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Abstract

The full life cycle of Toxoplasma gondii cannot be recapitulated in vitro, and access to certain stages, such as mature tissue cysts 
(bradyzoites) and oocysts (sporozoites), traditionally requires animal experiments. This has greatly hindered the study of the 
biology of these morphologically and metabolically distinct stages, which are essential for the infection of humans and animals. 
However, several breakthrough advances have been made in recent years towards obtaining these life stages in vitro, such as the 
discovery of several molecular factors that induce differentiation and commitment to the sexual cycle, and different culture  
methods that use, for example, myotubes and intestinal organoids to obtain mature bradyzoites and different sexual stages of the 
parasite. We review these novel tools and approaches, highlight their limitations and challenges, and discuss what research  
questions can already be answered with these models. We finally identify future routes for recapitulating the entire sexual cycle  
in vitro.
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Introduction
Apicomplexan pathogens have evolved complex life cycles  
featuring finely balanced persistent and replicative stages, 
including both asexually proliferating forms and sexual recom-
bination, to ensure optimal spread of the parasite. Experimen-
tal access to these stages is paramount to study the pathogenic  
mechanisms and to develop urgently needed therapies and  
vaccines. The most widespread member of the Apicomplexa is 
Toxoplasma gondii, causative agent of toxoplasmosis, which  
has a broad host range and can infect any warm-blooded ani-
mal and humans (for review see 1,2). An estimated 25% of the 
world’s population is infected with the parasite, with large local  
variations3. While T. gondii infections are generally control-
led in immunocompetent individuals, the parasite establishes 
chronic, lifelong infections that pose the risk of reactivation 

and severe disease when the immune system becomes compro-
mised. There is currently no approved therapy to clear chronic  
infections4.

Transmission occurs mostly through consumption of raw or 
undercooked meat containing tissue cysts or by ingestion of 
sporulated oocysts, the environmental stage of T. gondii, present 
in contaminated water, soil, or unwashed produce (Figure 1A).  
Following infection, the transmissive parasite stages, bradyzoites 
and sporozoites, invade the intestinal epithelium, convert into 
the fast-replicating tachyzoite stage, and disseminate through-
out the host (Figure 1B, C). Parasites then differentiate into  
bradyzoites within tissue cysts that are found primarily in the 
eye, brain and muscle tissue (Figure 1A). In addition to this asex-
ual replication, sexual recombination can take place in felines, 

Figure 1. Life cycle of T. gondii and factors with known contribution to stage conversion. (A) Upon invasion of any nucleated host 
cell tachyzoites, bradyzoites or sporozoites form a parasitophorous vacuole surrounded by a membrane (PVM) and eventually multiply and 
disseminate as tachyzoites. In vitro, human foreskin fibroblasts are most frequently used for tachyzoite cultivation. The chronic bradyzoite 
stage forms in tissue cysts in the eye, brain, and muscle tissue. In vitro, bradyzoite formation is induced by various stresses (e.g., alkaline cell 
culture medium pH 8.3; see text for additional stressors). Overexpression of BFD1, BFD2/ROCY1, deletion of MORC or inhibition of HDAC3 
induce bradyzoite formation in vitro. Bradyzoites can reactivate to tachyzoites, which is attenuated by elF2⍺ dephosphorylation inhibitors 
salubrinal (SAL) and guanabenz (GA)5. Several transcription factors of the Apetala 2 (AP2n) family are involved at various steps. (B) After 
ingestion of tissue cysts, bradyzoites invade the intestinal epithelium of intermediate hosts and differentiate to tachyzoites. These pass the 
intestinal epithelium and disseminate throughout the host. (C) Only in the intestinal epithelium of felines, where linoleic acid content is high due 
to a natural delta-6-desaturase (D6D) deficiency, can bradyzoites commence with the sexual developmental pathway. Merozoites replicate 
asexually, commit to a sexual fate, give rise to male and female gametocytes, eventually leading to oocyst formation. Further currently 
unknown factors (“?”) might be required. Similar conditions can be mimicked in mouse intestinal organoid-derived cells when D6D activity 
is inhibited and, in addition, linoleic acid is supplemented6. Inhibition of MORC or HDAC3 induce sexual stage-specific gene expression in 
tachyzoites (dashed line). (D) Eventually, oocysts are shed with the feline’s feces and sporulate in the environment under aerobic conditions. 
Oocysts are resistant to environmental stressors such as ultraviolet irradiation, salinity, high and low temperatures, and desiccation.
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the definitive hosts (Figure 1C)1. The sporozoite-containing  
oocysts formed during this process are shed into the environ-
ment with the feces and can withstand harsh environmental 
stresses such as ultraviolet irradiation, salinity, high and low tem-
peratures, and desiccation, allowing them to remain infectious  
for months and even years (Figure 1D)7.

