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the transmission of nosocomial pathogens potentially resulting in healthcare-associ-  Aal kramer and Franziska Lexow contributed
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persistence/tenacity by only including articles (n = 171) providing quantitative data on ~ <ontriouted equallyto this article.
re-cultivable pathogens from fomites for a better translation into clinical settings. We  The authors declare no conflict of interest.
have therefore introduced the new term “replication capacity” (RC). The RC is affected
by the degree of contamination, surface material, temperature, relative humidity, protein
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into surface RC are mainly performed in vitro using reference strains with high inocula.
In vitro data from studies on 14 Gram-positive, 26 Gram-negative bacteria, 18 fungi, 4
protozoa, and 37 viruses. It should be regarded as a worst-case scenario indicating the
upper bounds of risks when using such data for clinical decision-making. Information
on RC after surface contamination could be seen as an opportunity to choose the most
appropriate infection prevention and control (IPC) strategies. To help with decision-mak-
ing, pathogens characterized by an increased nosocomial risk for transmission from
inanimate surfaces (“fomite-borne”) are presented and discussed in this systematic
review. Thus, the review offers a theoretical basis to support local risk assessments and
IPC recommendations.

KEYWORDS replication capacity, viability, inanimate surfaces, fomites, persistence,
resilience, tenacity, bacteria, fungi, protozoa, viruses, transmission, HAI, fomite-borne risk
pathogens

INTRODUCTION

nformation about pathogen replication capacity (RC) after surface contamination is an

important basis for infection prevention and control (IPC) including the risk assess-
ment of healthcare-associated infections (HAI) and nosocomial outbreaks. In addition,
this information is of high importance for outpatient settings and community outbreaks.

Pathogens can be spread from contaminated surfaces by direct patient contact,
airborne dispersal (small and large aerosols), or indirectly via hand and medical devices
after contamination from hand-touch surfaces (Fig. 1a). Exogenous transmission of HAls
in Europe corresponds to only about 5%-20% of the total number of HAI incidents
(1), making the hand the main vector for pathogen transmission from contaminated
inanimate surfaces (2-31). Consequently, international guidelines assign a key role in
cleaning/disinfection of areas beside patients, especially surfaces receiving frequent
hand/skin contact (32-35). An additional benefit is the relatively low cost of interventions
aiming at controlling this source as opposed to many others, for example, impregna-
ted catheters (36). However, as recently witnessed during the severe acute respiratory
syndrome coronavirus type 2 (SARS-CoV-2) pandemic, the role of decontamination
of inanimate surfaces can also be overrated (37). Inappropriate use of disinfectants
leads to costly interventions alongside risk of disinfectant tolerance and even antibiotic
resistance, environmental pollution (38-40), and adverse effects for humans (41-44).
Therefore, it would be useful to obtain greater insight into the RC of pathogens on
inanimate surfaces to implement the most appropriate, risk-assessed decontamination
procedures.

Since hands are the main vehicle for potential nosocomial pathogens, hand hygiene
and surface cleaning should complement each other to prevent HAI (45).

Defining terms of cultivable pathogens from inanimate surfaces

Resilience is the quality to withstand or recover quickly from environmental challenges
and therefore being able to keep or come back to the standard or previous condition.
Resilience is a positive characteristic from the perspective of the microbes, which in the
medical context can have negative implications from the patients’ perspective. To
determine the environmental resilience of pathogens, different methods of recovery are
available to describe their burden on inanimate surfaces. For viruses, only indirect
cultivation is possible because cells are needed for replication. Unfortunately, reverse
transcriptase polymerase chain reaction (RT-PCR) does not allow a conclusion to be
drawn about the remaining infectivity of viruses [e.g., plaque-forming units (PFU)].
Pathogen-dependent, different terms with different meanings are used for the ability of
pathogens to be recovered from inanimate surfaces. To have the same understanding,
some common terms will be preceded by a brief explanation. Von Sprockhoff (46)
proposed “survivability” synonymously to “tenacity” as the robustness of
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FIG 1 (a) Transmission routes from contaminated inanimate surfaces and environmental influences. (b) Examples of the
variety of different replication capacities depending on the pathogen and surface material.

microorganisms to defined exogenous factors. The term “tenacity” refers to the resist-
ance of bacteria, fungi, protozoa, and viruses to environmental influences. In the Anglo-
American language, the term “tenacity” is uncommon; instead, terms such as

“resistance,” “sensitivity,” or “survival” are used more often (47). The Latin origin “tenacitas
= to hold on” is not helpful for understanding what the term means. In the broader
sense, tenacity means, “the determination to continue what you are doing” (48). Another
comprehensive definition is “the quality or state of being tenacious” (49). Professionals in
clinical disciplines are unaware of the term “tenacity” for microorganisms. Therefore, we
need something that linguistically expresses the viability of bacteria, fungi, protozoa, and
viruses when they contaminate surfaces, to be able to assess the risk of onward spread of
nosocomial pathogens emanating from that surface.

Since bacteria, fungi, and protozoa function autonomously, the terms “persistence,’
that is, “viability,” and “survival” are used synonymously. Survival can be understood
as persisting viability under disadvantageous circumstances (50). Some microorgan-
isms persist through an adaptive reaction to survive in the environment by reducing
metabolism and by morphological, biochemical, and/or genetic adaptations, especially
for bacteria in biofilms and/or as bacterial spores (51-53). Another mode of adaptation
is the transition to viable but non-cultivable (VBNC) cells, which can only be converted
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back to a replicative, virulent state through certain stimuli (54, 55). Protozoan cysts act as
a survival niche and protective shelter (56). The criterion for determining the persistence
of microorganisms is whether they can replicate after it has contaminated a surface.

Unlike bacteria, viruses need the synthetic apparatus of intact host cells for their
replication. Viruses have neither their own metabolism and energy production nor the
possibility of protein synthesis. Therefore, strictly speaking, they are not living beings.
The criterion for viral infectivity is the ability to replicate in host cells so that quantifica-
tion in vitro is possible by resuspension from the surface, transfer to the cell culture and
counting dead cells, the so-called cytopathic effect (CPE). Not every virus is capable
of inducing CPE while demonstrating other significant features. The viral ability to
replicate is referred as “replication capacity” (57), which is used in different contexts,
for example, for change under antiviral therapy (58). In parallel, the ability of vectors
to transfer antibiotic resistance genes can also be termed “replication capacity” (59).
Viral persistence, on the other hand, is understood as the genetic information of viruses
presenting in cells of the host organism and the possibility of a virus reactivation under
certain circumstances, for example, in the case of immunosuppression of the host (e.g.,
herpes viruses).

In summary, only RC reflects the viral load on a surface because viral RC correlates
with viral infectivity (60). Given that for microorganisms and protozoa, as well as viruses,
the criterion of replication determines infectivity and because the term “replication
capacity” does not allow different interpretations, the term “replication capacity” (instead
of tenacity, persistence, survival, or viability) is proposed to describe recovery from
inanimate surfaces.

Risk assessment from inanimate surfaces as the origin of HAI

Information on RC of pathogens on inanimate surfaces could assist with the following
aims:

- To determine the most effective decontamination strategy, first, for known
nosocomial pathogens, and second, in the event of the emergence of a new
pathogen with initially unknown properties and potential for epi- or pandemic
spread;

- Generally, to provide a risk assessment for IPC measures after pathogen release
from patients to interrupt further transmission;

- To provide a risk assessment of the need for final disinfection measures required
after hospital discharge of pathogen carriers, especially for isolated patients;

- Toinform control methods for nosocomial outbreaks;

- To help determine standard operating procedures (SOP) for surface cleaning
and/or disinfection, especially hand-touch sites without any knowledge about the
presence of potential pathogens;

- To help determine SOP for surface cleaning and/or disinfection, following
incidents such as sewage or floodwater spillage, building works, etc.;

- To assess the risk of the possibility of further spread of pathogens after hand
contact with contaminated surfaces and medical devices especially for research
purposes;

- To assess the risk-benefit between disinfection efficacy, expense and environmen-
tal impact, and thus finally IPC; and

- To analyze the RC under the influence of probiotic cleaning as a new option for IPC
(61).

Walther and Ewald (62) distinguished a highly virulent long-lasting group contain-
ing variola (smallpox) virus, Mycobacterium tuberculosis, Corynebacterium diphtheriae,
Bordetella (B.) pertussis, Streptococcus (Str.) pneumoniae, and (avian) Influenza A Virus
(virulence determined from mortality rate or case mortality). These pathogens have
a mean percent mortality of =0.01% and a mean survival time of >10 days (d). By

December 2024 Volume 37 Issue 4

Clinical Microbiology Reviews

10.1128/cmr.00186-23 4

Downloaded from https://journals.asm.org/journal/cmr on 30 April 2025 by 193.175.81.2.


https://doi.org/10.1128/cmr.00186-23

Review

contrast, a low-virulence and low-persistent group (mean percent mortality <0.01%
and time of survival <5 d) includes viruses such as Rubeola, Mumps, Parainfluenza,
Respiratory syncytial, Varicella-zoster, Rubella, and Rhinovirus, alongside the bacteria
Mycoplasma pneumoniae and Haemophilus (H.) influenzae. This is even more interesting
since these bacteria and viruses belong to totally different species, families, and genera,
respectively. While our review focuses on transmission modes via inanimate surfaces
[“fomite-borne”; e.g., from materials such as glass, stainless steel, textiles (Fig. 1b)],
also other transmission modes (e.g., airborne, waterborne/foodborne) of pathogens are
relevant for risk assessment. The longer a nosocomial pathogen persists on a surface, the
longer the surface may be a source of transmission and endanger a susceptible patient
or healthcare worker. Furthermore, a correlation between virulence and persistence is
reported (63), the sit-and-wait hypothesis predicts that virulence should be positively
correlated with persistence in the external environment because persistence reduces
the dependence on host mobility for transfer to a patient. This has been confirmed for
respiratory tract pathogens (63). The virulence of pathogens, including factors, such as
infectious dose (ID), RC, and risk of transmission, determines the outbreak potential and
should be considered as the basis for the IPC strategy. For surfaces as (temporary) origin
of HAI, the RC of pathogens from fomites is essential. The main focus in this context
was the transmission mode from inanimate surfaces. High virulent pathogens with
outbreak potential due to low ID, long-lasting RC require additional to the non-targe-
ted near-patient (high touch) surface disinfection, a targeted cleaning and disinfection
as patient-remote (low touch) surface disinfection, and final surface disinfection. Such
pathogens with increased “fomite-borne risk,” characterized by an increased nosoco-
mial risk for transmission from inanimate surfaces, are marked in gray in Tables 3 to
7. Of course, disinfection measures are only one part of the IPC strategy combined
with the other standard precautions such as hand hygiene and additional pathogen-
related measures such as barrier nursing, isolation, antimicrobial chemotherapy, and
antiseptic decolonization. With growing knowledge, the classification of “pathogens with
nosocomial risk for spread from inanimate surfaces” can be further developed.

There is a practical way of looking at this. For example, admission to a room
previously occupied by a patient infected and/or colonized with a pathogen is a known
risk factor for the acquisition of that pathogen (64). This risk can be quantitated and it
appears that the relative differences in acquisition risk between the pathogens mirror
environmental longevities. As expected, organisms such as Acinetobacter baumannii
complex and C. difficile present the highest risk for acquisition, and they also happen to
be the most resilient in the healthcare environment (65). This begs the question even
over the need for cleaning/disinfection priorities for a recently vacated room, depend-
ing on which pathogen infected the previous patient. So, in accordance with survival
and replicative properties, decontamination strategies could range from a quick wipe
over the hand-touch surfaces for methicillin-resistant Staphylococcus (S.) aureus (MRSA),
disinfection of the sink/shower for ESBLs and comprehensive air and surface disinfection
for C. difficile, etc. If pathogens are released from the respiratory tract, knowledge of
the RC makes it possible to assess whether patient-remote surfaces should also be
included in the final disinfection, for example, wall surfaces and slatted curtains. A focus
on targeted cleaning and disinfection allows pathogen-related risk to dictate the most
appropriate decontamination practice for all patient spaces (45). This risk assessment is
the logical consequence of a basic risk without the knowledge of existing pathogens and
enables a—in theory—most effective strategy.

To assess the timeline of RC for risk of further spread, it is necessary to consider RC in
more detail. This includes baseline inoculum, the surface material, temperature, relative
humidity (RH), protein load, organic soil, light exposure, and pH value. Thus, it is not
just the type of pathogen or evidence for them (e.g., DNA, RNA), but whether they are
capable of being transmitted to, and replicating in, the host (Fig. 1a and b). Transmission
potential of pathogens on surfaces is not restricted to the direct and indirect contact
transmission route. Some, but not all potential pathogens on inanimate surfaces can
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be aerosolized and transmitted contact-free. This potential additional risk is not within
the scope of this review. But if the RC is known, the infection risk can be estimated for
respiratory released and airborne transmissible pathogens.

This review aimed to collect and assess published data related to RC of all types
of nosocomial pathogens contaminating inanimate healthcare surfaces as the basis for
evaluating healthcare-associated infection risk by fomite-borne risk assessment. For the
determination of IPC strategies, both RC and ID should be considered. These data might
assist in evaluating the transmission and infection risk and therefore guide the most
appropriate IPC measures.

METHOD

Literature from three reviews (66-68), with at least partly similar aims, was screened
and examined as a basis for the current review. Then a systematic literature search
was conducted in accordance with the PRISMA guideline and the German Manual for
Literature Research in Databases (69).

Based on the modified PICO scheme (Table 1), the search terms were compiled.
The search was restricted to publications from 2020 onwards to obtain hits that were
not already included in the latest review (68). The language was limited to German
and English. PubMed and Web of Science were both used for the search, which was
conducted on 26th January 2023.

