–30 d ATCC 17978, 18, 16/48
>29–60 d ATCC 19606, ATCC 17904, 49, 16/49, R 447, R 

0211019
aTable modified from reference 73.
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transmitting infection. Experimental studies, however, have shown that 30 organisms 
infected about 2/5 inoculated hamsters, and 300 organisms infected all animals (305).

Protozoa play a minor role in HAI, but in our increasingly complex healthcare 
environment with a growing proportion of immunocompromised patients, they should 
be respected because certain protozoa may cause morbidity and even mortality in both 
normal and immunocompromised patients (284). Furthermore, climate change with 
increasing temperatures and heavy rainfall could promote their nosocomial potential 
in the future. There is also the possibility that HAI could be missed because the 
incubation period may be days to weeks (wks) and the parasite is endemic. It is likely 
that nosocomial transmission of protozoa may be an even greater problem in tropical 
hospitals, where comprehensive hygienic measures are costly or otherwise more difficult 
to maintain and growth conditions more beneficial for the protozoa. Up to 1% of HAI 
were caused by parasites depending on geographic region (306), but in this estima­
tion, no distinction was made between protozoa and other endo- or ectoparasites. 
Jarrin et al. (307) assumed that intestinal parasites can cause diarrhea in 12%–17% 
of nosocomial epidemics and 1% of endemic outbreaks, especially on surgical wards. 
Immunosuppressed patients and those with prolonged antibiotic courses are at higher 
risk. Enteric protozoa, especially Cr. parvum, G. intestinalis, E. histolytica/E. dispar, Bal. coli, 
Cy. cayetanensis, and Cystoisospora belli (syn. Isospora (I.) belli) are the most common 
species involved in nosocomial outbreaks (307).

The spread of enteric protozoa in developing countries usually occurs through fecal 
contamination due to sewage exposure, poor quality of water, and zoonotic exposure 
but also via transplantation (308–310). The 50% infectious dose (ID50) of C. parvum 
has been estimated at 132 oocysts; with some infections followed by ingestion of 30 
oocysts (311). Ingestion of at least 10 to 25 G. intestinalis oocysts can cause infection in 
humans (312, 313). Infection after ingestion of a single oocyst has been reported (311). 
The small ID, the fecal-oral route of transmission, and prolonged environmental survival 
in water allow Cryptosporidium to spread in healthcare facilities as well as child-care 
centers. Cryptosporidium can be transmitted by hand after contact with contaminated 
environmental surfaces (314). The cysts are highly resistant to environmental conditions 
and most of the disinfectants commonly used have low or no antiparasitic activity 
(314). For Giardia and Cryptosporidium spp., person-to-person transmission is possible 
(315, 316). For Cryptosporidium spp., transmission is primarily found among children 
and staff members in nurseries, day-care centers, and schools (317). HAI by direct and 
indirect person-to-person transmission is documented, causing secondary cases among 
roommates (315). In an outbreak of giardiasis at two day-care nurseries G. intestinalis 
appeared to be transmitted from person to person (318). Conversely, ingestion of 
approximately 200–49,000 oocysts at healthy volunteers did not experience gastroen­
teritis, and no oocysts were detected in any stool samples over the following 16 wks 
(319). Therefore, there is minimal risk of nosocomial transmission. Sporulated oocysts 
of I. belli can survive for years in the environment (320). Although the transmission of 
protozoa via surfaces in hospitals is negligible for most species, awareness of surface 
persistence is important for assessing the risk of surfaces as a reservoir for food, water, 
and hands (Table 6). Cr. parvum oocysts survived in stool on wood of up to 72 h, 
and differed between stool samples (162). Survival was shorter than in water because 
other fecal microorganisms such as bacteria may be associated with the shortened 
survivability (321), and also with the presence of ammonia, which may occur in feces in 
high concentrations. Ammonia is a significant inactivation agent for oocysts (322, 323). 
Oocysts have been shown to survive for hours on wet surfaces, including stainless steel, 
but they resist desiccation and die rapidly on dry surfaces (324).

One multivariate analysis in a group of virgin females with a high prevalence of 
trichomoniasis showed that the high prevalence was due to non-sexual acquisition of 
trichomoniasis, mainly through shared bathing water and inconsistent use of soap (325).