While tachyzoites can be readily cultured in vitro, research 
of persistent infections and sexual development, as well as 
access to mature bradyzoites and oocysts, have traditionally  
depended on animal infections8. While many aspects of the 
disease can only be recapitulated in animal models, ethical 
concerns, especially the use of cat infections for oocyst gen-
eration, have resulted in increased efforts to establish alternative  
in vitro systems where appropriate. Cell culture models would 
offer additional advantages, such as greater control over experi-
mental parameters, reproducibility, and scalability. They also 
allow the use of methods that are difficult to perform in vivo,  
for example, live-cell imaging or metabolomic studies, which 
ask for very specific conditions. It has resulted in remarkable 
progress in recent years, which is highlighted in this review. Our 
main focus will be on cell culture systems and in vitro meth-
ods to produce life stages in sufficiently high yield to serve as  
alternative sources for animal-derived parasite forms. It is 
noteworthy that the development of these models has led to 
increased understanding of the mechanisms of bradyzoite  
formation and sexual development itself.

Culture models for tachyzoites
Given that T. gondii is able to infect virtually any nucleated cell 
and has such a broad host spectrum, it is not surprising that the 
fast-replicating tachyzoite stage of T. gondii can be readily main-
tained in vitro in almost any nucleated cell of warm-blooded  
animals (for review see 9). Indeed, the first report of cultivat-
ing T. gondii in avian embryos and cell culture dates back to  
192910. A decade later, the RH strain was isolated11 and is still 
the primary strain used for experiments in many labs. But it 
was not until the 1950s that the documented in vitro culturing  
of T. gondii began to increase considerably12. Today, for ease of 
use, contact-inhibited primary human foreskin fibroblasts (HFF) 
are most commonly used for propagation and maintenance  
of T. gondii tachyzoites, which are simply passed from one cul-
ture flask to the next (lytic cycle) (Figure 2A). Little efforts 
have been invested in recent years to improve tachyzoite cul-
ture systems. A 3D culture system has been recently described,  
in which infected VERO cells were subsequently embedded 
in a collagen matrix, thereby allowing the parasite-containing  
vacuole to expand in all three dimensions13. However, practi-
cal issues with this approach limit its usefulness compared 
to conventional 2D cultures. The apparent non-selectivity of 
host cells by tachyzoites is in contrast to the preference of 
bradyzoites for non-dividing neurons and muscle cells and the 
commitment to the sexual cycle exclusively in feline intestinal  
cells. 

Importantly, and known for decades, continuous in vitro culti-
vation in the lab leads to enhanced host-independent virulence 
features like accelerated lytic growth, but the exact reasons 
for this were ill-defined14–16. A recently described “evolve and  
resequencing” method has now shown that these changes are 
likely the result of transcriptional reprogramming driven by the 
extracellular milieu that tachyzoites experience in vitro during 
the lytic cycle17. Still, tachyzoite cell culture models have been 
invaluable to our understanding of T. gondii biology, also mak-
ing it a model for other Apicomplexa, which are less easy to  
cultivate.

Culture models for bradyzoites
Bradyzoites are considered a quasi-dormant stage as they 
show reduced proliferation compared to tachyzoites, although 
some growth and replication within cysts occurs18. This  
quasi-dormancy is presumably a reason why bradyzoites do 
not respond to current therapies like pyrimethamine-sulfadi-
azine, which are effective against acute infections by target-
ing actively replicating forms4. The metabolism in bradyzoites 
is remodeled, likely to cope with nutrient limitations, which 
may be another factor explaining the tolerance to antiparasitic  
treatments19,20.

Generation of bradyzoites in vivo
For experimental purposes, bradyzoite formation can be initi-
ated in vivo by infecting animals, most commonly mice. The 
host genetic background and parasite strain can have a major 
impact on the course of infection and the establishment of  
chronicity9. Virulent type I strains grow rapidly in mice and are  
less capable to transform into bradyzoites than slow-growing 
type II and III strains21,22. Therefore, mainly type II strains like  
ME49 are used for cyst production in mice23,24.