Duplicates were removed using Citavi 6 (Swiss Academic Software GmbH). Four
reviewers carried out the screenings blinded (two reviewers per article) using an online
document to record the decisions. The articles were compared against predetermined
inclusion and exclusion criteria (Table 2).

In the case of different assessments, a third reviewer joined the discussion, and a
consensus was reached. First, the titles and abstracts were screened and then the full
texts of the included records. Eligible reviews were not included but searched for primary
studies, which were then also screened as above.

The data were extracted into an online table by the reviewers. A cross-check was
conducted afterwards.

Tables 3 to 7 were modified from the informative appendix (only in German) (71) of
the recommendation of the Commission for Hospital Hygiene and Infection Prevention
(KRINKO) on Hygiene requirements for cleaning and disinfection of surfaces (72). Table 8
was modified from Jawad et al. (73).

EVALUABLE PUBLICATIONS

There were 145 publications taken from three previous reviews, with an additional 495
records identified via the databases (Fig. 2). In all, 152 duplicates were removed. The
title and abstract of the remaining 343 records were screened, leading to the inclusion
of 40 reports. Of these, 32 were excluded during the full-text screening. Four primary
studies and four reviews were included. The reference lists of the reviews were screened
for other eligible studies which led to the inclusion of another 22 primary studies. Within
the scope of the systematic search, a total of 26 primary studies were included. Together
with studies from the three initial reviews, a total of 171 publications were included.

This review does not claim to include all pathogens with the ability to induce
outbreaks, for example, Mycobacterium chimera. The priority was to gauge transmission
potential from near-patient inanimate surfaces. We did not consider pathogens in other
hospital hygiene-relevant settings (e.g., water, air, and food).

TABLE 1 Search strategy: segments and search terms

Segment Search terms

Pathogens Bacteria, viruses, fungi, protozoa

Conditions Surface, fomite, inanimate, temperature, humidity, light
Setting Nosocomial, hospital acquired

QOutcome Persistence, survival, transmission, tenacity
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TABLE 2 Inclusion and exclusion criteria

Inclusion Exclusion

Narrative review, rapid review, scoping review, systematic review, randomized Single-arm follow-up studies (case reports, case studies, etc.),
controlled trial, quasi-randomized controlled intervention study, not randomized commentaries, study protocols, conference abstracts, books,
controlled studies, pro- and retrospective cohort studies, case-control studies, editorials, model studies

historically controlled studies, cross-sectional studies
Human pathogenic species within the following groups: viruses, bacteria, protozoa, Other pathogens
and fungi that are relevant for hospital-acquired infections from surfaces’
Inanimate surfaces—specifically surfaces relevant in hospital settings (e.g., materials Animate surfaces (e.g., hands, hair, wounds)
such as glass, stainless steel, polymers, textiles). Cave: if the only information found
was not on hospital-relevant surfaces, the information is reported to give insight into
the possible tenacity of the pathogen.
Persistence, tenacity, survival, temerity, recultivable, and replicable; a resuspension  Anything concerning the treatment, symptoms, or genetic

has to be made from the test surface and then transferred to the cell culture or surveillance; studies on the effect of disinfectants; studies on
nutrient medium the effect of antibacterial/antiviral surfaces
Since 2020 Before 2020
English, German Other languages
Relevant data/methodology (e.g., inoculum concentration) are given Relevant data/methodology (e.g., inoculum concentration) not
given

?Although ectoparasites can also be transmitted nosocomially (70), they were excluded because they are multicellular arthropods reproducing outside humans.

Tables 3 to 7 focus on the most important pathogens in the healthcare setting
and the most important parameters for transmission potential (temperature, RH,
light, surface material). For better clarity, inocula were reported by waiving applica-
tion conditions. Due to differences in the choice of units used to report results,
the initial inoculum (starting point) was converted into a decadic logarithm. For
additional data and details of recultivation and expanded environmental conditions,
please see supplementary material (Tables A-E). Pathogens with an increased fomite-
borne transmission potential were highlighted in gray. For this tentatively introduced
classification, we used a simple scoring system: Pathogens are characterized by (i) a
high virulence and/or (ii) a long RC and/or (iii) a high potential for nosocomial spread. A
pathogen belongs to the fomite-borne risk group if at least two of the three statements
are fulfilled. This is to be understood explicitly as a basis for discussion and is summarized
illustratively in Fig. 3.

Replication capacity of bacteria

Microorganisms responsible for colonized or infected patients may be isolated from
the near-patient environment, especially when surface cleaning or disinfection is
inadequate. To clarify transmission routes, screening has been carried out primarily
for species such as MRSA (236, 237), vancomycin-resistant enterococci (VRE) (236,
238), carbapenem-resistant enterobacteriaceae (CRE) (239, 240), Acinetobacter bauman-
nii complex (241), Clostridioides (C.) difficile (241, 242), and recently for the high patho-
genic yeast Candida (C.) auris (243). For species detected in nosocomial outbreaks,
or which frequently colonize or infect newly admitted patients, understanding RC is
useful because intensified surface cleaning/disinfection within an intervention bundle
has proved effective in controlling cross-infection and even outbreaks. This has been
proven for VRE (18, 25), C. difficile (16), MRSA (244), Acinetobacter (A.) baumannii (4, 8,
22, 28), CRE (14, 25), and C. auris (243, 245). The acquisition of pathogens from previous
patients caused by deficiencies in final disinfection is well known (5-7, 9, 15, 23, 246)
and evaluated in meta-analyses (21, 31). However, none of these studies used genomic
surveillance to link isolates from the previous occupant and the new patient admitted
into the same room. Recent work suggests that pathogen identity cannot be assumed,
but there is a high likelihood of genotypic identity depending on the species (247).

In most reports, RC was studied on dry surfaces using artificial contamination of a
standardized surface in a laboratory. Bacteria were prepared in broth, water, or saline
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TABLE 3 Replication capacity of Gram-positive bacteria from inanimate surfaces’

Clinical Microbiology Reviews

Pathogen Initial inoculum Replication capacity Surface Ref.
Bacillus subtilis spores ~8Ilg CFU After 15 d: reduction by 0.3 Ig, after ~ Glass (74)
56 d: reduction by ~0.7 Ig
7.1-9.51g CFU >200 d: reduction by ~2 Ig Polycarbonate (75)
61g CFU >1d:51g Stainless steel (76)
6 1g CFU After 2 d: reduction by ~2 Ig, after Floor (77)
4 wk: 8 CFU, after 5 mon 1 CFU
6-7 Ig CFU After 6 wk: reduction by ~0.5-0.81g;  Steel (78)
after 12 wk: reduction by <3 Ig
C. difficile veg. ~6 g CFU 15 min: reduction by ~4 Ig Glass (79)
Corynebacteria generic 2.7-3.81g CFU > 48 h: mean recovery 3.6% Cotton (80)
Corynebacterium diphtheriae Up to 155 CFU 7-90 d (strain-dependent) Dust (81)
Corynebacterium pseudotuberculosis ~6 g CFU 3d Plastic (82)
Corynebacterium striatum 61g CFU After 48 h:7.7 19/6.8 19/2.6 Ig Polyvinyl chloride (PVC)/silicone/stain-  (83)
less steel
6-7 Ig CFU After 12 wk: reduction by <3 Ig Steel (78)
~6.5 g CFU 49d/51d/49d Cotton/wool/silk (84)
250 CFU 7 d up to 28 d: 250-70 CFU/250 to Glass/PVC/stainless steel/aluminum (85)
~32 CFU/250-160 CFU/250 to ~50
CFU
81g CFU 1to 16 wk PVC (86)
8I1g CFU <4 mon: ~2 Ig recultivable Ceramic/PVC/rubber/steel (87)
~51g CFU 33/>90/>90d Cotton/polyester/polypropylene (88)
5-61g CFU >7d(31g/31g) Polyester/Terrycloth (89)
101g CFU >21d (4-51g) Cotton (90)
6-7 Ig CFU After 6 wk: reduction by <1.8 Ig Steel (78)
7.51g CFU After 8 wk: 6.5 Ig Ceramic/cotton/synthetic fibers 91)
5.2 1g CFU After 1 d: survival of 3% Cotton (92)
~51g CFU >90/>90/>90d Cotton/polyester/polypropylene (88)
6Ig CFU >1d:51g Stainless steel (76)
7.21g CFU Mean survival rate 3d Glass (73)
(dried in water), 43 d
(dried in egg white)
~6 |g CFU After 6 wk: reduction by ~3 Ig Steel (78)
5I1g CFU >7d Furnishings (93)
E. faecalis 4.5 Ig Dried 60 min: 3 Ig CFU; dried 90 min:  Stainless steel (94)
3.61g CFU
81g CFU 1to 16 wk PVC (95)
E. faecalis: ~5 1g CFU 22/>80/>80d Cotton/polyester/polypropylene (88)
E. faecium: ~5 1g CFU >90/>90/>90 d
Micrococcus luteus 7.1-9.51g CFU After 120 d: reduction by ~6 Ig Polycarbonate (75)
5.21g CFU After 2 d: survival of 20% Cotton (92)
Mycobacterium tuberculosis 0.1 mg/mL Recultivable in daylight after 1 d, Coverslip (96)
recultivable in
darkness for 9 d, not recultivable after
40d
7.31g CFU >11d Glass (73)
5.2 1g CFU After 25 d: survival of 0.8% Cotton (92)
7.51g CFU After 8 wk: ~6.5 Ig CFU/mL Ceramic/cotton/synthetic fibers 91)
81g CFU 2d/18d/>45d/43d Latex/cotton/vinyl flooring/ (97)

granite
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TABLE 3 Replication capacity of Gram-positive bacteria from inanimate surfaces® (Continued)

Clinical Microbiology Reviews

Pathogen Initial inoculum Replication capacity Surface Ref.
~6.5 g CFU 37d/37d/41d/37d Cotton/cotton polyester/wool/ (84)
silk
61g CFU 9d/10d/3d Formica/stainless steel/enamel (98)
250 CFU After 21 d: 5 CFU/after 7 d: ~5 CFU/  Glass/PVC/stainless steel/aluminum (85)
after 21 d: 0 CFU
/after 7 d: ~10 CFU
7.21g CFU Mean survival 26 d (dried in water), ~ Glass (73)
35 d (dried in egg white), after 12
d: ~3 Ig CFU loss (water); after 18
d: ~5.7 Ig loss (egg white)
Desiccation After 25 d desiccation: 4.4 Ig; wet: Aluminum (99)
7.31g CFU after 7 d not recultivable
et: 3-41g CFU
6-7 Ig CFU Dry < 7 mon, at 32% RH >5 mon Dust (100)
a. After 24 h: 6.7 Ig CFU, after 7 d: 22
CFU /after 24 h: 6.3 IgCFU, after 7 d: 1
a. Dry inoculum: 5-6 Ig CFU CFU
b. Liquid inoculum: ~6 Ig CFU b. After 7 d: 16.219/6.1 Ig Polymer without silver/with silver (36)
8I1g CFU With dust: <28 d, without dust: <35 d Bottles with and without dust (101)
7 1g CFU >12d/12d/=14d Plastic/laminated plastic/polyester (102)
5-6 CFU (mattress cover) Recovery after 72 h at 22°C: Dry mattress cover/wet mattress (103)
14-34 CFU (drapes) 98 CFU/1 CFU/17 CFU/31g/1 CFU/1  cover/dry drapes/wet drapes/dry bed
5-6 CFU (bed sheets) CFU sheets/wet bed sheets
81g CFU <21d/=21d (619) Polyester/cotton (104)
5-61g CFU >206 d/25 d/11 d/=206 d Mattress inner foam/PVC/cotton/poly-  (105)
ester
91g CFU >21d:4-5Ig CFU Cotton (90)
5.7 g CFU >11d:41gCFU PVC (76)
5.7 1g CFU >11d:31g CFU/=11d: 3 Ig CFU/> Aluminum/plastic/stainless steel
11d:31gCFU
6 g CFU >1d:61gCFU Stainless steel
0.05 ODggo >7 d: survival rate: 4% Polypropylene (106)
8.7 1g CFU < 60 min/270 min/=360 min Copper/brass (80% Cu, 20% Zn)/ (107)
stainless steel
6-7 Ig CFU After 6 wk: reduction by 5-6 Ig CFU  Steel (78)
81g CFU 1d/18d/41d/40d Latex/cotton/vinyl flooring/tile (97)
3.2-4.91g CFU After 7 d: recovery 59%-125%; after  Dry mop (108)
14 d: 26%-42%; after 28 d: 0.2%-
16%; after 56 d: 0%-1%
91g CFU <318d Plastic (109)
8I1g CFU With dust: <126 d; without dust: Bottles with and without dust (101)
<175d
5.6 Ig CFU) <21/14/3/40/>51d Cotton/cotton terry/cotton and (88)
polyester/polyester/polypropylene
~7.31g CFU <96d Glass (110)
61g CFU <63 d/<56 d/<21d/<14d/<14d/ Vinyl/plastic/ceramic/bed sheets/ (111)
<3 d/<5min towels/wood/razors
7 1g CFU >12d/11d/9d Plastic/laminated plastic/ (102)
polyester
6.3-6.7 Ig CFU or 43-4.71gCFU <8dor<2d Polypropylene (112)
5-61g CFU >7d:<11g/11g Polyester/terrycloth (towel) (89)

(Continued on next page)
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TABLE 3 Replication capacity of Gram-positive bacteria from inanimate surfaces® (Continued)

Pathogen Initial inoculum Replication capacity Surface Ref.
81g CFU 1d/3d/>45d/>45d Latex/cotton/vinyl flooring/ (97)
granite
Streptococcus faecalis Desiccation: 6.9 Ig CFU After 25 d desiccation: 4.6 Ig; wet: Aluminum (99)
Wet: 3-4 Ig CFU after 10 d not recultivable
_~7.7 lg CFU <2h Plastic and ceramic/plastic/
stainless steel (113)
8lg CFU Planktonic: 3 d; as biofilm: >120 d Plastic/textiles (114)
5-61g CFU =206 d/25 d/11 d/=206 d Mattress inner foam/PVC/cotton/poly-  (105)
ester
Streptococcus pneumoniae 2.8-3.61g CFU >48 h: mean recovery 0.2% Cotton (80)
Streptococci, staphylococci from saliva; 5.3 Ig CFU for Staphylococ- >88h Glass/latex/wood (115)
combined analysis cus aureus; 5.9 Ig CFU for

Streptococcus pyogenes; 5.8 Ig

CFU for Streptococcus salivarius

“Table modified from reference 71. Pathogens with fomite-borne transmission potential, characterized by an increased nosocomial risk for transmission from inanimate
surfaces, are marked in gray; for additional data and details of recultivation and environmental conditions, see the supplemental material (Table A). Legend: CFU = colony
forming units, Ig = decadic logarithm, min = minute, h = hour, d = day, wk = week, mon = month, PVC = polyvinyl chloride.

and removed from the germ carrier by different rinsing solutions, for example, dist. water,
physiol. NaCl, phosphate-buffered salt solution (PBS), or Triton X-100, sometimes in
combination with ultrasound (Tables 3 and 4).

