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Helmut Küchenhoff9,10, Sören Müller-Hansen11, Diellë Syliqi9, Alexander Ullrich5,

Maximilian WeigertID
9,10, Melanie Schienle1,2, Johannes BracherID

1,2

1 Chair of Statistical Methods and Econometrics, Karlsruhe Institute of Technology (KIT), Karlsruhe,

Germany, 2 Computational Statistics Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg,

Germany, 3 Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine,

London, United Kingdom, 4 Centre for Mathematical Modelling of Infectious Diseases, London School of

Hygiene & Tropical Medicine, London, United Kingdom, 5 Robert Koch Institute, Berlin, Germany,

6 Department of Mathematics, Stockholm University, Stockholm, Sweden, 7 Institute of Mathematics,

Technische Universität Ilmenau, Ilmenau, Germany, 8 Center for Infectious Disease Control, National

Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands, 9 Statistical Consulting

Unit StaBLab, Department of Statistics, Ludwig Maximilian University of Munich, Munich, Germany,

10 Munich Center for Machine Learning (MCML), Munich, Germany, 11 Süddeutsche Zeitung, Munich,
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Abstract

Real-time surveillance is a crucial element in the response to infectious disease outbreaks.

However, the interpretation of incidence data is often hampered by delays occurring at vari-

ous stages of data gathering and reporting. As a result, recent values are biased downward,

which obscures current trends. Statistical nowcasting techniques can be employed to cor-

rect these biases, allowing for accurate characterization of recent developments and thus

enhancing situational awareness. In this paper, we present a preregistered real-time

assessment of eight nowcasting approaches, applied by independent research teams to

German 7-day hospitalization incidences during the COVID-19 pandemic. This indicator

played an important role in the management of the outbreak in Germany and was linked to

levels of non-pharmaceutical interventions via certain thresholds. Due to its definition, in

which hospitalization counts are aggregated by the date of case report rather than admis-

sion, German hospitalization incidences are particularly affected by delays and can take

several weeks or months to fully stabilize. For this study, all methods were applied from 22

November 2021 to 29 April 2022, with probabilistic nowcasts produced each day for the cur-

rent and 28 preceding days. Nowcasts at the national, state, and age-group levels were col-

lected in the form of quantiles in a public repository and displayed in a dashboard.

Moreover, a mean and a median ensemble nowcast were generated. We find that overall,

the compared methods were able to remove a large part of the biases introduced by delays.

Most participating teams underestimated the importance of very long delays, though, result-

ing in nowcasts with a slight downward bias. The accompanying prediction intervals were

also too narrow for almost all methods. Averaged over all nowcast horizons, the best perfor-

mance was achieved by a model using case incidences as a covariate and taking into
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account longer delays than the other approaches. For the most recent days, which are often

considered the most relevant in practice, a mean ensemble of the submitted nowcasts per-

formed best. We conclude by providing some lessons learned on the definition of nowcast-

ing targets and practical challenges.

Author summary

Current trends in epidemiological indicators are often obscured by the fact that recent val-

ues are still incomplete. This is due to reporting delays and other types of delays. Statistical

nowcasting methods can be used to account for these biases and reveal yet unobserved

trends, thereby improving situational awareness and supporting public health decision-

making. While numerous methods exist for this purpose, little is known about their

behavior in real-time settings and their relative performance. In this paper, we compared

eight different nowcasting methods in an application to COVID-19 hospitalization inci-

dences in Germany from November 2021 to April 2022. Additionally, we combined the

predictions of these methods to create so-called ensemble nowcasts. Our findings indicate

that while all methods yielded practically useful results, some systematic biases in now-

casts occurred and the remaining uncertainty was generally underestimated. Combined

ensemble nowcasts showed promising performance relative to individual models and thus

represent a promising avenue for future research.

1 Introduction

During infectious disease outbreaks, real-time surveillance data contributes to situational

awareness and risk management, informing resource planning and control measures. How-

ever, the timely interpretation of epidemiological indicators is often hampered by the prelimi-

nary nature of real-time data. Due to reporting delays, the most recent data points are usually

incomplete and subject to retrospective upward corrections. This bias can lead to incorrect

conclusions about current trends. Statistical nowcasting methods aim to remedy this problem

by predicting how strongly preliminary data points are still going to be corrected upwards, tak-

ing into account the associated uncertainty. Nowcasts thus help to uncover current trends

which are not yet visible in reported numbers.

Problems of this type have been extensively researched across various disciplines; e.g., in

econometrics, the gross domestic product and the inflation rate are routinely nowcasted [1].

Methods for preliminary count data as encountered in the present work originated in the actu-

arial sciences, where they were developed to handle insurance claims data [2]. In epidemiol-

ogy, the problem of delayed reporting has been treated in diverse contexts, including the HIV

pandemic [3], foodborne Escherichia coli outbreaks [4], the 2009 influenza pandemic [5] and

mosquito-borne diseases like malaria [6] and dengue [7, 8]. During the COVID-19 pandemic,

the problem has seen growing interest, and new approaches tailored to a variety of settings

have been suggested [9–14]. There is thus an ever-growing number of methods to statistically

correct reporting delays. However, two important aspects are rarely addressed in the current

literature. Firstly, few studies assess the performance of methods in real-time settings. The

papers we are aware of—with [14] as an exception—contain only retrospective case studies

which risk smoothing over some of the difficulties occurring in real time (e.g., major data revi-

sions, time pressure on analysts). Also, few studies include comparisons with existing methods.
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repository (https://github.com/KITmetricslab/

hospitalization-nowcast-hub), with a stable release

published at https://zenodo.org/record/7828604.

The repository also contains the truth data used for

evaluation. Code to reproduce results and figures

are provided at https://github.com/dwolffram/

hospitalization-nowcast-hub-evaluation. A list of

the participants’ code repositories can be found in

Section C in S1 Appendix.
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While occasionally one additional model is applied for comparison [8, 11, 13], systematic com-

parative assessments are lacking. Our work fills this gap by examining multiple procedures in

real time, thus providing a realistic picture of nowcast performance and the arising practical

challenges. By bringing together several different models, our study is moreover the first able

to assess the potential of combined ensemble nowcasts.