Mice are orally infected by feeding tissue cysts from prior  
infections (usually isolated from brains of infected mice); with 
oocysts from cat feces, or by intraperitoneal (ip) injection of  
tachyzoites9. Importantly, it is long known ‒ but not appreci-
ated by all ‒ that the route of infection, in particular the use of 
tachyzoites for ip instead of bradyzoites for oral infection,  
can greatly influence disease outcomes in mice25–28. This is high-
lighted by a recent study which compared the course of tis-
sue cyst infection (i.e. no tachyzoites were used), delivered 
either orally or via ip injection, in the C57BL/6J mouse model29.  
The authors concluded that ip-infected mice showed more  
severe signs of disease, faster parasite dissemination and an 
altered immune response with regard to proinflammatory 
cytokines, which was observable throughout the entire infection. 
Moreover, differences in long-term microbial dysbiosis and in  
IFNγ production in the brain in the chronic phase could 
be seen. It is conceivable that similar or even greater  
differences might be observed by the use of ip injection of 
tachyzoites, which are much simpler to obtain and could be 
a reason for their frequent use. Consequently, a method for  
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in vitro cultivation of bradyzoites that functionally resem-
ble those obtained from infected animals would be advanta-
geous for unavoidable mouse experiments, notwithstanding the  
ethical issues.

In vitro bradyzoite differentiation reaches the next 
level
Spontaneous bradyzoite differentiation has been observed as 
early as the 1960s in numerous cells and cell lines, for exam-
ple HeLa cells, fibroblasts, astrocytes, neurons, and muscle cells  
(reviewed in 32,33), although the percentage of cyst forma-
tion has rarely been reported or was very low. A notable excep-
tion was a Brazilian isolate (EGS), which after four days of 
culture in LLC-MK2 epithelial kidney cells showed more 

than 70% of cyst-like structures positive for early bradyzoite  
markers34. A later report35 attributed this ‘spontaneous’ behav-
ior to a mutated transcription factor (AP2IV-4; see also 
below) known to be involved in the tachyzoite ⇔ bradyzoite  
switch36.

A variety of differentiation-inducing stresses for in vitro cul-
tures have been sought for and identified. They have been  
described in several recent reviews37–39. Arguably, the most fre-
quently used trigger is cell culture medium with an alkaline 
pH (8.3). Other factors include heat shock (43°C40), nutrient 
starvation (arginine41, pyrimidine via CO

2
 depletion42), dep-

rivation of low-density lipoprotein-derived cholesterol43, and  
metabolic inhibitors (e.g. oligomycin44). In addition, the cell 

Figure 2. Examples of cell culture systems for in vitro growth of different T. gondii stages. (A) Proliferating tachyzoites can be 
propagated and maintained in human foreskin fibroblast cultures. Immunofluorescence images show GT1 strain parasites expressing YFP 
(green) in the cytoplasm, forming typical rosette assemblies in the parasitophorous vacuole (PV) within the host cell. Host and parasite 
nuclei are stained with DAPI in blue. (B) In vitro tissue cysts in human myotube cell cultures 28 days post infection with Pru strain parasites 
expressing GFP under the control of bradyzoite-specific LDH2 promoter30. Immunofluorescence images depict bradyzoite markers CST1, 
p21, and CC2, decorated by DBA or specific antibodies (for details see text). (C) Human intestinal organoid-derived monolayers (ODMs) 
were generated as described in 31 and were infected with in vitro-derived Pru bradyzoites from myotube cultures, as shown in B. Projections 
of immunofluorescence images of a z-stack, showing that the bradyzoites are able to invade the intestinal epithelial cells, replicate, and 
differentiate into tachyzoites, as indicated by SAG1 expression over time (magenta). DAPI-stained nuclei in blue. Scale bar = 20 µm. Inserts 
show an enlarged view of boxed areas with scale bar = 5 µm. (D) Example of a PV 96 h after bradyzoite infection of intestinal ODMs as in C, 
harboring individual parasites expressing the late bradyzoite marker p21 (green) among cells expressing only SAG1 (magenta). It most likely 
reflects tachyzoite-to-bradyzoite reconversion.
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cycle state of the host cell influences bradyzoite formation. 
For example, increased expression of human cell division  
autoantigen-1 (CDA1), which can be upregulated by a trisubsti-
tuted pyrrole termed ‘Compound 1’, has been shown to trigger  
bradyzoite development45. Moreover, bradyzoite formation 
is observed in cell cycle-arrested host cells like terminally  
differentiated myotubes, but not in their proliferating  
myo-blast form33,46. Notably, although the in vitro cysts obtained 
using these triggers resemble in vivo cysts in many respects, for  
example in the formation of a cyst wall that can be stained with 
Dolichos biflorus agglutinin (DBA) (Figure 2B) and in the 
expression of major bradyzoite antigens (e.g. BAG1), several  
differences have been reported47. One study compared tran-
scriptomes of 4-day-old in vitro with 21-day-old in vivo  
bradyzoites and identified differential expression of numer-
ous genes47. Nevertheless, the use of (alkaline) stress to trigger 
bradyzoite differentiation is easy to establish in a laboratory and 
provides key features of early bradyzoites. This is reflected in 
numerous studies, including recent ones, in which this method 
has been employed to examine, for instance, the role of Ca2+ 
in bradyzoite egress from cysts48 or the role of pantothenate  
biosynthesis in the two parasite stages49.