After this preparation, members of the Gram-positive genera enterococci (e.g., VRE)
and staphylococci (e.g., MRSA) survive for months on dry surfaces. Among streptococci,
RC differs depending on the species, that is, for Streptococccus (Str.) pneumoniae <24 h,
Str. pyogenes 1-3 d, and Str. salivarius >88 h. Corynebacterium pseudotuberculosis survives
1-4 d on dry plastic surfaces. By contrast, C. diphtheriae, isolated from dust in patient
rooms, survives 7-90 d, depending on the species. In daylight, Mycobacterium tuberculo-
sis survives for 2-5 d, but in darkness, recovery is possible for up to 200 d (Table 3).

There are only a few studies where wild-type and antibiotic-resistant representa-
tives of the same species were compared against each other. For enterococci, VRE
has higher RC compared with susceptible enterococci. Similarly, methicillin-sensitive S.
aureus (MSSA) in dust demonstrated a shorter survival time on surfaces than MRSA (Table
3).

Spores of Bacillus and Clostridioides (C.) spp. survive for >6 months depending on the
material. By contrast, the vegetative form of C. difficile drops to the detectable threshold
within 15 minutes (min) (Table 3).

An initial comment is that neither Gram-positive nor Gram-negative organisms
represent a uniform group regarding recultivation potential from inanimate surfaces
(Tables 3 and 4). Some species can survive for a month, such as Escherichia (E.)
coli, Klebsiella spp., Pseudomonas aeruginosa, Serratia marcescens, Enterococcus spp.,
Acinetobacter ssp. and Clostridioides ssp. This is also reflected in infection epidemiology
since these pathogens can cause ongoing transmission incidents and outbreaks. The
Salmonella genus behaves very differently: Salmonella (S.) typhimurium is still present in
garden soil 280 d after contamination (248), S. paratyphi B survives in soil up to 259 d
(249), and S. enteritidis for more than 11 months, whereas S. typhi survives only 4 d.

Conversely, Mitscherlich and Marth (250) demonstrate the persistence of Proteus spp.
in the environment with 1-2 d. P. morganii, P. rettgeri, P. vulgaris, and P. mirabilis survive in
sterile clay loam at 18-20°C species-dependent 35-40 d. The decimal reduction time was
about 6 d (251). Shigella flexneri persists for 6 d (252). B. pertussis, H. influenzae, and Vibrio
cholerae persist only a few days [(253); Table 3]. Aerosolized H. influenzae is characterized
by short survival on glass (0.29 d), wood (0.08 d), and fabric (<1 d) (250, 254).
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TABLE 4 Replication capacity of Gram-negative bacteria from inanimate surfaces®

Clinical Microbiology Reviews

Pathogen Initial inoculum Replication capacity Surface Ref.
~6.51g CFU 19d/19d/7d/19d Cotton/cotton polyester/wool/silk (84)
6-7 Ig CFU After 6 wk: reduction by 4-5 Ig Steel (78)
6 lg CFU 11d/12d/6d Formica/stainless steel/enamel (98)
250 CFU After 28 d: ~112 CFU/~112 CFU/~18 CFU/  Glass/PVC/stainless steel/aluminum (85)
~20 CFU
7.1-9.51g CFU After 20 d: reduction by about 5.5 Ig Polycarbonate (75)
1,200 resp. 1,700 CFU  Biofilm-forming <36 d/non-biofilm-form- Glass (116)
ing<15d
7.31g CFU 3d Glass (117)
7.31g CFU Upto33d Glass (118)
7.31g CFU 7-70d (strain-dependent) Glass (119)
~8lg CFU) 3-90d (strain-dependent) Polystyrene (120)
~7.31g CFU <9%6d Glass (110)
81g CFU 50% of strains mean survival of at least Ceramic/PVC/rubber/steel (87)
2 wks (<2 Ig recultivable), strain-depend-
ent <4 mon (7 Ig recultivable)
4.11g CFU Dried 60 min: 4 Ig; dried 90 min: 3.9 Ig Stainless steel (94)
61g CFU >1d:4lg Stainless steel (76)
71g CFU =60 d: survival rate: 10%, 40%, 40% Cotton/plastic/glass (121)
5-61g CFU >7d:21g/31g Polyester/Terrycloth (89)
7.21g CFU Mean survival rate strain-dependent 2-29d  Glass (73)
(dried in water); <59 d (dried in egg white);
after 18 d ~ 5.5 Ig loss
Acinetobacter johnsonii Mean survival rate 3 d (dried in water); 12 d
(when dried in egg white)
Acinetobacter junii Mean survival rate 2 d (dried in water); 13 d
(dried in egg white)
Mean survival rate 6 d (dried in water); 8 d
(dried in egg white)
7.31g CFU 3d Glass (117)
Acinobacter calcoaceticus anitratus 4 1g CFU After 1 h:31g Hardboard (122)
5.21g CFU After 25 d survival of 0.6% of the CFU/after  Cotton/glass (92)
7 h survival of 40% of the CFU
4 Ig CFU/sample After 1 h:31g CFU Hardboard (122)
_5.2 lg CFU After 7 d not recultivable Cotton (92)
Acinetobacter radioresistens 7.31g CFU 157d Glass (117)
Bordetella pertussis 81g CFU (0.01 mL) <0.04 h-5 d/3-5 d/<0.04 h-5 d/<0.04-4 d/  Glass/plastic/rubber/fabric/paper (123)
0.2-1d
Campylobacter jejuni 0.1 mL contaminated 4h/4h/7h/7h Aluminum/stainless steel/formica/ (124)
water from screw ceramic
coolers
8-91g CFU After 28 d: ~5 |g (without wood 0 Ig after2  Wood/polyurethane/glass (125)
d)/polyurethane and glass: ~survival for 2 d
(pore-size-dependent)
71gCFU <250 min (4 19)/=250 min (3 19)/<250 min (1 Stainless steel/formica/ceramic/cotton  (126)
19)/<180 min
2501g CFU After 3 d: ~14 CFU/after 2 d: ~12 CFU/after 3 Glass/PVC/stainless steel/aluminum (85)
d: ~13 CFU/after 2 d: ~5 CFU
6 lg CFU After 48 h: ~1.5 Ig/after 24 h: ~1.5 g Plastic/carton (127)
91g CFU After 100 d: 1 1g Plastic (128)
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TABLE 4 Replication capacity of Gram-negative bacteria from inanimate surfaces” (Continued)

Clinical Microbiology Reviews

Pathogen Initial inoculum Replication capacity Surface Ref.
7.31g CFU After 7 d (dry): not recultivable; after >28d ~ Wood/steel (129)
humidity
7-81g CFU <120 min Plastic/wood (130)
5.2 g CFU After 7 h: not recultivable/after 7 h: survival ~ Cotton/glass (92)
of 0.8% of CFU
7.51g CFU After 8 wk: ~6.5 Ig CFU/mL Ceramic/cotton/synthetic fibers 91)
7-9 g CFU After 2 h: reduction by: 1.7 Ig/ New dry wood/new wet wood/ (131)
0.3719/1.09 1g/0.44 |g/after 24 h: used dry wood/used wet wood/plastic
0.06 Ig
81g CFU <4 mon (~ 2 Ig recultivable) Ceramic/PVC/rubber/steel (87)
~6.51g CFU 45d/37 d/45d/45d Cotton/cotton-polyester/wool/silk (84)
250 CFU After 1 d: ~5 CFU/after 1 d: 2 CFU/after 2 day: Glass/PVC/steel/aluminum (85)
1 CFU/after 2.d: 1 CFU
7.1-9.5 1g CFU After 6 h: reduction by about 6.5 Ig Polycarbonate (75)
7.21g CFU Mean survival rate 1 d (dried in water),3d  Glass (73)
(dried in egg white)
6-7 Ig CFU At 58% RH >8 mon Dust (100)
Desiccation: After 25 d desiccation: 0.7 Ig CFU/cm®; Aluminum (99)
6.9 1g CFU wet: >12d
Wet: 3-4 Ig CFU
5-6 Ig CFU After 24 h: 0.2 CFU, after 7 d: not recultiva-  Polymer without silver/with silver (36)
ble/after 7 d: 8 CFU
1-2 CFU (mattress Recovery after 72 h at 22°C: 4 1g/4 19/3.7 Dry mattress cover/wet mattress (103)
cover) 19/5.719/3.219/4.21g cover/dry drapes/wet drapes/dry bed
2 CFU (drapes) sheets/wet bed sheets
1-2 CFU (bed sheets)
8lg CFU <10d/=21d (619) Polyester/cotton (104)
5-61g CFU =206 d/11d/7 d/=206 d Mattress inner foam/PVC/cotton/poly-  (105)
ester
2.7-3.21g CFU >48 h (mean recovery too Cotton (80)
numerous to count)
5.7 Ig CFU >1d:21g Vinyl chloride (76)
5.71g CFU >4d:11g/27 d:11g/z4d:11g Aluminum/plastic/stainless steel
61g CFU >1d:31lg Stainless steel
5.7 Ig CFU >7d:31lg Plastic
Haemophilus influenzae 61g CFU After 1 h: 99.99% reduction Aerosol (132)
2.8-3.51g CFU >48 h: mean recovery 1.8% Cotton (80)
Helicobacter (H.) pylori 91g CFU After 30 min: 7.8 Ig, after 60 min: ~1.1 Ig/ Plastic/ceramic (133)
after 30 min: 8 lg, after 60 min: ~1.3 Ig
5.2 g CFU After 1 h not recultivable Cotton (92)
7.51g CFU After 8 wk: ~6.5 Ig CFU/mL Ceramic/cotton/synthetic fibers 91)
~61g CFU After 6 wk: ~11g Steel (78)
2501g CFU After 3 d: ~25 CFU/after 3 d: Glass/PV(C/stainless steel/aluminum (85)
17 CFU/after 2 d: 21 CFU/after 2d: 13 CFU
71g CFU After 25 d desiccation: 1.8 Ig Aluminum (99)
6-7 Ig CFU At 58% RH >15 mon Dust (100)
3.91g CFU Dried 60 min: 3.4 |g; dried Stainless steel/plastic (94)
90 min:
1.8lg
5-61g CFU <3d/<7d Polyester/terrycloth (89)
Listeria monocytogenes 61g CFU After 48 h: ~3.41g/~1.2 g Plastic/carton (127)
7-81g CFU After 180 min: 4 Ig Wood/plastics (130)
(Continued on next page)
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TABLE 4 Replication capacity of Gram-negative bacteria from inanimate surfaces? (Continued)

Clinical Microbiology Reviews

Pathogen Initial inoculum Replication capacity Surface Ref.
61g CFU After 10 d: 5 Ig/after5d: 1.5 Ig Stainless steel/acrylonitrile butadiene  (134)
rubber (ABK)
91g CFU After 50 d: ~7.5 Ig CFU; after 50 d Stainless steel (135)
(biofilm): ~7.3 Ig CFU
8lg CFU After20d:21g Stainless steel (136)
7.3 1g CFU (biofilm) After21d:5.31g Stainless steel (137)
Neisseria gonorrhoeae 2 x ~ 20 pL Patient At least until 24 h recultivable Plastic/cotton-polyester (138)
exudate
(with proven infection)
One drop of positive  Until 17 h: recultivable; after 24 h: Glass/textile (139)
urethral secretion not recultivable/until 24 h: recultivable; after
48 h: not recultivable
a.Dry inoculum: 5-61g a. After 7 d:6.219/6.2 Ig Polymer without silver/with silver (36)

CFU

CFU

81g CFU

7.51g CFU

5.21g CFU

~6.51g CFU

250 CFU

6 1g CFU
Desiccation:

6.4 1g CFU

Wet: 3-4 Ig CFU
6-7 Ig CFU

1-4 CFU (mattress
cover)

2 CFU (drapes)

1 CFU (bed sheets)
8.7 Ig CFU

6 1g CFU

51g CFU

Salmonella enteritidis (S. enterica)