Acanthamoeba is a common protozoa that can be found in diverse environments. 
Their presence has been documented not only in soil and freshwater but also in 
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pools, lakes, brackish water, seawater, heating, ventilating, and air-conditioning filters. 
Moreover, it has been detected on medical devices, such as gastric wash tubing and 
dental irrigation units (159). Wearing hydrogel contact lenses was associated with 
keratitis caused by Acanthamoeba and Fusarium (326), probably due to moist conditions 
favored by these pathogens. Moreover, the presence of Acanthamoeba, together with 
Vahlkampfia and Vermamoeba spp., has been verified in the dust of different intensive 
care wards; on equipment, doors, and in the air-conditioning system (327). With their 
doubled walls, Acanthamoeba cysts are highly resilient, forming dormant stages that 
remain viable (and infectious) for several years (328, 329) and in a state of desiccation up 
to 21 years (Table 6).

FIG 2 Flow chart (modified from reference 235, published under a Creative Commons license). For more information, visit https://www.prisma-statement.org.

Review Clinical Microbiology Reviews

December 2024  Volume 37  Issue 4 10.1128/cmr.00186-23 22

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/c

m
r 

on
 3

0 
A

pr
il 

20
25

 b
y 

19
3.

17
5.

81
.2

.

https://www.prisma-statement.org
https://doi.org/10.1128/cmr.00186-23


Replication capacity of viruses

To determine the RC of viruses, applied material was removed from the germ carrier by 
scraping or rinsing in a cell culture medium; sometimes combined with vortexing and 
transfer of the sample usually into cell culture. Recultivability is determined, based on 
the number of infectious virus particles, by growing the remaining virus particles with 
subsequent determination of the virus titer. By contrast, molecular biological detection 
alone does not allow any conclusions regarding infectivity. For hepatitis B virus (HBV), 
infectivity was proven by the application of the rehydrated inoculum in chimpanzees 
due to lack of cultivation in cell culture in the past. Nowadays, it can be analyzed in an 
HBV-susceptible cell culture system using hepatoma cells expressing the Na+- taurocho­
late co-transporting polypeptide (NTCP)-HBV cell entry factor (232) (Table 7). However, 
this method is only available in specialized laboratories and cannot be used routinely.

Gastrointestinal transmissible viruses remain infectious on inanimate surfaces. The 
longest has an average of 1–6 w, followed by blood-borne (average 1–6 w), respiratory 
(average 1–3 d), and sexually transmitted viruses (2 h to <7 d) (Table 7).

Non-enveloped viruses are more resistant to extreme pH, heat, dryness, disinfectants 
in general, and some can intrinsically resist certain disinfectants such as the parvovirus 
or hepatitis A virus (HAV). By contrast, most enveloped viruses such as herpes viruses 
(e.g., cytomegalovirus), human immunodeficiency virus (HIV), and respiratory syncytial 
virus (RSV) are less environmentally stable since they possess an outer lipid bilayer 
membrane. Small viruses, for example, HBV or the members of the picornavirus or 
parvovirus family, are much more resistant than larger complex viruses, for example, 
members of herpes or retrovirus families (330). Some non-enveloped viruses, such as 
enteroviruses belonging to the picorna viridae, are sensitive to drying, for example, dried 
inoculum of the Coxsackie B4 (CVB4) virus was easier to recover when CVB4 was spiked in 
media containing any concentration of NaCl instead of protein load (185).

The relevance of surfaces in healthcare facilities as a contamination source for viruses 
is even more difficult to prove than for bacteria and fungi, surface isolation is more 
complex. Virus infection can so far only be indirectly deduced by tracking the spread 
of the virus from the patient and its presence in the patient’s environment, as the ID 
is not known with a few exceptions. However, in both situations, the risk of infection 
increases with higher RC. A few examples illustrate the importance of surfaces for the 
spread of viral infections. After the discharge of patients with norovirus infection, the 
number of new cases has continued to rise, most likely due to the low ID of norovirus 
(1 to 10 to 100 virus particles) (331). A large outbreak due to norovirus infections could 
therefore be controlled by closing the affected departments, implementing extensive 
disinfection measures, and reducing the exposition risk, that is, from infected healthcare 

FIG 3 Introduced classification of pathogens with fomite-borne transmission potential and derived IPC strategies.
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workers (332). However, if recognized at an early stage, most norovirus outbreaks can 
be controlled easily without these intensified intervention strategies. A retrospective 
cohort study showed a very low risk of general infection by only 2 of 1,106 exposed 
patients had acquired the identical norovirus strain from the discharged patient (333). 
Although direct hand transmission dominates nosocomial transmission of rotaviruses, 
surfaces are also relevant for spread (334). A simulation experiment on virus inoculated 
over surfaces using Cauliflower mosaic virus showed that the virus was detectable on 
41% of the sampled surfaces within 10 h outside of the isolation unit (335). Whether this 
amount was sufficient to transmit infection was not investigated. After the emergence 
of MERS-CoV, although the origin is zoonotic, the risk of further spread via surfaces 
was investigated. The contamination with viral RNA was detected in the environment 
of hospitalized ventilated patients despite a strict disinfection regimen and negative 
pressure ventilation. Due to the RC of up to 9 d and the detection in the patient 
environment, the authors concluded that careful surface disinfection, especially near 
the patient, can help with prevention (336). Thus, detecting RNA does not necessarily 
coincide with infectivity.

