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Abstract

Proteins with up to 100 amino acids have been largely overlooked due to the challenges
2|nstitute for Microbiology, Technische
Universitat Braunschweig, Braunschweig,
Germany

associated with predicting and identifying them using traditional methods. Recent
advances in bioinformatics and machine learning, DNA sequencing, RNA and Ribo-

3Microbial Proteomics, Helmholtzzentrum fiir
Infektionsforschung GmbH, Braunschweig,
Germany

seq technologies, and mass spectrometry (MS) have greatly facilitated the detection
and characterisation of these elusive proteins in recent years. This has revealed their

crucial role in various cellular processes including regulation, signalling and transport,
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as toxins and as folding helpers for protein complexes. Consequently, the systematic
identification and characterisation of these proteins in bacteria have emerged as a
prominent field of interest within the microbial research community. This review pro-

vides an overview of different strategies for predicting and identifying these proteins
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on a large scale, leveraging the power of these advanced technologies. Furthermore,
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1 | INTRODUCTION 100 aa) [1-9]. In the following, proteins with a length of up to 100 aa

are referred to as small. There is increasing evidence that these pro-

The last few decades have seen remarkable progress in the under-
standing of bacterial proteomes. The discovery of numerous small
bacterial mMRNAs and the ongoing identification of proteins of up to
100 amino acids (aa) have revealed a level of complexity in bacte-
rial proteomes that far exceeds previous expectations. The term ‘small
protein’ is not clearly defined and is used in different studies for pro-

teins with sometimes very different length restrictions (25, 50, 70 or

Abbreviations: aa, amino acid(s); bp, base pair(s); CDSs, coding sequences; CNNs,
convolutional neural networks; DAA, data dependent acquisition mode; dN/dS,
nonsynonymous to synonymous substitutions; HMMs, Hidden Markov models; iPtgxDB,
integrated proteogenomics database; ML, machine learning; nt, nucleotides; ONT, Oxford
Nanopore Technologies; PSMs, peptide spectrum matches; RBS, ribosomal binding site; RF,
random forest; RNNs, recurrent neural networks; sORF, small open reading frame; sORFs,
small open reading frames; TIS, translation initiation site; TTS, translation termination site.

teins play essential roles in a wide range of cellular processes including
cell signalling or regulation, toxins/anti-toxin systems, membrane func-
tions, protein folding, and the formation and stabilisation of protein
complexes [10-13]. Using sophisticated bioinformatics, sequencing
and proteomics tools to identify the entire microproteome in bacteria
is therefore a worthwhile, albeit challenging, approach [1, 14].
Automatic annotation and prediction of open reading frames (ORFs)
encoding proteins of less than 100 aa is difficult for several rea-
sons. These include insufficient sequence information for domain and
homology searches, a limited number of experimentally validated
ORFs, and the tendency of these proteins to be species-specific [15].
This makes it extremely difficult to distinguish between small open

reading frames (sORFs) with low and high coding potential, and the
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number of false positives among predicted sORFs is very high [2, 16,
17]. Since start and stop codons are usually AT-rich, predicting protein-
coding sORFs in GC-rich bacteria is even more challenging [2]. Given
these facts, arbitrary cut-offs for minimal ORF lengths ranging from 50
to 100 codons were routinely applied to annotate bacterial genomes
[18]. In addition, sequence characteristics, such as ribosomal binding
sites (RBSs), codon usage and aa conservation are increasingly being
used to distinguish between coding and non-coding ORFs [15]. This sig-
nificantly reduces the number of false positives among the annotated
sORFs in the databases, but also leads to the exclusion of bona fide
small protein-coding genes. Therefore, in order to obtain more quali-
fied protein databases for bacteria of interest, with a particular focus
on small proteins, more accurate sORF prediction algorithms need to
be established.

In addition, innovative developments in the direct detection of
translated ORFs and proteins are having a major impact on small pro-
tein research. Ribosome profiling and mass spectrometry (MS)-based
proteomics are currently the methods of choice for the experimen-
tal identification of protein-coding ORFs on a global scale. Ribosome
profiling is much more sensitive, but provides only indirect evidence
for the presence or absence of a small protein [19]. MS-based protein
detection is currently the best method for not only directly detect-
ing small proteins that accumulate at meaningful levels in the cell, but
also for providing information about existing proteoforms and post-
translational modifications [20, 21]. In addition, proteomics can also
provide clues to the global subcellular localisation of proteins and
protein-protein interactions, as well as insights into the molecular
structure of protein complexes. The classical bottom-up proteomics
approach, based on LC-MS/MS analysis of highly complex peptide mix-
tures derived from complex protein crude extracts after proteolytic
digestion, provides deep insights into the bacterial proteome [22-24].
How complete the experimentally determined proteome of a bac-
terium ultimately depends not only on the quality of the MS/MS data
but also on the quality of the protein databases used for the analysis
of the MS/MS data. In contrast to genomic and transcriptomic tech-
nologies, where the DNA or RNA fragments are actually sequenced,
MS-based proteomics mainly identifies peptides by matching MS/MS
spectra against theoretical spectra of all candidate peptides present
in a reference protein database (peptide spectrum matches [PSMs])
[25]. Classical bottom-up proteomics therefore only supports the iden-
tification of proteins that are expected to be produced by a given
organism and is clearly biased towards the study of proteins with
more than 100 aa. In addition, the low molecular weight of small pro-
teins complicates experimental preparation and reduces the number
of peptides that can be detected by MS. Therefore, the systematic
MS-based identification of small proteins has been an obstacle for
a long time. The increasing realisation that small proteins exist and
play an essential role in many cellular processes [8, 10-13, 26] has
led to several activities in recent years to improve MS-workflows and
protein databases that support the identification of small proteins in
bacteria[1].

In this review, we aim to highlight the challenges, advances and
future prospects in the prediction of short protein-coding sORFs
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and the MS-based identification of the resulting small proteins in
bacteria.

2 | INSILICO PREDICTION OF SMALL OPEN
READING FRAMES

The computational prediction of sORFs in bacteria has demonstrated
immense potential in uncovering the existence and functions of small
proteins. Additionally, it serves as a prerequisite for different exper-
imental detection methods, such as classical shotgun proteomics.
Bacteria exhibit distinct characteristics in genomic organisation and
mRNA translation compared to eukaryotes, necessitating the adap-
tation of gene-finding algorithms tailored to these unique features.
For instance, bacterial genomes often contain a higher density of cod-
ing sequences (CDSs) and lack introns, unlike eukaryotic genomes.
Additionally, bacterial mRNA translation may commence with differ-
ent start codons, and the operon structure in prokaryotic genomes can
lead to polycistronic mMRNAs. The heterogeneity in genomic character-
istics intrinsic to different bacterial species can significantly affect the
performance and effectiveness of predictive algorithms. For example,
the task of detecting genes in GC-rich genomes becomes significantly
more challenging due to the increased likelihood of encountering ran-
dom ORFs [2]. Metrics, such as the codon adaptation index, lose their
robustness when dealing with more recent horizontal gene transfers
[27]. Unlike their eukaryotic counterparts, bacterial transcripts are
typically polycistronic and generally lacking splicing and polyadenyla-
tion signals, and do not always have a clear translation initiation site
(TIS) or RBS. Other gene-specific properties such as size, start codon
and nested localisation have also been shown to significantly influence
the accuracy of gene prediction [9, 14, 28-30]. Small ORFs, in particu-
lar, have divergent features, such as atypical nucleotide composition,
lack of RBS and non-canonical start codons, which contribute to the
computational challenges of prediction[17, 31, 32].

