

Immunisation coverage in Germany

Summary

Immunisation coverage among children

- ▶ Immunisation coverage among children in Germany remains high. However, vaccination series are often completed too late or not at all.
- ▶ The introduction of monoclonal antibodies against respiratory syncytial virus (RSV) for infants can be considered a success. More than half of infants born between April and September 2024 were protected against RSV in their first season.
- ▶ Gaps in measles immunisation coverage remain, as a substantial proportion of children had not received their second measles dose by their second birthday.

Immunisation coverage among adolescents

- ▶ Only half of girls and one-third of boys are fully vaccinated against HPV.
- ▶ Many adolescents do not receive booster doses against diphtheria, tetanus, pertussis (whooping cough), and polio.

Immunisation coverage among adults

- ▶ Uptake of the recommended immunisations for adults is generally low.
- ▶ Among people aged 60 and over, the COVID-19 immunisation coverage fell by more than a third compared to the previous season, while the influenza immunisation coverage reached its lowest level in 17 years.

Immunisation coverage among pregnant women

- ▶ Half of pregnant women are now vaccinated against pertussis (whooping cough), but only one in five against influenza.

Background

Monitoring immunisation coverage is essential for evaluating immunisation programmes. The Robert Koch Institute (RKI) analyzes and publishes annual immunisation coverage for vaccinations recom-

mended by the Standing Committee on Vaccination (STIKO) for children, adolescents, and adults. The results are based on two data sources: health insurance claims data from the Associations of Statutory Health Insurance Physicians (KV) in accordance with Section 13 of the Infection Protection Act (IfSG) and the vaccination status of children at school entry in the federal states in accordance with Section 34 IfSG.

The age groups used are based on international reporting requirements and the immunisation recommendations of STIKO. As part of this year's update, the methodology for calculating the immunisation coverage for the hexavalent vaccine and the pneumococcal vaccine from claims data was corrected. Historical data was also recalculated and, in some cases, slightly adjusted downward, resulting in deviations of 1–2 percentage points compared to previous publications. Since school entry checkups could not be carried out nationwide during the COVID-19 pandemic, immunisation coverage from school entry health examinations is now being reported again for the first time since the 2020 survey year.

Details on RKI's immunisation coverage monitoring and the underlying methods and limitations have been described in detail elsewhere.^{1–7} The RKI is continuously expanding its immunisation coverage monitoring and incorporating new data sources.⁸

The immunisation coverage data presented here can also be accessed on the immunisation dashboard “[VacMap](#)” for different age groups at the federal state and district level. In addition, RKI provides the most important findings from its annual immunisation coverage monitoring as [summary slides](#), see Figure 1.

Fig. 1 | The slides summarize the most important findings from RKI's immunisation coverage monitoring (<https://www.rki.de/immunisation-summary-slides>).

Results and assessment

Immunisation coverage among children and adolescents

Respiratory syncytial virus (RSV)

Since 2024, STIKO has recommended RSV prophylaxis with the monoclonal antibody nirsevimab as a single dose for all newborns and infants before or during their first RSV season, which usually lasts from October to March. Infants born between April and September should receive it in the fall before the start of their first RSV season, if possible. For these children, the immunisation coverage in the 2024/2025 RSV season was 54 %, which is relatively high for a newly introduced immunisation, see Table 1 and Figure 2A.

The RSV immunisation coverage can be considered a success for several reasons: there was little time between the STIKO recommendation and the start of the season; initially, there were challenges with the availability of nirsevimab; and medical practices had to invite half a birth cohort at the same time, which was logistically challenging. Case-based data have already shown a 54 % drop in hospitalizations among infants with RSV compared to the previous year.⁹ Nevertheless, there is still considerable potential for increasing the RSV immunisation coverage.