We evaluate the different nowcasting approaches in an application to German 7-day hospi-

talization incidences. These have played an important role in the management of the pandemic

in Germany. Indeed, in November 2021, they were defined as the key indicator to determine

levels of non-pharmaceutical interventions. Via a system of thresholds [15], they played an

important role in the management of the pandemic, in particular in the fall and winter of

2021. Nowcasting is of particular importance for this indicator due to the way it was defined.

As will be detailed in Section 2.1, the official German hospitalization numbers published by

Robert Koch Institute (RKI) are aggregated by the reporting date of the associated positive test

rather than the date of hospital admission. The total time span between the case report and the

hospitalization report (i.e. the “delay” that has to be predicted) thus consists of two parts: the

time between the report of the positive test and hospital admission and the actual reporting

delay between hospitalization and the reporting thereof. This definition led to some criticism

in the public discourse but was defended as a necessary compromise between timeliness and

data quality by RKI [16]. Fig 1 illustrates the nowcasting task in the context of the 7-day hospi-

talization incidence. It shows real-time nowcasts from 1 December 2021, 1 February 2022, and

1 April 2022. Comparison with a more stable data version from 8 August 2022 shows that in

these instances, the nowcasts were able to correctly reveal the actual trends, which differed

sharply from the apparent declines found in the data as available at the time of nowcasting.

The present work is based on a collaborative platform, the COVID-19 Nowcast Hub, which

we launched soon after the hospitalization incidence became the guideline value for the Ger-

man pandemic policy. It served to collect and combine real-time nowcasts from several models

on a daily basis. The approach builds upon the COVID-19 Forecast Hubs, which during the

pandemic were run in the US [17], Germany and Poland [18], and later the entire European

Economic Area, Switzerland and the UK [19]. These Hubs showed that combining different

epidemiological models into an ensemble can produce more robust predictions, confirming

results from forecasting challenges like FluSight on seasonal influenza [20]. We aimed for

Fig 1. Illustration of the nowcasting task. Data available in real time (colored lines) is incomplete, and especially for recent dates, the values are

considerably lower than the final corrected values (black line). Nowcasts (blue-shaded areas) aim to predict in real time what the final data points will

be. The light gray line shows the initially reported value as available on the respective date.

https://doi.org/10.1371/journal.pcbi.1011394.g001
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compatibility with the Forecast Hub ecosystem in many technical and methodological aspects,

in particular by following the same submission format and evaluation criteria [21]. This way

we contribute to a growing evidence base on predictive epidemic modeling in real time.

The remainder of the manuscript is structured as follows. In Section 2, we introduce the

7-day hospitalization incidence as defined by RKI and outline the agreed-upon nowcast targets.

We present the individual nowcasting methods and ensemble approaches, as well as the prespec-

ified evaluation criteria. Section 3 presents the results of our formal performance evaluation, fol-

lowed by qualitative observations on periods of unusual reporting patterns or the emergence of

a new variant. We then assess the impact of model revisions as well as the sensitivity of the

results to the exact definition of the nowcast target. Section 4 concludes with a discussion.

2 Methods

To facilitate a transparent assessment, we preregistered our evaluation study, specifying the

criteria to assess the submitted nowcasts. The study protocol was deposited at the registry of

the Open Science Foundation on 23 November 2021 [22]. In some instances, we had to deviate

from the protocol. These are detailed in the respective subsections and summarized in

Table A1 in S1 Appendix.

2.1 Definition of the COVID-19 7-day hospitalization incidence

Data on the German COVID-19 hospitalization incidence was published in a daily rhythm by

Robert Koch Institute [23]. By its official definition [24], it is given by the number of hospital-

ized COVID-19 cases among cases reported over a 7-day period relative to 100,000 inhabi-

tants. As illustrated in Fig 2, hospitalizations are thus aggregated by the case reporting date,

more precisely, when a case was digitally registered by a local health authority, rather than the

date of hospital admission (though the two may coincide). We will refer to this case reporting

date as the reference date in the following. We note that the hospitalization is not required to

occur during the 7-day window mentioned previously, nor is COVID-19 required to be the

main reason for hospitalization. When new hospitalizations are added to the record, they may

thus change the value of the 7-day hospitalization incidence for past periods, depending on

how much time has passed between the positive test, the time of hospitalization, and ultimately

Fig 2. Illustration of 7-day hospitalization incidences via individual-level timelines. The reference date by which hospitalizations are counted is the

date when the positive test of an ultimately hospitalized person is reported (green dots). However, hospitalizations only become known after they take

place (red triangles) and are reported (blue squares). Individuals A-E are included in the 7-day hospitalization incidence of date t because their

reference date falls within a 7-day window from t − 6 until t, even though some are reported as hospitalized later (individuals D and E). These

hospitalizations only appear in the data with a delay and thus need to be predicted using a nowcasting method on day t. In principle, it is also possible

that positive test, hospitalization and reporting all take place on the same day, as for individual C. In this case, there is no delay problem. We note that

even though individuals F and G are hospitalized or reported within the period t − 6 to t, they are not counted in the 7-day hospitalization incidence for

day t because the positive test is reported before t − 6. Individual H is not included because its reference date is after t.

https://doi.org/10.1371/journal.pcbi.1011394.g002
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its reporting. Therefore, the initially reported value of the hospitalization incidence is merely

an approximation and tends to be lower than the actual value.

To illustrate the extent of these revisions, Fig 3 shows the fraction of the 7-day hospitali-

zation incidence that was reported 0–70 days after the respective reference date. Same-day

values covered 50–60% of the ultimately reported hospitalizations, with a slight upward

trend over the study period (left panel). Around 85% were reached after 14 days and even

after 70 days, there were upward corrections of more than 3%. As illustrated in the second

panel, same-day reporting completeness varied considerably across states. In Bremen (HB)

it exceeded 75%, whereas it was below 50% in Saxony (SN) and Hamburg (HH). Reporting

completeness was also variable across age groups and weekdays (third and fourth panels). A

detailed display of temporal variations in initial reporting completeness across states can be

found in Fig A1 in S1 Appendix. It should be noted that initial reporting completeness can

also depend on the overall strain on the health system, and delays tend to be longer in times

of high caseloads [25].