Other viruses from the gastrointestinal tract such as Astrovirus, HAV, polio-, and 
rotavirus can retain their infectivity at RT for quite a long time, with the spectrum varying 
from several hours to 3 months. HBV belonging to the group of blood-borne or sexually 
transmitted viruses plays a very high stability with an RC of 50% of more than 22 d 
at 37°C and a persisting infectivity for up to 9 months at 4°C (232). By contrast, most 
respiratory viruses retain their infectivity on inanimate surfaces for a few days only (Table 
7).

Herpes viruses such as cytomegalovirus are mainly transmitted through contact 
with infectious body fluids, for example, through breastfeeding, kissing, sexual contact, 
herpes simplex virus (HSV) type 1, mainly transmitted via contact, and HSV 2, mainly 
transmitted during sex, have been shown to persist from only a few hours up to days 
(Table 7).

Mpox virus (MPXV)

Since the summer of 2022, non-travel-associated outbreaks of Mpox have been reported 
in several non-endemic countries. Human-to-human transmission can occur through 
close contact with respiratory secretions, infectious skin lesions (such as ruptured 
blisters) from an infected individual, or recently contaminated objects (e.g., sex toys) 
and surfaces (337); nosocomial infections have also been documented (338–341). The 
World Health Organization (WHO) recently recommended adopting the term “Mpox” 
as a synonym for monkeypox (342). Investigations involving the vaccinia virus, which is 
related to the MPXV, revealed that it can remain “infectious” on surfaces for up to 56 
d (68). Studies on textile fibers showed that the vaccinia virus could be recovered from 
wool fabric after up to 4 wks and from cotton for up to 8 d; textiles contaminated with 
virus-laden dust even remained infectious for up to 12 wks (179, 180). Adler et al. found 
that in some patients the virus could be detected in throat swabs by PCR test for up to 
3 wks and in one 2018 case even up to 41 d after diagnosis (343). However, it was not 
determined whether this represented “residual nucleic acid” or infectious virus. Viable 
virus was identified in two (50%) of four samples selected for viral isolation, including air 
and surface MPXV samples collected during bedding change in a hospital in UK (344). 
In another study, there was no statistical difference (P = 0.94) between MPXV-WA PCR 
positivity of porous (9/10, 90%) vs. nonporous (19/21, 90.5%) surfaces, but there was a 
significant difference (P < 0.01) between viable virus detected in cultures of porous (6/10, 
60%) vs nonporous (1/21, 5%) surfaces. These findings suggest that porous surfaces (e.g., 
bedding, clothing) may pose a higher risk of MPXV exposure than nonporous surfaces 
(e.g., metal, plastic). Viable MPXV was detected on household surfaces for at least 15 
d (178). Therefore, the Centers for Disease Control and Prevention (CDC) recommend 
minimizing the spread of virus in households by cleaning and disinfecting laundry, hard 
and soft surfaces, and carpets and flooring when exposed to an infected person (345).
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SARS-CoV-2