In the following sections, we will discuss different in silico meth-
ods for predicting ORFs from genome sequences, highlighting their
advantages and remaining limitations, particularly with regard to the
detection of sORFs (Table 1). It is vital to understand that prediction
(and detection in this context) is not synonymous with identification.
The predictive methods and models are inherently linked to presump-
tions and probabilities and may be influenced by factors such as false
discovery rate (FDR). This complex nature of prediction underscores
the urgent need for validation, as it is essential to verify the authen-
ticity of the predicted ORFs, especially those pertaining to sORFs. The
focus on this validation, and its critical importance, will be further
explored in Section 5.

Our review provides only an overview of the different bioinformat-
ics strategies and tools currently available, outlining their key strengths
and limitations. However, we do not engage in comparative bench-
marking of these tools. For those readers looking for a more detailed
analysis and performance comparison of the tools mentioned, we
would like to refer to the excellent benchmark studies by Dimonaco
et al., Gelhausen et al. and Korandla et al. [14, 50, 51].
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TABLE 1 Gene prediction programs mentioned in this review.

Tool

MetaProdigal®

Prodigal

RNACode

sORF finder¢

uProtelns©

DeepRibo

Pepper¢

REPARATION

smORFer©

CRITICA
OCCAM®

SearchDOGS
Bacteria

AUGUSTUS

Balrog

GeneMarkS

Glimmer

RanSEP*

BLAST+¢

FASTA3®

Approach
Ab initio

Ab initio

Ab initio

Ab initio

Evidence-
based

Evidence-
based

Evidence-
based

Evidence-
based
Evidence-
based
Hybrid
Hybrid
Hybrid

ML-based

ML-based

ML-based

ML-based

ML-based

Similarity-
based

Similarity-
based

(Primary) input

Genome sequences
Genome sequences
RNA Sequence
Alignment
Genome sequences

RNA-seq and MS data

Ribo-seq

Peptide identifications

and MS data

Ribo-seq

Ribo-seq

Genome sequences
Genome sequences

Genome sequences

Genome sequences

Genome sequences

Genome sequences

Genome sequences

Genome sequences

Genome sequences

Genome sequences

(Main) method

Dynamic programming and
comparative genomics®

Dynamic programming and
Comparative genomics”
Comparative genomics®
Comparative genomics®
Reference-guided assembly
and peptide mapping
Deep learning

Peptide mapping

Random forest

Fourier transform

Comparative genomics”

Comparative genomics®

Comparative genomics®

Ribo-seq supported Hidden
Markov models

Deep learning

Hidden Markov Models

Interpolated Markov models

Random Forest Classifier

Comparative genomics®

Comparative genomics®

Availability

Bioconda: https://anaconda.org/bioconda/prodigal
Github: https://github.com/hyattpd/Prodigal

Bioconda: https://anaconda.org/bioconda/prodigal
Github: https://github.com/hyattpd/Prodigal

Bioconda: https://anaconda.org/bioconda/rnacode
Github: https://github.com/ViennaRNA/RNAcode

Download: http://labo.bio.kyutech.ac.jp/
~kohanada/sORFfinder2.tar.gz

Github: https://github.com/Eduardo-vsouza/
uproteins

Github: https://github.com/Biobix/DeepRibo

Gitlab: https://gitlab.com/s.fuchs/pepper

Bioconda: https://anaconda.org/bioconda/
reparation_blast?
Github: https://github.com/Biobix/REPARATION

Github: https://github.com/Alexander
Bartholomaeus/smORFer

Download: http://www.ttaxus.com/software.html
Download: http://www.labinfo.Incc.br/occam

Download: http://wolfe.ucd.ie

Bioconda: https://anaconda.org/bioconda/augustus

Github: https://github.com/Gaius- Augustus/
Augustus

Web service: http://bioinf.uni-greifswald.de/
webaugustus

Bioconda: https://anaconda.org/bioconda/balrog
Github: https://github.com/salzberg-lab/Balrog

Web service: http://exon.gatech.edu/genemark/
genemarks.cgi

Bioconda: https://anaconda.org/bioconda/glimmer
Download: http://ccb.jhu.edu/software/glimmer/
index.shtml

Github: https://github.com/samuelmiver/RanSEPs
Download: http://ranseps.crg.es

Bioconda: https://anaconda.org/bioconda/blast

Download: https://blast.ncbi.nlm.nih.gov/doc/blast-
help/downloadblastdata.html

Web service: https://blast.ncbi.nlm.nih.gov/Blast.cgi

Bioconda: https://anaconda.org/bioconda/fasta3
Web service: https://www.ebi.ac.uk/Tools/sss/fasta

aShows improved accuracy for small open reading frame (sORF) detection compared to prodigal.

bComparative genomics-based metrics such as sequence similarities, codon substitution rates and/or nucleotide compositions.
“Specifically designed for sORF detection.
d1n this version the commercial ‘usearch’ program has been substituted with ‘blast’.
eAlthough these programs are not gene prediction programs in the strict sense (as discussed in Section 2.1), their inclusion here is for completeness.
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2.1 | Similarity-based prediction methods

Phylogenetic conservation is intrinsically linked to biological informa-
tion, such as CDSs, and conserved sequences across species often
indicate important functions. This evolutionary constraint enables the
identification and understanding of functionally important genes and
their encoded proteins. Similarity-based approaches exploit evolution-
ary conservation and homology between known and unknown proteins
by searching for sequence similarities between query sequences and
annotated protein databases. This allows the identification of putative
small proteins based on their resemblance to known proteins.

Both FASTA and BLAST mark important milestones in computer-
assisted homology searches with a large number of target sequences
[52, 53]. These tools have significantly improved the speed and
efficiency of sequence comparison, enabling researchers to search
increasingly large sequence databases. Despite their utility, FASTA and
BLAST are primarily sequence alignment tools and not stand-alone
gene prediction tools.

In a unique study, researchers relied solely on a similarity-based
approach using mpiBLAST [54], a high-performance variant of the orig-
inal BLAST algorithm, to compare intergenic sequences from 1474 fully
assembled replicon sequences of 780 distinct prokaryotic genomes
[31]. The database used for this comparison included not only anno-
tated CDSs from all genomes examined, but also all potential intergenic
ORFs of at least 99 bp. This approach led to the detection of 38,895
unannotated genes across all genomes and 1100 ‘missing’ genes that
did not align with any known sequences, suggesting they may belong
to so far undiscovered gene families. The vast majority of these unan-
notated and missed genes were short, encoding no more than 100
aa, consistent with the arbitrary length cut-offs of conventional gene
annotation pipelines. In addition, a significant proportion of these pro-
teins appear to be of foreign origin, lacking the usual sequence features
shared by other protein-coding genes within the same organism. This
absence of familiar traits could have contributed to their initial eva-
sion from detection [31]. However, this study only considered potential
ORFs with canonical start codons, excluding a significant number of
non-canonical sequences. It is therefore reasonable to assume that the
actual number of small, undiscovered genes is likely to be much higher.