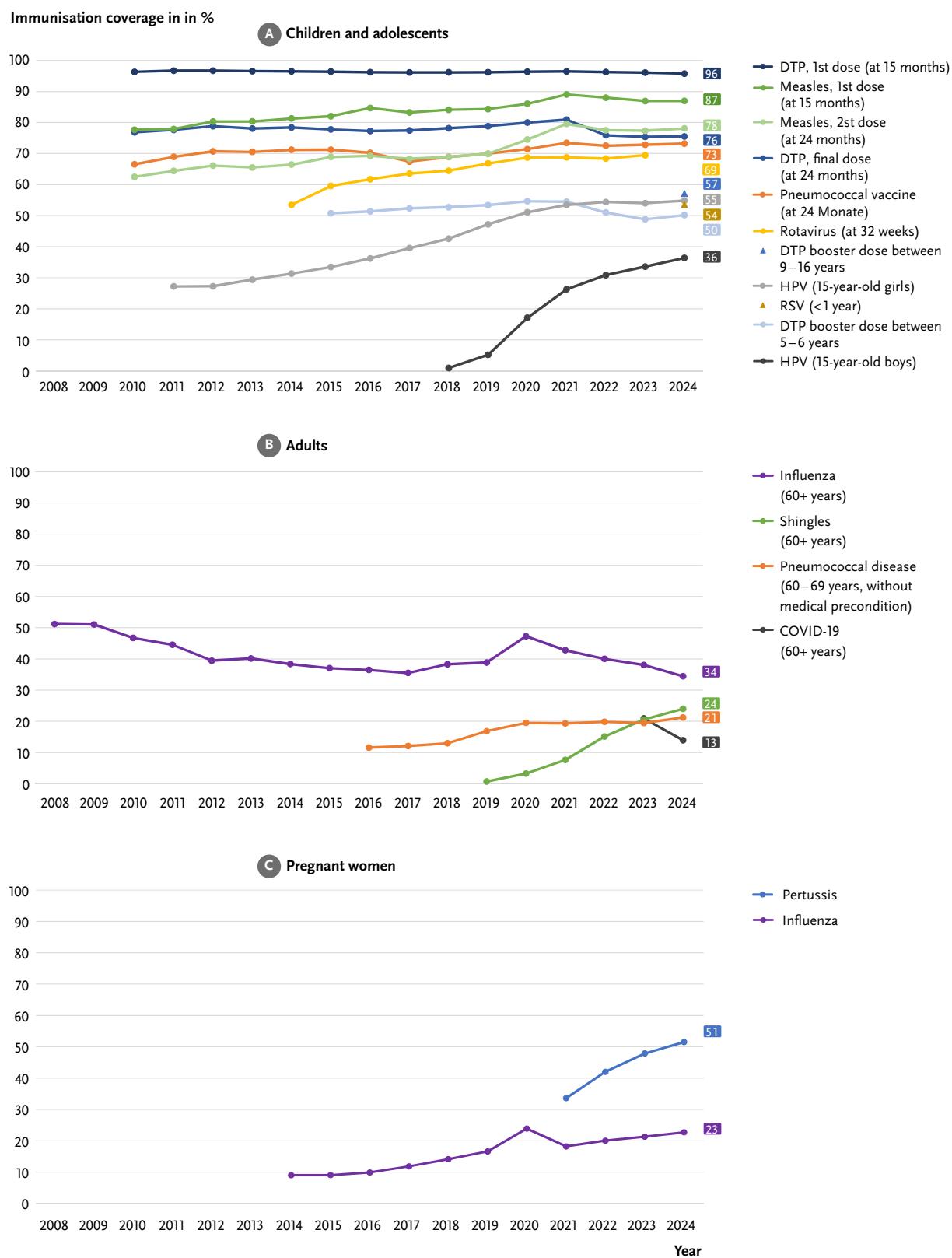
Children born during the RSV season should receive nirsevimab as soon as possible after birth, ideally upon discharge from the birth facility or during the second well-child visit ("U2", 3rd–10th day of life). Immunisation coverage could not be calculated for

the 2024/2025 season newborns as of yet. The RKI does not have the necessary data, since immunisations in hospitals and other inpatient birth facilities are not usually billed through the KV. As part of a research project on the acceptance, implementation, and effectiveness of RSV prophylaxis, the RKI plans to calculate the immunisation coverage for newborns from other data sources.

Diphtheria, tetanus, pertussis (DTP), and polio

In 2024, 96 % of children had started the primary immunisation series against DTP and poliomyelitis (poliomyelitis) by the age of 15 months, similar to previous years. The second vaccine dose also remained high at 93 %. However, many children do not complete their primary vaccination series on time. At 24 months of age, only 76 % of children were fully vaccinated against DTP and only 75 % against polio. By the age of 6, 89 % of children had completed their primary vaccination series against DTP and 88 % against polio.

This year, for the first time, immunisation coverage for booster doses in children and adolescents were calculated. The immunisation coverage for the DTP booster recommended at the age of 5–6 years was 50 % among 6-year-olds in 2024. The booster dose against DTP and polio recommended for adolescents aged 9–16 was received by 57 % of 15-year-olds. However, one in ten of these adolescents did not receive the polio vaccine component as part of the booster. Due to the necessary length of the observation period, adolescents up to the age of 16 could not yet be included in this report. The data for the missing age group will be added in the next report. Only 43 % of adolescents received both the booster for children and the booster for adolescents.