SARS-CoV-2 illustrates how infection control measures for a new infectious disease can 
be established, and continuously adapted at breathtaking speed using hospital hygiene 
strategies including RC, biocide resistance, and transmission considerations. Like other 
coronaviruses, SARS-CoV-2 has been detected on surfaces (346) showing a correlation 
between patient proximity and surface contamination (347). Consequently, the risk of 
further spread due to RC on surfaces of up to 7 d (Table 7) could be prevented by surface 
decontamination (348, 349). Even simple wiping with hard water or detergent-based 
cleaning has proven to be an effective decontamination strategy against SARS-CoV-2 
(350) applicable to all materials (Table 7), despite variations in their influence on RC 
(351). Depending on the exposure time, the recoverable virus quantity decreases almost 
linearly and becomes negligible on plastic after 72 h, stainless steel after 48 h, cardboard 
after 24 h, and copper after 4 h (352). Since the ID is unknown, the risk assessment 
remains open. A case report suggests that the detection of SARS-CoV-2 on household 
surfaces indicates that transmission is possible if surfaces are recently contaminated by 
coughing or sneezing and then are touched and transferred to the mouth, nose, or eyes 
(353). However, in other studies where surface transmission was suspected, respiratory 
transmission could not be entirely ruled out in this study (354). The infection risk is 
presumed to be low as small amounts of SARS-CoV-2 RNA were detectable in only 2 of 
26 samples from an emergency ward and an infectious disease sub-intensive care ward 
and these did not cause cytopathic effect in cell culture (355). It is possible that residues 
from surface disinfectants reduced RC. Conversely, there is a possibility that disinfectant 
residues could induce tolerance. Similarly, quantitative microbial risk assessment (QMRA) 
studies indicate that the risk of SARS-CoV-2 infection via surface transmission is low with 
a probability of less than 1:10,000 for each contact with a contaminated surface (356–
358). These findings suggest that the transmission of SARS-CoV-2 via surfaces in public 
areas is negligible (359). In isolation units/rooms for patients with SARS-CoV-2 infection 
and in units or rooms for suspected patient cases of SARS-CoV-2 infection, surface 
cleaning and disinfection is indicated based on the observation that SARS-CoV-2 can be 
detected in the entire patient environment. Moreover, the RC is up to 7 d, although the 
infectivity of the surfaces is apparently only low. In a retrospective questionnaire-based 
study, it was shown that even at home the use of protective masks and daily use 
of chlorine- and ethanol-based disinfectants for surface decontamination and hand 
antisepsis significantly reduced the risk of infection (360). Santarpia et al. (361) deduced 
from the data that in cases of suspected or confirmed SARS-CoV-2 infection within the 
last 24 h in the household, surfaces should also be decontaminated.

Factors influencing the replication and infection capacity of microorganisms, 
protozoa, and viruses in the environment

Microbiological test conditions

For bacteria, desiccation on the surface after contamination (rapid or slow), RH and 
temperature during storage, recultivation conditions, and stage of cultivability (VBNC) 
are of influence on RC (Tables 3 and 4). The origin of the pathogen is also influential. A. 
baumannii strains isolated from clinical settings were more often resistant to desiccation 
than ATCC strains (Table 3). As expected, the RC is influenced by the initial bio-inoculum 
of feces, demonstrated for E. faecalis, MRSA, A. baumannii, C. jejuni (Table 3), E. coli, 
P. aeruginosa of recovery (Table 4), C. albicans, C. auris, C. krusei (Pichia kudriavzevii), 
C. parapsilosis, and C. tropicalis (Table 5). Similarly for viruses smaller inocula were 
associated with shorter RC, for example, for transmissible gastroenteritis virus, mouse 
hepatitis (195), and SARS-CoV-2. The latter lost infectivity after 2–4 d (216, 220) compared 
with longer times of 21 d (219) or 7–28 d (218) for larger inocula (Table 7). Finally, the RC 
depends on the recovery method (Tables 3 to 7).
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Surface material

The RC of bacteria, fungi, and viruses was significantly shorter on copper surfaces 
than on textile materials, plastics, and steel, due to the oligodynamic effect of copper 
((362, 363); Table 7). On porous surfaces, for example, coronavirus, influenza virus, avian 
metapneumovirus, poliovirus type 1, and human enteric adenovirus type 40 (169, 364), 
survival is longer than on non-porous surfaces (Table 7). One reason may be the lower 
virus elution during recovery from porous materials (365). A recently published scoping 
review draws the same conclusion (366). The capillary effect within the cavities and the 
faster evaporation of the aerosols could also be influential (367).

RH

Gram-positive bacteria tolerate dry conditions better than Gram-negative bacteria due 
to cell wall properties (368). S. aureus persisted longer at low RH (369), while survival 
kinetics for E. faecalis were lower at 25% RH than at 0% RH (370). Acinetobacter spp. 
suspended in distilled water survived significantly longer at room temperature (RT) at 
RH of 28%–34% and 93%, respectively, compared to 10% RLF, while survival did not 
differ between 28–34% and 93%, respectively (73). Survival of Gram-positive bacteria 
was reduced most at RLF of 50%–70%, while death rates of Gram-negative bacteria were 
highest at RLF of 50%–70% and 70%–90 %, respectively (368).

Enveloped viruses, especially respiratory viruses such as influenza, parainfluenza, 
corona, respiratory syncytial, measles, and rubella viruses but also herpes simplex and 
varicella-zoster viruses, retain their RC longer with a low RH of 20%–30% (368). Only 
cytomegalovirus is isolated more frequently from moist surfaces (371). Non-enveloped 
viruses such as adenoviruses, enteroviruses, and rhinoviruses are replicable for longer at 
70%–90% RH [Table 7, (372)].