While similarity-based approaches can reveal structural proper-
ties, conserved motifs and functional roles, they have limitations when
analysing shorter sequences. Shorter sequences increase the likeli-
hood of random matches, leading to false positives and difficulties iden-
tifying true homologous relationships. As a result, the statistical power
of comparisons obtained when searching with short query sequences is
reduced [55]. Tools such as BLAST rely on the calculation of statistical
significance (e.g., E-value) to assess the reliability of the matches found.
Shorter sequences typically yield lower alignment scores, resulting in
higher E-values and lower statistical significance, making it more chal-
lenging to distinguish biologically meaningful matches from random
ones. Additionally, short genes are less conserved and often species-
specific, complicating the application of this approach in non-model
organisms. Short protein sequences may also lack conserved domains
or functional motifs, making it difficult for similarity searches to detect

Proteomics and Systems Biology

distant homologues or identify functionally related proteins with lim-
ited sequence identity. In addition, sensitivity is generally lower when
searching for shorter sequences, particularly DNA-to-DNA compar-
isons, which have 5-10 times lower sensitivity than searches using
translated sequences [55]. Therefore, these methods are mainly used in
combination with other approaches, such as ab initio methods, improve
gene predictions [36] (see Section 2.4).

2.2 | Ab initio prediction methods

Ab initio methods rely on intrinsic sequence properties, such as codon
usage, ribosome binding site motifs and secondary structure predic-
tions, to identify genes. They use algorithms based on predetermined
rules and statistical models to recognise patterns within the genomic
sequence that indicate the presence of genes. Unlike similarity-based
approaches, ab initio methods do not require prior knowledge of exist-
ing proteins, making them particularly valuable for the discovery of
novel proteins in non-model bacterial species. Numerous tools, such
as GLIMMER and AUGUSTUS (both of which utilise Markov models,
which is why they can also be classified as ML-based methods; see next
section), have gained prominence by adopting this strategy (Table 1)
[47,44]. However, the selection of specialised programs for prokaryotic
gene prediction is limited, and becomes even more constrained when
considering the unique requirements for sORF detection.

Prodigal is a widely used ab initio gene-finding algorithm specifically
designed for prokaryotic genomes. It employs a dynamic programming
approach to predict coding regions based on input sequence features
[34]. The algorithm evaluates gene coding potential by combining cod-
ing scores derived from in-frame hexamer statistics and start scores
based on start codon and RBS motif frequencies. However, Prodigal
is not tailored for sORF prediction. To control FDRs, it favours longer
genes through specific rules, such as penalising final scores for genes
shorter than 250 bp and excluding genes no longer than 90 bp.

RNAcode is a computational tool that specialises in predicting con-
served coding regions within RNA sequences by utilising multiple
sequence alignment of homologous RNA sequences [35]. It assesses
both synonymous and non-synonymous substitution rates (see also
Section 2.3), operating on the underlying principle that coding regions
are more inclined to display specific evolutionary patterns compared
to non-coding regions. As emphasised by its authors, RNAcode can
achieve satisfactory results using alignments of just four sequences
that are less than 90% identical [35]. Thus, RNAcode enables the de
novo prediction of unknown CDSs not only in model but also in non-
model organisms, as well as microbial communities (see also Section 5).
Moreover, RNAcode has been successfully applied in identifying previ-
ously undiscovered sORFs, while also shedding light on their functional
roles[56,57].

Other mainly ab initio tools that are more specialised in the detec-
tion of small proteins include sORF finder [36] and MetaProdigal [33].
sORF finder predicts sORFs by analysing the nucleotide pentamer and
hexamer composition bias between coding and non-CDSs. To make

accurate predictions, the method requires a significant amount of
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known coding and non-CDSs from the organism under investigation.
Bayes’ estimation of coding probability enhances the accuracy of gene
prediction, while optional homology searches based on BLAST can pro-
vide additional support in assessing the coding potential of identified
gene candidates. Estimating synonymous and non-synonymous substi-
tutions in homologous sequences, followed by a chi-square test, further
supports coding potential evaluation.

MetaProdigal, an extension of Prodigal, is tailored for metagenomic
data and can predict small proteins with improved accuracy using spe-
cific parameters and training data [56, 58]. A major advantage is the
ability to apply training data from different species to evaluate gene
candidates. To save computational resources, the selection of training
datais based on the GC content of the input sequence, considering the
problem of multiple testing. The computation of confidence values for
each gene candidate, representing the logarithm of the probability that
a gene is genuine compared to the background, further improves the
result evaluation.

While ab initio methods provide valuable insights, they also have
several limitations and challenges. Because they are based on prede-
fined rules and models, these methods may have limited adaptability
and generalisability to new or different genomic contexts, as their per-
formance depends on the accuracy of the underlying assumptions.
The complexity of those can make the quality of outcomes unpre-
dictable. For example, Dimonaco et al. recently reported that Augustus
(version 3.3.3) underperformed when analysing Staphylococcus aureus
data using the S. aureus model, achieving a detection rate of only a
21% [14]. Surprisingly, the performance improved significantly when
using a Homo sapiens model, reaching a detection rate of 79%. On
the other hand, Augustus detected 96.64% of Pseudomonas fluorescens
genes when using the Escherichia coli model, indicating that genes from
both organisms share common features and characteristics captured
by the model [14]. These findings emphasise the potential variability
in the performance of ab initio methods, depending on the selected
model. Compared to similarity-based methods, ab initio approaches
often provide only limited information about function or biological
roles of detected genes. Analysing the distinctive architecture of gene
clusters in prokaryotes can complement this, particularly for sORFs,
where homology-based information is mostly scarce. By integrating
information of unique gene arrangements with associated molecular
processes, a comprehensive understanding of specialised metabolic
and cellular pathways can be achieved which can also help to shed light

on the physiological roles of co-localised small proteins [59].

2.3 | Machine learning (ML)-based methods

ML-based approaches have become increasingly popular in gene pre-
diction because they provide a data-driven approach to identifying
novel protein-CDSs (Table 1). These methods use computational mod-
els to learn and recognise complex patterns and features in genomic
data, improving the prediction of gene candidates. Unlike similarity-
based methods, ML methods use algorithms to learn and generate

models from training data, which typically consists of annotated genes

and non-coding regions. These models can capture complex relation-
ships in the data, potentially allowing better generalisation to different
genomic contexts.

GeneMarkS [46] is an ML-based gene prediction tool that combines
hidden Markov models (HMM:s, see Info Box 1) for protein-coding and
non-coding regions with models of regulatory sites near gene starts. It
learns species-specific parameters from prokaryotic input sequences
without prior knowledge of any protein or rRNA genes. In tests with the
genome sequence of Bacillus subtilis, GeneMarkS demonstrated similar
accuracy in detecting gene starts for both genes shorter than 300 nt
and long genes. As expected, the fraction of accurately detected genes
shorter than 300 bp improved to up to 90% as more known genes
shared significant sequence similarity [46]. In the same study, Glimmer
showed reduced performance, only accurately detecting up to 72%
of short genes. This difference may due to Glimmer’s default setting,
which predicts the gene start at the start codon of the longest ORF
containing the predicted gene.

RanSEP is specifically designed for identifying sORFs in bacterial
genomes [4]. Utilising random forest (RF) classifiers, it distinguishes
between coding and non-coding sORFs by computing various features,
such as aa composition, hydrophobicity and secondary structure. The
method also incorporates additional features like start codon preva-
lence, GC content and RBS information to enhance prediction accuracy
and adapt to different organisms by learning species-specific param-
eters from provided training data. Feature selection is carried out to
minimise overfitting, while an out-of-bag approach is implemented
for feature importance estimation, offering insights into the signif-
icance of each feature in the classification process, enabling users
to thoroughly analyse its performance and predictions. RanSEP has
been successfully applied to screen systematically for sORFs in various
bacteria [4].