The physiological triggers in the natural host are less well 
known, yet we are beginning to understand how T. gondii and 
the closely related species Hammondia hammondi and Neospora  
caninum are able to sense environmental stress signals by 
comparing the different “inducers” between these species50  
(reviewed in 39). One important mechanism is an inte-
grated stress response involving eukaryotic translation ini-
tiation factor 2 (eIF2) kinases that respond to stresses by 
phosphorylating TgIF2. This dampens global translation and 
promotes preferential translation of mRNA involved in stress  
remediation37,51.

Stage conversion to bradyzoites is accompanied by differen-
tial gene expression involving various factors of transcrip-
tional regulation that can also be exploited as tools to turn on  
differentiation. The Myb-like transcription factor ‘Bradyzoite 
Formation Deficient 1’ (BFD1) was recently identified in a 
genome-wide CRISPR/Cas9 screen as a central component 
of this regulatory network52. BFD1 binds to transcriptional 
start sites of many genes upregulated in bradyzoites and is 
both sufficient and necessary to drive tachyzoite-to-bradyzoite  
conversion52. This is in contrast to another set of transcrip-
tion factors, proteins of the Apetala 2 (AP2) family, which 
are involved in many developmental processes in T. gondii  
(reviewed in 53; see also below). However, none of those  
individual factors has such a broad regulatory effect on 
bradyzoite differentiation as BFD152. BFD1 was therefore 
termed “the master regulator”52. Following this seminal work, the  
regulatory network of BFD1 has been studied in more detail, 
and two laboratories have now independently provided evi-
dence for a zinc finger motif-containing protein (ToxoDB ID  
TGME49_311100/TGVEG_311100) as a critical secondary 
effector of BFD1, which they named ‘BFD2’54 or ‘Regulator  
of Cystogenesis 1’ (ROCY1)55, respectively. A positive feed-
back loop was proposed, in which the novel factor promotes  
the translation of BFD1 transcripts under stress conditions and 

which in turn further increases transcription of BFD2/ROCY1, 
thereby reinforcing the fate commitment54. Conditional trans-
genic overexpression of BFD1 or BFD2/ROCY1 could there-
fore be another valuable experimental tool to induce bradyzoite 
differentiation, even in the absence of stress. However, for 
how long such parasite cultures are stable over time (beyond 
a few days) in HFFs, i.e., not being destroyed by replicating,  
non-differentiated tachyzoites in the system, has not been 
reported. From an experimental point of view, this devel-
opmental plasticity (tachyzoite ⇔ bradyzoite) has practical  
consequences and always requires attention (see below).

Long-term in vitro culture of mature cysts
Since it is long known that in vivo tissue cysts mature over 
time, reflected by thickening of the cyst wall and other changes 
in morphological features56, in vitro cysts that have only been  
cultured for a short period of days cannot be regarded as fully 
mature. Advances in cell culture systems and protocols have 
recently allowed prolonged cultivation times and thereby the 
formation of mature tissue cysts in primary rat brain cells57  
and immortalized human muscle cells21. These two studies  
suggest that long-term in vitro cultivation and maturation of  
tissue cysts apparently succeeds particularly well in cell types 
for which a tropism exists in the natural host, and which are  
terminally differentiated. This is consistent with previous 
results that had shown that infection of these cell types results 
in a high percentage of spontaneous differentiation (reviewed  
in 20).