~51g CFU
71g CFU

91g CFU

~9.31g CFU
5.21g CFU

3.61g CFU

1 pL of overnight

Salmonella typhimurium

b. After 7d:7.81g9/7.8 g

b. Liquid inoculum: ~6 Ig

After 48 h: average <2 Ig

After 8 wk: 6.51g

After 2 h: not recultivable
13d/23d/33d

After 2 d on all surfaces < 2 Ig
4d/5d/1d

After 2 d desiccation: not recultivable;

wet: >12d

At 58% RH >8 mon
Recovery after 72 h at 22°C: 3.9 19/4 19/3.5
l9/5.519/419/4.1 1g

20d,5d,4d

>1d:4lg

>7 d/24 h/24 /24 h/24 h/
>7 d/24 h/24 h/24 h/=7 d/=7 d/5 min/24 h/
>7d

After 8 h: 2 Ig/not recultivable

<1,680 min/=1,920 min: 1 1g/<480 min/
<240 min

Salmonella chester after 100 d: 3 Ig;
Salmonella oranienburg >200 d

>48 h

After 7 h: not recultivable

<6 wk

ST19: after 1 mon 59.7 + 12.3 % recultivable;

cultures inoculated on ST313: after 1 mon 13.1 £ 9.6 % recultivable

Door handles/chairs/spirometer tubing (140)

Ceramic/cotton/synthetic fibers 91)

Cotton (92)
Cotton/cotton polyester/wool/silk (84)
Glass/PVC/stainless steel/aluminum (85)
Formica/stainless steel/enamel (98)
Aluminum (99)
Dust (100)
Dry mattress cover/wet mattress (103)
cover/dry drapes/wet drapes/dry bed
sheets/wet bed sheets
Cotton (90)
Stainless steel (76)
Paper-backed wallcovering/vinyl (93)

composition tile/micro vented
perforated vinyl wallcovering/latex
paint/vinyl wallcovering, nonwo-

ven backing/linoleum/vinyl sheet
goods flooring/rubber tile flooring/syn-
thetic-backed carpet/vinyl-backed
carpet/fabric upholstery/polyester

and acrylic blend upholstery/vinyl
upholstery/100% polyester upholstery

Plastic/carton (127)
Stainless steel/formica/ceramic/cotton  (126)
Plastic (128)
Petri dish (141)
Cotton cloth/glass (92)

Stainless steel (142)
Plastic (143)
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TABLE 4 Replication capacity of Gram-negative bacteria from inanimate surfaces? (Continued)

Clinical Microbiology Reviews

Pathogen Initial inoculum Replication capacity Surface Ref.
agar and incubated at
25°C
Two drops of bacterial Up to 50 mon Dust (144)
suspension
5.21g CFU After 1 d: not recultivable Cotton (92)
61g CFU After 3 d: 2 Ig/after 1d:1.75Ig Stainless steel/acrylonitrile (134)
butadiene rubber
6-7 lg CFU >30 d: reduction between 3 and 6 Ig Stainless steel (145)
7-81g CFU >28d:2-31g/>24h:31g9/224 h:4.51g Tile/wood/carpet (146)
Serratia liquefaciens 7.21g CFU Mean survival rate 3 d (dried in water), 43d  Glass (73)
(dried in egg white)
2501g CFU After 3 d: ~40 CFU/after 3 d: ~15 CFU/after 2 Glass/PVC/stainless steel/ (85)
d: ~1 CFU/after 3 d: ~2 CFU aluminum
7.21g CFU Mean survival 12 d (dried in water), 9 d Glass (73)
(dried in egg white)
Desiccation: After 25 d desiccation: 2.6 Ig; wet: >12.d Aluminum (99)
7.31g CFU
Wet:3-4Ig
5.2 g CFU After 1 h: not recultivable Cotton cloth/glass (92)
61g CFU >1d:4lg Stainless steel (76)

Shigella dysenteriae ~51g CFU After 4 h: not recultivable Plastic/glass/aluminum/wood/textile  (147)
Shigella sonnei 91g CFU <10d/<27 d/<23 d/<9d/<28d Glass/cotton/wood/metal/paper (148)
~5.71g CFU Survival after 24 h: 100%/100%/100%; after  PVC/polystyrene/Sprelacart (synthetic ~ (149)
48 h: 75%/63%/50%; after 72 h: 13%/0%/0% resin)
Shigella flexneri Survival after 24 h: 100%/100%/83%; after
48 h: 67%/58%/33%; after 72 h: 0%
Stenotrophomonas maltophilia ~6.51g CFU 7d/7d/7d Cotton/cotton-polyester/wool/silk (84)
Vibrio cholerae 8.21g CFU Normal cultivable status Aluminum/glass/plastic/steel/iron/ (150)
1h/1h/1.5h/1.5h/3.5 h/4 h/4 h; VBNC paper/textile/wool
status <7 d
8.21g CFU 4h:21g/4h:219/3.5h:3.51g/1 h:31g/1.5h:  Cotton/wood/paper/glass/plastic/stain- (151)

2.519/1.5h:0.51g/1.5h:31g/1 h:31g less steel/iron/aluminum

“Table modified from reference 71. Pathogens with fomite-borne transmission potential, characterized by an increased nosocomial risk for transmission from inanimate
surfaces, are marked in gray; for additional data and details of recultivation and environmental conditions, see the supplemental material (Table B). Legend: CFU = colony
forming units, Ig = decadic logarithm, min = minute, h = hour, d = day, wk = week, mon = month, PVC = polyvinyl chloride, VBNC = viable but non-culturable.

Replication capacity of fungi

For RC determination, fungi were removed from the germ carrier mostly by dipping or
vortex in bouillon or tryptic-soy-broth (TSB), sometimes in combination with ultrasound,
and by contact with an agar plate, overlaying with agar or smear (Table 5).

Molds occur ubiquitously in nature, are thermotolerant, and can survive on surfaces
for 2 d to >30 d depending on the material (Table 5). Indoor airborne mold measure-
ments underline the survival for several months (255, 256). Molds can multiply at an
RH of >75% at room temperature (RT), which can lead to mold infestation (257). The
species Cladosporium, Aspergillus, and Penicillium are the most frequently detected molds
on hospital surfaces (258-260). Mucor and Aspergillus (A.) spp. were isolated from room
air and dust from an air-conditioning system with a defective filter and were linked
with mycotic endocarditis in patients undergoing open heart surgery (261). Moreover,
Mucorales (Rhizopus spp.) recovered from linen were associated with a Mucormycosis
outbreak (262, 263) and even survived a certified healthcare laundry process (263). Other
Mucorales (Mucor spp.) persisted on various materials for weeks (152).

The dermatophytes Epidermophyton (E.) floccosum, Trichophyton (T.) mentagrophytes,
and Tricholosporum violaceum survived in skin scales for 10 years at —20°C, while T.
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rubrum and T. verrucosum could no longer be cultivated under the same conditions
(264). Microsporum canis has been detected on hospital surfaces (260). In Germany,
in the 1920s, E. floccosum and Microsporum (M.) audouinii dominated as pathogens of
human dermatophytoses and T. rubrum was almost insignificant; dermatophyte isolates
increased from 41.7% in 1950 to 82.7 % in 1993 so that T. mentagrophytes var. interdigitale
was gradually replaced by T. rubrum as the main pathogen of tinea pedis and onychomy-
cosis. With the introduction of griseofulvin in 1958, both M. audouinii and T. schoenleinii
were virtually eradicated (265). In the case of tinea pedis, T. rubrum was detectable in
86% of patients and T. mentagrophytes in 81% of patients in house dust (266). Both
dermatophyte species could also be detected and cultivated on the bare soles of the
feet after leaving public baths. Washing and drying only did not result in complete
elimination (267). Since the beginning of the 20th century, the incidence of Microspo-
rum canis infections in Europe, especially in Mediterranean countries and Slovenia, has
been increasing sharply, with dogs and cats being the natural reservoirs (268). However,
further spread is also possible via combs, brushes, hats, furniture, bedding, etc.

Candida (C.) albicans, the most common nosocomial yeast, can survive up to 4 months
on surfaces. RC for C. glabrata (Nakaseomyces glabratus) was described to be similar but
shorter for C. parapsilosis (Table 5). In the patient environment, C. glabrata (Nakaseomyces
glabratus), C. parapsilosis, C. tropicalis, C. albicans, C. metapsilosis, and C. lusitaniae were
detected on dry surfaces in ~3%, on moist surfaces in ~14% (154).

Several recent outbreaks have been caused by the new emerging multidrug-resistant
C. auris (269, 270) which differs from other yeasts and dermatophytes in nosocomial
spread (271, 272). C. auris is capable of colonizing patients and it can persist in a patient
for over a year (245, 273). It can be transmitted through direct contact, for example,
hands, but also through indirect contact via fomites, such as medical devices, other
devices, and surfaces that directly contact the patient (272, 274, 275). From 2015 to
2017, an outbreak with 70 patients occurred in a neuroscience intensive care unit of
the Oxford University Hospitals, United Kingdom. The outbreak was linked to the use
of reusable skin-surface axillary temperature probes, suggesting that C. auris persisted
in the environment and initiated a large outbreak (276). By now, several outbreaks
have been reported from different countries and hospitals reflecting the high relevant
transmission capacity of this new pathogen. This is particularly important since this
species is highly virulent, reflected by a substantial high proportion of invasive isolates
leading to a high blood culture positivity rate in outbreaks. The risk of nosocomial spread
through surfaces is represented by a higher RC in in vitro settings. Moreover, C. auris is
often resistant to many antifungals which complement a higher risk of colonization and
probable outbreak potential, with special regard to pan-resistant strains of C. auris (277).
C. auris is now established in 43 countries across five continents (278).

Replication capacity of protozoa

Protozoa are unicellular heterotrophic eukaryotic organisms. They are considered to be a
subkingdom of the kingdom Protista, although in the classical system, they were placed
in the kingdom Animalia (279). The cultivation techniques for protozoa differ from those
for bacteria and fungi, involve highly complex procedures, and depend on the life cycle
stage (280, 281). The RC distinguishes between the vegetative stage (trophozoite), and
the inactive infectious stage (oocyst or cyst) (Table 6).

The interruption of infection chains is the main strategy in the field of combating
protozoonoses. Depending on habitat, hygienic measures for water and sewage and
personal hygiene are of particular importance. Against this background, understanding
the RC of protozoa relevant to human medicine is of particular interest.

One of the most common causatives for parasitic diarrhea in high-income countries is
Giardia (G.) intestinalis. It shows also relevant prevalence in middle- and low-income
countries and in the United States, it is described as the most common parasitic
enteropathy. Entamoeba histolytica (Amoebiasis) has the most significant effect in
low-income countries and has been globally labeled as the third leading cause of death
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TABLE 5 Replication capacity of molds and yeasts from inanimate surfaces”

Clinical Microbiology Reviews

Pathogen Initial inoculum Replication capacity Surface Ref.
A. brasiliensis 4 CFU Recovery after 72 h at 22°C: Dry mattress cover/wet mattress cover/dry (103)
0 CFU/0 CFU/0 CFU/3 CFU/0 CFU/2 CFU drapes/wet drapes/dry bed sheets/wet bed sheets
A. flavus 4-51g CFU 2to>30d/2-20d/>30d/8to >30d Cotton/polyester/polyethylene/polyurethane (152)
~5.51g After 24 h: ~5.4 Ig, after 48 h: ~5.2 Ig, after 5 d: ~5.6 Ig/after ~ Aluminum/copper (153)
CFU 24 h: ~5.3 g, after 48: h ~3.8Ig, after 5d: 0 g
A. fumigatus 4-51g CFU 1to>30d/5to>30d/>30d/5t0>30d Cotton/polyester/polyethylene/polyurethane (152)
~6.81g CFU After 24 h: ~6.3 Ig, after 5 d: ~6.4 Ig/after 48 h: ~6 Ig, after 5 Aluminum/copper (153)
d:~1.71g
~6.51g CFU >30d/>30d/>30d/27d Cotton/polyester/wool/silk (84)
A. niger 4-51g CFU 3to0>30d/>30d/>30d/2to>30d Cotton/polyester/polyethylene/polyurethane (152)
~5.31g CFU After 4 d: ~5.2 Ig, after 24 d: ~5.5 Ig/after 4 d: ~5Ig; after 5 Aluminum/copper (153)
d: ~5.11g, after 24 d: ~5.4 Ig
A. terreus 4-51g CFU 2to>30d/2to>30d/>30d/12to >30d Cotton/polyester/polyethylene/polyurethane (152)
C. albicans 4-51g CFU 1-3d/1d/5-6d/4-5d Cotton/polyester/polyethylene/polyurethane (152)
61g CFU <7d Stainless steel (dry)/moist agar without nutrients  (154)
61g CFU Survival after 2 d: ~1%, after 3 d: ~0.2%/0.3%, after 7d: 0%  Stainless steel/glass (155)
~7.51gCFU After 5 d: ~6.5 Ig/after 6 h: 51g, after 24 h: 0 lg Aluminum/copper (153)
6.51g CFU 6d/6d/12d/12d Cotton/polyester/wool/silk (84)
~6.11g CFU 6d Glass (156)
~4.81g CFU 48d Textile
5-61g CFU After 7 d: 6.3 lg/after 7d: 5.1 Ig Polymer without silver/with silver (36)
6 lg CFU Survival after 7 d: ~38%/~93% Stainless steel (dry)/moist agar without nutrients  (154)
~4.8 g CFU After 4 d: ~3.5 Ig, after 14 d: ~0.4 Ig Plastic (157)
81g CFU After 14 d: ~4.3 Ig (biofilm formation) Plastic (158)
C. candidum ~6.51g CFU 21d/6d/12d/6d Cotton/polyester/wool/silk (84)
C. glabrata (Nakaseomyces 6 1g CFU Survival after 7 d: ~60%/~90% Stainless steel (dry)/moist agar without nutrients  (154)
glabratus) ~4.81g CFU 12d/97d Glass/textile (156)
~6.51g CFU >30d Cotton/polyester/wool/silk (84)
C. krusei (Pichia kudriavzevii) 4-5 g CFU 1d/8d/3-7d/4d Cotton/polyester/polyethylene/polyurethane (152)
~6.51g CFU 3d/6d/>30d/21d Cotton/polyester/wool/silk (84)
C. parapsilosis 4-51g CFU 9-27 d/27 to >30d/>30d/>30d Cotton/polyester/polyethylene/polyurethane (152)
61g CFU Survival after 14 d: ~1.3%/~4.1% Stainless steel/glass (155)
61g CFU Survival after 7 d: 60%/100% Stainless steel (dry)/moist agar without nutrients  (154)
~4.7 Ig CFU After 21 d: ~2.5 Ig, after 28 d: 0.4 Ig Plastic (157)
~6.51g CFU >30d Cotton/polyester/wool/silk (84)
~6.11g CFU 55d Glass (156)
C. tropicalis 4-51g CFU 1-2d/1-8d/7-18d/6-12d Cotton/polyester/polyethylene/polyurethane (152)
~6.61g CFU 3d/9d/>30d/21d Cotton/polyester/wool/silk (84)
~6.11g 8d Glass (156)
Cryptococcus neoformans ~6.51g CFU >30d Cotton/polyester/wool/silk (84)
~6.11g CFU 27d Glass (156)
Fusarium solani ~5.81g CFU After 5 d: ~4.4 Ig/after 6 h: ~3.6 Ig, after 24 h: 0lg Aluminum/copper (153)
Mucor spp. 4-51g CFU 20-24d Cotton/polyester/polyethylene/polyurethane (152)
Paecilomyces spp. 4-51g CFU <1d/5d/4d/11d Cotton/polyester/polyethylene/polyurethane (152)
Rhodotorula rubra ~6.11g CFU 40d Glass (156)
~4.81g CFU 205d Textile
Saccharomyces cerevisiae 61g CFU After48 h:3.919/1.51g Plastic/carton (127)
1CFU Recovery after 72 h at 22°C: 5 CFU/2.1 1g/3.3 lg/4 Ig Dry mattress cover/wet mattress cover/dry (103)