As mentioned before, thresholds of 3, 6, and 9 per 100,000 population were introduced in

the fall of 2021 and used to determine the necessary extent of non-pharmaceutical interven-

tions [15]. These were applied to the initial value of the hospitalization incidence as reported

on the respective day without any retrospective completion. This value is also referred to as the

frozen value. For illustration, these frozen values were added to Fig 1 (light gray line). We note

that due to the temporal and geographic differences shown in Fig 3, the same frozen value can

translate to rather different final values of the hospitalization incidence.

2.2 Nowcast targets and study period

The goal of the collected nowcasts was to predict how much the preliminary values of the hos-

pitalization incidence were still going to change. Specifically, on each day during the period

from Monday 22 November 2021 to Friday 29 April 2022, a prediction needed to be issued for

the final value the 7-day hospitalization incidence would take for that day and the previous 28

days. In the study protocol, we defined the final state to be predicted as the time series available

on 8 August 2022. This date was chosen to be 100 days after the end of our study period. Origi-

nally, teams were asked to provide nowcasts for all working days of the study period, excluding

a Christmas break. However, as all teams fully automated their approaches, we were able to

collect nowcasts on weekends and public holidays and include them in the study.

Fig 3. Completeness of 7-day hospitalization incidences 0 to 70 days after the respective reference date. First panel: temporal development over the

considered study period, aggregated over states and age groups. Second: by state, ordered by initial reporting completeness (see Fig A1 in S1 Appendix

for the definition of abbreviations). Third: by age group. Fourth: by weekday.

https://doi.org/10.1371/journal.pcbi.1011394.g003
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Teams were asked to issue nowcasts for the national level as well as for the 16 German states

and seven different age groups (as available in public RKI data; 00–04, 05–14, 15–34, 35–59,

60–79 and 80+ years). No age-specific nowcasts at the state level were generated. To quantify

prediction uncertainty, a probabilistic format was adopted, where teams had to submit seven

quantiles (2.5%, 10%, 25%, 50%, 75%, 90%, 97.5%) of the predictive distribution in addition to

the mean. Following the procedure in the various COVID-19 Forecast Hubs, our main analysis

examined all outcomes on their original count scales, i.e. not standardized by population. This

means that the relative size of states or age strata is reflected in the weight they receive in the

overall evaluation [21].

In the study protocol, we also defined a retrospective study period reaching from 1 July

2021 to 19 November 2021. The motivation was to compare the retrospective performance on

historical data available during model development to prospective performance under real-

world conditions. However, due to time constraints, only two teams provided complete sets of

retrospective nowcasts prior to the beginning of the prospective study. We therefore chose to

omit this aspect. Instead, we added an evaluation of retrospective nowcasts from four revised

models to the main study period from 22 November 2021 to 29 April 2022.

2.3 Overview of models

Nowcasts from eight independently run models were collected for the duration of our study.

Six of them were contributed by groups of academics, one by the Robert Koch Institute (RKI)

and one by the data science team of the newspaper Süddeutsche Zeitung (SZ). A short descrip-

tion of the different methods is provided in Table 1 (see also [26–32]). Most approaches took

preliminary hospitalization numbers as their only input, applying various techniques to model

delay distributions and the underlying time series of hospitalizations. Only the ILM model

took a different approach by including the number of confirmed cases as an explanatory vari-

able. Approaches also differed in terms of the methods used for inference, uncertainty quanti-

fication, the flexibility and complexity of their delay distribution and time series models, as

well as the maximum delay considered (ranging from 35 to 84 days). Some models obtained

nowcasts at a coarser spatial or age resolution by hierarchically aggregating nowcasts generated

for finer strata. Models were typically not fitted to the entire available data set, but only a recent

subset, the size of which again differed by team.

2.4 Ensemble approaches

On a daily basis, all submissions that were available at 2pm were combined to generate an

ensemble nowcast, see Fig 4 for an illustration. We created the two following ensembles.

• For the MeanEnsemble each predictive quantile was obtained as the arithmetic mean of

the respective quantiles of the member nowcasts. The ensemble mean was obtained as the

mean of the submitted predictive means.

• For the MedianEnsemble the same procedure was applied using the median rather than

the arithmetic mean for aggregation.

This direct aggregation at the level of quantiles rather than, e.g., probability density func-

tions, is known as Vincentization [33]. A discussion of its properties and differences to the

aggregation of density functions can be found in [34]. As the expected number of contributed

models was moderate, the MeanEnsemble was expected to be better-behaved than the

MedianEnsemble, which can produce oddly shaped distributions in such settings [18]. The
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Table 1. Description of contributed nowcast models.

Abbreviation Short description Reference Generation of

prediction intervals

Data input Weekday

effects

Max.

delay

Length of

training

data

Hierarchical

aggregation

Epiforecasts Bayesian model assuming the

underlying curve of

hospitalizations follows a random

walk on the log scale. Reporting

delays are assumed to follow a

lognormal distribution with time-

varying parameters. Report date

effects are handled via a random

effect for day of the week.

[26] Bayesian posterior

distribution

Hospitalizations Yes 40

days

40 days No

ILM Hospitalization probabilities

given a positive test are estimated

separately per delay time and age

group. These are used to predict

yet unreported hospitalizations

based on case incidences.

[27] Based on past nowcast

errors

Hospitalizations,

cases

Indirectly

via

aggregation

84

days

91 days Yes

KIT A simple multiplication factor

approach, with uncertainty

intervals generated by comparing

past point nowcasts to

observations.

Section E

in S1

Appendix

Based on past nowcast

errors

Hospitalizations No 40

days

60 days No

LMU Nowcasts are based on a

generalized additive model, with

the delay distribution described

by a sequential multinomial

model.

[28, 29] Parametric bootstrap

approach using the

covariance of the

estimated model

parameters and a

Poisson observation

model

Hospitalizations Yes 40

days

56 days Partially

RIVM Counts per reference date and

delay are modeled by a two-

dimensional P-spline surface and

covariates including weekday

effects. This surface is

extrapolated to fill in yet

unknown values.

[30] Parametric bootstrap

approach using the

covariance of the

estimated model

parameters and a

negative binomial

observation model

Hospitalizations Yes 42

days

84 days No

RKI The conditional reporting delay

probabilities are modeled using a

logistic regression model that

incorporates weekday, federal

state, and two age groups as

covariates (� 60, > 60).