Using a complex cell culture model consisting of several cell 
types found in the brain of newborn rats (including not only 
neurons but also astrocytes, glial cells and oligodendrocytes),  
Mouveaux et al. reasoned that the presence of these cell types 
would provide metabolic support for neurons57. Tissue cysts 
formed in infected cells were stable for at least 14 days and 
were orally infectious for mice. While this system is very  
promising to study aspects related to brain infections by  
T. gondii, it relies on the use of newborn animals and yields only 
limited amounts of cysts per rat brain (4x105 cysts). An alter-
native for such neurological host-parasite systems might be 
the recently described generation of human stem cell-derived  
brain neurospheres and cerebral organoids that also result in 
spontaneous bradyzoite generation58,59. However, quantita-
tive data like cysts numbers etc. were not reported. Primary  
mouse neonatal astrocytes have recently also been used 
to study bradyzoite recrudescence, i.e. the switch back 
to tachyzoites, resembling in vivo reactivation24. In con-
trast to fibroblasts, a second round of recrudescence and  
bradyzoite-to-bradyzoite replication has been observed in 
these host cells. However, the continuous use of this model 
required repeated infection of mice and re-isolation of tissue  
cysts24. Thus, in contrast to the model described below, this 
in vitro system is not primarily intended for the production of  
large amounts of bradyzoites.

Christiansen et al. have taken another route and infected  
differentiated, multinucleated human myotubes derived from 
an immortalized myoblast cell line (KD360) and obtained  
tissue cysts that were stable for at least 35 days (Figure 2B)19.  
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They exhibited gradually increasing tolerance to antiparasitic 
agents, resistance to pepsin digestion (both increased with cyst 
age) and were infectious to mice by the oral route, thus resem-
bling in vivo cysts. Surprisingly, the fast-growing T. gondii  
type I strain RH also formed bradyzoites to a large extent, although 
in other systems it usually fails to do so. Comparing the two  
culture systems in terms of animals involved, ease of handling  
and output of cysts, the myotube system has some advantages:  
it depends only on established cell cultures and is thus  
also scalable for metabolomic analyses and genetic screens  
(106 cysts/150 cm2 cell monolayer)19. Other immortalized 
human myoblast cell lines have been described and are com-
mercially available61, and preliminary experiments indicate that 
they perform similarly to KD3 cells (unpublished results). In  
the context of the 3R principles of use of animals (replacement, 
reduction, and refinement), model systems like these could 
replace mice as sources for mature tissue cysts in the future, 
especially for drug screens or experiments requiring ex vivo  
bradyzoites. However, these models should be optimized in 
terms of handling effort and the reduced use of animal-derived  
media components62 and expensive growth factors63.

Bradyzoite-specific molecular and ultrastructural markers
The quality of cell culture alternatives for the production of  
tissue cysts is governed in particular by the ability to gener-
ate mature cysts. However, the definition of “mature cysts” is  
not easy. Tissue cysts have been reported to form in the brains 
of mice between 5 and 6 days after ingestion of bradyzoites64.  
However, these tissue cysts continue to develop and gradu-
ally change their morphology, which has been demonstrated 
by electron microscopy56,65. During this process, they grow  
from small cysts containing as few as two bradyzoites to struc-
tures containing several hundred bradyzoites32. Increased 
numbers of micronemes and amylopectin granules have been 
detected. By four weeks after infection, the disappearance of  
organelle membranes and the spillage of bradyzoite cyto-
plasmic content into the cyst matrix has been observed. 
These cysts were described to contain a mixture of intact and 
degenerating parasites65. Ferguson and Hutchison report that  
tissue cysts remain relatively stable for many months in vivo56.