Deep learning techniques, such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), have also been utilised
successfully for sORF detection (see Info Box 1). These methods
are capable of capturing intricate sequence features and context
dependencies by processing genomic data through multiple layers
of interconnected neurons. One example is DeepRibo [38], which is
built upon an artificial neural network that employs both CNN and
RNN architectures. This neural network integrates recurrent mem-
ory cells and convolutional layers, merging the information obtained
from high-throughput ribosome profiling data and ribosome binding
translation initiation sequence regions into a single model. DeepRibo
is specifically designed as a unified model, trained on different ribo-
some profiling experiments, allowing the identification of ORFs in
prokaryotes without prior knowledge of the translational landscape. In
a recent evaluation of ORF prediction tools based on Ribo-seq, Deep-
Ribo demonstrated exceptional performance across a wide range of
bacteria, distinguishing itself as a robust and reliable choice [50] (see
also Section 3.2).

Recently, Balrog has been introduced as gene-finding algorithm
across different prokaryotic species [45]. It utilises a universal model of
prokaryotic genes based on a temporal convolutional network. While

Balrog aims to detect smaller genes with its default minimum ORF
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Info Box 1
Hidden Markov models (HMMs)

HMM s describe any DNA or protein sequence as a series of observable symbols (nucleotides or amino acids [aas]) generated by hidden
states. These hidden states represent different features in the DNA sequence, such as coding regions, non-coding regions or regulatory
elements, each with its own probabilities of ‘emitting’ specific nucleotides or aas. These emission probabilities represent the likelihood of
observing each nucleotide when the DNA sequence is in a particular state. For example, a coding region might have a higher probability
of emitting certain nucleotide patterns than a non-coding region. Transition probabilities between the hidden states represent the likeli-
hood of transitioning from one state to another as we move along the DNA sequence. These probabilities help capture the structure and
organisation of the DNA sequence, such as the tendency for coding regions to be followed by non-coding regions, and vice versa. Once the
HMM is defined, it can be used to determine the likely series of hidden states behind a DNA sequence. This allows to identify key features,
like coding and non-coding regions, as well as the location of regulatory elements.

Random forests

A random forest is a machine learning (ML) technique particularly useful for classification tasks. It consists of multiple decision trees that
helps classify aninput, like a DNA sequence, based on certain features, such as nucleotide composition and predicted secondary structure.
Each tree in the forest is built using a random portion of the available data, which helps make the overall model diverse and less prone to
errors. When a new input, like a DNA sequence, needs to be classified, it is passed through each tree in the forest. Each tree makes a
decision about the classification based on the input’s features. To get the final prediction, the decisions of all trees are combined, usually
by taking the most common decision.

Deep learning

Deep learning models are a subset of ML and are designed to automatically learn intricate patterns and features from complex data.
Deep learning models such as convolutional neural networks (CNNs) process DNA sequences, learning to detect specific combinations
of nucleotides, known as motifs, which are often indicative of genes or other significant features by applying a series of filters across the
sequence. They can analyse large-scale DNA sequences and automatically identify relevant features, enhancing the efficiency of gene
prediction. Additionally, these models consider the sequential nature of DNA sequences. Some, like recurrent neural networks (RNNs)
and derivates, even retain information from previous positions in the sequence, enabling them to capture dependencies and patterns
across the entire sequence. This ability to consider sequence context can be crucial for gene prediction, where the order and combination
of nucleotides can determine gene functionality and location.

Rule-based expert systems

Rule-based expert systems rely on a predefined set of rules or heuristics to make decisions or solve problems. These systems are partic-
ularly useful in domains where expert knowledge can be formalised into clear, logical rules. In the context of biology, these rules could
include criteria for identifying coding regions, non-coding regions, regulatory elements or other functional elements within the genome.
The rule-based expert system then processes the input DNA sequence by applying the predefined rules, determining which rules apply to
each part of the sequence, and ultimately making predictions or classifications based on the combined results. Compared to the ML-based
method, rule-based expert systems impress with transparency and interpretability. Since the rules are explicitly defined by experts, it is

easier to understand and explain the reasoning behind the system’s predictions.

Proteomics | ¢ors

length of 60 nucleotides, the primary focus is not on accurate start site
prediction. This limitation can lead to challenges in precisely identifying
the boundaries of small genes, which may affect the subsequent anal-
ysis and functional characterisation of these small genes. In addition,
Balrog may be less effective at detecting functionally uncharacterised
gene families because hypothetical proteins were excluded from its
training data.

ML-based methods are excellent at identifying complex patterns
and relationships in genomic data. Recent studies have shown that
these approaches can match or even outperform ab initio tools [14].
However, their effectiveness is strongly linked to the quality and rep-

resentativeness of the training data and the selected features used. If

the model has limited similarity to the genome or inadequately covers
the intra-species genomic variation, prediction accuracy drops signif-
icantly [14]. Similarly, the selection of characteristics must be applied
carefully and cannot be generalised. This highlights the critical role
of high-quality, labelled training data from closely related genomes
in building accurate prediction models. For example, the ratio of
non-synonymous to synonymous substitutions (dN/dS) is a commonly
used feature whose importance in discriminating between coding and
non-CDSs has been widely demonstrated. This makes sense, because
CDSs have lower ratios than non-CDSs because they have undergone
purifying selection during evolution. A commonly used implementation

of the dN/dS test uses PAML as the scoring matrix, which is based on
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substitution rates observed in standard-length ORFs, which in turn
are not necessarily similar to those observed in shorter sequences, as
shown for short exon sequences [60, 61].

2.4 | Hybrid methods

Hybrid methods exploit the strengths of ab initio, similarity-based and
ML approaches to improve prediction accuracy and minimise false pos-
itives in the detection of small proteins without relying exclusively on
prior gene annotation or homology-based comparisons with known
proteins. These methods typically incorporate multiple algorithms and
data sources, such as sequence features, conservation patterns and
structural properties, to improve gene prediction. More recently, addi-
tional hybrid tools specifically designed for the detection of sORFs
have been introduced (Table 1).

Tools such as COMBREX, CRITICA and SearchDOGs combine
homology searches with statistical measures or synteny analysis [41].
All tools were successfully applied to predict bacterial sORFs [43,
62-65]. However, they are limited to comparing closely related organ-
isms and cannot predict novel sORFs that do not share homology with
an annotated gene. On the other hand, OCCAM [42] follows mainly the
similarity-based workflow as proposed by Warren and colleagues but
considers sORFs between 36 and 300 bp [31]. To increase sensitivity
without compromising specificity, false positive BLAST hits are filtered
using an ML-based target-decoy approach.

Evidence-based hybrid methods share the ability to integrate exper-
imental information, such as ribosome profiling (Ribo-seq) and pro-
teomics data, providing empirical evidence of active translation and
improving the overall accuracy of small protein identification. By
exploiting the complementary strengths of different approaches and
data types, these methods can offer more comprehensive and reli-
able means of predicting small proteins within genomic data, and are
discussed in the next chapter.

3 | EVIDENCE-BASED STRATEGIES OF
PREDICTION OF SMALL OPEN READING FRAMES

In addition to bioinformatic algorithms, information from experimen-
tal approaches such as RNA-seq, Ribo-seq or MS data is increasingly
being used for genome annotation and, in particular, to support
in silico sORF prediction [2, 7, 9, 30, 56, 66-74]. Ribosome pro-
filing and MS-based protein data have the advantage of detecting
OREFs that are actually translated, whereas transcriptomic data exclu-
sively provide evidence of transcriptional activity at the respective
genomic region. However, experimentally based predictions are gener-
ally dependent on cultivation conditions. They only capture snapshots
of (potential) sORFs. To get a more complete picture of protein-
coding sORFs, it is therefore extremely useful to combine refined
in silico bioinformatics predictions with evidence from experimental

approaches.