[31, 32] Sampling from model-

based distribution

Hospitalizations Yes 40

days

68 days Yes

SU Similarly to Epiforecasts,

the latent curve of daily

hospitalizations is assumed to

follow a random walk on the log

scale. The delay distribution is

modeled via a discrete-time

hazard model with weekday

effects for the reporting day.

Entries of the reporting triangle

are assumed to follow a negative

binomial distribution.

[9] Bayesian posterior

distribution

Hospitalizations Yes 35

days

56 days No

SZ Nowcasts are based on the

empirical distribution of the

relative difference between

initially reported and

retrospectively completed values

of the hospitalization incidence.

– Empirical quantiles of

past relative corrections

Hospitalizations No – 60 days No

https://doi.org/10.1371/journal.pcbi.1011394.t001
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MeanEnsemble was therefore prespecified as the primary ensemble approach (unlike in e.g.

[17] or [18]).

We note that when using these aggregation approaches, quantile crossing can occur, mean-

ing that the reported quantiles may not consistently increase with their nominal level [35]. To

address this, one straightforward approach is to sort the quantiles in ascending order, which

can improve the overall performance and coherence of the ensemble nowcasts [36]. Regretta-

bly, this consideration was overlooked in our real-time ensemble, leading to some instances of

quantile crossing. These were primarily caused by missing entries for a specific quantile level

in one of the member models, as mentioned in Table A4 in S1 Appendix. As this occurred

only in a small fraction of instances, we consider the impact on overall results negligible.

2.5 Evaluation metrics

Proper scoring rules are an established tool to evaluate probabilistic forecasts [37], or, in our

setting, nowcasts. They are constructed such that they encourage honest forecasting, i.e., fore-

casters optimize their expected score by reporting their true beliefs about the future. Put differ-

ently, there is no way of “gaming” the system and obtaining improved scores by reporting

modified versions of one’s actual prediction. As in our setting nowcasts consist of three nested

central prediction intervals, a natural choice is the interval score [37]. For an interval [l, u] at

the level (1 − α), α 2 (0, 1), reaching from the a

2
- to the 1 � a

2

� �
-quantile of the predictive distri-

bution F, it is defined as

ISaðF; yÞ ¼ ðu � lÞ þ
2

a
� ðl � yÞ � 1ðy < lÞ þ

2

a
� ðy � uÞ � 1ðy > uÞ; ð1Þ

where 1 is the indicator function and y is the realized value. Here, the first term characterizes

the spread of the predictive distribution, the second penalizes overprediction (observations fall

below the prediction interval) and the third term penalizes underprediction. To assess all sub-

mitted quantiles of the predictive distribution jointly we use the weighted interval score (WIS;

[21]), which is a weighted average of interval scores at different nominal levels and the absolute

error. For N nested prediction intervals it is defined as

WISðF; yÞ ¼
1

2N þ 1
� jy � mj þ

XN

k¼1

ak � ISakðF; yÞ

 !

; ð2Þ

Fig 4. Illustration of an ensemble approach. A set of individual nowcasts can be combined into an ensemble nowcast with different aggregation

approaches. Here, the ensemble is computed as the quantile-wise mean of all nowcasts.

https://doi.org/10.1371/journal.pcbi.1011394.g004
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where m is the predictive median and in our setting N = 3 and α1 = 0.5, α2 = 0.2, α3 = 0.05. We

note that it is equivalent to the mean pinball loss across the respective quantile levels, which is

often employed in quantile regression [21]. The WIS approximates the widely used continuous

ranked probability score (CRPS) and can be interpreted as a generalization of the absolute

error to probabilistic predictions. It is negatively oriented, meaning that lower values are bet-

ter. The decomposition of the interval score into spread, overprediction, and underprediction

also translates to the WIS and can be used to enhance the interpretability of results.

To put results into perspective, we defined the simplistic baseline model

FrozenBaseline which applies no correction and just issues the current data version as its

deterministic nowcast (i.e., with all quantiles set to the same value). This allowed us to com-

pute relative scores

relative WIS of model m ¼
mean WIS achieved by model m

mean WIS achieved by baseline model
;

characterizing the improvement over the uncorrected time series. Here, lower values are bet-

ter, and values below 1 imply that the nowcasts reduce the error of the uncorrected time series.

We note that while the study protocol specified that a baseline model was to be included, its

definition was only agreed upon later. We note that the KIT model was originally conceived

as a baseline model, but later considered too complex for this purpose; in the preregistration, it

is therefore referred to as a “reference model”.

To assess the central tendency of nowcasts we used the mean absolute error for predictive

medians and the mean squared error for predictive means (i.e., for each functional we use the

respective consistent scoring function [38]). To evaluate calibration, i.e., the statistical consis-

tency between nowcasts and observations, we consider the empirical coverage of the 50% and

95% prediction intervals,

coverage ¼
# times nowcast intervals covered the final value

# of nowcast intervals issued
:

In case of missing submissions, i.e., if a team failed to provide a nowcast on a given day, now-

casts could be filled in retrospectively. To assess whether this had a substantial impact on the

comparative evaluation, we applied a pairwise comparison scheme as described in [17] to com-

pare models using only the sets of nowcast tasks treated in real time by each model. Details can

be found in Section D in S1 Appendix.

3 Results

3.1 Completeness of submissions

All participating teams produced nowcasts over the entire study period and only rarely

failed to submit nowcasts in time (see Table A2 in S1 Appendix). In most cases, missing

nowcasts were filled in retrospectively. In very few cases (0.3% of all targets; see Table A3 in

S1 Appendix) it was not possible to obtain submissions from all teams; to handle these

cases we chose to slightly deviate from the study protocol and omit the respective targets in

our evaluation. The ILM model did not provide state-level nowcasts, while the RKI model

did not include age-stratified results. Moreover, the RKI model only provided point now-

casts and two quantiles in real time (at levels 2.5% and 97.5%); the remaining quantiles

were only provided in retrospect. We encountered some more minor difficulties, e.g., due

to missing quantiles for certain targets; we summarize these and the chosen solutions in

Table A4 in S1 Appendix.
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3.2 Visual inspection of nowcasts