/5CFU291g

trilaminate drapes/wet trilaminate drapes/dry bed

sheets/wet bed sheets

“Table modified from reference 71. Pathogens with fomite-borne transmission potential, characterized by an increased nosocomial risk for transmission from inanimate
surfaces, are marked in gray; for additional data and details of recultivation and environmental conditions, see the supplemental material (Table C). Legend: CFU = colony
forming units, Ig = decadic logarithm, min = minute, h = hour, d = day, wk = week, mon = month.
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TABLE 6 Replication capacity of protozoa from inanimate surfaces®

Pathogen Initial inoculum Replication capacity Surface Reference

Large numbers of 2-21 years After amoebae differentiated into ~ (159)
trophozoites cysts, agar plates were tightly

wrapped with parafilm

(Oo)cysts Survival at 25°C: >60 d/>60 d/>60 d Stainless steel/formica/fabric (160)
Oocysts Recovery at 21°Cup to 75d Water (161)
6 Ig/mL oocysts Recultivation rate after 0 h: 76.3%; after 2 h: 3%;  Glass slide (162)

after 4 h: 0%
7 lg oocysts After 30 min: 4.1 Ig; after 60 min: 3.2 Ig; after Stainless steel (163)
90 min: <3 Ig
>100 oocysts After 24-h desiccation: no infectivity after 1-4 d Cryptosporidia-laden calf feces (164)
Giardia muris cysts (Oo)cysts Recovery at 25°C: 45 d/21d/21d Stainless steel/formica/fabric (160)
Trichomonas vaginalis 2-3 g for human samples; Recultivation rates after 120 min: 5.1%/30.5%; Textile/plastic (165)
trophozoites 3-41g from culture survival 24 h
Trophozoites Recultivation rates after 15 min at 26°C: <10% Water (166)

“Pathogens with fomite-borne transmission potential, characterized by an increased nosocomial risk for transmission from inanimate surfaces, are marked in gray; for
additional data and details of recultivation and environmental conditions, see the supplemental material (Table D). Legend: Ig = decadic logarithm, min = minute, h = hour,
d =day.

from parasitic infections. Another protozoa that shows increasing prevalence all over the
world, especially among patients with AIDS and children under 5 years of age, is the
Cryptosporidium spp. (282, 283). However, there are several other protozoa of relevance
for the hospital setting. A number of reports have been published recently describing
diarrheal outbreaks caused by Cyclospora (Cy.) cayetanensis (284, 285). Another protozoan
is Trichomonas vaginalis which belongs to one of the most relevant non-viral venereal
diseases—although fomite-borne transmission is relatively rare (286).

G. intestinalis and Cryptosporidium (Cr.) spp. survive in both aquatic and terrestrial
environments. Giardia cysts may remain infectious for months in water or in cool damp
areas (287). At temperatures below 15°C, Cryptosporidium oocysts can maintain high
levels of infectivity in water for at least 24 wks (162, 288-290) and up to 120 d in
soil (291). The survival of oocysts of Cr. parvum and G. muris was inversely correlated
with the storage temperature and porosity of the surface (Table 6). Under various test
conditions, the overall trends of the Cryptosporidium oocysts die-off were similar to
the one of Giardia cysts (160). Outbreaks of Cryptosporidium spp. and G. intestinalis
generally occur via drinking water and food which were inadequately treated to kill or
to remove these parasites (292). Other less frequent water-associated outbreaks include
Entamoeba (E.) histolytica/E. dispar, Balantidium (Bal.) coli, Cy. cayetanensis, Microsporidium
spp., Toxoplasma (T.) gondii, and the free-living Acanthamoeba species. Cryptosporidium
spp. can also be transmitted nosocomial via hands and indirectly via surfaces (293).
In China, an outbreak of cryptosporidiosis was associated with HAI by G. intestinalis,
Enterocytozoon bieneusi, and C. difficile infection. Poor diaper changing and hand hygiene
were probably responsible for this multi-pathogen outbreak (294).

Survival of anaerobic Entamoeba spp. in environments is highly dependent on
temperature. Survival was determined in feces and soil at 28°C-34°C for 8-10 d, in
water and sewage sludge at 0°C-4°C for 60-365 d, in surface water resp. wastewater at
20°C-30°C for 15 d resp. 10 d (295).

Multiple experiments in soils showed that T. gondii oocysts may remain viable for
at least 1 year when covered and in cool temperatures (4°C). Under warm climate
conditions in dry soils from Kansas, USA, oocysts remained viable for 18 months. In
fresh or marine waters, oocysts were shown to be viable for at least 4.5 and 2 years,
respectively, reviewed by reference (296). To determine the survival dynamics, 2.5 g of
soil is inoculated with 1T mL of suspension containing 2 x 10° oocysts. The proportion of
oocysts surviving after 100 d was estimated to be 7.4% under dry conditions and 43.7%
under damp conditions (297).
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TABLE 7 Replication capacity of viruses after isolation from inanimate surfaces®®

Clinical Microbiology Reviews

Pathogen Initial inoculum Replication capacity/residual virus titer Surface Ref.
Predominant contact transmission
~7 Ig CCIDs5q >12 wk; after 8 wk: 3.4-5.7 Ig Glass/plastic/porcelain/stainless steel (167)
2,000 PFU <49 d; after 14 d: ~8%/~3% Plastic/aluminum foil (168)
~6 1g PFU 15d/15d/30d/>30d Aluminum/porcelain/latex/paper (169)
~71g TCIDsg >9d:4.21g Polystyrene (170)
Cytomegalovirus 4-6.9 Ig PFU 1-2h/4-8h Cotton/plexiglass (171)
Ebola virus 4-61g TCIDsqo At4°C>50d:21g Plastic/glass/stainless steel (172)
7 1g PFU; 6.2d Paper (173)
7.31g PFU >59d:4lg Glass/silicone/aluminum (174)
6-71g TCIDsg 14d/8d/11d Tyvek/stainless steel/plastic (175)
7 Ig TCIDsq >192 h/>192 h/<24 h/>192 h; 3-4 g Stainless steel/surgical mask/cotton/plastic (176)
Hendra virus (HeV) ~6.25 Ig TCIDs5q 60 min, after 30 min: ~2.7 Ig Polystyrene (177)
Lassa virus 7.11g PFU >9.7d:4lg Glass/silicone/aluminum (174)
Household setting after At least 15 days: <21g/0to<2Ig Porous surfaces/non-porous (178)
Marburgvirus 4-71g TCIDsqo >50d:21g Plastic/glass (172)
Nipah virus (NiV) ~6.25 Ig TCIDs5q After 60 min: ~2.7 Ig Polystyrene (177)
Sindbis virus 7.21g PFU >14.6d:41g Glass/silicone/aluminum (174)
Vaccinia virus 7 1g CCIDsg >4 wk: 2 1g Glass (167)
81g CCIDsg 14 wk: 3 Ig/up to 10 wk: 3.5.1g Wool/cotton (179)
81g CCID5o/mL Twk:4lg Cotton (180)
2.81g TCID5g 14d:<11lg Gauze bandage (181)
8Ig PFU <56d:~4.51g Stainless steel (182)
6-6.5 1g KIDsq <20 wk:4.31g Glass (183)
Contact transmission, starting from the gastrointestinal tract (+ surrogate viruses)
5-5.71g1U >7d:3.8Ig Paper/porcelain (184)
Astrovirus, serotype 4 5-5.71g1U 60 d/after7d: 1.7 Ig Paper/porcelain (184)
6.8 Ig CCIDs5q 2wk:21g Glass (167)
6.5 1g TCID50 <6 wk Petri dish (185)
max. 300 PFU 42h Cellulose (186)
Feline calicivirus 91g PFU >7d:2lg Laminate/ceramic/stainless steel (187)
7 Ig TCIDsq 90% reduction in viral titers: up to 24 h Computer/brass/telephone (188)
6Ig PFU <15d/<3d/<7d Wool/nylon/glass (189)
6 Ig PFU >1 mo Wood/stainless steel (190)
3-41g PFU 4hto>7d Stainless steel (191)
5-5.71g1U After 7d: ~3.31g/~5Ig Paper/porcelain (184)
6.41g After 90 d on PVC: 10% of initial loading Stainless steel/PVC (192)
~6 |g PFU >60 d/>60 d/>60d/>30d Aluminum/porcelain/latex/paper (169)
~41g FFU After 28 d: ~11g9/119/0.4 1g/0 Ig Plastics/ceramics/stainless steel/wood (193)
3.91g FFU Dvalue: 5.95d Stainless steel (194)
Escherichia virus (MS2 phage) 61g PFU Dvalue: 19.8d/13.2d Wood/stainless steel (190)
Murine hepatitis virus and 4-51g PFU MHV: after 5d 3 Ig; TGEV: after 3d 2 Ig Stainless steel (195)
(MHV)
Transmissible gastroenteritis
virus (TGEV)
Murine norovirus 4-4.51g PFU >120 min except copper; after 120 min: Copper 100%/95%/70%/stainless steel (196)
3.1 g for stainless steel
4 1g PFU >90 min; after 20 min: 2.6 Ig Worktop (197)
~6 1g PFU 3d/1d/30d/>30d Aluminum/porcelain/latex/paper (169)
max. 300 PFU 42h Cellulose (186)
~12Ig PFU >3 wks on all surfaces; 99% reduction after  Steel/cotton/plastic (198)

5.2d/7.4d/59d

(Continued on next page)
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TABLE 7 Replication capacity of viruses after isolation from inanimate surfaces®® (Continued)

