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Abstract

Proteinswithup to100aminoacids havebeen largely overlookeddue to the challenges

associated with predicting and identifying them using traditional methods. Recent

advances in bioinformatics and machine learning, DNA sequencing, RNA and Ribo-

seq technologies, and mass spectrometry (MS) have greatly facilitated the detection

and characterisation of these elusive proteins in recent years. This has revealed their

crucial role in various cellular processes including regulation, signalling and transport,

as toxins and as folding helpers for protein complexes. Consequently, the systematic

identification and characterisation of these proteins in bacteria have emerged as a

prominent field of interest within the microbial research community. This review pro-

vides an overview of different strategies for predicting and identifying these proteins

on a large scale, leveraging the power of these advanced technologies. Furthermore,

the review offers insights into the future developments that may be expected in this

field.
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1 INTRODUCTION

The last few decades have seen remarkable progress in the under-

standing of bacterial proteomes. The discovery of numerous small

bacterial mRNAs and the ongoing identification of proteins of up to

100 amino acids (aa) have revealed a level of complexity in bacte-

rial proteomes that far exceeds previous expectations. The term ‘small

protein’ is not clearly defined and is used in different studies for pro-

teins with sometimes very different length restrictions (25, 50, 70 or

Abbreviations: aa, amino acid(s); bp, base pair(s); CDSs, coding sequences; CNNs,

convolutional neural networks; DAA, data dependent acquisitionmode; dN/dS,

nonsynonymous to synonymous substitutions; HMMs, HiddenMarkovmodels; iPtgxDB,

integrated proteogenomics database;ML, machine learning; nt, nucleotides; ONT, Oxford
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100 aa) [1–9]. In the following, proteins with a length of up to 100 aa

are referred to as small. There is increasing evidence that these pro-

teins play essential roles in a wide range of cellular processes including

cell signalling or regulation, toxins/anti-toxin systems, membrane func-

tions, protein folding, and the formation and stabilisation of protein

complexes [10–13]. Using sophisticated bioinformatics, sequencing

and proteomics tools to identify the entire microproteome in bacteria

is therefore a worthwhile, albeit challenging, approach [1, 14].

Automatic annotation andprediction of open reading frames (ORFs)

encoding proteins of less than 100 aa is difficult for several rea-

sons. These include insufficient sequence information for domain and

homology searches, a limited number of experimentally validated

ORFs, and the tendency of these proteins to be species-specific [15].

This makes it extremely difficult to distinguish between small open

reading frames (sORFs) with low and high coding potential, and the
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number of false positives among predicted sORFs is very high [2, 16,

17]. Since start and stop codons are usually AT-rich, predicting protein-

coding sORFs in GC-rich bacteria is even more challenging [2]. Given

these facts, arbitrary cut-offs forminimal ORF lengths ranging from 50

to 100 codons were routinely applied to annotate bacterial genomes

[18]. In addition, sequence characteristics, such as ribosomal binding

sites (RBSs), codon usage and aa conservation are increasingly being

used to distinguish between coding andnon-codingORFs [15]. This sig-

nificantly reduces the number of false positives among the annotated

sORFs in the databases, but also leads to the exclusion of bona fide

small protein-coding genes. Therefore, in order to obtain more quali-

fied protein databases for bacteria of interest, with a particular focus

on small proteins, more accurate sORF prediction algorithms need to

be established.

In addition, innovative developments in the direct detection of

translated ORFs and proteins are having a major impact on small pro-

tein research. Ribosome profiling and mass spectrometry (MS)-based

proteomics are currently the methods of choice for the experimen-

tal identification of protein-coding ORFs on a global scale. Ribosome

profiling is much more sensitive, but provides only indirect evidence

for the presence or absence of a small protein [19]. MS-based protein

detection is currently the best method for not only directly detect-

ing small proteins that accumulate at meaningful levels in the cell, but

also for providing information about existing proteoforms and post-

translational modifications [20, 21]. In addition, proteomics can also

provide clues to the global subcellular localisation of proteins and

protein–protein interactions, as well as insights into the molecular

structure of protein complexes. The classical bottom-up proteomics

approach, based on LC-MS/MS analysis of highly complex peptidemix-

tures derived from complex protein crude extracts after proteolytic

digestion, provides deep insights into the bacterial proteome [22–24].