For a first impression of nowcast performance, Fig 5 shows same-day nowcasts at the national

level (i.e., at each date the respective nowcast with a horizon of 0 days is shown). Fig 6 shows

the same for nowcasts 14 days back in time (i.e., for each day the nowcast issued 14 days later

is shown). Displayed are the median predictions along with the central 50% and 95% predic-

tion intervals. The light gray line shows the data as available when the nowcast was issued

(which in Fig 5 corresponds to the frozen values), and the red line shows the respective final

value as available on 8 August 2022. In both figures, it can be seen that nowcasts from all mod-

els are generally close to the final values to be predicted. However, considerable variability in

interval widths is apparent, ranging from rather wide (KIT) to very narrow intervals (LMU,

RKI). Some models, in particular KIT and SZ, display pronounced weekday patterns in their

same-day nowcasts, which to a lower degree also carry through to the ensemble nowcasts. For

the nowcasts 14 days back in time we observe a slight downward bias in the central tendency,

the only exception being the ILM model. As most of the concerned models moreover feature

quite narrow prediction intervals, these often do not cover the final values.

3.3 Formal evaluation

To consolidate the qualitative findings from the previous section, we turn to a formal evalua-

tion and consider evaluation scores and interval coverage rates. Fig 7 displays the mean and

relative WIS values achieved by different models for the three considered aggregation levels

(national level, states, and age groups). The left column shows mean scores (on the absolute

Fig 5. Nowcasts with a horizon of 0 days back. Same-day nowcasts of the 7-day hospitalization incidence as issued on each day of the study period.

Nowcasts are shown for the German national level.

https://doi.org/10.1371/journal.pcbi.1011394.g005
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and relative scale) across all strata and horizons, decomposed into contributions of spread,

underprediction, and overprediction. The middle and right panels show the mean WIS and

relative WIS by horizon, respectively (-28 to 0 days; see Section 2.5). At the national level and

across age groups, the overall scores of the ILM model were considerably lower than the scores

of all other models. The stratification by horizon indicates that it performed especially well for

nowcasts seven or more days back. For the most recent days (-3 to 0 at the national level, -6 to

0 for age groups) the MeanEnsemble performed best. Across states, the MeanEnsemble
outperformed the other models for horizons of -11 to 0 days. For horizons of -28 to -12 days,

the KIT model achieved the best scores, which (by a narrow margin) led to the best overall

result pooled across horizons. The relative scores indicate that, pooled over all horizons, most

models were able to reduce the error of the uncorrected time series (FrozenBaseline) by

roughly 80% (relative WIS of 0.2), while the ILM model achieved a reduction of about 90%

(relative WIS 0.1). It is notable that ILM achieved almost constant improvements across hori-

zons, while the improvements achieved by the other models were quite modest for horizons

further into the past. To allow for a more detailed exploration of results we provide a display of

the distribution of model ranks across individual nowcasting tasks (Fig A7 in S1 Appendix)

and of scores over time (Fig A11 in S1 Appendix). Similarly to [17], we find that the

MeanEnsemble reliably achieved above-average performance across all locations and age

groups (almost never ranking in the bottom). Additionally, stratified results by day of the week

are shown in Fig A8 in S1 Appendix. For KIT and SZ, which did not account for weekday

effects, we indeed observe performance differences for different weekdays. Fig A9 in S1

Appendix further shows nowcasts by KIT as issued on different weekdays, with a tendency for

Fig 6. Nowcasts with a horizon of 14 days back. Nowcasts of the 7-day hospitalization incidence as issued 14 days after the respective date. Nowcasts

are shown for the German national level.

https://doi.org/10.1371/journal.pcbi.1011394.g006
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Fig 7. Score-based performance. Shown is the mean WIS for the national level (top) and averaged across states (middle) and age groups (bottom). The

first panel in each row displays the average across all horizons (on the absolute and relative scales). The decomposition into nowcast spread,

underprediction, and overprediction (see Section 2.5) is represented by blocks of different color intensities. The absolute error is indicated by a diamond

(�). The second and third panels in each row show the mean WIS and the relative WIS, respectively, stratified by horizon.

https://doi.org/10.1371/journal.pcbi.1011394.g007
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underprediction on Mondays and many cases of overprediction on Fridays or Saturdays. As

seen in Fig A10 in S1 Appendix, ILM on the other hand did not exhibit any such differences

by weekday.

Figs A4 and A5 in S1 Appendix summarize results in terms of mean absolute errors of pre-

dictive medians and mean squared errors of predictive means in the same format as in Fig 7.

The ILM model again performed favorably. Among the remaining models, RIVM shows good

performance, in many cases outperforming the ensembles. The KIT model, on the other

hand, which performed relatively well on WIS, achieved below-average results.

Empirical coverage rates of the 50% and 95% prediction intervals are displayed in Fig 8.

Results are stratified by aggregation level (national, states, age groups) and nowcast horizon

(-28 days to 0 days). The best calibration was achieved by the ILM model, with coverage rates

close to the nominal levels at most horizons. Only for short horizons of -10 to 0 days coverage

dropped moderately. In contrast, the KIT model achieved higher coverage rates for horizons

between -4 and 0 days, which considerably dropped for nowcasts further into the past. All

other models were overconfident and did not reach the respective nominal coverage levels. As

for KIT, coverage was lower for nowcasts further back in time, for some models to a point

where only a few observations were covered at -28 days.

To assess the impact of retrospective fill-in nowcasts for missing submissions, we recom-

puted relative WIS values using only real-time submissions and the pairwise comparison

scheme from [17]. As can be seen from Table A5 in S1 Appendix the results barely change,

indicating that fill-in nowcasts did not have a relevant impact on overall scores. Furthermore,

as designated in the study protocol, we reran the evaluation using hospitalization incidences

per 100,000 population rather than absolute hospitalization counts. The results are displayed

in Fig A12 in S1 Appendix and do not differ qualitatively from those in Fig 7.

As we consider the nowcasts for the most recent days the most relevant from a public health

perspective, we conclude with an additional non-preregistered summary of scores across hori-

zons -7 to 0 days. Fig 9 shows the average weighted interval scores and interval coverage rates.

For this subset of nowcasting tasks, the MeanEnsemble outperformed the individual models

in all three categories, closely followed by ILM. The KIT model reaches close to nominal cov-

erage, while the other models are again overconfident.