Temperature

Constant temperatures >24°C seem to reduce the replication and infection capacity of 
airborne bacteria, as shown for representatives of Gram-positive, Gram-negative, and 
intracellular bacteria (368). For 15 yeast species, the survival time increased when the 
ambient temperature was reduced. Overall, the survivability of the species studied was 
longest at 4°C and 1% RH and shortest at 37°C and 96% RH (156). The situation is 
different for the release of bioaerosols indoors. At 25°C, more fungi (mainly Fusarium 
and Penicillium spp.) were released than at 37 and 15°C, whereby the composition of 
the mold species differed significantly across these three temperature ranges (373). 
The viral genome (viral DNA or RNA) shows especially high sensitivity to the surround­
ing temperature which influences the RC of some viruses. This is mainly due to their 
impact and affection not only on the viral genome but also on the viral proteins and 
the whole enzymatic system. Principally, even though higher temperatures also affect 
DNA integrity, DNA viruses have more stability than RNA viruses. For certain viruses, 
including astro-, adeno-, polioviruses, herpes simplex, and HAV, low temperatures (4°C) 
are associated with longer replicative periods (66). For enteric viruses, RC in water 
increased with increasing temperature >20°C (374, 375). For rota-, poliovirus, and HAV, 
RC was higher at >80% RH (169). This was confirmed for poliovirus in that stability was 
significantly greater at 95% RH than at 25% RH (191). For coronaviruses, the influence 
of RH was different with higher RC at 20% and 80% and comparatively lower RC at 50% 
(195). For SARS-CoV-2, interfering substances, temperature (20°C or 35°C), and RH were 
only of moderate influence (Table 7). Morris et al. (376) developed an original prediction 
model of how temperature and humidity alter RC using a mechanistic quantitative 
approach that was based on testing the stability of SARS-CoV-2 on an inert surface 
for a range of temperature and humidity conditions. SARS-CoV-2 remained infectious 
longest at low temperatures and extreme humidity (up to 85%). The estimated mean 
half-time of RC was >24 h at 10°C and 40% RH, but ~1.5 h at 27°C and 65% RH. The 
model uses basic chemistry to explain why the sensitivity of enveloped viruses increases 

Review Clinical Microbiology Reviews

December 2024  Volume 37  Issue 4 10.1128/cmr.00186-23 26

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/c

m
r 

on
 3

0 
A

pr
il 

20
25

 b
y 

19
3.

17
5.

81
.2

.

https://doi.org/10.1128/cmr.00186-23


with higher temperatures and has a U-shaped dependence on humidity. The model 
accurately predicts existing results on the influence of temperature and RLF for five 
different human coronaviruses. This suggests that common mechanisms may influence 
the stability of many viruses.

Light conditions

Light, especially sunlight, or lack of it influences the RC. The survival time of C. albicans 
and Rhodotorula rubra on smooth glass surfaces doubled when they were kept in 
darkness compared with daylight and extended from 44 to 98 d for C. albicans (156). 
Under the influence of simulated sunlight, 90% of SARS-CoV-2 applied to the surface 
in artificial saliva were inactivated every 6.8 min during simulated summer exposure, 
but every 14.3 min during winter exposure (221). By contrast, no significant decrease 
was detectable within 1 h in the dark [Table 7; (221)]. The effect of sunlight was also 
reproducible in aerosol, while RH alone (20–70%) had no influence (377). Irradiation 
(distance 3 cm) with UVC (dose 1.048 mJ/cm2) completely inactivated SARS-CoV-2 
(infectious titer of 5 × 106 TCID50/mL) after 9 min, while UVA (dose 292 mJ/cm2) reduced 
the titer by only 1 lg after 9 min (378).

Protein, fecal, and urine load

Desiccation in protein-containing media prolongs persistence, for example, for A. 
baumannii (Table 8), Escherichia (E.) coli (92), Neisseria (N.) meningitidis (379), and yeasts 
(156). The fecal load had little effect on the RC of HAV and rotaviruses. For adenoviruses, 
the RC only tended to increase (Table 7).

