

ICTV VIRUS TAXONOMY PROFILE

Li et al., Journal of General Virology 2023;104:001869 DOI 10.1099/jgv.0.001869

ICTV Virus Taxonomy Profile: Lispiviridae 2023

Jun-Min Li^{1,*}, Fei Wang², Gongyin Ye³ and Sofia Paraskevopoulou^{4,*}

Abstract

Members of the family *Lispiviridae* are viruses with negative-sense RNA genomes of 6.5–15.5kb that have mainly been found in arthropods and nematodes. The genomes of lispivirids contain several open reading frames, typically encoding a nucleoprotein (N), a glycoprotein (G), and a large protein (L) including an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family *Lispiviridae*, which is available at ictv.global/report/lispiviridae.

Table 1. Characteristics of members of the family Lispiviridae

Example	Anisopteromalus calandrae negative-strand RNA virus 2 (MW864603), species Anicalvirus hangzhouense, genus Anicalvirus
Virion	Unknown
Genome	6.5–15.5 kb of negative-sense RNA
Replication	Unknown
Translation	Unknown
Host range	Arthropods and nematodes of the superphylum Ecdysozoa
Taxonomy	Realm Riboviria, kingdom Orthornavirae, phylum Negarnaviricota, class Monjiviricetes, order Mononegavirales: >20 genera and >25 species

VIRION

Unknown.

GENOME

The genomes of lispivirids are single molecules of linear, negative-sense RNA of 6.5–15.5kb (Table 1). Lispivirid genomes typically contain five to six open reading frames (ORFs). For example, the genome of Anisopteromalus calandrae negative-strand RNA virus 2 (species *Anicalvirus hangzhouense*, genus *Anicalvirus*) has six ORFs encoding a putative nucleoprotein (N), predicted phosphoprotein (P), predicted matrix protein (M), glycoprotein (G), unknown protein (X) and L protein (L) including an RNA-directed

RNA polymerase (RdRP) domain; these ORFs are organized in the order 3'-N-P-M-G-X-L-5' (Fig. 1) [1]. It should be noted that the genomes of some lispivirids lack one or more of these genes, which might be due to coding incompleteness.

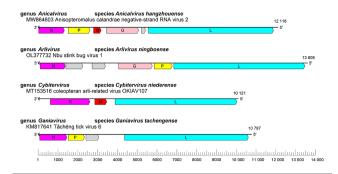
REPLICATION

Unknown.

TAXONOMY

Current taxonomy: ictv.global/taxonomy. The family *Lispiviridae* includes >20 genera and >25 species (Fig. 2) for viruses hosted by arthropods and nematodes of the superphylum *Ecdysozoa* [1–6]. Lispivirids have been detected in mammals

Received 06 June 2023; Accepted 12 June 2023; Published 11 July 2023


Author affiliations: ¹Institute of Plant Virology, Ningbo University, Ningbo, PR China; ²Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China; ³Institute of Insect Sciences, Zhejiang University, Hangzhou, PR China; ⁴Genome Competence Center (MF1), Robert Koch Institute, Berlin, Germany.

*Correspondence: Sofia Paraskevopoulou, paraskevopoulous@rki.de; Jun-Min Li, lijunmin@nbu.edu.cn Keywords: ICTV report; *Lispiviridae*; taxonomy.

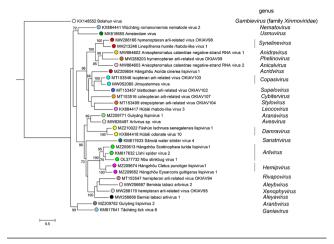
Abbreviations: G, glycoprotein; L, large protein; M, matrix protein; N, nucleoprotein; P, phosphoprotein; RdRP, RNA-directed RNA polymerase; X, protein of unknown function.
001869 © 2023 The Authors

This is an open-access article distributed under the terms of the Creative Commons Attribution License.

Fig. 1. Genome organization of representative viruses of the family *Lispiviridae*. The diagram shows the genome length, position of open reading frames and putative protein products: N, nucleoprotein (magenta); P, predicted phosphoprotein (yellow); M, predicted matrix protein (red); G, glycoprotein (salmon); L, large protein (cyan) including an RNA-directed RNA polymerase domain; predicted protein of unknown function (grey).

and bird faeces [7, 8], but it is still unclear whether they are capable of replicating in these hosts.

RESOURCES


Full ICTV Report on the family *Lispiviridae*: ictv.global/report/lispiviridae.

Funding information

Production of this Profile, the ICTV Report, and associated resources was supported by the Microbiology Society.

References

- Wang F, Yuan B, Xiao S, Zhang J, Jia W, et al. Diverse RNA viruses discovered in three parasitoid wasps of the rice weevil Sitophilus oryzae. mSphere 2021;6:e00331-21.
- Huang H-J, Ye Z-X, Wang X, Yan X-T, Zhang Y, et al. Diversity and infectivity of the RNA virome among different cryptic species of an agriculturally important insect vector: whitefly Bemisia tabaci. NPJ Biofilms Microbiomes 2021:7:43.
- Käfer S, Paraskevopoulou S, Zirkel F, Wieseke N, Donath A, et al. Re-assessing the diversity of negative strand RNA viruses in insects. PLoS Pathog 2019;15:e1008224.
- Lay CL, Shi M, Buček A, Bourguignon T, Lo N, et al. Unmapped RNA virus diversity in termites and their symbionts. Viruses 2020;12:1145.

Fig. 2. Phylogenetic relationships of lispivirids. The phylogenetic tree is based on a MAFFT-alignment of the RdRP amino acid sequences using the L-INS-i algorithm and was inferred using ModelTest-NG and the LG substitution model. Numbers on branch nodes represent transfer bootstrap expectation values (1000 replicates). The tree is rooted to Bolahun virus of the *Gambievirus* genus of the *Xinmoviridae* family.

Acknowledgements

We thank Stuart G. Siddell, Elliot J. Lefkowitz, Sead Sabanadzovic, Peter Simmonds, F. Murilo Zerbini, Evelien Adriaenssens. Mart Krupovic, Jens H. Kuhn, Luisa Rubino, Arvind Varsani (ICTV Report Editors) and Donald B. Smith (Managing Editor, ICTV Report) for their valuable and constructive suggestions for improving the manuscript.

Conflicts of interest

The authors declare that there are no conflicts of interest.

- Viljakainen L, Holmberg I, Abril S, Jurvansuu J. Viruses of invasive Argentine ants from the European Main supercolony: characterization, interactions and evolution. J Gen Virol 2018;99:1129–1140.
- Ye Z-X, Wang S-M, Lu G, Chen J-P, Zhang C-X, et al. Complete genome sequence of a novel arlivirus from a yellow spotted stink bug (Erthesina fullo (Thunberg, 1783)). Arch Virol 2022;167:1205–1209.
- 7. Williams SH, Che X, Oleynik A, Garcia JA, Muller D, et al. Discovery of two highly divergent negative-sense RNA viruses associated with the parasitic nematode, Capillaria hepatica, in wild Mus musculus from New York City. J Gen Virol 2019;100:1350–1362.
- 8. Zhu W, Yang J, Lu S, Jin D, Pu J, et al. RNA virus diversity in birds and small mammals from Qinghai–Tibet Plateau of China. Front Microbiol 2022;13:780651.