Haemophilus influenzae type b (Hib), hepatitis B, and Pneumococcal disease

In 2024, 75 %, 74 %, and 73 % of children aged 24 months were fully vaccinated against Hib, hepatitis B, and Pneumococcal disease, respectively. Immunisation coverage was, thus, slightly lower than the coverage for DTP and polio, but continues to approach it.

Immunisation	National immunisation coverage	Dose	Population	Age	Period
Respiratory syncytial virus (RSV)	54 %	Single dose	Routine immunisation	< 1 year	Month of birth April–September 2024
Diphtheria-tetanus-pertussis	96 %	1st dose	Routine vaccination	15 months	Year of birth 2022
	93 %	2nd dose			
	65 %	3rd dose			
	76 %	Final dose		24 months	
	50 %	Booster dose in childhood		6 years	Year of birth 2017
	57 %	Booster dose in adolescence		15 years	Year of birth 2008
Polio	96 %	1st dose	Routine vaccination	15 months	Year of birth 2022
	93 %	2nd dose			
	65 %	3rd dose		24 months	
	75 %	Final dose			
<i>Haemophilus influenzae</i> type b (Hib)	75 %	Final dose	Routine vaccination	24 months	Year of birth 2022
Hepatitis B	74 %	Final dose	Routine vaccination	24 months	Year of birth 2022
Pneumococcal disease	73 %	Final dose	Routine vaccination	24 months	Year of birth 2022
Measles-mumps-rubella (MMR)	87 %	1st dose	Routine vaccination	15 months	Year of birth 2022
	78 %	2nd dose		24 months	
	92 %			72 months	Year of birth 2018
Varicella	82 %	1st dose	Routine vaccination	15 months	Year of birth 2022
	75 %	2nd dose		24 months	
Rotavirus	69 %	Final dose	Routine vaccination	32 weeks	Year of birth 2023
Meningococcal C	73 %	Single dose	Routine vaccination	24 months	Year of birth 2022
Human papillomavirus (HPV), girls	68 %	1st dose	Routine vaccination	15 years	Year of birth 2009
	55 %	Final dose			
Human papillomavirus (HPV), boys	49 %	1st dose	Routine vaccination	15 years	Year of birth 2009
	36 %	Final dose			
Tick-borne encephalitis (TBE)	30 %	Final dose	People living in TBE risk areas	1–17 years	2024

Table 1 | National immunisation coverage among children and adolescents in Germany in percent.

A complete vaccination series is defined in this table as follows: Diphtheria, tetanus, pertussis, Hib, hepatitis B, poliomyelitis, Pneumococcal disease (children): 4 vaccine doses; or 3 vaccine doses, provided that the interval between vaccine doses 1 and 2 is at least 8 weeks and the interval between vaccine doses 2 and 3 is at least 6 months. Rotavirus: 3 vaccine doses; or 2 vaccine doses, provided that the 2nd vaccine dose codes a completed immunisation series or exactly 2 vaccine doses were administered and the billing code for the 2nd vaccine dose does not code whether the immunisation series was completed or not. HPV: 3 vaccine doses; or 2 vaccine doses, provided that the first dose was given between the ages of 9 and 14 years and the interval between vaccine doses 1 and 2 is at least 5 months.

Fig. 2 | National immunisation coverage for selected vaccines, 2008–2024, among A) children and adolescents, B) adults, and C) pregnant women. DTP = diphtheria – tetanus – pertussis. HPV = human papillomavirus. RSV = respiratory syncytial virus. Coverage refers to percentage of fully vaccinated (final dose), unless otherwise stated. The polio immunisation coverage at 24 months is not listed in A) for reasons of clarity; with annual deviations of –0.1 to –0.2 percentage points, it is similar to the curve for DTP.

Measles, mumps, rubella (MMR) and varicella

The immunisation coverage for the first dose of MMR at 15 months of age was 87 % in 2024, identical to the previous year. However, it remained slightly below the initial peak of 89 % in 2021, one year after the implementation of the Measles Protection Act. The situation is similar for the second dose of MMR. Here too, vaccination coverage was 78 % at 24 months of age, and did not match the peak of 80 % from 2021. This means that by their second birthday, more than one-fifth of all children still lack the second measles dose. At the age of 6 years, 92 % of all children were fully immunized against measles. The immunisation coverage for varicella (chickenpox) remained 3–5 percentage points below the MMR coverage, at 82 % at 15 months of age and 75 % at 24 months of age.