3.1 | Transriptomics

High-throughput transcriptomic approaches based on RNA-seq tech-
nologies or tiling DNA microarrays have provided genome-wide maps
for many bacteria, including transcription start sites and operons,
and have led to the identification of a large number of previously
unknown transcripts, many of which are very small and apparently
lack long protein-coding ORFs [75-80]. They were assumed to be non-
coding. While their existence was well documented, their biological
function was controversial. For many of them it is now clear that the
RNA-molecule itself has regulatory activities. However, a closer look
revealed that some of them may have a dual function, acting both as
mRNA and as regulatory RNA [81], raising the question of whether
these are actually translated. Targeted or systemic detection of the
translation activity and the resulting proteins showed that translation
of these RNAs is much more widespread than expected [7, 67, 68, 71,
82]. Based on these data, software tools have been developed to sup-
port the prediction of ORFs, including sORFs and to generate protein
databases. uProtelns employs RNA-seq data to execute a reference-
based assembly, utilising both genomic and transcriptomic data to
construct a protein database via 6- and 3-frame translation, respec-
tively. Following the peptide search, an RF classifier is used to filter out
low-quality spectra. The remaining unique peptides are then used to
validate the identified sORFs, increasing the integrity of the findings
[37].

A crucial prerequisite for this is a very comprehensive transcrip-
tome analysis using RNA-seq [79], which makes it possible to create a
database with almost all actively transcribed protein-coding genes of
a bacterium. Large amounts of RNA-seq data are available in publicly
accessible databases for many bacteria under a wide range of growth
conditions and represent an important source for evidence-based
global sORF predictions in these organisms.

3.2 | Ribosome profiling

Ribosome profiling provides direct evidence for the translation of
potential ORFs, regardless of their length or start and stop codons
and is therefore independent of genome annotation. It is based on
deep sequencing of ribosome-protected mRNA fragments, also called
as ‘ribosome footprints’, and has great potential to improve the anno-
tation of prokaryotic genomes [19, 69, 71, 83, 84]. Advanced ribosome
profiling approaches can resolve ORF translation down to the single-
codon level. Precise identification of translation start and stop sites
is facilitated by either stopping bacterial ribosomes at initiation with
retapamulin, Onc12 or tetracyclin, also known as TIS-profiling, or
stalling them at termination using apidaecin (translation termination
site [TTS]-profiling). This increases the density of ribosomes at either
translation start or translation stop codons [19, 71, 85, 86]. Progress
has also been made in determining translation activity at ORFs dur-
ing elongation [87, 88]. Application of the different approaches allows
accurate mapping of ORFs, including sORFs and alternative ORFs by
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identifying also multiple alternative start and stop sites within or out-
side the coding regions [28]. In addition to ATG, TTG and GTG were
found to function as translation start sites [73, 83]. Identification of
multiple alternative start sites within the same reading frame provide
evidence for the generation of proteoforms, that is, proteins whose
translation is initiated from different start sites within the same read-
ing frame and which are characterised by different N-termini but an
identical C-terminus. In most cases, it remains to be seen whether they
exist and have a distinct function. In addition, internal start codons
belonging to alternative ORFs in a different reading frame, whose
translation product is completely different from that encoded in the
main ORF, can be detected [28, 89]. Alternative ORFs have so far been
excluded from the conventional annotation of bacterial genomes to
maintain alow FDR, but may play an important role in the production of
small proteins. These studies also show that RBSs are not essential for
ribosomes to find the TIS, but that they do influence the efficiency of
translational initiation [90]. The integration of RNA-seq data revealed
that leaderless transcripts also serve as templates for protein synthe-
sis [84, 91]. While ribosome profiling can be applied to a wide range of
bacteria, this is not fully the case for special applications such as TIS-
and TTS-profiling based on the activity of specific antibiotics. Various
antibiotics are available for the latter two procedures [71, 85]. How-
ever, they are not equally effective against all bacteria and, it often
takes a lot of effort to find the most appropriate drug and its effective
concentration [67,71, 85]. To increase the efficacy of antibiotics, it may
also be necessary to genetically modify the bacterium of interest, as
described for retapamulin in Gram-negative bacteria, where the drug
had limited activity. Deletions of genes encoding major efflux compo-
nents were the only way to map TISs in E. coli (tolC) and Campylobacter
jejuni (cmeB) [67, 85].

Several algorithms have been developed to improve genome anno-
tation on the basis of ribosome, TIS- and TTS-profiling data and more
specifically to detect sORFs in bacteria [50, 39, 40]. REPARATION
introduces an innovative algorithm designed to systematically iden-
tify putative protein-coding ORFs in bacterial genomes. It utilises an
RF classifier, trained on patterns identified from Ribo-seq data within
protein-coding ORFs. To mitigate the biases often associated with
in silico prediction methods, it incorporates several validation steps.
These include logistic regression models to represent the relationship
between ribosome density and ribosome protected fragment (RPF)
coverage, thereby estimating minimum read density and ORF RPF
coverage. In addition, it implements a rule-based post-processing algo-
rithm to filter out false positives, particularly those overlapping with
confirmed coding ORFs.

With smORFer [40] another tool has been introduced that inte-
grates genetic sequence’s structural features, in-frame translation data
and Fourier transform to generate a measurable score. By integrat-
ing TIS-profiling data, the sensitivity of the prediction of start codons
of bacterial ORFs is improved. Its modular design allows users to
customise sORF searches based on an organism’s specific data. Like
ab initio methods smORFer identifies putative sORFs without relying
solely on existing gene annotations or homology comparisons, making

it a useful tool for gaining new insights into the genomic landscape.

Proteomics and Systems Biology

A thorough comparison study [50] was conducted on various Ribo-
seq-based ORF prediction tools including REPARATION, DeepRibo
and smORFer. Using Ribo-seq data from four distinct bacterial species,
DeepRibo emerged as a robust tool across the testing data. Despite
this, a notable limitation common to all tools was the lack of high sen-
sitivity in detecting sORFs. Even with sufficient Ribo-seq signals, a
significant number of experimentally validated sORFs remained unde-
tected by any tool. This finding highlights an ongoing challenge in
genomic analysis and emphasises the need for improvements in SORF

detection capabilities.

3.3 | Proteogenomics

The aim of the MS-based proteomics is to provide a complete list of the
proteins present in a bacterial cell, for example. Proteins are typically
identified by matching MS/MS spectra of peptides against theoreti-
cal spectra of all candidate peptides derived from proteins encoded
by annotated ORFs in the respective genome sequence. However, this
also means that only those proteins for which an ORF has been pre-
dicted can be identified. To identify novel peptides that are missing
from protein databases based on conventional genome annotations,
a so-called ‘proteogenomics’ approach can be applied [92]. Instead of
comparing peptide spectra to databases of previously annotated pro-
teins, the MS/MS data need to be compared to customised protein
databases [93].