The development of tissue cysts is also accompanied by tran-
scriptional changes that allow monitoring of the degree of  
differentiation47,66. Common bradyzoite markers include CST1, 
a cyst-wall glycoprotein that can be stained by Dolichos biflorus 
agglutinin (DBA)67, and the cytoplasmic small heat shock  
protein BAG168,69. Both appear as early as day one following 
stress induction in vitro67–69. Lactate dehydrogenase 2 (LDH2)  
expression has been described at 48 h after alkaline stress70. 
The p21 antigen (TGME49_23844071) seems to be a marker for 
more mature bradyzoites as it has been reported to be absent  
in bradyzoites in vitro for at least 96 h after alkaline treatment40.  
Although these markers can provide a general indication of 
the degree of differentiation, they are not ideal to reliably 
assess the maturity of tissue cysts. A recent analysis of RNA 
sequencing data provided new molecular markers of mature 
bradyzoites that distinguish them from alkaline-stressed ME49  
parasites24. It allowed the authors to identify genes that are 

expressed at high levels in mature bradyzoites but are at lower 
levels in alkaline-stressed bradyzoites, indicating the degree 
of maturity. Lastly, the resistance of bradyzoites to gastric  
pepsin digestion, still regarded as an important difference 
between tachyzoites and bradyzoites, is not entirely given, 
at least when tested in conjunction with highly sensitive  
experimental in vivo infections72.

The maturity of tissue cysts may affect experimental outcomes 
and should be considered when designing experiments. For 
example, while three-day old in vitro cysts can already withstand  
short exposure to low doses of pyrimethamine73, the resistance 
to anti-parasitics gradually increases as tissue cysts mature19.  
Moreover, mature bradyzoites may differ with respect to the 
glycan-rich cyst wall (that becomes thicker in mature cysts) 
and the metabolically quiescent state. Consequently, the use of  
in vitro-generated bradyzoites that express common bradyzoite 
markers but are only several days old instead of mature tissue  
cysts can significantly influence the conclusion of experi-
mental results, for instance in drug development targeting  
bradyzoites. From a translational perspective, it should also 
be considered that even tissue cysts isolated from mice may 
not be fully comparable to those found in chronically infected 
humans or other species, not only because of different genetic 
background, but also because tissue cysts might persist for  
several decades in the tissues of infected individuals.

Towards the generation of in vitro oocysts
Bradyzoites are unique in that they can either revert to the  
tachyzoite stage or enter the sexual developmental pathway by 
developing into merozoites that expand asexually, progressing  
through five merozoite stages (A-E), and eventually form  
gametes that mate and develop into oocysts74 (Figure 1C). Com-
mitment to sexual stages and further development is accompa-
nied by profound transcriptomic changes, the analysis of which 
has greatly contributed to our understanding of the regulation 
of sexual development75,76 and of the makeup of oocysts and  
sporozoites77,78. However, the precise molecular characteri-
zation of the individual merozoite types as well as micro- 
and macrogametes has not yet been possible because these  
investigations rely on infected cats, which only a few labs use 
and which is problematic for ethical reasons. Detailed knowl-
edge is also hampered by the absence of methods to enrich and 
isolate sexually committed merozoites and separate game-
tocytes, as well as the lack of scalable in vitro models for  
the generation of sexual stages (for review see 79).

Interfering with epigenetic regulation in tachyzoites causes 
the expression of merozoite and sporozoite genes
Remodelers of histone acetylation as regulators of gene expres-
sion have been extensively studied in T. gondii because they are 
possible targets for therapeutic interventions (for review see 80).  
Differential expression of stage-specific genes was observed 
when treating tachyzoites with sublethal doses of inhibi-
tors of histone deacetylase 3 (HDAC3i) such as apicidin81–83,  
FR23522281,84,85, and recently MC174286. Although the gene 
sets induced by these compounds are a mixture of distinct 
life cycle stages, these inhibitors may serve as a tool to obtain 
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hybrids of sexual stages in cell culture. For instance, a sexual 
stage-specific mRNA expressed upon inhibitor treatment could  
be useful for convenient development and validation of prim-
ers used for reverse transcription quantitative PCR, without 
a need to obtain or isolate the respective parasite stage. As a 
surrogate for oocyst/sporozoite proteins, HDAC3-inhibited  
tachyzoites might be explored to identify appropriate proteins 
for vaccination87 or as a source for oocyst-specific diagnos-
tic antigens88. The inhibitors could conceivably also be of use  
for studying protein-protein interactions specific to sexual stages 
and oocysts, provided that proper controls are implemented. 
Available RNA-seq data may help to assess the relevance of 
these models, keeping in mind that RNA expression does not  
necessarily equal protein translation86.