Clinical Microbiology Reviews

Pathogen Initial inoculum Replication capacity/residual virus titer Surface Ref.
3-41g PFU 12h Stainless steel (191)
8.11g PFU After 14 d: >3 Ig Glass (167)
5-5.71g1U >7d Paper/porcelain (184)
~6 |g PFU >60d Aluminum/porcelain/latex/paper (169)
3-41g PFU <90 min Worktop (197)
7 Ig PFU >10d Glass/smooth plastic/rough plastic (199)
5-5.71g1U >7d Paper/porcelain (184)
Tulane virus (Rhesus enteric calicivirus) 4.7 Ig PFU Dvalue: 18.8d/13.3d Acrylic/stainless steel (200)
Respiratory and/or aerogenic transmission (+ surrogate viruses)
Endemic human coronaviruses 5.7 g TCID5q HCoV-229E: >12 h, >12 h, >6 h; HCoV- Aluminum/cotton/latex (201)
0C43:>3h,>1h,>Th
31g PFU 3.d/5 d/<40 min/120 min/30 min Silicone/PVC, ceramic, glass, steel/brass/70%  (202)
copper/90% copper
~71g TCIDsg 48 h:21g Polystyrene (170)
Influenza A virus 3.11g TCIDsg (A/ 7d Stainless steel (203)
NC-H1N1); 4.8 Ig TCIDsq
(A/Br-H1NT)
5.51g TCID5q >24 h/>48 h/>24 h/8 h Stainless steel/wood/plastic/cotton (204)
5.31g TCID5g =60 min/30 min/15 min/<15 min/<15min  Cotton/formica/vinyl/stainless steel/facial tissue (205)
51g TCIDsg <5d Petri dish (185)
4-61g PFU After 7.3 d/17.7 h/34.3 h 99% reduction Stainless steel/cotton/microfiber (206)
3-41g TCIDsg 48 h/72h/24h/24 h/12h Plastic/stainless steel/magazine/cotton/paper (207)
61g PFU 2-9h Telephone receiver/wood/keyboard/stainless ~ (208)
steel/dishcloth
6 1g TCIDs5q <4h Stainless steel/plastic (209)
Influenza B virus 41g TCID5q 48 h/48 h/8 h/12h/8 h Plastic/stainless steel/magazine/cotton/paper (207)
handkerchief
Middle East respiratory 6 1g TCIDs5q <72h Stainless steel/plastic (209)
syndrome coronavirus
(MERS-CoV)
Parainfluenza virus 3.21g TCIDsg 4h Stainless steel/laminate (210)
Respiratory syncytial virus 51g TCIDsg 8h;~25h;~53h;1h;1h Laminate/cotton-polyester/rubber/paper/ (211)
hands
Rhinovirus type 14 71g PFU <25 h; TCID50: 0.55 h Stainless steel (212)
Rhinovirus type 2 2IgPFU After3d: ~0.6 Ig Stainless steel (213)
SARS-CoV-1 619 TCID5g 4d/4d/4d/5d/5d Wood/glass/paper/metal/textile (214)
7 Ig TCIDsq 28d:~21g Plastic (215)
3.41g TCIDsg 72h/48h/8 h/8 h Plastic/stainless steel/paper/copper (216)
61g TCID5¢/mL 1h/24 h/2d Paper/cotton/disposable gown (217)
7 Ig TCIDsq After13d:2.31g Plastic (215)
~71g TCIDso After9d:21g Polystyrene (170)
619 TCID5g 4d/4d/4d/=5d/=5d/4d Plastic/wood/glass/metal/cloth/paper (214)
SARS-CoV-2 5.51g TCIDsg D values: ~6 d/~6.9 d/~9.1 d/~6.3 d/~5.6 d/ Stainless steel/paper/polymer/glass/cotton/  (218)
~6.3d vinyl
7.91g TCID5g After 7 d: ~2.7 19/2 19/2.8 lg/not detecta- Stainless steel/face shield/nitrile glove/chemical (219)
ble/2.319/2.319/1.1 Ig/not detectable glove/N95 mask/N100 mask/Tyvek suit/cotton
3.61g TCID5g 72h/48 h/24 h/<4h Plastic/stainless steel/cardboard/copper (216)
7.81g TCID5q <3 h/<3h/<2d/<2d/4d/4d/<7d/<7d/7d Paper/handkerchief/wood/clothes/ (220)
glass/paper/stainless steel/plastic/surgical mask
6.2+5.91g TCIDs5g 13 min at 0.3 W/cm?: 90% reduction Stainless steel (221)
6.51g TCID5g <20 min exposed to sunlight Stainless steel (222)
~2.81g TCIDsq <186h Stainless steel/plastic/nitrile (223)

(Continued on next page)
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TABLE 7 Replication capacity of viruses after isolation from inanimate surfaces®® (Continued)

Pathogen Initial inoculum Replication capacity/residual virus titer Surface Ref.
5.231g TCIDsq 2d:~1.21g Glass (224)
Contact transmission (predominant sexually; also vertically)

7.9 TCIDs5q After2h:6.7 Ig Plastic/chrome (225

)

After2 h:5.21g (226)

5.6 lg PFU After 1d:41g Glass (167)

~7 1g TCIDso After9d:1.91g Polystyrene (170)

.2 1g TCIDs5q 4.5h:2.91g TCIDs5q Polystyrene (227)

Human immunodeficiency virus (HIV)  Liquid/dry inoculum: >20d/~10d Petri dish (228)

128,000/25,000
cpm/mL reverse

transcriptase

_~100—434 FFU <7d Pipe/cotton/microcentrifuge tube (229)

Blood-borne transmission

Hepatitis B virus (HBV) 0.1 mL HBsAg-positive 1wk Silanized tube (230)
plasma
0.1 mL HBV-positive >2 wk Stainless steel/cotton swab (231)
blood
>61g TCIDso After 28 d: ~10% reduction PCR tubes (232)
Hepatitis C virus (HCV) 4-61g IE >40d 24-well plates (233)
~4.751g TCIDso After7d: ~1.51g Stainless steel (234)

“Table modified from reference 71. Pathogens with fomite-borne transmission potential, characterized by an increased nosocomial risk for transmission from inanimate
surfaces, are marked in gray; for additional data and details of recultivation and environmental conditions, see the supplemental material (Table E). Legend: cmp = counts
per minute, D value = time in which the virus titer is reduced by 1 Ig.

bZ value (thermal death time) = number of degrees the temperature has to be increased to achieve a 10-fold decrease in decimal reduction time (D-value), ATCC =
American Type Culture Collection, BSA = Bovine Serum Albumin, CCID = cell culture infectious dose, CPE = cytopathic effect, d = day, FFU = focus forming units, h = hours,
HBsAg = Hepatitis B surface Antigen, HBVcc = HBV derived from cell cultures, IU = infectious units, Ig = decadic logarithm, min = minute, mon = month, N/A = not available,
PBS = phosphate-buffered saline, PCR = polymerase chain reaction, PFU = plaque forming unit, PPE = personal protection equipment, PVC = polyvinyl chloride, RH = relative
humidity, RIA = radioimmunoassay, RT = room temperature, TCID5q = 50% tissue culture infectious dose, US = ultrasound, W = watt, wk = week.

Babesia (B.) spp. are intraerythrocytic protozoan parasites transmitted primarily by tick
vectors, rare also congenital, and by blood transfusion (298). Normally, it has its origin in
endogenously infected blood donors. A nosocomial transmission in blood products is
only indirectly imaginable during the preparation process of blood products in blood
banks via hands contaminated from surfaces. Refrigeration decreases the parasite
numbers, but parasites survive 31 d at 2-4°C and yield high end-point parasitemia,
proofed by inoculation of hamsters (299). B. microti survives in red cells at 4°C in EDTA-
coated blood collection tubes for at least 21 d. Blood held at room temperature did not
infect any hamsters (300). Under normal blood bank conditions, a 35-day-old red cell unit
was caused by transfusion-transmitted babesiosis (TTB) (301). Similarly, TTB case reports
implicating cryopreserved red cell units indicate that B. microti can survive indefinitely in
the presence of glycerol cryopreservation (302, 303), but in the absence of cryopreserva-
tion, the parasite is rapidly killed by pathogen reduction technology, which uses
riboflavin (RB) and ultraviolet (UV) light (304). Theoretically, a single parasite is capable of

TABLE 8 Persistence of different A. baumannii strains suspended in water or bovine serum albumin (BSA)
and dried on glass at different RH”

Average persistence  Strain(s) Conditions (RH 28%-34%, RT)
<5d ATCC 9955 Suspended in water
6-10d ATCC 17978, ATCC 19606, R 0211019
>10-30d ATCC 17904, 18, 49, 16/48, 16/49, R 447
<10d ATCC 9955 Suspended in 7% BSA
>10-30d ATCC 17978, 18, 16/48
>29-60d ATCC 19606, ATCC 17904, 49, 16/49, R 447, R
0211019

“Table modified from reference 73.
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transmitting infection. Experimental studies, however, have shown that 30 organisms
infected about 2/5 inoculated hamsters, and 300 organisms infected all animals (305).

Protozoa play a minor role in HAI, but in our increasingly complex healthcare
environment with a growing proportion of immunocompromised patients, they should
be respected because certain protozoa may cause morbidity and even mortality in both
normal and immunocompromised patients (284). Furthermore, climate change with
increasing temperatures and heavy rainfall could promote their nosocomial potential
in the future. There is also the possibility that HAI could be missed because the
incubation period may be days to weeks (wks) and the parasite is endemic. It is likely
that nosocomial transmission of protozoa may be an even greater problem in tropical
hospitals, where comprehensive hygienic measures are costly or otherwise more difficult
to maintain and growth conditions more beneficial for the protozoa. Up to 1% of HAI
were caused by parasites depending on geographic region (306), but in this estima-
tion, no distinction was made between protozoa and other endo- or ectoparasites.
Jarrin et al. (307) assumed that intestinal parasites can cause diarrhea in 12%-17%
of nosocomial epidemics and 1% of endemic outbreaks, especially on surgical wards.
Immunosuppressed patients and those with prolonged antibiotic courses are at higher
risk. Enteric protozoa, especially Cr. parvum, G. intestinalis, E. histolytica/E. dispar, Bal. coli,
Cy. cayetanensis, and Cystoisospora belli (syn. Isospora (I.) belli) are the most common
species involved in nosocomial outbreaks (307).

The spread of enteric protozoa in developing countries usually occurs through fecal
contamination due to sewage exposure, poor quality of water, and zoonotic exposure
but also via transplantation (308-310). The 50% infectious dose (IDsg) of C. parvum
has been estimated at 132 oocysts; with some infections followed by ingestion of 30
oocysts (311). Ingestion of at least 10 to 25 G. intestinalis oocysts can cause infection in
humans (312, 313). Infection after ingestion of a single oocyst has been reported (311).
The small ID, the fecal-oral route of transmission, and prolonged environmental survival
in water allow Cryptosporidium to spread in healthcare facilities as well as child-care
centers. Cryptosporidium can be transmitted by hand after contact with contaminated
environmental surfaces (314). The cysts are highly resistant to environmental conditions
and most of the disinfectants commonly used have low or no antiparasitic activity
(314). For Giardia and Cryptosporidium spp., person-to-person transmission is possible
(315, 316). For Cryptosporidium spp., transmission is primarily found among children
and staff members in nurseries, day-care centers, and schools (317). HAI by direct and
indirect person-to-person transmission is documented, causing secondary cases among
roommates (315). In an outbreak of giardiasis at two day-care nurseries G. intestinalis
appeared to be transmitted from person to person (318). Conversely, ingestion of
approximately 200-49,000 oocysts at healthy volunteers did not experience gastroen-
teritis, and no oocysts were detected in any stool samples over the following 16 wks
(319). Therefore, there is minimal risk of nosocomial transmission. Sporulated oocysts
of I. belli can survive for years in the environment (320). Although the transmission of
protozoa via surfaces in hospitals is negligible for most species, awareness of surface
persistence is important for assessing the risk of surfaces as a reservoir for food, water,
and hands (Table 6). Cr. parvum oocysts survived in stool on wood of up to 72 h,
and differed between stool samples (162). Survival was shorter than in water because
other fecal microorganisms such as bacteria may be associated with the shortened
survivability (321), and also with the presence of ammonia, which may occur in feces in
high concentrations. Ammonia is a significant inactivation agent for oocysts (322, 323).
Oocysts have been shown to survive for hours on wet surfaces, including stainless steel,
but they resist desiccation and die rapidly on dry surfaces (324).

One multivariate analysis in a group of virgin females with a high prevalence of
trichomoniasis showed that the high prevalence was due to non-sexual acquisition of
trichomoniasis, mainly through shared bathing water and inconsistent use of soap (325).

Acanthamoeba is a common protozoa that can be found in diverse environments.
Their presence has been documented not only in soil and freshwater but also in
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pools, lakes, brackish water, seawater, heating, ventilating, and air-conditioning filters.
Moreover, it has been detected on medical devices, such as gastric wash tubing and
dental irrigation units (159). Wearing hydrogel contact lenses was associated with
keratitis caused by Acanthamoeba and Fusarium (326), probably due to moist conditions
favored by these pathogens. Moreover, the presence of Acanthamoeba, together with
Vahlkampfia and Vermamoeba spp., has been verified in the dust of different intensive
care wards; on equipment, doors, and in the air-conditioning system (327). With their
doubled walls, Acanthamoeba cysts are highly resilient, forming dormant stages that
remain viable (and infectious) for several years (328, 329) and in a state of desiccation up

to 21 years (Table 6).
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FIG 3 Introduced classification of pathogens with fomite-borne transmission potential and derived IPC strategies.

Replication capacity of viruses

To determine the RC of viruses, applied material was removed from the germ carrier by
scraping or rinsing in a cell culture medium; sometimes combined with vortexing and
transfer of the sample usually into cell culture. Recultivability is determined, based on
the number of infectious virus particles, by growing the remaining virus particles with
subsequent determination of the virus titer. By contrast, molecular biological detection
alone does not allow any conclusions regarding infectivity. For hepatitis B virus (HBV),
infectivity was proven by the application of the rehydrated inoculum in chimpanzees
due to lack of cultivation in cell culture in the past. Nowadays, it can be analyzed in an
HBV-susceptible cell culture system using hepatoma cells expressing the Na*- taurocho-
late co-transporting polypeptide (NTCP)-HBV cell entry factor (232) (Table 7). However,
this method is only available in specialized laboratories and cannot be used routinely.

Gastrointestinal transmissible viruses remain infectious on inanimate surfaces. The
longest has an average of 1-6 w, followed by blood-borne (average 1-6 w), respiratory
(average 1-3 d), and sexually transmitted viruses (2 h to <7 d) (Table 7).

Non-enveloped viruses are more resistant to extreme pH, heat, dryness, disinfectants
in general, and some can intrinsically resist certain disinfectants such as the parvovirus
or hepatitis A virus (HAV). By contrast, most enveloped viruses such as herpes viruses
(e.g., cytomegalovirus), human immunodeficiency virus (HIV), and respiratory syncytial
virus (RSV) are less environmentally stable since they possess an outer lipid bilayer
membrane. Small viruses, for example, HBV or the members of the picornavirus or
parvovirus family, are much more resistant than larger complex viruses, for example,
members of herpes or retrovirus families (330). Some non-enveloped viruses, such as
enteroviruses belonging to the picorna viridae, are sensitive to drying, for example, dried
inoculum of the Coxsackie B4 (CVB4) virus was easier to recover when CVB4 was spiked in
media containing any concentration of NaCl instead of protein load (185).