Databases such as translation databases, which consider the full
coding capacity of a given bacterial genome, are widely used to anal-
yse MS/MS-data in proteogenomics [2, 72, 94]. Protein sequences are
generated using six-frame translation of the genomic sequence. SALT
is a freely available algorithm that supports the global translation of
bacterial genomes using all six reading frames [2]. A limitation of this
strategy is the extremely large size of the resulting database, with
a significant (or even excessive) proportion of non-existent protein
sequences, which complicates protein identification. Different strate-
gies can be applied to create translational databases. Using stop-to
stop translation, a separate protein entry is created for each sequence
between two stop codons. This results in a non-redundant database
that represents the full coding potential of a given genome sequence
[2]. The resulting database size depends on the minimum sequence
length cutoff used. An obvious drawback of this database is that
the majority of protein sequences obtained are artificial. Addition-
ally, the resulting protein databases almost invariably fail to capture
real N-terminal peptides. Alternatively, start-to-stop translation can be
applied. The validity of this database depends on the selection of poten-
tial translation start sites. Extensive characterisation of the activity of
several start codons in E. coli and ribosome profiling in several bacteria
revealed that ATG in bacteria is mainly used by ribosomes for transla-
tion initiation, followed by TTG and GTG [9, 73, 83, 95]. However, other
codons such as CTG, ATT, ATC and ATA, which are characterised by dif-
fering from ATG in only one position, showed translation initiation in
E. coli [95]. Which of these codons, and how often, should be used to

artificially translate bacterial chromosomes? One strategy would be to
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prefer ATG and translation of the longest ORF. If there is no ATG, the
next alternative start codon that results in the longest translation prod-
uct could be considered. This also generates a non-redundant database
that covers almost the entire coding potential, but similar to stop-to-
stop translation, many protein sequences obtained are artificial and
do not contain the true N-terminus. This problem can be solved by a
start-to-stop translation that considers all possible translation prod-
ucts starting from both the ATG and all non-canonical start codons. The
resulting database would have the clear advantage of including all pos-
sible N-terminal peptides and would also be suitable for proteoform
detection. However, this is a very large and highly redundant database.
For a more qualified MS/MS data analysis, it is recommended to create
a non-redundant peptide database [9, 72].

To capture the full protein-coding potential of a given bacterial
genome sequence, Omasits et al. [94] created an integrated proteoge-
nomics database (iPtgxDB) by combining reference genome anno-
tations with the results of the ab initio gene prediction algorithms
Prodigal [34] and ChemGenome [96], and all potential in silico ORFs
obtained by a modified six-frame translation considering alternative
start codons above a defined length threshold. This database is more
specific and therefore less complex than the translational databases
described above, as the proportion of non-existent protein sequences
is significantly reduced. This has a positive effect on the reliability of
MS-based protein identifications. iPtgxDBs have already been success-
fully used to identify small proteins in a number of bacteria, including
Bartonella henselae, B. subtilis, Listeria monocytogenes and Sinorhizobium
meliloti (Table 2) [68, 94, 97, 98].

When using translation databases that mostly represent artificial
peptide sequences, the next critical step is to derive the ORFs from
the lists of identified peptides. For this purpose, Pepper, a rule-based
expert system (see Info Box 1), has been developed that integrates
MS proteomic data with genomic information. The fully automated
pipeline processes peptide identifications obtained from searches
against a database created from full-genome translations. For ab initio
ORF prediction, the pipeline applies a set of expertly curated rules, con-
sidering factors such as genomic locations of identified peptides, types
of start codons, presence of RBSs and RBS spacer region lengths. [2].
The successful application of Pepper has led to the detection of previ-
ously unknown small proteins in different bacterial species, including S.
aureus and C. jejuni, as well as the archaeon Haloferax volcanii (2, 7, 67].

Itis becomingincreasingly clear, at least from extensive TIS-profiling
studies, that more than one variant of a protein can arise from a single
OREF either through multiple translation or through post-translational
modifications [28, 85, 89, 103]. This can have significant effect on the
length of the predicted gene products and therefore their functional
properties. To increase the accuracy of ORF prediction, especially for
sORFs, MS-based proteomics can also assist in the identification of
5-end(s) of ORFs among them sORFs by experimentally identifying
the N-terminal end of the proteins [102]. Selective enrichment of N-
terminal peptides in combination with high-throughput MSiis currently
the standard approach for the identification of protein N-terminal
sequences, also known as N-terminomics [104, 105]. Blocking free

amino groups on the intact proteins by acetylation and subsequent pro-

teolysis of the acetylated proteins results in a mixture of N-terminally
acetylated (true N-terminal) and non-acetylated (internal and carboxy-
terminal) peptides. The non-acetylated peptides are then removed
from acetylated and formylated peptides by amino-specific affinity
chromatography. The resulting unbound fraction is highly enriched in
N-terminal peptides. These can be analysed by LC-MS/MS [105].

4 | EXPERIMENTAL IDENTIFICATION OF SMALL
PROTEINS BY MS-BASED PROTEOMICS IN
BACTERIA

In recent years, the identification of small proteins using MS-based
techniques has been intensified. Although MS has great potential
for the discovery, validation and functional characterisation of small
proteins, standard MS approaches have limited applicability for the
identification of known and novel small proteins. The identification of
small proteins by MS-based proteomics has been hampered not only
by the fact that they were ignored by conventional genome annota-
tion algorithms and were therefore missing from protein databases,
but also by their low molecular weight, which makes them difficult to
prepare and also reduces the number of MS-compatible peptides. As
shown for Salmonella typhimurium, small proteins clearly suffer from a
lower peptide identification rate. It was almost 9% for proteins with
more than 100 aa, but only 2.5% for proteins up to 50 aa and 4.5% for
proteins between 50 and 100 aa [9].

As a result, the detection of a small protein in a given sample using
conventional protocols was more or less random, even if it was present
in the database. These problems have been approached in different
ways by studies focusing on the systematic identification of small
proteins in bacteria. A key objective of method development was to
increase the number and intensity of MS-compatible peptides from
small proteins in order to improve the sequence coverage and the qual-
ity of MS/MS spectra. Critical steps are sample preparation, protease
digestion, liquid chromatography (LC), MS data acquisition, peptide
spectrum matching, MS-data analysis and protein identification.

4.1 | Enrichment and digestion of small proteins

Several analytical pipelines have been developed to separate small pro-
teins from larger proteins in complex bacterial protein samples prior
to digestion and highly sensitive LC-MS analysis. This has been suc-
cessfully achieved using solid-phase enrichment columns that combine
reversed-phase binding and size-based separation [7, 68, 97] (Table 2).
During the enrichment step, only small proteins can enter the pores
of the column and interact with the column material, while larger pro-
teins pass directly through the column. In B. subtilis, this has been
shown to increase the absolute number of small proteins identified
by a factor of two [97]. Alternatively, intact bacterial proteins can be
separated on a gel-free fractionation system [106]. The principle of
this technique is based on that of classical SDS-PAGE, in which the gel

is polymerised in a columnar cartridge. In this way, proteins migrate
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TABLE 2 Aselection of studies aimed at the systematic identification of small proteins in bacteria using MS-based shotgun proteomics

approaches.