3.4 Interpretation of evaluation results

As some of the presented results may seem contradictory at first sight, we provide some addi-

tional interpretations. Firstly, the opposing trends in absolute and relative WIS across horizons

in Fig 7 can be interpreted as follows. All nowcasts—including the FrozenBaseline—get

closer to the later observed final value as time passes and more complete data accumulates;

thus, the absolute WIS decreases. However, most models seemed to have more difficulties pre-

dicting the small number of late additions than the bulk of early additions, leading to higher

relative WIS. A possible explanation is that modelers needed to make a choice on which maxi-

mum delay to take into account. In light of Fig 3, the values of around 40 days as chosen by

most teams may have been too low and led models to ignore a non-negligible fraction of hospi-

talizations still to be added. As can be seen from Fig 5, the resulting bias got largely absorbed

in the overall uncertainty for same-day nowcasts. For the horizon of -14 days (Fig 6), on the

other hand, it caused a visible shift between nowcasts and final values, which likewise led to

insufficient coverage of prediction intervals.

The maximum delay chosen may also explain why the ILM model, which used a value of 80

rather than 40 days, was the best-performing individual method. However, the model also dif-

fered from the others in its general approach, using a regression on case incidences in addition
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Fig 8. Empirical coverage of the prediction intervals. Shown is the coverage for the national level (top), across states (middle), and across age

groups (bottom). The first panel in each row displays the overall coverage of the 50% and 95% prediction intervals across all horizons. The second

and third panels in each row show the empirical coverage of the 50% and 95% prediction intervals, respectively, stratified by horizon. The dashed

lines indicate the desired nominal levels.

https://doi.org/10.1371/journal.pcbi.1011394.g008
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to preliminary hospitalization numbers. We will attempt to shed more light on this aspect in

Section 3.6. As a last relevant difference to most other models, the ILM approach based uncer-

tainty intervals directly on the errors of past real-time nowcasts, an approach close to the idea

of conformal prediction [39]. A similar approach was also taken by the KIT model (see Section

E in S1 Appendix). The fact that these two models achieved the best calibration indicates that

this approach may quantify nowcast uncertainty more realistically than standard model-based

uncertainty intervals.

The decomposition of the WIS into components for spread, overprediction, and underpre-

diction [21], displayed in the left column of Fig 7, is informative on the challenges the different

approaches faced. Penalties for underprediction make up a very large part of the overall scores

for all models except for ILM. This confirms the observation of a downward bias from Fig 6.

The best-performing individual models ILM and KIT issued predictive distributions with

higher variability than the other models, indicated by the larger spread component. As can be

seen from the diamond symbols in Fig 7 and in more detail from Fig A4 in S1 Appendix, the

KIT model did not issue particularly accurate point predictions (predictive medians). A likely

reason is the lack of weekday effects, see Figs A8 and A9 in S1 Appendix. Its lower WIS values

were primarily a result of better uncertainty quantification.

3.5 Impact of unusual reporting patterns and changes in virus properties

The nowcasting models in our study assumed either that the probability of hospitalization

given a positive test remains roughly constant (the ILM model) or that the delay distribution

in hospitalizations does so (all other models). In Fig 10, we therefore show four examples

Fig 9. Scores and coverage on short horizons. Shown are the mean WIS with absolute errors (top) and the empirical coverage (bottom) across

horizons from 0 to -7 days.

https://doi.org/10.1371/journal.pcbi.1011394.g009
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where these assumptions were violated. In mid-November 2021, hospitals in Saxony were

overwhelmed [40], leading to disruptions in the reporting system. As a consequence, initial

reporting completeness dropped rather suddenly. This led the majority of models to underpre-

dict, leading to an ensemble nowcast that was too low, as illustrated in Fig 10A. We note that

in this instance we were aware that nowcasts for Saxony were likely unreliable and issued a

warning on our website. Fig 10B shows an unusual reporting pattern from the state of Bremen

from early 2022. Here, a relevant number of reported hospitalizations got removed from the

record on 12 and 13 January, presumably due to faulty initial reporting. Nowcasts issued up to

11 January were thus considerably above the final data version from 8 August. Fig 10C and

10D show issues arising after the Easter weekend of 2022, when initial reporting was consider-

ably lower than usual. As can be seen in Fig 10C, this led to too low ensemble nowcasts on

Tuesday, 19 April. Also, over the following days, it seems to have caused issues in the fitting of

certain models. As an example, Fig 10D shows the Epiforecasts output for Lower Saxony

on 20 April. It features an excessively wide prediction interval, likely as a reaction to rapidly

Fig 10. Examples of time points when delay distributions were subject to sudden changes. (A) Saxony, nowcast made on 22 November 2021:

overwhelmed hospitals lead to severe underreporting and thus too low nowcasts. (B) Bremen, nowcast made on 11 January 2022: some incorrect entries

got removed from the records, resulting in a downward correction and thus too high nowcasts. (C) Germany, nowcast made on 19 April 2022:

following the Easter weekend with lower than usual initial reporting coverage, nowcasts were considerably too low. (D) Lower Saxony, nowcasts made

on 20 April: after the Easter weekend, Epiforecasts issued very wide nowcast intervals, presumably due to numerical problems. The dashed lines

indicate the time when the nowcasts were made. (Incidentally, in example (A), the horizons of 0 days and 1 day back were missing, see Table A3 in S1

Appendix).

https://doi.org/10.1371/journal.pcbi.1011394.g010
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shifting delay distributions in the previous days. The MeanEnsemble, shown in green, was

strongly affected by this unusual behavior of a member nowcast, while the more robust

MedianEnsemble remained unaffected.

A last noteworthy particularity is the behavior of the ILM model in January 2022, following

the transition from the Delta to the Omicron variant. The Omicron variant is known to have

lower clinical severity than the Delta variant [41], meaning that during the transition the ratio

of hospitalizations and confirmed cases gradually declined. For the ILM model, which assumes

this ratio to remain constant, this led to an upward bias in nowcasts, which can be discerned

from Fig 5 as an upward bump not present in the other models.

3.6 Retrospective variations of models

We next aim to shed some more light on how different modeling choices impact performance

and how learnings from our study period facilitated the improvement of methods. To this end,

we assess the performance of four variations of previously discussed models, which were

applied retrospectively:

• The LMU team implemented a new approach to generate uncertainty intervals, which like

the ILM and KIT methods is based on past nowcast errors.