The relevance of surfaces in healthcare facilities as a contamination source for viruses
is even more difficult to prove than for bacteria and fungi, surface isolation is more
complex. Virus infection can so far only be indirectly deduced by tracking the spread
of the virus from the patient and its presence in the patient’s environment, as the ID
is not known with a few exceptions. However, in both situations, the risk of infection
increases with higher RC. A few examples illustrate the importance of surfaces for the
spread of viral infections. After the discharge of patients with norovirus infection, the
number of new cases has continued to rise, most likely due to the low ID of norovirus
(1 to 10 to 100 virus particles) (331). A large outbreak due to norovirus infections could
therefore be controlled by closing the affected departments, implementing extensive
disinfection measures, and reducing the exposition risk, that is, from infected healthcare
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workers (332). However, if recognized at an early stage, most norovirus outbreaks can
be controlled easily without these intensified intervention strategies. A retrospective
cohort study showed a very low risk of general infection by only 2 of 1,106 exposed
patients had acquired the identical norovirus strain from the discharged patient (333).
Although direct hand transmission dominates nosocomial transmission of rotaviruses,
surfaces are also relevant for spread (334). A simulation experiment on virus inoculated
over surfaces using Cauliflower mosaic virus showed that the virus was detectable on
41% of the sampled surfaces within 10 h outside of the isolation unit (335). Whether this
amount was sufficient to transmit infection was not investigated. After the emergence
of MERS-CoV, although the origin is zoonotic, the risk of further spread via surfaces
was investigated. The contamination with viral RNA was detected in the environment
of hospitalized ventilated patients despite a strict disinfection regimen and negative
pressure ventilation. Due to the RC of up to 9 d and the detection in the patient
environment, the authors concluded that careful surface disinfection, especially near
the patient, can help with prevention (336). Thus, detecting RNA does not necessarily
coincide with infectivity.

Other viruses from the gastrointestinal tract such as Astrovirus, HAV, polio-, and
rotavirus can retain their infectivity at RT for quite a long time, with the spectrum varying
from several hours to 3 months. HBV belonging to the group of blood-borne or sexually
transmitted viruses plays a very high stability with an RC of 50% of more than 22 d
at 37°C and a persisting infectivity for up to 9 months at 4°C (232). By contrast, most
respiratory viruses retain their infectivity on inanimate surfaces for a few days only (Table
7).

Herpes viruses such as cytomegalovirus are mainly transmitted through contact
with infectious body fluids, for example, through breastfeeding, kissing, sexual contact,
herpes simplex virus (HSV) type 1, mainly transmitted via contact, and HSV 2, mainly
transmitted during sex, have been shown to persist from only a few hours up to days
(Table 7).

Mpox virus (MPXV)

Since the summer of 2022, non-travel-associated outbreaks of Mpox have been reported
in several non-endemic countries. Human-to-human transmission can occur through
close contact with respiratory secretions, infectious skin lesions (such as ruptured
blisters) from an infected individual, or recently contaminated objects (e.g., sex toys)
and surfaces (337); nosocomial infections have also been documented (338-341). The
World Health Organization (WHO) recently recommended adopting the term “Mpox”
as a synonym for monkeypox (342). Investigations involving the vaccinia virus, which is
related to the MPXV, revealed that it can remain “infectious” on surfaces for up to 56
d (68). Studies on textile fibers showed that the vaccinia virus could be recovered from
wool fabric after up to 4 wks and from cotton for up to 8 d; textiles contaminated with
virus-laden dust even remained infectious for up to 12 wks (179, 180). Adler et al. found
that in some patients the virus could be detected in throat swabs by PCR test for up to
3 wks and in one 2018 case even up to 41 d after diagnosis (343). However, it was not
determined whether this represented “residual nucleic acid” or infectious virus. Viable
virus was identified in two (50%) of four samples selected for viral isolation, including air
and surface MPXV samples collected during bedding change in a hospital in UK (344).
In another study, there was no statistical difference (P = 0.94) between MPXV-WA PCR
positivity of porous (9/10, 90%) vs. nonporous (19/21, 90.5%) surfaces, but there was a
significant difference (P < 0.01) between viable virus detected in cultures of porous (6/10,
60%) vs nonporous (1/21, 5%) surfaces. These findings suggest that porous surfaces (e.g.,
bedding, clothing) may pose a higher risk of MPXV exposure than nonporous surfaces
(e.g., metal, plastic). Viable MPXV was detected on household surfaces for at least 15
d (178). Therefore, the Centers for Disease Control and Prevention (CDC) recommend
minimizing the spread of virus in households by cleaning and disinfecting laundry, hard
and soft surfaces, and carpets and flooring when exposed to an infected person (345).
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SARS-CoV-2

SARS-CoV-2 illustrates how infection control measures for a new infectious disease can
be established, and continuously adapted at breathtaking speed using hospital hygiene
strategies including RC, biocide resistance, and transmission considerations. Like other
coronaviruses, SARS-CoV-2 has been detected on surfaces (346) showing a correlation
between patient proximity and surface contamination (347). Consequently, the risk of
further spread due to RC on surfaces of up to 7 d (Table 7) could be prevented by surface
decontamination (348, 349). Even simple wiping with hard water or detergent-based
cleaning has proven to be an effective decontamination strategy against SARS-CoV-2
(350) applicable to all materials (Table 7), despite variations in their influence on RC
(351). Depending on the exposure time, the recoverable virus quantity decreases almost
linearly and becomes negligible on plastic after 72 h, stainless steel after 48 h, cardboard
after 24 h, and copper after 4 h (352). Since the ID is unknown, the risk assessment
remains open. A case report suggests that the detection of SARS-CoV-2 on household
surfaces indicates that transmission is possible if surfaces are recently contaminated by
coughing or sneezing and then are touched and transferred to the mouth, nose, or eyes
(353). However, in other studies where surface transmission was suspected, respiratory
transmission could not be entirely ruled out in this study (354). The infection risk is
presumed to be low as small amounts of SARS-CoV-2 RNA were detectable in only 2 of
26 samples from an emergency ward and an infectious disease sub-intensive care ward
and these did not cause cytopathic effect in cell culture (355). It is possible that residues
from surface disinfectants reduced RC. Conversely, there is a possibility that disinfectant
residues could induce tolerance. Similarly, quantitative microbial risk assessment (QVIRA)
studies indicate that the risk of SARS-CoV-2 infection via surface transmission is low with
a probability of less than 1:10,000 for each contact with a contaminated surface (356-
358). These findings suggest that the transmission of SARS-CoV-2 via surfaces in public
areas is negligible (359). In isolation units/rooms for patients with SARS-CoV-2 infection
and in units or rooms for suspected patient cases of SARS-CoV-2 infection, surface
cleaning and disinfection is indicated based on the observation that SARS-CoV-2 can be
detected in the entire patient environment. Moreover, the RC is up to 7 d, although the
infectivity of the surfaces is apparently only low. In a retrospective questionnaire-based
study, it was shown that even at home the use of protective masks and daily use
of chlorine- and ethanol-based disinfectants for surface decontamination and hand
antisepsis significantly reduced the risk of infection (360). Santarpia et al. (361) deduced
from the data that in cases of suspected or confirmed SARS-CoV-2 infection within the
last 24 h in the household, surfaces should also be decontaminated.

Factors influencing the replication and infection capacity of microorganisms,
protozoa, and viruses in the environment

Microbiological test conditions

For bacteria, desiccation on the surface after contamination (rapid or slow), RH and
temperature during storage, recultivation conditions, and stage of cultivability (VBNC)
are of influence on RC (Tables 3 and 4). The origin of the pathogen is also influential. A.
baumannii strains isolated from clinical settings were more often resistant to desiccation
than ATCC strains (Table 3). As expected, the RC is influenced by the initial bio-inoculum
of feces, demonstrated for E. faecalis, MRSA, A. baumannii, C. jejuni (Table 3), E. coli,
P. aeruginosa of recovery (Table 4), C. albicans, C. auris, C. krusei (Pichia kudriavzevii),
C. parapsilosis, and C. tropicalis (Table 5). Similarly for viruses smaller inocula were
associated with shorter RC, for example, for transmissible gastroenteritis virus, mouse
hepatitis (195), and SARS-CoV-2. The latter lost infectivity after 2-4 d (216, 220) compared
with longer times of 21 d (219) or 7-28 d (218) for larger inocula (Table 7). Finally, the RC
depends on the recovery method (Tables 3 to 7).
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Surface material

The RC of bacteria, fungi, and viruses was significantly shorter on copper surfaces
than on textile materials, plastics, and steel, due to the oligodynamic effect of copper
((362, 363); Table 7). On porous surfaces, for example, coronavirus, influenza virus, avian
metapneumovirus, poliovirus type 1, and human enteric adenovirus type 40 (169, 364),
survival is longer than on non-porous surfaces (Table 7). One reason may be the lower
virus elution during recovery from porous materials (365). A recently published scoping
review draws the same conclusion (366). The capillary effect within the cavities and the
faster evaporation of the aerosols could also be influential (367).

RH

Gram-positive bacteria tolerate dry conditions better than Gram-negative bacteria due
to cell wall properties (368). S. aureus persisted longer at low RH (369), while survival
kinetics for E. faecalis were lower at 25% RH than at 0% RH (370). Acinetobacter spp.
suspended in distilled water survived significantly longer at room temperature (RT) at
RH of 28%-34% and 93%, respectively, compared to 10% RLF, while survival did not
differ between 28-34% and 93%, respectively (73). Survival of Gram-positive bacteria
was reduced most at RLF of 50%-70%, while death rates of Gram-negative bacteria were
highest at RLF of 50%-70% and 70%-90 %, respectively (368).

Enveloped viruses, especially respiratory viruses such as influenza, parainfluenza,
corona, respiratory syncytial, measles, and rubella viruses but also herpes simplex and
varicella-zoster viruses, retain their RC longer with a low RH of 20%-30% (368). Only
cytomegalovirus is isolated more frequently from moist surfaces (371). Non-enveloped
viruses such as adenoviruses, enteroviruses, and rhinoviruses are replicable for longer at
70%-90% RH [Table 7, (372)].

Temperature

Constant temperatures >24°C seem to reduce the replication and infection capacity of
airborne bacteria, as shown for representatives of Gram-positive, Gram-negative, and
intracellular bacteria (368). For 15 yeast species, the survival time increased when the
ambient temperature was reduced. Overall, the survivability of the species studied was
longest at 4°C and 1% RH and shortest at 37°C and 96% RH (156). The situation is
different for the release of bioaerosols indoors. At 25°C, more fungi (mainly Fusarium
and Penicillium spp.) were released than at 37 and 15°C, whereby the composition of
the mold species differed significantly across these three temperature ranges (373).
The viral genome (viral DNA or RNA) shows especially high sensitivity to the surround-
ing temperature which influences the RC of some viruses. This is mainly due to their
impact and affection not only on the viral genome but also on the viral proteins and
the whole enzymatic system. Principally, even though higher temperatures also affect
DNA integrity, DNA viruses have more stability than RNA viruses. For certain viruses,
including astro-, adeno-, polioviruses, herpes simplex, and HAV, low temperatures (4°C)
are associated with longer replicative periods (66). For enteric viruses, RC in water
increased with increasing temperature >20°C (374, 375). For rota-, poliovirus, and HAV,
RC was higher at >80% RH (169). This was confirmed for poliovirus in that stability was
significantly greater at 95% RH than at 25% RH (191). For coronaviruses, the influence
of RH was different with higher RC at 20% and 80% and comparatively lower RC at 50%
(195). For SARS-CoV-2, interfering substances, temperature (20°C or 35°C), and RH were
only of moderate influence (Table 7). Morris et al. (376) developed an original prediction
model of how temperature and humidity alter RC using a mechanistic quantitative
approach that was based on testing the stability of SARS-CoV-2 on an inert surface
for a range of temperature and humidity conditions. SARS-CoV-2 remained infectious
longest at low temperatures and extreme humidity (up to 85%). The estimated mean
half-time of RC was >24 h at 10°C and 40% RH, but ~1.5 h at 27°C and 65% RH. The
model uses basic chemistry to explain why the sensitivity of enveloped viruses increases
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with higher temperatures and has a U-shaped dependence on humidity. The model
accurately predicts existing results on the influence of temperature and RLF for five
different human coronaviruses. This suggests that common mechanisms may influence
the stability of many viruses.

Light conditions

Light, especially sunlight, or lack of it influences the RC. The survival time of C. albicans
and Rhodotorula rubra on smooth glass surfaces doubled when they were kept in
darkness compared with daylight and extended from 44 to 98 d for C. albicans (156).
Under the influence of simulated sunlight, 90% of SARS-CoV-2 applied to the surface
in artificial saliva were inactivated every 6.8 min during simulated summer exposure,
but every 14.3 min during winter exposure (221). By contrast, no significant decrease
was detectable within 1 h in the dark [Table 7; (221)]. The effect of sunlight was also
reproducible in aerosol, while RH alone (20-70%) had no influence (377). Irradiation
(distance 3 cm) with UVC (dose 1.048 mJ/cm?) completely inactivated SARS-CoV-2
(infectious titer of 5 x 10° TCIDso/mL) after 9 min, while UVA (dose 292 mJ/cm?) reduced
the titer by only 1 Ig after 9 min (378).