Organism

S. typhimurium

S. typhimurium

S. typhimurium

H. volcanii

B. subtilis

P. aeruginosa
E. coli

S. aureus

M. pneumonia

S. aureus

Simplified human
intestinal
microbiota
(SIHUMIx)

M. mazei

M. mazei

M. mazei

M. mazei

M. mazei

B. henselae

C. jejuni

Protein fraction

Soluble proteins

Soluble proteins

Soluble proteins

Soluble proteins

Soluble proteins

Soluble proteins

Soluble proteins

Soluble proteins

Soluble proteins

Soluble proteins

Soluble proteins

Soluble proteins

Soluble proteins

Subcellular
fractions (Cyt,
™, IM, OM)

Soluble proteins

Protein prefractionation

None

None

GradSeq
1D SDS-PAGE

Solid phase enrichment

Solid phase enrichment

Novex 10%—20% Tricine
gels

1D SDS-PAGE

1D SDS-PAGE
Tricine-SDS gel
FASP/MWCO filtration
C8 cartridges

Gelfree 8100
fractionator

Reversed acetone
precipitation

Gelfree 8100
fractionator

1D SDS-PAGE
1D SDS-PAGE

None

Acetonitrile-based
protein precipitation in
combination with 1D
SDS-PAGE

none

Gelfree 8100
fractionator

Endoprotease

Trypsin
LysC

Trypsin

Trypsin

LysC

Trypsin
LysC

LysC/Trypsin

Trypsin
LysC
AspN

Trypsin

Trypsin

Trypsin

Trypsin
Chymotrypsin
GluC
LysArginase
LysC

Trypsin

Trypsin

Trypsin
Chymotrypsin

Trypsin
Chymotrypsin

Protein database

- Reference protein database for S. typhimurium
strain SL1344 - six frame translation with all
OREFs of at least 30 bp initiated from ATG, GTG
and TTG

Six frame translation with all ORFs of at least
30 bpinitiated from ATG, GTG and TTG

- Reference protein database for S. typhimurium
SL1344 combined with computational sORF
predictions (sPepFinder and experimental
data (RNA-seq and Ribo-seq data)

H. volcanii reference protein database
Six frame translation from stop to stop

B. subtilis 168 reference protein database
iPtgxDB

- Customised protein databases based on
RanSEP

Six frame translation from stop to stop

Reference protein database

Merged protein database, which includes the
M. mazei, M. barkeri and M. acetivorans
(non-redundant) protein sequences, combined
with sORF predictions based on
transcriptomic data

Reference protein database

Reference protein database of M. mazei
combined with sORF predictions based on
transcriptomic data

Reference protein database

Reference protein database of M. mazei
combined with sORF predictions based on
transcriptomic data

iPtgxDB

Reference protein database of C. jejuni
combined with sORF predictions based on
Ribo-seq data

Six frame translation from stop to stop

Reference

(9]

[72]

[66]

[7]

[97]

[4]

[2]

[6]

[99]

[100]
[101]

[82]
[3]

[94]

[67]

(Continues)
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TABLE 2 (Continued)
Organism Protein fraction  Protein prefractionation Endoprotease  Protein database Reference
L. monocytogenes Soluble proteins  None LysC/Trypsin - iPtgxDB [98]
L. monocytogenes Soluble proteins  Isolation of N-terminal Trypsin - Six frame translation from any of the known [102]
peptides by COFRADIC  GIuC start codons (ATG, GTG, TTG, CTG, ATT, ATA,
ATC) with a minimal length of six amino acids
S. meliloti Soluble proteins - Solid phase enrichment Trypsin - iPtgxDB [68]
LysC
Human Soluble proteins  -Acetic acid-based protein ~ Trypsin - Reference protein databases combined with [56]
microbiome precipitation and customised protein databases with sORFs
B. thetaiotaomi- MWCO filtration prediction using Prodigal [34] or MetaProdigal
cron [33]

MS, mass spectrometry; sORF, small open reading frame.

through the gel and can be collected in soluble fractions. This strategy
has been successfully used to increase the number of small proteins
identified in several bacteria, both in pure cultures and in a simplified
gut microbiome [6, 67, 99] (Table 2). In addition, specific precipitation
with organic solvents, such as in acetone or different concentrations
of acetonitrile, which depletes the majority of proteins above 15 kDa,
has been used to identify small proteins in soluble bacterial protein
extracts [3, 6] (Table 2). As is the case with large proteins, the physico-
chemical properties of small proteins are highly heterogeneous. It is
therefore highly unlikely that any single approach will be able to enrich
all small proteins expressed in a given organism. For a very comprehen-
sive analysis of small proteins, several studies have combined multiple
complementary methods to increase both the number and the confi-
dence of protein identifications [3, 6, 99] (Table 2). In some cases, the
total protein concentration can be significantly reduced by using these
protocols. For very low concentrated small protein samples, protein
digestion using the Single-Pot Solid-Phase-Enhanced Sample Prepara-
tion technique has been performed to obtain the maximum number of
peptides detectable by MS [67, 107].

Clearly MS-detectability of peptides represents an important limit-
ing factor for identification of small proteins. Peptide predictor tools
based on ML have been established to identify theoretical peptides
that are refractory towards MS-based detection [108, 109]. These
tools can be used for selecting endoproteases more suitable for the
identification of small proteins in a given protein database. As the total
number of MS compatible peptides is usually very small for small pro-
teins, multi-protease approaches are frequently applied to increase the
number of MS-detectable peptides for identification of these proteins
[2,4,9,67,68,94,97,102, 101]. The suitability of the endoproteases
used for the identification of small proteins may vary from bacterium
to bacterium [2, 67, 97, 101] (Table 2). A very systematic approach
using multiple proteases (trypsin, chymotrypsin, LysC, Lysargi-Nase
and GluC) in GeLC-MS/MS analysis for the archaeon Methanosarcina
mazei showed a significant improvement in the identification of small
proteins. In total, 91 small proteins were identified with at least two
unique peptides and for 39 small proteins a complete sequence cov-
erage was achieved. Using trypsin alone, only 77 small proteins could
be identified [101]. For S. aureus, the differences between the differ-
ent endoproteases (LysC, AspN, Trypsin) in small protein identification

were not as significant. The results showed that AspN with 48 SP100
was less efficient than LysC (69 SP100) and trypsin (104 SP100).
However, a unique set of small proteins (55 SP100 for trypsin, 5 for
LysC and 8 for AspN) was also identified for S. aureus using those
enzymes [2].

4.2 | LC-MS/MS and data analyses

The low number of MS detecteable peptides is also a particular chal-
lenge for MS and data analyses in the detection of small proteins.
Often only one unique peptide is available for protein identification.
High quality MS/MS spectra, stringent filtering criteria and rigorous
validation of identified peptides are therefore essential to facili-
tate high-confidence protein detection and to avoid the reporting of
spurious novel protein identifications.

The majority of studies focusing on the identification of small
proteins have used conventional bottom-up proteomics approaches
based on electrospray ionisation (ESI) MS [1]. Matrix assisted laser
desorption/ionisation (MALDI) ionisation has been used as a promising
alternative for the identification of small membrane proteins and low
complexity samples [1, 110]. Selection of peptide ions for MS/MS
analysis is commonly based on peak intensity and resolution (=data
dependent acquisition [DAA] mode). However, this results in a loss of
peptide information, which is particularly critical for small proteins.
Therefore, the use of the data-independent mode may prove to be a
clear advantage for the identification of small proteins in the future, as
allions are fragmented for MS/MS[111]. This is also essential for a sub-
sequent global quantification of these proteins using protein/peptide
labelling approaches. To improve the detection and sequence coverage
of peptides, additional fragmentation methods can be used including
higher-energy collision dissociation (HCD), electron-transfer disso-
ciation (ETD) and electron-transfer combined with higher-energy
collision dissociation (EThcD) [5, 112-114]. This is useful when longer
peptides are expected, for example when using endoproteases with
fewer cleavage sites such as AspN or GIuC, or when using top-down
proteomics for small protein identification [113]. While the commonly
used collision-induced dissociation (CID) method selectively frag-
ments the most labile bonds in the peptides and therefore provides
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limited protein coverage, the use of electron capture/transfer disso-
ciation (ECD/ETD) has been shown to improve sequence coverage
[115-117].