Biofilm

Several microorganisms form biofilms which is the predominant state of life in nutrient­
sufficient habitats. Such life forms lead to more pronounced microorganism adhesion, 
by which the expression of the so-called sigma factor is triggered. This results in 
gene activation, making the microorganisms subsequently at least 500 times more 
tolerable against antimicrobial agents (380) and cold atmospheric plasma (381, 382). 
Some bacteria such as K. pneumoniae can remain viable for up to 4 wks in a dry 
biofilm, demanding more profound cleaning approaches (383). This may be due to 
increased tolerance of the production of extracellular substances such as polysacchar­
ides, proteins, and DNA after attaching to surfaces. In addition to biofilm formation 
under moist conditions, biofilm formation on dry inanimate surfaces at room humidity 
should also be considered (384). This poses a challenge due to water retention from 
the biofilm, along with other nutrients, which protects the microorganism itself from 
various environmental factors (385, 386). This makes biofilms relevant not only for the 
natural persistence of microorganisms in their native habitats but also for industrial and 
medical settings (385–387). The RC on inanimate surfaces is prolonged and dependent 
on environmental aspects, especially humidity. Biofilms have been identified on diverse 
surfaces in hospitals, that is, on sterile objects, plastic doors, and sanitary areas. Out 
of these formations, it is possible to cultivate viable bacteria. Available scientific data 
cannot clarify and elucidate to which extent the risk of transmission and the possibility of 
cross-transmission is affected by biofilm formation. In the context of multidrug-resistant 
bacteria, the biofilm could be one additional mechanism for persistence in medical 
settings (388). Of note, potential intraspecies or interspecies virulence factor exchange 
may be present in the biofilm (386, 388–390).

The current literature regarding associations between viruses and biofilms is scarce. 
As viruses are strict intracellular pathogens, they may profit from a prolonged persistence 
in a reservoir host due to the advantages conferred by the biofilm structure but they 
will not be able to proliferate (391). Biofilms can contain a range of non-enveloped 
enteric viruses, including caliciviruses, rotavirus spp., astrovirus spp., and hepatitis A 
virus, alongside other microorganisms such as Gram-negative bacteria and filamentous 
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fungi (392). The virion RC in an extracellular context can be promoted by biofilms, both 
on fomites and aquatic sediments, allowing viral persistence and spread. Therefore, it is 
necessary to highlight that both virions and virus-infected eukaryotic cells embedded in 
biofilms can retain their infectivity. The first in vitro study provides further information 
that the enveloped virus herpes simplex virus 1 (HSV-1) and the non-enveloped virus 
coxsackievirus type B5 (CVB5) can be encompassed within fungal Candida albicans 
biofilms (393). As such viruses stored in biofilms can be depicted as temporary or 
long-term reservoirs (52). Thus, the viral ability to remain infectious and the potential of 
fomite-borne transmission can be enhanced by the biofilm, especially due to protection 
against desiccation and antimicrobial agents (394).

DISCUSSION

The most important difference in this review, compared with the 2006 systematic review 
(66) on pathogen resilience, is that the course of the RC over time has been calculated 
based on the quantity of the inoculum on the surface and expressed as log reduction. 
This has resulted in more accurate values, as well as explaining different values in some 
cases in the first review. Furthermore, the methodological development of laboratory 
experiments to determine the RC over the last almost two decades has also influenced 
overall findings.

In general, good clinical epidemiological evidence for transmission scenarios beyond 
outbreaks is lacking. However, studies on RC and evidence for persistence on inanimate 
surfaces in combination with a conspicuous transmission event are available. It is clear 
that the inanimate environment plays a relevant role in these bacterial transmission 
pathways in everyday situations (Fig. 1a). Studies using whole-genome sequencing 
indicate that there is a serious underestimation of transmission events when using 
standard techniques only (395). These analyses tend to focus on resistant, thus easily 
recognizable pathogens. However, the quantification of transmission events and thus an 
appropriate risk assessment are not yet possible.

Beyond the epidemiological evidence, the studies were usually generated under 
laboratory conditions. This means that not all possible environmental influences in 
hospital settings can be detected, especially any from antimicrobial residues. In addition, 
the influence of the simultaneous contamination of hospital surfaces with various 
nosocomial pathogens, with secretions, excretions, and dirt will also be disregarded. A 
growing number of studies report that enveloped and non-enveloped viruses can spread 
in groups in so-called “collective infectious units” (396–398). The vehicles mediating 
collective spread vary widely and include lipid vesicles, protein matrices, diverse forms 
of aggregation, and binding to the surface of host or non-host cells (396). It seems 
reasonable that units like this or interference may also exist for bacteria and/or fungi 
and/or protozoa. Laboratory studies do not reflect the clinical situation and represent 
probably an one-sided worst-case scenario assessing the upper bound of infection risk. 
Furthermore, they cannot represent the complexity of real-life scenarios. When assessing 
factors that influence the RC, it must be considered that the results only apply to the 
species investigated and cannot be generalized. Even more so, resistant isolates are 
often analyzed compared with wild-type variants. Sometimes tested microorganisms are 
poorly characterized so cannot determine the extent of generalizability. Furthermore, it 
should be noted that data on the RC are often not median values; the maximum was 
detected and described and these results can, and should, be used as an upper bound 
approach. Data suggest that no general prediction about RC independent of the genus is 
possible.