A breakthrough in our understanding of T. gondii stage transi-
tion was the identification of a central epigenetic regulator of 
sexual stage commitment in T. gondii, the microrchidia (MORC)  
protein, which is part of a repressor complex that controls the 
expression of stage-specific genes84. Most of them are enteroepi-
thelial sexual stage (EES)-specific genes and, to a lesser extent, 
sporozoite- and bradyzoite-specific genes. MORC interacts  
directly with regulatory elements but also via recruiting and 
regulating additional factors such as AP2 transcription factors 
and HDAC3 (for review see 89). MORC was also discussed as 
a potential signaling hub able to process external cues89. These 
could be, for example, metabolic changes due to the intestinal  
environment. Considering the broad range of primary and  
secondary AP2 factors that are associated with and regulated 
by MORC, it seems likely that some degree of fine-tuning is 
required along the developmental trajectory, the understand-
ing of which would allow a directed recapitulation of these  
mechanisms to obtain the respective stages79.

Although a knockdown of MORC alone was not sufficient 
to produce infectious sporozoites84, knockdown or the use of 
HDAC3 inhibitors are undoubtedly valuable instruments that  
could help in obtaining some sort of sexual stages in vitro, 
thereby providing a source for stage-specific RNA, protein or 
metabolites as the main objectives rather than the “real” sexual  
stage (Figure 1C).

Use of intestinal organoids to mimic physiological 
conditions
Stem cell-derived organoids reflect, to a large extent, the cellular  
complexity of the tissues they are derived from and provide  
a potentially unlimited source for complex tissues like the  
intestine90. They were suggested early on as ’more complete’ 
in vitro host systems for many parasites, including T. gondii91,92.  
Their various cell constituents can be seeded as monolayers 
that display the polarization and electrophysiological proper-
ties of, for example, the intestinal epithelium, providing easy 
access to the apical surface for infection experiments with  
T. gondii31,93. This has also been achieved by generating  
collagen-supported epithelial sheets from intestinal organoids94.  
Immune cells and the microbiota are missing in these systems 
but can be added in co-culture approaches95,96. Several recent 
reviews have highlighted the great potential organoid-based  

systems will have as future cell culture models to either com-
plement or, depending on the research question, even replace  
animal experiments in T. gondii and other Apicomplexa97–100.

In contrast to asexual replication, the sexual development of  
T. gondii is restricted to the feline intestinal epithelium. This  
fact has puzzled T. gondii researchers for decades. Experiments 
with cell lines derived from the feline intestinal epithelium  
have provided evidence that infection with bradyzoites could 
lead to the development of type C and D schizonts101,102.  
A big step forward to explain this remarkable species specificity,  
despite T. gondii’s otherwise promiscuous host range, 
was reported recently by Martorelli Di Genova et al. in  
20196. The authors explained this strict specificity with high 
levels of linoleic acid accumulating in the feline intestine due 
to a general lack of delta-6-desaturase (D6D) in this animal  
family, an enzyme responsible for catalyzing the reaction 
of linoleic acid to linolenic acid. The excess of linoleic acid  
enabled sexual development for reasons yet to be determined8.  
Infection of feline and murine intestinal organoid-derived 
cell cultures with bradyzoites resulted in the expression of  
pre-sexual stage marker proteins, although no infectious oocysts 
could be observed6. In contrast, when inhibiting the D6D 
enzyme in mice and feeding a linoleic acid-rich diet, sexual 
stages were detected in the intestinal epithelium (Figure 1C).  
Eventually, these mice shed oocyst-like structures with their 
feces that sporulated and were infectious, although the yield 
was not very high. The obtained oocysts showed reduced resist-
ance to bleach and 2% sulfuric acid, compared to oocysts  
from cats, suggesting that additional factors are required for 
the formation of mature oocysts, like missing environmental  
(external) cues.

While intestinal organoids could be very promising tools for 
recapitulating T. gondii sexual stage development in vitro, the 
robustness of the method described by Martorelli Di Genova  
et al. in terms of, for example, organoid species or origin is  
currently unknown. Moreover, the reported yield of oocyst-like  
structures in cell culture was fairly low, and the use of a D6D 
inhibitor to suppress its activity in wildtype mice or organoids 
is both costly and potentially detrimental to the yield due to 
the possible side effects from the compound. Organoids from  
D6D knockout mice103 or from cats might thus be the better alter-
native. A potential pitfall for oocyst production lies in the fact 
that bradyzoites can revert to tachyzoites instead of entering 
the sexual developmental pathway (Figure 1C; Figure 2C, D).  
This could lead to host cell lysis and destabilization of the cell 
culture system and minimize oocyst yield. Two inhibitors of 
elF2α dephosphorylation, salubrinal (SAL) and guanabenz 
(GA), have been shown to prevent reactivation of bradyzoites 
and could be explored for the purpose of stabilizing such  
organoid cultures5.