When using comprehensive databases, such as translation
databases (see above), the search space becomes much larger,
resulting in a higher number of random PSMs with high scores and
thus significantly reducing the sensitivity of peptide identification
[25]. Because the vast majority of entries in a six-frame translation
database belong to very small proteins, the likelihood of false positives
is therefore greater in this subset [118]. For these reasons, and often
only one unique peptide is available to identify small proteins, the
FDR of novel peptides or peptides belonging to small proteins differs
from the FDR of annotated peptides by several orders of magnitude.
The degree of this effect strongly depends on the genome annotation
completeness [119]. Therefore, for the identification of small proteins,
many studies have used FDRs for PSMs or peptides below 0.1 [2, 7,
94, 101, 100]. In addition, to limit the analyses to high quality PSMs,
various spectral and quality-based filtering criteria were applied.
Specifically, only MS/MS spectra with sequence tags of at least five
consecutive b or y fragment ions or two times four consecutive b or y
ions were included [2, 7, 67, 120]. Proteogenomics tool Pepper enables
automated assessment of MS/MS spectrum quality [2]. Assignment of
correct peptide identifications can also be aided by re-scoring PSMs
using ML tools such as Percolator that applies a target decoy approach
[121]. Several features describing the quality of PSMs are used for
scoring, for example, PSM features provided by the MS-GF+ search
engine, including a specific MS-GF+ score and matched fragment peak
mass deviations [122]. Other scoring features that were used by ML
are the deviation of the predicted peptide retention time (RT) and the
intensity of peptide fragment ions [123-125].

Due to their small size, small proteins are excellent candidates
for top-down proteomics using native protein extracts. However, this
requires special expertise and MS instruments that can routinely
achieve high sensitivity, mass accuracy and isotopic resolution, as well
as efficient fragmentation of peptides, resulting in high quality MS?2
and MS3 spectra that provide the most information about the primary
structure of peptides/proteins. This approach is promising in particular
for the identification and characterisation of small proteins. However,
it is not yet widely used because of the challenges it faces [110, 112,
126, 127]. Top-down data can also be used in combination with de novo
sequencing to identify small proteins. This is a completely database-
independent approach in which protein sequences are inferred from
aa-specific mass increases between adjacent fragment peaks and
has been successfully applied to the identification of small proteins
encoded by the human genome. Meier-Credo et al. [110] present a top-
down MALDI-MS/MS approach that is well suited for the identification
and sequence analysis of membrane proteins. Using photosystem Il
as an example, they were able to analyse proteins in the range of
2.5 and 9 kDa with high accuracy and sensitivity. Recently, nanopore
sequencing has emerged as an alternative for single-molecule-based
primary sequencing and conformational analysis of peptides and pro-
teins [128-134]. In the near future, this technique may also support

Proteomics and Systems Biology

the identification of small proteins and peptides, either by de novo
sequencing or by protein fingerprinting, not only at a global level but
also at the level of individual cells.

5 | CONSTRAINTS AND CRITICAL VALIDATION
METHODS IN PREDICTING NOVEL SMALL
PROTEINS

Bacteria are highly dependent on their environment and closely adapt
the expression of their genes to the prevailing conditions. Factors
such as temperature, pH, availability of nutrients and interaction with
other microbial species as well as host cells all contribute to the gene
expression within these microorganisms. For instance, the expression
of CsrA, a small RNA-binding protein that serves as global regula-
tor of carbon storage, is modulated in bacteria such as E. coli in
response to biofilm formation and environmental stressors [135, 136].
Another example is RNAIII in S. aureus, which encodes delta-hemolysin,
which is mainly expressed during the post-exponential growth phase
and whose expression level varies greatly between different isolates
[137, 138]. Beyond mere gene expression, the stability of the result-
ing RNAs and proteins is critical for successful detection, especially
when using transcriptomics and/or proteomics methods. By using data
from the transcriptome and proteome, activity of metabolic pathways
under the conditions studied can be roughly estimated. Complemen-
tary genomic analyses can then help to complete our understanding
of the role of small proteins. In a noteworthy genomic study involv-
ing 1773 metagenomes from four different human body microbiomes
(mouth, gut, vagina and skin), more than 4500 conserved families
of small proteins were predicted bona fide using MetaProdigal and
RNAcode [56]. Surprisingly, the vast majority of these proteins were
previously unknown and does not exhibit sequence homology to
known protein domains. This work highlights the importance of meth-
ods that can be used to study entire microbial consortia to discover
novel gene products and provide initial clues to their physiological
role.

However, it is important to recognise that genome-wide evidence-
based methods for predicting small proteins, including transcriptomics,
ribosome profiling and MS-based proteogenomics, generate false pos-
itives. Thus, rigorous validation of small proteins predictions with a
second independent experimental method is mandatory. For small pro-
teins predicted from transcriptomic or ribosome profiling data, it is
recommended that they be detected directly by MS-based methods by
integrating the sequence information of the proteins into the database
used for MS/MS data analysis [9, 66-68, 99]. Small proteins that have
been identified solely by MS-based methods using a proteogenomics
approach based on translational databases will also need to be con-
firmed by a second method. These include immunological methods
using specific antibodies, the expression of tagged proteins encoded on
a plasmid, or the use of synthetic peptides that match the experimen-
tally detected peptides of the small proteins to check RTs and peptide
fragmentation [7, 67, 94].
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6 | A GLIMPSE INTO THE FUTURE

ML approaches, particularly deep learning algorithms, have the poten-
tial to infer peptide sequences directly from MS/MS spectra without
the need for a protein database (for review see [139]). This is a
much more challenging task, as it essentially involves de novo peptide
sequencing, but it can also provide more comprehensive and unbiased
identifications particularly for small proteins. DeepNovo and SMSNet,
to name just two, are examples of a deep learning-based algorithms
for de novo peptide sequencing. Both use deep CNNs and RNNs to
model the patterns in the MS/MS spectra and infer the aa sequence
of the peptide that produced the spectrum [140, 141] (see Info Box 1).
These algorithms demonstrate the potential of ML for direct peptide
identification from MS spectra. However, they also highlight the chal-
lenges involved in this task, particularly in terms of the complexity
and variability of the spectral data and the need for large, high-quality
training datasets. Therefore, although significant progress has been
made, there is still much research to be done in this area. Oxford
Nanopore Technologies (ONT) has made significant contributions to
long-read sequencing technology in genomics [142]. The possibility of
applying this technology to direct protein sequencing is currently being
explored. The principle of the ONT’s nanopore sequencing technology
is to detect changes in electrical current as a single molecule (DNA,
RNA or possibly protein) passes through a nanopore. These changes
can identify single bases in DNA or RNA, or possibly aa in proteins. The
adaptation of ONT technology to protein sequencing is still in its early
stages and faces significant technical challenges. These include the
need to distinguish between the 21 different aa in proteins (compared
to the four basesin DNA or RNA), the variable charge and size of aa, and
the complex three-dimensional structure of proteins [128-134]. How-
ever, if the application of nanopore sequencing to proteins is successful,
it could amount to a revolution in proteomics, driving the discovery of
new protein families.

The discovery of many small proteins whose CDSs are hidden in
microbial genomes is opening up research opportunities across dis-
ciplines. Among the crucial questions that remain to be answered in
this developing field are how many of these newly discovered proteins
are functional and, if so, what their functional roles are—in particu-
lar, whether they are involved in pathogenicity or in interactions with
the human host or other microorganisms—and how their expression is

regulated.
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