How complete the experimentally determined proteome of a bac-

terium ultimately depends not only on the quality of the MS/MS data

but also on the quality of the protein databases used for the analysis

of the MS/MS data. In contrast to genomic and transcriptomic tech-

nologies, where the DNA or RNA fragments are actually sequenced,

MS-based proteomics mainly identifies peptides by matching MS/MS

spectra against theoretical spectra of all candidate peptides present

in a reference protein database (peptide spectrum matches [PSMs])

[25]. Classical bottom-up proteomics therefore only supports the iden-

tification of proteins that are expected to be produced by a given

organism and is clearly biased towards the study of proteins with

more than 100 aa. In addition, the low molecular weight of small pro-

teins complicates experimental preparation and reduces the number

of peptides that can be detected by MS. Therefore, the systematic

MS-based identification of small proteins has been an obstacle for

a long time. The increasing realisation that small proteins exist and

play an essential role in many cellular processes [8, 10–13, 26] has

led to several activities in recent years to improve MS-workflows and

protein databases that support the identification of small proteins in

bacteria [1].

In this review, we aim to highlight the challenges, advances and

future prospects in the prediction of short protein-coding sORFs

and the MS-based identification of the resulting small proteins in

bacteria.

2 IN SILICO PREDICTION OF SMALL OPEN
READING FRAMES

The computational prediction of sORFs in bacteria has demonstrated

immense potential in uncovering the existence and functions of small

proteins. Additionally, it serves as a prerequisite for different exper-

imental detection methods, such as classical shotgun proteomics.

Bacteria exhibit distinct characteristics in genomic organisation and

mRNA translation compared to eukaryotes, necessitating the adap-

tation of gene-finding algorithms tailored to these unique features.

For instance, bacterial genomes often contain a higher density of cod-

ing sequences (CDSs) and lack introns, unlike eukaryotic genomes.

Additionally, bacterial mRNA translation may commence with differ-

ent start codons, and the operon structure in prokaryotic genomes can

lead to polycistronic mRNAs. The heterogeneity in genomic character-

istics intrinsic to different bacterial species can significantly affect the

performance and effectiveness of predictive algorithms. For example,

the task of detecting genes in GC-rich genomes becomes significantly

more challenging due to the increased likelihood of encountering ran-

dom ORFs [2]. Metrics, such as the codon adaptation index, lose their

robustness when dealing with more recent horizontal gene transfers

[27]. Unlike their eukaryotic counterparts, bacterial transcripts are

typically polycistronic and generally lacking splicing and polyadenyla-

tion signals, and do not always have a clear translation initiation site

(TIS) or RBS. Other gene-specific properties such as size, start codon

and nested localisation have also been shown to significantly influence

the accuracy of gene prediction [9, 14, 28–30]. Small ORFs, in particu-

lar, have divergent features, such as atypical nucleotide composition,

lack of RBS and non-canonical start codons, which contribute to the

computational challenges of prediction [17, 31, 32].

In the following sections, we will discuss different in silico meth-

ods for predicting ORFs from genome sequences, highlighting their

advantages and remaining limitations, particularly with regard to the

detection of sORFs (Table 1). It is vital to understand that prediction

(and detection in this context) is not synonymous with identification.

The predictive methods and models are inherently linked to presump-

tions and probabilities and may be influenced by factors such as false

discovery rate (FDR). This complex nature of prediction underscores

the urgent need for validation, as it is essential to verify the authen-

ticity of the predicted ORFs, especially those pertaining to sORFs. The

focus on this validation, and its critical importance, will be further

explored in Section 5.