Protein, fecal, and urine load

Desiccation in protein-containing media prolongs persistence, for example, for A.
baumannii (Table 8), Escherichia (E.) coli (92), Neisseria (N.) meningitidis (379), and yeasts
(156). The fecal load had little effect on the RC of HAV and rotaviruses. For adenoviruses,
the RC only tended to increase (Table 7).

Biofilm

Several microorganisms form biofilms which is the predominant state of life in nutrient-
sufficient habitats. Such life forms lead to more pronounced microorganism adhesion,
by which the expression of the so-called sigma factor is triggered. This results in
gene activation, making the microorganisms subsequently at least 500 times more
tolerable against antimicrobial agents (380) and cold atmospheric plasma (381, 382).
Some bacteria such as K. pneumoniae can remain viable for up to 4 wks in a dry
biofilm, demanding more profound cleaning approaches (383). This may be due to
increased tolerance of the production of extracellular substances such as polysacchar-
ides, proteins, and DNA after attaching to surfaces. In addition to biofilm formation
under moist conditions, biofilm formation on dry inanimate surfaces at room humidity
should also be considered (384). This poses a challenge due to water retention from
the biofilm, along with other nutrients, which protects the microorganism itself from
various environmental factors (385, 386). This makes biofilms relevant not only for the
natural persistence of microorganisms in their native habitats but also for industrial and
medical settings (385-387). The RC on inanimate surfaces is prolonged and dependent
on environmental aspects, especially humidity. Biofilms have been identified on diverse
surfaces in hospitals, that is, on sterile objects, plastic doors, and sanitary areas. Out
of these formations, it is possible to cultivate viable bacteria. Available scientific data
cannot clarify and elucidate to which extent the risk of transmission and the possibility of
cross-transmission is affected by biofilm formation. In the context of multidrug-resistant
bacteria, the biofilm could be one additional mechanism for persistence in medical
settings (388). Of note, potential intraspecies or interspecies virulence factor exchange
may be present in the biofilm (386, 388-390).

The current literature regarding associations between viruses and biofilms is scarce.
As viruses are strict intracellular pathogens, they may profit from a prolonged persistence
in a reservoir host due to the advantages conferred by the biofilm structure but they
will not be able to proliferate (391). Biofilms can contain a range of non-enveloped
enteric viruses, including caliciviruses, rotavirus spp., astrovirus spp., and hepatitis A
virus, alongside other microorganisms such as Gram-negative bacteria and filamentous
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fungi (392). The virion RC in an extracellular context can be promoted by biofilms, both
on fomites and aquatic sediments, allowing viral persistence and spread. Therefore, it is
necessary to highlight that both virions and virus-infected eukaryotic cells embedded in
biofilms can retain their infectivity. The first in vitro study provides further information
that the enveloped virus herpes simplex virus 1 (HSV-1) and the non-enveloped virus
coxsackievirus type B5 (CVB5) can be encompassed within fungal Candida albicans
biofilms (393). As such viruses stored in biofilms can be depicted as temporary or
long-term reservoirs (52). Thus, the viral ability to remain infectious and the potential of
fomite-borne transmission can be enhanced by the biofilm, especially due to protection
against desiccation and antimicrobial agents (394).

DISCUSSION

The most important difference in this review, compared with the 2006 systematic review
(66) on pathogen resilience, is that the course of the RC over time has been calculated
based on the quantity of the inoculum on the surface and expressed as log reduction.
This has resulted in more accurate values, as well as explaining different values in some
cases in the first review. Furthermore, the methodological development of laboratory
experiments to determine the RC over the last almost two decades has also influenced
overall findings.

In general, good clinical epidemiological evidence for transmission scenarios beyond
outbreaks is lacking. However, studies on RC and evidence for persistence on inanimate
surfaces in combination with a conspicuous transmission event are available. It is clear
that the inanimate environment plays a relevant role in these bacterial transmission
pathways in everyday situations (Fig. 1a). Studies using whole-genome sequencing
indicate that there is a serious underestimation of transmission events when using
standard techniques only (395). These analyses tend to focus on resistant, thus easily
recognizable pathogens. However, the quantification of transmission events and thus an
appropriate risk assessment are not yet possible.

Beyond the epidemiological evidence, the studies were usually generated under
laboratory conditions. This means that not all possible environmental influences in
hospital settings can be detected, especially any from antimicrobial residues. In addition,
the influence of the simultaneous contamination of hospital surfaces with various
nosocomial pathogens, with secretions, excretions, and dirt will also be disregarded. A
growing number of studies report that enveloped and non-enveloped viruses can spread
in groups in so-called “collective infectious units” (396-398). The vehicles mediating
collective spread vary widely and include lipid vesicles, protein matrices, diverse forms
of aggregation, and binding to the surface of host or non-host cells (396). It seems
reasonable that units like this or interference may also exist for bacteria and/or fungi
and/or protozoa. Laboratory studies do not reflect the clinical situation and represent
probably an one-sided worst-case scenario assessing the upper bound of infection risk.
Furthermore, they cannot represent the complexity of real-life scenarios. When assessing
factors that influence the RC, it must be considered that the results only apply to the
species investigated and cannot be generalized. Even more so, resistant isolates are
often analyzed compared with wild-type variants. Sometimes tested microorganisms are
poorly characterized so cannot determine the extent of generalizability. Furthermore, it
should be noted that data on the RC are often not median values; the maximum was
detected and described and these results can, and should, be used as an upper bound
approach. Data suggest that no general prediction about RC independent of the genus is
possible.

In addition, further influences must be considered. First, the dependence of
environmental conditions on the RC has not yet been sufficiently studied under real-life
conditions. Second, there is insufficient data on the behavior of wild-type and/or
sensitive strains and variants within a species. Third, no data exist, on whether certain
virulence or RC determinants are genetically present in isolates that are particularly well
adapted to the hospital setting.

December 2024 Volume 37 Issue 4

Clinical Microbiology Reviews

10.1128/cmr.00186-23 28

Downloaded from https://journals.asm.org/journal/cmr on 30 April 2025 by 193.175.81.2.


https://doi.org/10.1128/cmr.00186-23

Review

In this review, only the risks due to direct or indirect contact transmission from
inanimate surfaces were addressed, not the additional risks by potential aerosolization
of pathogens from fomites (399-401). Therefore, it should be considered that the RC in
aerosols can be significantly lower than on surfaces, as has been proven for different
variants of the Ebola virus and Marburg virus (402). It is also the case that high inocula
results in longer survival times due to the logarithmic death curve (403), which has been
proven for various bacterial species (88, 404) and or fungal spores (156) on surfaces.
Considering all background factors, data generated under laboratory conditions can
only provide a rough orientation. In case of doubt, the less favored situation should be
assumed when evaluating the data in Tables 3 to 7.

Despite knowledge of the dependency of replication and infection capacity from
factors like pH, temperature, humidity, and others, we cannot easily change these
surrounding conditions using their preventive potential. For others, for example, inocula
and biofilms, we can use knowledge covering these aspects from common IPC recom-
mendations.

Another viewpoint for the risk assessment of surface contamination is the minimal
infectious dose (MID) to trigger infection. The lower the ID, the greater the risk of
acquiring an infection and further transmission as nosocomial outbreaks. It should be
noted that the ID can be reduced by a viral infection, which often leads to bacterial
co- or superinfection, especially in cases of respiratory viral infections (405-407). In
Table 9, examples of different IDs are summarized, mainly taken from reviews. From the
clinical perspective, it must be considered that this dose depends on the site of infection
or at least contamination allowing short-term contamination. For respiratory transmissi-
ble viruses with a MID of >10? 50% tissue culture infectious dose (TCIDsg), infection
by aerosolization from surfaces is unlikely. By contrast, infection is possible via the
surface-finger-eye route for keratoconjunctivitis epidemica due to low ID (Table 9) and the
surface-finger-nose route, particularly in the case of nasal exposure to respiratory viruses
with a MID <10'. The same applies to orally transmissible pathogens with a MID of <10
TCIDsg, CFU resp. oocysts. This is supported by the outbreak potential of pathogens
with low MID. For fecal-orally transmissible bacteria and mucorales, transmission from
surfaces is unlikely with a MID of <10, CFU. However, it should be noted that MID
studies do not usually consider the fact that the pathogens multiply from an initially
acquired small number and the infection only manifests after the critical quantity has
been reached.

The lower the ID and the greater the RC, the greater the risk of acquiring an infection
by direct or indirect contact with the surface or by aerosolization from the surface and
following respiratory exposure. Likewise, the risk of an outbreak emanating from surfaces
increases. In both cases, the ID is likely to have a greater influence. At the same time, the
risk of a fomite-borne HAI is influenced by the patient’s immune status. The ID, RC, and
immune status must be considered when deciding upon targeted surface disinfection
and additional IPC.

Disinfecting surfaces in hospitals is generally accepted as a key component of
infection prevention (32-35, 72, 424-427). However, disinfection can also have an
influence on the development of tolerance; it is costly and leads to an ecological
footprint. Clearly, every disinfection event requires a clear indication. Disinfection must
be implemented in a precise and quality-assured manner since it offers a valuable
contribution toward HAI prevention. Regarding environmental protection, probiotic
cleaning agents are a promising alternative to chemical disinfection. Surface contami-
nation with pathogens could be reduced by up to 90% more with probiotic products
compared with conventional disinfection wipes (428, 429). SARS-CoV-2 was reduced
significantly more by probiotic cleaning than by chemical disinfection (430). In non-
intensive care units, routine surface disinfection did not prove superior to soap-based
or probiotic cleaning in terms of preventing HAI (61). Of course, no evidence-based
practical approach for systematic surface or probiotic cleaning in hospitals can be
derived from the RC of nosocomial pathogens.
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Infectious dose Application Pathogen Reference
1-100 virus particles, CFU resp.  Oral Noro-, rotavirus, EHEC, ETEC, C. difficile, (67,311,331, 370,408-412)
oocysts MRSA, Cr. parvum, G. intestinalis
6.6 virus particles Inhalative Adenovirus type 4 (331)
10-100 virus particles Oral HAV (413)
30-40 TCIDsq Intranasal RSV (331)
6/71 TCID5q Intranasal/oral Coxsackievirus A21 (331)
0.03/>10'-10* TCIDsq Intranasal/inhalative Rhinovirus, different serotypes (331)
<10° CFU Oral Acinetobacter spp., C. jejuni, Klebsiella ~ (67,414)
spp., VRE
>10° spores Chorio-allantois-membrane hen egg Lichtheimia corymbifera (415)
(equivalent to eye contact)
>10° CFU Oral Salmonella enteritidis (416)
>10° TCIDsq Oral Echovirus (331)
>10° TCIDsg Inhalative Influenza A virus (H3N2) (331)
>10° LDsq Intranasal Congo Basin MPXV (417)
>10° CFU Conjunctival P. aeruginosa (418)
>10%to 210’ TCIDsq Inhalative Influenza B virus (331)
>10* spores Rhizopus spp., A. fumigatus (419, 420)
10° TCIDsg Conjunctival RSV (331)
>10° CFU Intravenous C. albicans, C. auris (421)
>10° spores Parenteral Rhizomucor pusillus (419)
>10° CFU Oral E. coli, S. aureus (422)
>10° LDsg Intranasal West African MPXV (417)
>10°TCIDsq Oral Adenovirus (331)
>10°to >10’ TCIDso Inhalative Influenza A virus (HIN1)
>10% CFU/mL Intraperitoneal P. aeruginosa (423)

>10" CFU/mL S. aureus

RC and ID influence the implementation of surface decontamination regarding the
extent and the selection of the application concentration and exposure time of the
disinfectant. In cases of high RC and low ID, it makes sense to use concentrations that are
rapidly effective. For final (or terminal) disinfection after patient discharge, all potential
pathogen reservoirs must be eradicated with the choice of effective disinfectants. In
general, a simple four-step guide for daily decontamination of the occupied bed space
can be recommended: Step 1 (LOOK) describes a visual assessment of the area to
be cleaned; Step 2 (PLAN) argues why the bed space needs preparation before clean-
ing; Step 3 (CLEAN) covers surface cleaning/disinfection; and Step 4 (DRY) is the final
stage whereby surfaces are allowed to dry. Visible soil should always be removed with
detergent and water before using disinfectant (431). Analogous to the 5 moments of
hand antisepsis (432), 5 moments of disinfecting surface cleaning can be distinguished:
(i) Disinfecting surface cleaning as part of standard precautions (non-targeted disinfec-
tion) on near-patient (high-touch) sites during patient care, and targeted disinfection, (i)
disinfecting surface cleaning on the work surface before performing aseptic activities,
(iii) final disinfecting of surfaces after discharge of patients, (iv) two-step disinfection
surface cleaning after visible surface contamination (first cleaning, thereafter disinfec-
tion), and (v) disinfection surface cleaning as part of the multi-barrier strategy to control
outbreaks (431).

This review can reduce the complexity of disinfection choices depending on the
range of pathogen properties. At the same time, it proposes the best possible
balance between patient and employee safety, that is, IPC and ecological and eco-
nomic sustainability. Through a novel classification of pathogens by their fomite-borne
potential for transmission—completely independent of the taxonomic approach—a
fact-based but also realizable and pragmatic recommendation can be prepared with
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a view to avoiding transmission. The attempt to classify pathogens by fomite-borne
transmission potential should serve only as a first suggestion and should be improved
by scientific discussion. In general, further studies should focus beyond the ecologi-
cal and outbreak assessment—and target real-life settings or near real-life scenarios
to emulate endemic settings. There is insufficient evidence regarding the impact of
contaminated surfaces in encouraging contact-free transmission risk. Further analysis
should cover aspects of ecological sustainability and should weigh up the potential
benefit for transmission and infection events against the additional ecological footprint

from resource consumption, production, and waste management.
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