Rotavirus

The rotavirus immunisation coverage among children aged 32 weeks in 2024 was 69 %, remaining almost unchanged since 2020.

Meningococcal C

The meningococcal C immunisation coverage among children aged 24 months was 73 %, around 4 percentage points below the previous year and significantly below the peak of 82 % in 2019. Possible explanations for this decline include the relatively large number of vaccinations in the vaccination schedule around the first birthday and potentially incomplete data. It is probable that some of the children received the meningococcal ACWY vaccine as a private service instead of the meningococcal C vaccine, which is not recommended by STIKO for this age group and is therefore not visible in the KV billing system.

Since January 2024, STIKO has also recommended routine immunisation of young infants against meningococcal B. As this immunisation could not yet be billed nationwide in 2024, no immunisation coverage could be calculated.

In October 2025, STIKO also updated its recommendations for the prevention of invasive meningococcal disease. Since then, it has recommended meningococcal ACWY immunisation for all adolescents aged 12–14 years; the meningococcal C immu-

nisation in infancy has been discontinued. This change will also be reflected in the immunisation coverage reporting in the coming years.

Human papillomaviruses (HPV)

The HPV immunisation coverage among 15-year-old girls was 55 % in 2024, remaining almost unchanged since 2022. The HPV immunisation coverage among 15-year-old boys increased by 2 percentage points from the previous year to 36 %, which is still considerably lower than the HPV immunisation coverage among girls. This means that the majority of adolescents continue to reach adulthood without adequate protection against HPV-associated cancers.

Tick-borne encephalitis (TBE)

Vaccination against TBE is recommended for all persons in TBE risk areas. In 2024, the TBE immunisation coverage among children and adolescents in risk areas was 30 %, which is similar to previous years. The highest TBE immunisation coverage was achieved in the 10- to 14-year-old age group with 37 %, followed by the 5- to 9-year-olds with 36 %.

Immunisation coverage from school entry health examinations

The immunisation coverage from the surveys on vaccination status at school entry health examinations shows that, by the time children reach school age, immunisations series are sometimes completed (catch-up immunisation), see Table 2. Among children who presented a vaccination card during school entry health examinations in 2023, 95 % were fully vaccinated against DTP, 99 % were vaccinated once against MMR, and 97 % were vaccinated twice against MMR. In this scenario, it is assumed that children without a vaccination card received the corresponding immunisation just as often as those who presented a vaccination card (average scenario).¹⁰ Under the alternative assumption that children without proof of vaccination were unvaccinated, the immunisation coverage would be significantly lower (worst-case scenario): 90 % for complete DTP primary vaccination series, 94 % for the first MMR dose, and 92 % for the second MMR dose. Comparing the immunisation coverage from the 2023 school entry health examinations with that from the 2023 KV billing data, the latter are within or slightly below the

Immunisation	National immunisation coverage (worst-case scenario)	National immunisation coverage (average scenario)	Dose	Population	Age	Period
Diphtheria	90 %	95 %	Final dose	Children examined	4–7 years	Year of birth 2015–2018
Tetanus	90 %	95 %	Final dose	Children examined	4–7 years	Year of birth 2015–2018
Pertussis	90 %	95 %	Final dose	Children examined	4–7 years	Year of birth 2015–2018
Polio	90 %	95 %	Final dose	Children examined	4–7 years	Year of birth 2015–2018
<i>Haemophilus influenzae</i> type b (Hib)	88 %	94 %	Final dose	Children examined	4–7 years	Year of birth 2015–2018
Hepatitis B	87 %	92 %	Final dose	Children examined	4–7 years	Year of birth 2015–2018
Pneumococcal disease	78 %	83 %	Final dose	Children examined	4–7 years	Year of birth 2015–2018
Measles-mumps-rubella (MMR)	94 %	99 %	1st dose	Children examined	4–7 years	Year of birth 2015–2018
	92 %	97 %	2nd dose			
Varicella	86 %	91 %	1st dose	Children examined	4–7 years	Year of birth 2015–2018
	84 %	89 %	2nd dose			
Rotavirus	60 %	65 %	Final dose	Children examined	4–7 years	Year of birth 2015–2018
Meningococcal C	83 %	90 %	Single dose	Children examined	4–7 years	Year of birth 2015–2018

Table 2 | National immunisation coverage among children entering school in Germany in percent.

range between the two scenarios at the age of 6, with the exception of the rotavirus vaccine.¹¹

Immunisation coverage in adults

Influenza

The immunisation coverage for seasonal influenza (flu) vaccination in people aged 60 years and older decreased by 4 percentage points to just 34% in the 2024/2025 season compared to the previous season. This is the lowest level since reporting began in the 2008/2009 season. Only during the COVID-19 pandemic (2020/2021) was there a temporary increase in immunisation coverage, see Table 3 and Figure 2B.