Our review provides only an overview of the different bioinformat-

ics strategies and tools currently available, outlining their key strengths

and limitations. However, we do not engage in comparative bench-

marking of these tools. For those readers looking for a more detailed

analysis and performance comparison of the tools mentioned, we

would like to refer to the excellent benchmark studies by Dimonaco

et al., Gelhausen et al. and Korandla et al. [14, 50, 51].

 16159861, 2023, 23-24, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202200421 by R
obert K

och-Institut, W
iley O

nline L
ibrary on [03/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3 of 18

TABLE 1 Gene prediction programsmentioned in this review.

Tool Approach (Primary) input (Main) method Availability Reference

MetaProdigala Ab initio Genome sequences Dynamic programming and

comparative genomicsb
Bioconda: https://anaconda.org/bioconda/prodigal

Github: https://github.com/hyattpd/Prodigal

[33]

Prodigal Ab initio Genome sequences Dynamic programming and

Comparative genomicsb
Bioconda: https://anaconda.org/bioconda/prodigal

Github: https://github.com/hyattpd/Prodigal

[34]

RNACode Ab initio RNA Sequence

Alignment

Comparative genomicsb Bioconda: https://anaconda.org/bioconda/rnacode

Github: https://github.com/ViennaRNA/RNAcode

[35]

sORF finderc Ab initio Genome sequences Comparative genomicsb Download: http://labo.bio.kyutech.ac.jp/
∼kohanada/sORFfinder2.tar.gz

[36]

μProteInsc Evidence-

based

RNA-seq andMS data Reference-guided assembly

and peptidemapping

Github: https://github.com/Eduardo-vsouza/

uproteins

[37]

DeepRibo Evidence-

based

Ribo-seq Deep learning Github: https://github.com/Biobix/DeepRibo [38]

Pepperc Evidence-

based

Peptide identifications

andMS data

Peptidemapping Gitlab: https://gitlab.com/s.fuchs/pepper

REPARATION Evidence-

based

Ribo-seq Random forest Bioconda: https://anaconda.org/bioconda/

reparation_blastd

Github: https://github.com/Biobix/REPARATION

[39]

smORFerc Evidence-

based

Ribo-seq Fourier transform Github: https://github.com/Alexander

Bartholomaeus/smORFer

[40]

CRITICA Hybrid Genome sequences Comparative genomicsb Download: http://www.ttaxus.com/software.html [41]

OCCAMc Hybrid Genome sequences Comparative genomicsb Download: http://www.labinfo.lncc.br/occam [42]

SearchDOGS

Bacteria

Hybrid Genome sequences Comparative genomicsb Download: http://wolfe.ucd.ie [43]

AUGUSTUS ML-based Genome sequences Ribo-seq supported Hidden

Markovmodels

Bioconda: https://anaconda.org/bioconda/augustus

Github: https://github.com/Gaius-Augustus/

Augustus

Web service: http://bioinf.uni-greifswald.de/

webaugustus

[44]

Balrog ML-based Genome sequences Deep learning Bioconda: https://anaconda.org/bioconda/balrog

Github: https://github.com/salzberg-lab/Balrog

[45]

GeneMarkS ML-based Genome sequences HiddenMarkovModels Web service: http://exon.gatech.edu/genemark/

genemarks.cgi

[46]

Glimmer ML-based Genome sequences InterpolatedMarkovmodels Bioconda: https://anaconda.org/bioconda/glimmer

Download: http://ccb.jhu.edu/software/glimmer/

index.shtml

[47]

RanSEPc ML-based Genome sequences Random Forest Classifier Github: https://github.com/samuelmiver/RanSEPs

Download: http://ranseps.crg.es

[4]

BLAST+e Similarity-

based

Genome sequences Comparative genomicsb Bioconda: https://anaconda.org/bioconda/blast

Download: https://blast.ncbi.nlm.nih.gov/doc/blast-

help/downloadblastdata.html

Web service: https://blast.ncbi.nlm.nih.gov/Blast.cgi

[48]