Once robust oocysts-organoid culture systems have been devel-
oped, they may be used to screen the effect of various host  
factors, e.g., modified by gene knock-outs or pharmacological  
interventions, on sexual development. Likewise, the role of 
selected microbiota species could be studied (notably, germ-free  
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cats have been reported to shed oocysts upon infection104). The 
in vitro system would also permit monitoring stage progres-
sion “as it happens”, using live microscopy and transgenic  
parasites tagged with different fluorescent markers for the 
respective intermediate stages79. While cultivating and handling  
of organoids is resource-intensive and typically done  
in small culture volumes, the development of new protocols  
for large-scale organoid expansion105 shows that this bottleneck  
can likely be overcome in the future. Also, mouse  
sarcoma-derived extracellular matrices required for organoid 
culture are not only expensive and in exceedingly short sup-
ply but are also ethically questionable. However, the large orga-
noid research community is actively looking for synthetic  
alternatives (for review see 106). Taken together, as an unlim-
ited source of primary intestinal cells, organoids could form 
the basis for an in vitro oocyst production system that could 
replace cats as a source of oocysts for research in the (not too  
distant) future.

Concluding remarks
Although not all stages of the full life cycle of T. gondii have 
yet been recapitulated in vitro, considerable progress has been 
made in recent years in understanding its mechanisms and  
regulation. The tachyzoite stage can be readily cultivated, 
and new methods have been developed to obtain mature 
bradyzoites in very good yield that might already replace  
mouse-derived bradyzoites in many experiments. Combin-
ing all three stages into a single culture system, at least for 
analytical, microscopy-based experiments, will be challeng-
ing but not impossible, given the almost monthly advances in  
lab-on-a-chip approaches95,107.

Exploiting certain molecular factors like MORC or BFD1 to 
enable life cycle progression in vitro requires genetic manipula-
tions of the parasite. In contrast, small molecules such as those  
described above can be added directly to the medium, also 
allowing the analysis of, for example, newly isolated T. gondii  
strains. Obviously, the ideal cell culture system would func-
tion without these makeshift measures to avoid any potentially  
undesirable effects on the parasite. Currently, however, they 
can be of great benefit when the main goal is the production of  
stage-specific biomolecules rather than infective stages.

The ambitious goal to fully recapitulate the sexual cycle 
of Coccidia has recently been achieved for Cystoisospora  
suis108 and Cryptosporidium parvum109, two relatives of T. gondii.  
The enteropathogen C. suis completes its entire developmental  
cycle in one host (swine). Interestingly, host cells were only 
required for asexual replication and until commitment of mero-
zoites. Sexual development and fertilization readily took 
place in a cell-free culture system108, a finding supported by  
recent transcriptomic data110.

The life cycle development of C. parvum, which also takes place 
in a single host and requires less than three days, was modeled 
in vitro using organoid-derived “air-liquid interface” cultures.  
Remarkably, the system also supported genetic crosses and the 
generation of viable, recombinant oocysts109. In another recent 
study of C. parvum, live cell imaging was used to follow the 
entire life cycle in detail, including nuclear division of asexual  
and sexual stages of the parasite over multiple rounds of inva-
sion and egress111. It would be fascinating to visualize and 
study the life cycle of T. gondii using in vitro models in a  
similar fashion. For T. gondii, it is still unclear where fertiliza-
tion takes place. Since oocyst wall formation is observed inside 
the host cell, it is likely that microgametes enter the host cell to  
fuse with intracellular macrogametes74,112. Another interest-
ing cell culture technology developed for C. parvum that could 
be useful for culturing other Apicomplexa are hollow fiber  
bioreactors113. The system provides a biphasic environment 
that can mimic the different oxygen and nutrient availabilities  
at the apical and basal surfaces of intestinal cells. The system  
was specifically designed for long-term culture and could be 
particularly valuable for increasing the number of parasites  
obtained.
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