In addition, further influences must be considered. First, the dependence of 
environmental conditions on the RC has not yet been sufficiently studied under real-life 
conditions. Second, there is insufficient data on the behavior of wild-type and/or 
sensitive strains and variants within a species. Third, no data exist, on whether certain 
virulence or RC determinants are genetically present in isolates that are particularly well 
adapted to the hospital setting.
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In this review, only the risks due to direct or indirect contact transmission from 
inanimate surfaces were addressed, not the additional risks by potential aerosolization 
of pathogens from fomites (399–401). Therefore, it should be considered that the RC in 
aerosols can be significantly lower than on surfaces, as has been proven for different 
variants of the Ebola virus and Marburg virus (402). It is also the case that high inocula 
results in longer survival times due to the logarithmic death curve (403), which has been 
proven for various bacterial species (88, 404) and or fungal spores (156) on surfaces. 
Considering all background factors, data generated under laboratory conditions can 
only provide a rough orientation. In case of doubt, the less favored situation should be 
assumed when evaluating the data in Tables 3 to 7.

Despite knowledge of the dependency of replication and infection capacity from 
factors like pH, temperature, humidity, and others, we cannot easily change these 
surrounding conditions using their preventive potential. For others, for example, inocula 
and biofilms, we can use knowledge covering these aspects from common IPC recom­
mendations.

Another viewpoint for the risk assessment of surface contamination is the minimal 
infectious dose (MID) to trigger infection. The lower the ID, the greater the risk of 
acquiring an infection and further transmission as nosocomial outbreaks. It should be 
noted that the ID can be reduced by a viral infection, which often leads to bacterial 
co- or superinfection, especially in cases of respiratory viral infections (405–407). In 
Table 9, examples of different IDs are summarized, mainly taken from reviews. From the 
clinical perspective, it must be considered that this dose depends on the site of infection 
or at least contamination allowing short-term contamination. For respiratory transmissi­
ble viruses with a MID of >102 50% tissue culture infectious dose (TCID50), infection 
by aerosolization from surfaces is unlikely. By contrast, infection is possible via the 
surface­finger­eye route for keratoconjunctivitis epidemica due to low ID (Table 9) and the 
surface­finger­nose route, particularly in the case of nasal exposure to respiratory viruses 
with a MID <101. The same applies to orally transmissible pathogens with a MID of <101 

TCID50, CFU resp. oocysts. This is supported by the outbreak potential of pathogens 
with low MID. For fecal-orally transmissible bacteria and mucorales, transmission from 
surfaces is unlikely with a MID of <102 CFU. However, it should be noted that MID 
studies do not usually consider the fact that the pathogens multiply from an initially 
acquired small number and the infection only manifests after the critical quantity has 
been reached.

The lower the ID and the greater the RC, the greater the risk of acquiring an infection 
by direct or indirect contact with the surface or by aerosolization from the surface and 
following respiratory exposure. Likewise, the risk of an outbreak emanating from surfaces 
increases. In both cases, the ID is likely to have a greater influence. At the same time, the 
risk of a fomite-borne HAI is influenced by the patient’s immune status. The ID, RC, and 
immune status must be considered when deciding upon targeted surface disinfection 
and additional IPC.