The immunisation coverage for the seasonal influenza vaccination in people aged 18 years and older with medical precondition(s) remained below the standard immunisation coverage in the 2024/2025 season at 28%. This figure has also fallen steadily, apart from an increase during the COVID-19 pandemic, and is now at its lowest level in 17 years.

COVID-19

Since the 2023/2024 season, STIKO has recommended an annual COVID-19 booster in the fall for all people aged 60 and older, as well as for people with medical precondition(s). While 21% of people aged 60 years and older were vaccinated against COVID-19 in the 2023/2024 season, this figure fell to just 13% in the 2024/2025 season. A similar trend can also be seen among people aged 18 years and older with medical precondition(s). While 14% of adults with medical precondition(s) were vaccinated against COVID-19 in the previous year, only 8% were vaccinated in the 2024/2025 season. In general, significantly fewer people were vaccinated against COVID-19 than against influenza, even though both vaccines can be received at the same time.

The COVID-19 and influenza immunisation coverage from billing data is likely to be slightly under-reported, as both vaccines are also offered outside the KV billing system, for example in pharmacies or companies.

Immunisation	National immunisation coverage	Dose	Population	Age	Period
Influenza	34 %	Annual dose	Routine	≥ 60 years	Influenza season 2024/2025
	28 %		People with medical precondition(s)	≥ 18 years	
Pneumococcal disease	21 %	Single dose	Routine vaccination for people without medical precondition(s)	60–69 years	1st quarter of 2025
	24 %	1 dose within the last 6 years	People with medical precondition(s)	≥ 18 years	
COVID-19	13 %	Annual dose	Routine	≥ 60 years	COVID-19 season 2024/2025
	8 %		People with medical precondition(s)	≥ 18 years	
Shingles (herpes zoster)	24 %	Final dose	Routine	≥ 60 years	1st quarter of 2025
	21 %		People with medical precondition(s)	≥ 50 years	
Tick-borne encephalitis (TBE)	19 %	Final dose	People living in TBE risk areas	≥ 18 years	2024

Table 3 | National immunisation coverage among adults in Germany in percent.

Pneumococcal disease

The immunisation coverage for pneumococcal vaccination among people aged 60–69 years has stagnated since 2020. In 2024, it was 21%. Before the introduction of the conjugate vaccine in 2023, the STIKO recommendations stated that pneumococcal vaccination should be repeated every six years in people with medical precondition(s). Since the switch to the conjugate vaccine, boosters are no longer recommended. The immunisation coverage for pneumococcal vaccination in the past six years among people aged 18 and older with medical precondition(s) was 24 % in 2024 and has also stagnated since 2020.

Shingles

The immunisation coverage for the shingles vaccine in people aged 60 and older was 24 % in 2024, the highest level measured to date. However, the increase has slowed considerably since the vaccine was introduced in 2018, and the majority of people aged 60 years and older remain unprotected against the disease. The immunisation coverage among people aged 50 and older with medical precondition(s) was even lower (21%). Here too, the increase in uptake has slowed since 2018. Among 50- to 59-year-olds with medical precondition(s), the immunisation coverage was considerably lower, at only 4 %.

Tick-borne encephalitis (TBE)

In 2024, the TBE immunisation coverage among adults living in TBE risk areas was 19 %, which was

similar to previous years. This means that adults are considerably less likely to receive the TBE vaccination than children.

Immunisation coverage among pregnant women

Pertussis

Vaccination against pertussis (whooping cough) has been recommended for all pregnant women since 2020. The pertussis immunisation coverage among pregnant women has continued to increase, from 34 % in the year it was introduced to 51 % in 2024, see Table 4 and Figure 2C.

Influenza

Seasonal influenza vaccination has been recommended since 2010 for all women who are pregnant during the influenza season. In the 2024/2025 season, 23 % of all pregnant women were vaccinated against influenza during the influenza season. Thus, the influenza immunisation coverage among pregnant women continued the positive trend of the past ten years, even though the peak of 24 % during the COVID-19 pandemic (2020/2021) has not yet been reached again. However, the influenza immunisation coverage still lags considerably behind the pertussis immunisation coverage among pregnant women.