• The RKI team obtained nowcasts by aggregating over finer strata and originally assumed

independence across strata to generate prediction intervals at the aggregate level. This was

changed to an assumption of strong correlations across strata, leading to wider prediction

intervals.

• The KIT team reran its model with an increased maximum delay of 80 days, in contrast to

the 40 days used in real time. This also required an increased length of training data, which

was set to 100 days.

• Conversely, the ILM model was rerun with a maximum delay of 42 rather than 84 days,

which is comparable to the maximum delays used by the remaining models. This was not

meant as an improvement but as an adjustment to assess the impact of longer/shorter maxi-

mum delays.

The results are shown in Fig 11. They indicate improvements across all aggregation levels

and horizons for the revised LMU, RKI, and KIT models. In particular across age groups, the

KIT model now came close to the performance the ILM model achieved in real time. The cov-

erage proportion of prediction intervals was increased for all three models, with the updated

KIT model even leaning towards over-coverage (too wide intervals). The LMU and RKI mod-

els, on the other hand, remained overconfident. Decreasing the maximum delay in the ILM
model slightly reduced the overall performance on the national level, while average scores

across age groups remained almost unchanged. The score decomposition shows that the

adjusted model tended to underpredict (similarly to the other models), while the original

model tended to overpredict. Possible explanations will be discussed in Section 4.

3.7 Sensitivity of results to definition of final data

In our study protocol, we specified that the final state of the time series to be predicted was the

version available on 8 August 2022, i.e., 100 days after the end of the study period. However, as

we became aware of the fact that data revisions could occur with considerably longer delays

than initially expected, we performed a sensitivity analysis to assess the impact of this choice.

Fig 12 shows how the average WIS aggregated over horizons and different levels of stratifica-

tion (i.e., the results shown in the left column of Fig 7) change when using a different data
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version as the final one. It can be seen that the average scores of all models, except for ILM,

increase in parallel as newer data versions are used. The increase for KIT is slightly more grad-

ual. This is because these models tend to underpredict, and as time passes and more additions

are made to the data, this problem is exacerbated. For the ILM model, which tends to overpre-

dict, average scores initially decline and then plateau, leading to an even more pronounced

lead relative to the other models. As can be seen from Fig A6 in S1 Appendix, using a later data

version for evaluation, ILM ultimately also surpasses the ensemble when restricting results to

horizons 0 to 7 days back.

The original target allowed revisions until the final date of 8 August 2022, meaning that for dif-

ferent reference dates, adjustments could be made over time periods of different lengths (e.g., the

hospitalization incidence for the first reference date in our study period could be completed over

a longer time than that of the last reference date). Denoting the hospitalizations for reference date

t reported with a delay of d days by xt,d, the nowcasting target yt can formally be written as

yt ¼
X6

i¼0

Xtmax � ðt� iÞ

d¼0

xt� i;d with tmax ¼ 2022-08-08;

where the first sum represents a 7-day window ending in date t and the second sum accumulates

the hospitalizations with reference date t − i reported until tmax.
An alternative to choosing one specific data version as the nowcast target is a “rolling”

approach that considers delayed reports for each reference date t up to a specified maximum

delay D. The nowcast target zt then becomes

zt ¼
X6

i¼0

XD

d¼0

xt� i;d:

Fig 11. Evaluation of retrospective model variations. Comparison of variations of the ILM, KIT, LMU, and RKI models and the same models as

submitted in real time. Shown are the mean WIS with absolute errors (top) and the empirical coverage (bottom). Results are comparable to those from

Figs 7 and 8.

https://doi.org/10.1371/journal.pcbi.1011394.g011
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In this case, the data for each reference date has the same amount of time to be revised. See Fig

A3 in S1 Appendix for an illustration of these differently defined target time series. Fig 13

shows the results this approach yields for a maximum delay of 40 days, which corresponds

roughly to the maximum delay used by most teams. As this target definition is better aligned

with the practical implementations teams chose, it is not a surprise that the mean WIS values

are lower and coverage is higher. The ILM model (in its adjusted version with a maximum

delay of 42 days) now shows quite similar performance to the other approaches, with a ten-

dency to overpredict. The score components for the other models are more balanced and the

ensemble nowcasts clearly lead the field. Retrospectively, we think that this definition of targets

might have been a more coherent and operationally meaningful approach, see Section 4 for a

discussion.

4 Discussion

In this paper, we presented results from a preregistered study to evaluate probabilistic real-

time nowcasts of the 7-day hospitalization incidence in Germany from November 2021 to

April 2022. We found that all models were able to correct for a large part of the biases caused

by reporting delays. Further, we identified calibration of uncertainty intervals as a major chal-

lenge, as the empirical coverage rates achieved by most models were considerably below the

respective nominal levels. Reasons for insufficient coverage likely include too inflexible model-

ing of dispersion and delay distributions, and also the fact that most teams truncated delay dis-

tributions at a too short maximum delay. The exception was the ILM model which also stood

Fig 12. Sensitivity of the scores to the chosen “final” data. Shown is the mean WIS computed with different data versions as the target. The version

prespecified in the study protocol is 8 August 2022, marked by a vertical line. Top left: national level. Top right: averaged over states. Bottom left:

averaged over age groups. The bottom right panel overlays the national-level data as of 8 August and 31 December to illustrate the importance of late

revisions.

https://doi.org/10.1371/journal.pcbi.1011394.g012
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out in terms of score-based performance for the national level and across age groups, and to a

lesser degree the KIT model. These two models incorporated uncertainty quantification using

past real-time nowcast errors which proved advantageous when compared to the standard

model-based uncertainty intervals.

Our analyses from Sections 3.6 and 3.7 suggest that the success of the ILM model arose

from the interplay of two aspects. On the one hand, it used a maximum delay that is longer

than those of the other models, but, judging by Fig 3, still somewhat too short. On the other

hand, the model appears to have a tendency to slightly overpredict the number of hospitaliza-

tions added up to a given maximum delay. As these two aspects work in different directions,

the resulting nowcasts are overall well-aligned with the defined target (data version from 8

August 2022). Whether nowcasts taking into account case incidence inherently perform better

needs to be explored in future work. A combination of different data streams may reduce the

dependence of nowcasts on certain assumptions, such as the constant completeness of initial

reports. The Epiforecasts and SU models have been extended in this direction. In an

application to COVID-19 deaths in Sweden [42], the inclusion of reported cases and intensive

care admissions as leading indicators indeed led to improved predictions.