FASTA3e Similarity-

based

Genome sequences Comparative genomicsb Bioconda: https://anaconda.org/bioconda/fasta3

Web service: https://www.ebi.ac.uk/Tools/sss/fasta

[49]

aShows improved accuracy for small open reading frame (sORF) detection compared to prodigal.
bComparative genomics-basedmetrics such as sequence similarities, codon substitution rates and/or nucleotide compositions.
cSpecifically designed for sORF detection.
dIn this version the commercial ‘usearch’ program has been substitutedwith ‘blast’.
eAlthough these programs are not gene prediction programs in the strict sense (as discussed in Section 2.1), their inclusion here is for completeness.
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2.1 Similarity-based prediction methods

Phylogenetic conservation is intrinsically linked to biological informa-

tion, such as CDSs, and conserved sequences across species often

indicate important functions. This evolutionary constraint enables the

identification and understanding of functionally important genes and

their encoded proteins. Similarity-based approaches exploit evolution-

ary conservation andhomologybetweenknownandunknownproteins

by searching for sequence similarities between query sequences and

annotated protein databases. This allows the identification of putative

small proteins based on their resemblance to known proteins.

Both FASTA and BLAST mark important milestones in computer-

assisted homology searches with a large number of target sequences

[52, 53]. These tools have significantly improved the speed and

efficiency of sequence comparison, enabling researchers to search

increasingly large sequence databases. Despite their utility, FASTA and

BLAST are primarily sequence alignment tools and not stand-alone

gene prediction tools.

In a unique study, researchers relied solely on a similarity-based

approach usingmpiBLAST [54], a high-performance variant of the orig-

inalBLASTalgorithm, to compare intergenic sequences from1474 fully

assembled replicon sequences of 780 distinct prokaryotic genomes

[31]. The database used for this comparison included not only anno-

tatedCDSs fromall genomes examined, but also all potential intergenic

ORFs of at least 99 bp. This approach led to the detection of 38,895

unannotated genes across all genomes and 1100 ‘missing’ genes that

did not align with any known sequences, suggesting they may belong

to so far undiscovered gene families. The vast majority of these unan-

notated and missed genes were short, encoding no more than 100

aa, consistent with the arbitrary length cut-offs of conventional gene

annotation pipelines. In addition, a significant proportion of these pro-

teins appear to be of foreign origin, lacking the usual sequence features

shared by other protein-coding genes within the same organism. This

absence of familiar traits could have contributed to their initial eva-

sion fromdetection [31]. However, this study only considered potential

ORFs with canonical start codons, excluding a significant number of

non-canonical sequences. It is therefore reasonable to assume that the

actual number of small, undiscovered genes is likely to bemuch higher.

While similarity-based approaches can reveal structural proper-

ties, conserved motifs and functional roles, they have limitations when

analysing shorter sequences. Shorter sequences increase the likeli-

hoodof randommatches, leading to false positives anddifficulties iden-

tifying true homologous relationships. As a result, the statistical power

of comparisons obtainedwhen searchingwith short query sequences is

reduced [55]. Tools such as BLAST rely on the calculation of statistical

significance (e.g., E-value) to assess the reliability of thematches found.

Shorter sequences typically yield lower alignment scores, resulting in

higher E-values and lower statistical significance, making it more chal-

lenging to distinguish biologically meaningful matches from random

ones. Additionally, short genes are less conserved and often species-

specific, complicating the application of this approach in non-model

organisms. Short protein sequences may also lack conserved domains

or functional motifs, making it difficult for similarity searches to detect

distant homologues or identify functionally related proteins with lim-

ited sequence identity. In addition, sensitivity is generally lower when

searching for shorter sequences, particularly DNA-to-DNA compar-

isons, which have 5–10 times lower sensitivity than searches using

translated sequences [55]. Therefore, thesemethods aremainly used in

combinationwith other approaches, such as ab initiomethods, improve

gene predictions [36] (see Section 2.4).