Immunisation	National immunisation coverage	Dose	Population	Age	Period
Pertussis	51%	Single dose	Pregnant women	15–49 years	Pregnancy beginning in 2023
Influenza	23%	Single dose	Pregnant women	15–49 years	Influenza season 2024/2025

Table 4 | National immunisation coverage among pregnant women in Germany in percent.

Regional differences

There are considerable differences in immunisation coverage between the federal states and at the district level. This applies to children and adolescents, as well as adults. For example, polio immunisation coverage among children aged 24 months ranges from 67 % in Baden-Württemberg to 80 % in Lower Saxony. For measles, immunisation coverage among children aged 24 months ranges from 55 % in Saxony to 84 % in Schleswig-Holstein. Depending on the district, 26 % to 75 % of 15-year-old girls were vaccinated against HPV in 2024, and 8 % to 60 % of people aged 60 years and older were vaccinated against influenza. RKI's "VacMap" vaccination dashboard allows for the retrieval and visualization of immunisation coverage at the state and district levels (<https://www.rki.de/vacmap>).

Conclusion

Immunisation coverage among children in Germany remains high. However, there are significant gaps in coverage across all age groups, which are even more pronounced at the regional level. For example, the primary vaccination series for children is often completed later than recommended or not completed at all. However, some vaccination catch-up occurs by the time children reach school age. HPV immunisation coverage among adolescent girls has stagnated and has only increased minimally among adolescent boys. Less than two-thirds of adolescents receive their recommended booster shots. Immunisation coverage among adults, people with medical precondition(s), and pregnant women is often well below 50 %.

In order to benefit from the immunisations recommended by STIKO, vaccination gaps should be closed as a matter of urgency. To this end, barriers to immunisation should be removed. For example,

doctors should use every contact with patients to check their vaccination status. When children have immunisation appointments, their parents, and, in the case of pregnant women, other members of the household, should also be vaccinated. The population should be better informed about when and where immunisations are available. For example, pharmacies also offer immunisations against influenza and COVID-19. Multiple immunisations can be administered at the same time (e.g., against COVID-19 and influenza) and there is no need to cancel a vaccination appointment in the case of a mild infection.

The introduction of monoclonal antibodies against RSV in infancy has once again shown that immunisations are one of the greatest success stories in medicine: While around half of the children born in the summer of 2024 and a still unquantifiable proportion of those born in the fall and winter had received RSV prophylaxis, the number of RSV-associated hospitalizations among infants dropped by half in the 2024/2025 winter season.

Conversely, Germany is currently also seeing what happens when people are not vaccinated or are inadequately vaccinated. For example, in 2025, the RKI reported a nationwide diphtheria outbreak in which an unvaccinated child died of respiratory diphtheria; two elderly people also died, and particularly vulnerable population groups were the ones most often affected.^{12–14} Similarly, in 2025, a Hib outbreak among adults in the 20–60 age group was reported for the first time in Germany.¹⁵ Here, too, vulnerable groups were predominantly affected.¹⁶ In addition, measles outbreaks continue to occur.¹⁷

Since the end of 2024, vaccine-derived poliovirus has been repeatedly detected in wastewater in Germany.^{18–22} In October 2025, wild poliovirus type 1,

which is only endemic in Afghanistan and Pakistan, were detected in wastewater in Hamburg for the first time.²³ Poliovirus detections in wastewater mean that people are infected with poliovirus and excrete it in their stool. No clinical cases of poliomyelitis have been notified to date, thanks in part to the comparatively high immunisation coverage. In fully vaccinated individuals, vaccine-derived poliovirus can cause severe paralysis just like wild poliovirus.²⁴ The wastewater findings, thus, highlight both the ongoing threat for inadequately vaccinated

individuals in Germany and the need for maintaining high immunisation coverage and high-quality surveillance.²⁵

The re-emergence of some vaccine-preventable diseases in Germany is both a warning and a call to action: the successes of immunisation should not be jeopardized and vaccination gaps must be closed in order to protect all people from vaccine-preventable diseases, in Germany and worldwide.