Disinfecting surfaces in hospitals is generally accepted as a key component of 
infection prevention (32–35, 72, 424–427). However, disinfection can also have an 
influence on the development of tolerance; it is costly and leads to an ecological 
footprint. Clearly, every disinfection event requires a clear indication. Disinfection must 
be implemented in a precise and quality-assured manner since it offers a valuable 
contribution toward HAI prevention. Regarding environmental protection, probiotic 
cleaning agents are a promising alternative to chemical disinfection. Surface contami­
nation with pathogens could be reduced by up to 90% more with probiotic products 
compared with conventional disinfection wipes (428, 429). SARS-CoV-2 was reduced 
significantly more by probiotic cleaning than by chemical disinfection (430). In non-
intensive care units, routine surface disinfection did not prove superior to soap-based 
or probiotic cleaning in terms of preventing HAI (61). Of course, no evidence-based 
practical approach for systematic surface or probiotic cleaning in hospitals can be 
derived from the RC of nosocomial pathogens.
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RC and ID influence the implementation of surface decontamination regarding the 
extent and the selection of the application concentration and exposure time of the 
disinfectant. In cases of high RC and low ID, it makes sense to use concentrations that are 
rapidly effective. For final (or terminal) disinfection after patient discharge, all potential 
pathogen reservoirs must be eradicated with the choice of effective disinfectants. In 
general, a simple four-step guide for daily decontamination of the occupied bed space 
can be recommended: Step 1 (LOOK) describes a visual assessment of the area to 
be cleaned; Step 2 (PLAN) argues why the bed space needs preparation before clean­
ing; Step 3 (CLEAN) covers surface cleaning/disinfection; and Step 4 (DRY) is the final 
stage whereby surfaces are allowed to dry. Visible soil should always be removed with 
detergent and water before using disinfectant (431). Analogous to the 5 moments of 
hand antisepsis (432), 5 moments of disinfecting surface cleaning can be distinguished: 
(i) Disinfecting surface cleaning as part of standard precautions (non-targeted disinfec­
tion) on near-patient (high-touch) sites during patient care, and targeted disinfection, (i) 
disinfecting surface cleaning on the work surface before performing aseptic activities, 
(iii) final disinfecting of surfaces after discharge of patients, (iv) two-step disinfection 
surface cleaning after visible surface contamination (first cleaning, thereafter disinfec­
tion), and (v) disinfection surface cleaning as part of the multi-barrier strategy to control 
outbreaks (431).

This review can reduce the complexity of disinfection choices depending on the 
range of pathogen properties. At the same time, it proposes the best possible 
balance between patient and employee safety, that is, IPC and ecological and eco­
nomic sustainability. Through a novel classification of pathogens by their fomite-borne 
potential for transmission—completely independent of the taxonomic approach—a 
fact-based but also realizable and pragmatic recommendation can be prepared with 

TABLE 9 Minimal infectious dose of selected pathogens

Infectious dose Application Pathogen Reference

1–100 virus particles, CFU resp. 
oocysts

Oral Noro-, rotavirus, EHEC, ETEC, C. difficile, 
MRSA, Cr. parvum, G. intestinalis

(67, 311, 331, 370, 408–412)

6.6 virus particles Inhalative Adenovirus type 4 (331)
10–100 virus particles Oral HAV (413)
30–40 TCID50 Intranasal RSV (331)
6/71 TCID50 Intranasal/oral Coxsackievirus A21 (331)
0.03/>101–104 TCID50 Intranasal/inhalative Rhinovirus, different serotypes (331)
<103 CFU Oral Acinetobacter spp., C. jejuni, Klebsiella 

spp., VRE
(67, 414)

≥103 spores Chorio-allantois-membrane hen egg 
(equivalent to eye contact)

Lichtheimia corymbifera (415)

≥103 CFU Oral Salmonella enteritidis (416)
≥103 TCID50 Oral Echovirus (331)
>103 TCID50 Inhalative Influenza A virus (H3N2) (331)
>103 LD50 Intranasal Congo Basin MPXV (417)
≥104 CFU Conjunctival P. aeruginosa (418)
≥104 to ≥107 TCID50 Inhalative Influenza B virus (331)
≥104 spores Rhizopus spp., A. fumigatus (419, 420)
105 TCID50 Conjunctival RSV (331)
≥105 CFU Intravenous C. albicans, C. auris (421)
≥105 spores Parenteral Rhizomucor pusillus (419)
>105 CFU Oral E. coli, S. aureus (422)
>105 LD50 Intranasal West African MPXV (417)
>106 TCID50 Oral Adenovirus (331)
>106 to >107 TCID50 Inhalative Influenza A virus (H1N1)
>108 CFU/mL Intraperitoneal P. aeruginosa (423)
>1010 CFU/mL S. aureus
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a view to avoiding transmission. The attempt to classify pathogens by fomite-borne 
transmission potential should serve only as a first suggestion and should be improved 
by scientific discussion. In general, further studies should focus beyond the ecologi­
cal and outbreak assessment—and target real-life settings or near real-life scenarios 
to emulate endemic settings. There is insufficient evidence regarding the impact of 
contaminated surfaces in encouraging contact-free transmission risk. Further analysis 
should cover aspects of ecological sustainability and should weigh up the potential 
benefit for transmission and infection events against the additional ecological footprint 
from resource consumption, production, and waste management.
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