2.2 Ab initio prediction methods

Ab initio methods rely on intrinsic sequence properties, such as codon

usage, ribosome binding site motifs and secondary structure predic-

tions, to identify genes. They use algorithms based on predetermined

rules and statistical models to recognise patterns within the genomic

sequence that indicate the presence of genes. Unlike similarity-based

approaches, ab initio methods do not require prior knowledge of exist-

ing proteins, making them particularly valuable for the discovery of

novel proteins in non-model bacterial species. Numerous tools, such

as GLIMMER and AUGUSTUS (both of which utilise Markov models,

which is why they can also be classified asML-basedmethods; see next

section), have gained prominence by adopting this strategy (Table 1)

[47, 44].However, the selectionof specialisedprograms forprokaryotic

gene prediction is limited, and becomes even more constrained when

considering the unique requirements for sORF detection.

Prodigal is awidely used ab initio gene-finding algorithm specifically

designed for prokaryotic genomes. It employs a dynamic programming

approach to predict coding regions based on input sequence features

[34]. The algorithm evaluates gene coding potential by combining cod-

ing scores derived from in-frame hexamer statistics and start scores

based on start codon and RBS motif frequencies. However, Prodigal

is not tailored for sORF prediction. To control FDRs, it favours longer

genes through specific rules, such as penalising final scores for genes

shorter than 250 bp and excluding genes no longer than 90 bp.

RNAcode is a computational tool that specialises in predicting con-

served coding regions within RNA sequences by utilising multiple

sequence alignment of homologous RNA sequences [35]. It assesses

both synonymous and non-synonymous substitution rates (see also

Section 2.3), operating on the underlying principle that coding regions

are more inclined to display specific evolutionary patterns compared

to non-coding regions. As emphasised by its authors, RNAcode can

achieve satisfactory results using alignments of just four sequences

that are less than 90% identical [35]. Thus, RNAcode enables the de

novo prediction of unknown CDSs not only in model but also in non-

model organisms, aswell asmicrobial communities (see also Section 5).

Moreover, RNAcode has been successfully applied in identifying previ-

ously undiscovered sORFs,while also shedding light on their functional

roles [56, 57].

Other mainly ab initio tools that are more specialised in the detec-

tion of small proteins include sORF finder [36] and MetaProdigal [33].

sORF finder predicts sORFs by analysing the nucleotide pentamer and

hexamer composition bias between coding and non-CDSs. To make

accurate predictions, the method requires a significant amount of
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known coding and non-CDSs from the organism under investigation.

Bayes’ estimation of coding probability enhances the accuracy of gene

prediction, while optional homology searches based onBLAST can pro-

vide additional support in assessing the coding potential of identified

gene candidates. Estimating synonymous and non-synonymous substi-

tutions inhomologous sequences, followedbya chi-square test, further

supports coding potential evaluation.

MetaProdigal, an extension of Prodigal, is tailored for metagenomic

data and can predict small proteins with improved accuracy using spe-

cific parameters and training data [56, 58]. A major advantage is the

ability to apply training data from different species to evaluate gene

candidates. To save computational resources, the selection of training

data is based on the GC content of the input sequence, considering the

problem of multiple testing. The computation of confidence values for

each gene candidate, representing the logarithmof the probability that

a gene is genuine compared to the background, further improves the

result evaluation.

While ab initio methods provide valuable insights, they also have

several limitations and challenges. Because they are based on prede-

fined rules and models, these methods may have limited adaptability

and generalisability to new or different genomic contexts, as their per-

formance depends on the accuracy of the underlying assumptions.