Literature

- 1 Rieck T, Feig M, Branke L und Steffen A (2024): Inanspruchnahme von Routineimpfungen in Deutschland – Ergebnisse aus der KV-Impfsurveillance, Berlin: Zenodo. <https://doi.org/10.5281/zenodo.14274544> (in German)
- 2 Rieck T, Steffen A, Schmid-Küpke N, Feig M, Wichmann O, Siedler A. Impfquoten bei Erwachsenen in Deutschland – Aktuelles aus der KV-Impfsurveillance und der Onlinebefragung von Krankenhauspersonal OKaPII. *Epid Bull* 2020;47:3-26. <https://doi.org/10.25646/7658> (in German)
- 3 Steffen A, Rieck T, Siedler A. Monitoring of Influenza Vaccination Coverage among Pregnant Women in Germany Based on Nationwide Outpatient Claims Data: Findings for Seasons 2014/15 to 2019/20. *Vaccines (Basel)* 2021; 9(5). <https://doi.org/10.3390/vaccines9050485>
- 4 Siedler A, Rieck T: Erhebung von Impfquoten im Kindes- und Jugendalter in Deutschland – Die RKI Impfsurveillance und ihr neues Publikationsformat. *Epid Bull* 2020;32/33:3-8. <https://doi.org/10.25646/7020> (in German)
- 5 Rieck T, Feig M, Delere Y, Wichmann O. Utilization of administrative data to assess the association of an adolescent health check-up with human papillomavirus vaccine uptake in Germany. *Vaccine* 2014; 32(43): 5564-9. <https://doi.org/10.1016/j.vaccine.2014.07.105>
- 6 Rieck T, Feig M, Eckmanns T, Benzler J, Siedler A, Wichmann O. Vaccination coverage among children in Germany estimated by analysis of health insurance claims data. *Human vaccines & immuno*-

therapeutics 2014; 10(2) <https://doi.org/10.4161/hv.26986>

7 Rieck T, Badenschier F, Rau C: Poliomyelitis-Impfquoten bei Kindern in Deutschland. *Epid Bull* 2024;50:11-16. <https://doi.org/10.25646/12955> (in German)

8 Rieck T, Rau C, Wulkotte E, Feig M, Fischer C, Wichmann O & Steffen A: Impfquotenmonitoring in Deutschland – gegenwärtiger Stand und Perspektive [Monitoring vaccination coverage in Germany — current status and trends]. *Bundesgesundheitsbl* 68, 351–359 (2025). <https://doi.org/10.1007/s00103-025-04020-w> (in German)

9 Schönenfeld V, Rau C, Cai W, Wichmann O, Harder T: The incidence of RSV infection since the introduction of monoclonal antibody prophylaxis: An analysis of reported case data across Germany for the seasons 2023/24 and 2024/25. *Dtsch Arztebl Int* 2025; 122: 472–3. <https://doi.org/10.3238/ärztebl.m2025.0111>

10 Robert Koch-Institut: KV-Impfsurveillance: Ergänzungen zu den Impfdaten aus den Schuleingangsuntersuchungen. *Epid Bull* 2016;(16):134. <https://doi.org/10.17886/EpiBull-2016-025> (in German)

11 Rieck T, Steffen A, Feig M, Rau C: Impfquoten in Deutschland – aktuelle Ergebnisse aus dem RKI-Impfquotenmonitoring. *Epid Bull* 2024;50:3-10. <https://doi.org/10.25646/12956> (in German)

12 Berger A, Dangel A, Bengs K, Schlotmann S, Thomaßen P, Maday C, Rubach C, Abdelgawad I, Namaschk G, Schneider L, Perriat D, Badenschier F, Rau C, Muscat M, Sing A. Autochthonous outbreak of respiratory diphtheria caused by *Corynebacterium diphtheriae*, Germany, September 2024. *Euro Surveill.* 2025;30(27):pii=2500116. <https://doi.org/10.2807/1560-7917.ES.2025.30.27.2500116>

13 Robert Koch-Institut: Signal für bundesweiten Diphtherie-Ausbruch mit *Corynebacterium diphtheriae* ST-574. *Epid Bull* 2025;18:6-7. https://www.rki.de/DE/Aktuelles/Publikationen/Epidemiologisches-Bulletin/2025/18_25.pdf (in German)

14 Roewer de Porto I, Dangel A, Schneider L, Zasada A, Haller J, Abdelgawad I, Sifczyk C, Paradowska-Stankiewicz I, Wichmann O, Badenschier F, Berger A, Rau C, Sing A. Two diphtheria sub-clusters with autochthonous cases in Germany and Poland within a *Corynebacterium diphtheriae* ST-574 outbreak, 2022 to July 2025. *Euro Surveill.* 2025;30(33):pii=2500539. <https://doi.org/10.2807/1560-7917.ES.2025.30.33.2500539>