The MeanEnsemble, along with the KIT model, performed best across federal states (for

which the ILM model did not provide nowcasts). Also, it showed very good relative perfor-

mance for horizons -7 to 0 days, as well as for the revised “rolling” target. We therefore con-

clude that ensemble approaches are a promising avenue in order to improve disease

nowcasting. However, our case study also illustrates a limitation of unweighted ensembles.

Fig 13. Performance based on the alternative target with a maximum delay of 40 days. Shown are the mean WIS with absolute errors (top) and the

empirical coverage (bottom) computed with respect to a revised target defined as the number of hospitalizations reported with a delay of up to 40 days.

For the ILM model we used the revised model with a maximum delay of 42 days and also recomputed the ensembles with these revised nowcasts. For

the other models, the assumed maximum delays are approximately aligned with the redefined target, see Table 1.

https://doi.org/10.1371/journal.pcbi.1011394.g013
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The ensemble may have been imbalanced in the sense that a majority of its members followed

similar strategies and had similar weaknesses (specifically a downward bias due to neglecting

very long delays). A weighted ensemble could have capitalized on the strengths of the ILM
model, which followed a conceptually different approach and could have served as a counter-

balance. However, it is not obvious how ensemble members can be assigned weights in real

time in a nowcasting setting. This represents an interesting future research area.

A difficulty we encountered in terms of our study design is that results depend on which

data version is used as the “final” one (i.e., the values against which nowcasts are evaluated;

Section 3.7). As the choice of 8 August 2022 was preregistered and known to all participating

teams, the prediction task was well-defined, and we stuck to this choice for our main analysis.

Nonetheless, this definition, which was based on the assumption that data would be stable

after 100 days, turned out not to be ideal in retrospect. In particular, it implies that for the first

day of our study period (22 November 2021), retrospective additions could accumulate over

259 days, while for the last (29 April 2022) this was restricted to 100 days. Defining the nowcast

target in a “rolling” fashion as explored in Section 3.7 might have been a more appropriate

choice. This would have been a more clearly defined modeling task, and modelers would not

have had to choose a maximum delay for their models themselves.

The question of whether additions should be ignored from a certain maximum delay

onward is closely linked to what these additions actually mean and whether they are relevant

from a public health perspective. As mentioned in Section 2.1, the 7-day hospitalization inci-

dence also contains hospitalizations that are not primarily due to COVID-19. These hospitali-

zations have been found to represent a considerable fraction [43]. It seems plausible that very

long delays are due to large time differences between the positive test and hospital admission,

in which case the share of hospitalizations that are not primarily due to COVID-19 may be

high. Also, it can be questioned whether hospitalizations a long time after a positive test are rel-

evant for the real-time assessment of healthcare burden. Both aspects strengthen the case for

limiting nowcasting to hospitalizations reported up to a carefully chosen maximum delay.

The definition of the frozen values used by the Robert Koch Institute when applying legally

defined thresholds can be seen as a strong form of discarding delayed hospitalizations. It has

the advantage of simplicity and unambiguity, which are required for actionable guidelines in a

legal context. After all, it seems difficult to integrate complex statistical methods with many

tuning parameters into a binding legal document. An important downside, however, is that

the same frozen value can mean rather different things at different time points and in different

locations, due to differences in initial reporting completeness. We thus argue that outside of

purely legal considerations, nowcasts can provide a more thorough picture of current

developments.

All nowcasts generated within the presented collaborative project are available in a public

repository (see data availability statement). Time-stamped versions of hospitalization data as

available at different points in time can be retrieved from the commit history of the repository

as well as directly from Robert Koch Institute [23]. We hope that this data can be of use as a

benchmarking system for future nowcasting methods. In this context, we note, however, that

the present paper is a comparison of nowcasting systems, which are given by a statistical model,

but also various additional analytical choices, in particular the assumed maximum delay and

the length of training data used at each time point. These decisions can have a substantial

impact on predictive performance (see Section 3.6) and are easier to get right in hindsight than

in real time. To ensure a fair comparison, it may therefore be reasonable to use the “rolling”

target as discussed in Section 3.7.

The nowcasts produced for this project were routinely displayed by numerous German-

speaking media, including Die Zeit, Neue Zürcher Zeitung and Norddeutscher Rundfunk.
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While some displays were limited to the point nowcasts (predictive medians), others made the

predictive uncertainty clearly visible. This development should be further encouraged by sci-

entists advising the media on the display of epidemiological data and models. In this context,

we also note that data journalists were overall hesitant to use the ensemble nowcasts and prior-

itized individual nowcasts based on methods described in peer-reviewed publications. Inter-

estingly, the best-performing models in our study were the MeanEnsemble and the yet

unpublished ILM approach. However, our analyses show that all compared approaches pro-

vided a good qualitative impression of current incidence trends and levels, and we consider

each of them a helpful addition and improvement over showing uncorrected data.

To conclude, we highlight some advantages of the collaborative nowcasting approach

adopted in our study. The ensemble nowcast not only showed strong relative performance but

was also the most consistently available nowcast, with almost all other models unavailable due

to technical problems on some days during the study period. Additionally, our collaborative

approach fostered frequent exchange and interaction among modelers via bi-weekly coordina-

tion calls, creating a valuable platform for knowledge sharing, feedback, and collaboration on

methodological advancements. Through these interactions, the project facilitated model

improvements, as seen for the LMU, RKI and KIT approaches in Section 3.6, and fostered dis-

cussion on new methodological topics beyond the scope of the present article. For example,

the Epinowcast community (https://www.epinowcast.org/) was established to build and assess

real-time analysis tools, publically available in the R package epinowcast [26]. The benefits

of our collaborative approach demonstrate the importance of ongoing communication and

cooperation in the development and refinement of epidemiological models, particularly dur-

ing rapidly evolving public health crises such as infectious disease outbreaks.

Supporting information
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