The complexity of those can make the quality of outcomes unpre-

dictable. For example, Dimonaco et al. recently reported that Augustus

(version 3.3.3) underperformed when analysing Staphylococcus aureus

data using the S. aureus model, achieving a detection rate of only a

21% [14]. Surprisingly, the performance improved significantly when

using a Homo sapiens model, reaching a detection rate of 79%. On

the other hand, Augustus detected 96.64% of Pseudomonas fluorescens

genes when using the Escherichia colimodel, indicating that genes from

both organisms share common features and characteristics captured

by the model [14]. These findings emphasise the potential variability

in the performance of ab initio methods, depending on the selected

model. Compared to similarity-based methods, ab initio approaches

often provide only limited information about function or biological

roles of detected genes. Analysing the distinctive architecture of gene

clusters in prokaryotes can complement this, particularly for sORFs,

where homology-based information is mostly scarce. By integrating

information of unique gene arrangements with associated molecular

processes, a comprehensive understanding of specialised metabolic

and cellular pathways can be achievedwhich can also help to shed light

on the physiological roles of co-localised small proteins [59].

2.3 Machine learning (ML)-based methods

ML-based approaches have become increasingly popular in gene pre-

diction because they provide a data-driven approach to identifying

novel protein-CDSs (Table 1). These methods use computational mod-

els to learn and recognise complex patterns and features in genomic

data, improving the prediction of gene candidates. Unlike similarity-

based methods, ML methods use algorithms to learn and generate

models from training data, which typically consists of annotated genes

and non-coding regions. These models can capture complex relation-

ships in the data, potentially allowing better generalisation to different

genomic contexts.

GeneMarkS [46] is anML-based gene prediction tool that combines

hidden Markov models (HMMs, see Info Box 1) for protein-coding and

non-coding regions with models of regulatory sites near gene starts. It

learns species-specific parameters from prokaryotic input sequences

withoutprior knowledgeof anyproteinor rRNAgenes. In testswith the

genome sequence of Bacillus subtilis, GeneMarkS demonstrated similar

accuracy in detecting gene starts for both genes shorter than 300 nt

and long genes. As expected, the fraction of accurately detected genes

shorter than 300 bp improved to up to 90% as more known genes

shared significant sequence similarity [46]. In the same study, Glimmer

showed reduced performance, only accurately detecting up to 72%

of short genes. This difference may due to Glimmer’s default setting,

which predicts the gene start at the start codon of the longest ORF

containing the predicted gene.

RanSEP is specifically designed for identifying sORFs in bacterial

genomes [4]. Utilising random forest (RF) classifiers, it distinguishes

between coding and non-coding sORFs by computing various features,

such as aa composition, hydrophobicity and secondary structure. The

method also incorporates additional features like start codon preva-

lence, GC content andRBS information to enhance prediction accuracy

and adapt to different organisms by learning species-specific param-

eters from provided training data. Feature selection is carried out to

minimise overfitting, while an out-of-bag approach is implemented

for feature importance estimation, offering insights into the signif-

icance of each feature in the classification process, enabling users

to thoroughly analyse its performance and predictions. RanSEP has

been successfully applied to screen systematically for sORFs in various

bacteria [4].

Deep learning techniques, such as convolutional neural networks

(CNNs) and recurrent neural networks (RNNs), have also been utilised

successfully for sORF detection (see Info Box 1). These methods

are capable of capturing intricate sequence features and context

dependencies by processing genomic data through multiple layers

of interconnected neurons. One example is DeepRibo [38], which is

built upon an artificial neural network that employs both CNN and

RNN architectures. This neural network integrates recurrent mem-

ory cells and convolutional layers, merging the information obtained

from high-throughput ribosome profiling data and ribosome binding

translation initiation sequence regions into a single model. DeepRibo

is specifically designed as a unified model, trained on different ribo-

some profiling experiments, allowing the identification of ORFs in

prokaryoteswithout prior knowledge of the translational landscape. In

a recent evaluation of ORF prediction tools based on Ribo-seq, Deep-

Ribo demonstrated exceptional performance across a wide range of

bacteria, distinguishing itself as a robust and reliable choice [50] (see

also Section 3.2).