15 Robert Koch-Institut: Ausbruch von invasiven *Haemophilus influenzae*-Typ-b-Infektionen unter vorwiegend drogengebrauchenden und wohnungslosen Menschen in Hamburg, 2024/2025. *Epid Bull* 2025;27:10-12. <https://doi.org/10.25646/13270> (in German)

16 Robert Koch-Institut: Infektionsgeschehen von Diphtherie, *Haemophilus influenzae* Typ b (Hib) und Hepatitis unter Menschen in Wohnungslosigkeit und Menschen, die Drogen gebrauchen: Erkenntnisse und Empfehlungen. *Epid Bull* 2025;32:3-6. <https://doi.org/10.25646/13347> (in German)

17 Matysiak-Klose D, Mankertz A, Holzmann H. The epidemiology and diagnosis of measles — special aspects relating to low incidence. *Dtsch Arztebl Int* 2024; 121: 875–81. <https://doi.org/10.3238/ärztebl.m2024.0211>

18 Robert Koch-Institut: Hinweis auf Schluckimpfstoff-abgeleitete Polioviren in Abwasserproben an mehreren Orten in Deutschland. *Epid Bull* 2024;48:21-22. <https://doi.org/10.25646/12938> (in German)

19 Robert Koch-Institut: Schluckimpfstoff-abgeleitete Polioviren in Abwasserproben an weiteren Orten in Deutschland nachgewiesen. *Epid Bull* 2024;49:14. <https://doi.org/10.25646/12945> (in German)

20 Robert Koch-Institut: Update zu cVDPV2-Nachweisen im Abwasser. *Epid Bull* 2025;5:10-11. <https://doi.org/10.25646/12988> (in German)

21 Robert Koch-Institut: Nur noch vereinzelt Polioviren-Nachweise in Abwasserproben. *Epid Bull* 2025;16:19-20. <https://doi.org/10.25646/13110> (in German)

22 Robert Koch-Institut: Weitere Polioviren-Nachweise in Abwasserproben. *Epid Bull* 2025;27:13-14. <https://doi.org/10.25646/13271> (in German)

23 Robert Koch-Institut: Polio-Wildviren Typ 1 in Abwasserprobe in Hamburg nachgewiesen. *Epid Bull* 2025;46:10-12. <https://doi.org/10.25646/13559> (in German)

24 Robert Koch-Institut: RKI-Ratgeber Poliomyelitis. *Epid Bull* 2025;43:9-18. [http://doi.org/10.25646/13533](https://doi.org/10.25646/13533)

25 Keeren K, Badenschier F, Rau C, Wichmann O, Böttcher S, Diedrich S: Weltpoliotag 2025 – Ziel der weltweiten Ausrottung von Polio in Gefahr [World Polio Day 2025: Goal of global polio eradication in danger]. *Epid Bull* 2025;43:4-8. <https://doi.org/10.25646/13535> (in German)

Authors

^{a)} Dr. Thorsten Rieck | ^{a)} Dr. Annika Steffen |
^{a)} Matthias Lottes | ^{a)} Franziska Badenschier |
^{b)} Marcel Feig | ^{a)} Dr. Cornelius Rau

^{a)} Robert Koch Institute, Department of Infectious Disease Epidemiology, Immunisation Unit/STIKO
^{b)} Robert Koch Institute, Department of Method Development, Research Infrastructure, and Information Technology

Correspondence: RieckT@rki.de

Conflict of interest

All authors declare that there is no conflict of interest.

Disclaimer

This document is a translation of the original article “Impfquoten in Deutschland” by Rieck T, Steffen A, Lottes M, Badenschier F, Feig M, Rau C of the Robert Koch Institute – DOI [10.25646/13589.2](https://doi.org/10.25646/13589.2).

The German text is authoritative, and no liability is assumed for any translation errors or for the translation's correctness in case of subsequent revisions to the German original – DOI [10.25646/13589.2](https://doi.org/10.25646/13589.2).

Acknowledgements

We would like to thank all the Associations of Statutory Health Insurance Physicians (KV) and our colleagues in the federal states responsible for collecting and reporting school entry data for continuously providing the data relevant for monitoring immunisation coverage.

We would also like to thank Nita Perumal for her assistance with this translation.

Open access

Creative Commons Attribution 4.0
International License