Recently, Balrog has been introduced as gene-finding algorithm

across different prokaryotic species [45]. It utilises a universalmodel of

prokaryotic genes based on a temporal convolutional network. While

Balrog aims to detect smaller genes with its default minimum ORF
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Info Box 1

HiddenMarkovmodels (HMMs)

HMMs describe any DNA or protein sequence as a series of observable symbols (nucleotides or amino acids [aas]) generated by hidden

states. These hidden states represent different features in the DNA sequence, such as coding regions, non-coding regions or regulatory

elements, each with its own probabilities of ‘emitting’ specific nucleotides or aas. These emission probabilities represent the likelihood of

observing each nucleotide when the DNA sequence is in a particular state. For example, a coding region might have a higher probability

of emitting certain nucleotide patterns than a non-coding region. Transition probabilities between the hidden states represent the likeli-

hood of transitioning from one state to another as wemove along the DNA sequence. These probabilities help capture the structure and

organisation of theDNA sequence, such as the tendency for coding regions to be followed by non-coding regions, and vice versa.Once the

HMM is defined, it can be used to determine the likely series of hidden states behind aDNA sequence. This allows to identify key features,

like coding and non-coding regions, as well as the location of regulatory elements.

Random forests

A random forest is a machine learning (ML) technique particularly useful for classification tasks. It consists of multiple decision trees that

helps classify an input, like aDNAsequence, basedon certain features, such as nucleotide composition andpredicted secondary structure.

Each tree in the forest is built using a random portion of the available data, which helps make the overall model diverse and less prone to

errors. When a new input, like a DNA sequence, needs to be classified, it is passed through each tree in the forest. Each tree makes a

decision about the classification based on the input’s features. To get the final prediction, the decisions of all trees are combined, usually

by taking themost common decision.

Deep learning

Deep learning models are a subset of ML and are designed to automatically learn intricate patterns and features from complex data.

Deep learning models such as convolutional neural networks (CNNs) process DNA sequences, learning to detect specific combinations

of nucleotides, known as motifs, which are often indicative of genes or other significant features by applying a series of filters across the

sequence. They can analyse large-scale DNA sequences and automatically identify relevant features, enhancing the efficiency of gene

prediction. Additionally, these models consider the sequential nature of DNA sequences. Some, like recurrent neural networks (RNNs)

and derivates, even retain information from previous positions in the sequence, enabling them to capture dependencies and patterns

across the entire sequence. This ability to consider sequence context can be crucial for gene prediction, where the order and combination

of nucleotides can determine gene functionality and location.

Rule-based expert systems

Rule-based expert systems rely on a predefined set of rules or heuristics to make decisions or solve problems. These systems are partic-

ularly useful in domains where expert knowledge can be formalised into clear, logical rules. In the context of biology, these rules could

include criteria for identifying coding regions, non-coding regions, regulatory elements or other functional elements within the genome.

The rule-based expert system then processes the input DNA sequence by applying the predefined rules, determiningwhich rules apply to

each part of the sequence, and ultimatelymaking predictions or classifications based on the combined results. Compared to theML-based

method, rule-based expert systems impress with transparency and interpretability. Since the rules are explicitly defined by experts, it is

easier to understand and explain the reasoning behind the system’s predictions.

length of 60 nucleotides, the primary focus is not on accurate start site

prediction. This limitation can lead to challenges in precisely identifying

the boundaries of small genes, which may affect the subsequent anal-

ysis and functional characterisation of these small genes. In addition,

Balrog may be less effective at detecting functionally uncharacterised

gene families because hypothetical proteins were excluded from its

training data.

ML-based methods are excellent at identifying complex patterns

and relationships in genomic data. Recent studies have shown that

these approaches can match or even outperform ab initio tools [14].

However, their effectiveness is strongly linked to the quality and rep-

resentativeness of the training data and the selected features used. If

the model has limited similarity to the genome or inadequately covers

the intra-species genomic variation, prediction accuracy drops signif-

icantly [14]. Similarly, the selection of characteristics must be applied

carefully and cannot be generalised. This highlights the critical role

of high-quality, labelled training data from closely related genomes

in building accurate prediction models. For example, the ratio of

non-synonymous to synonymous substitutions (dN/dS) is a commonly

used feature whose importance in discriminating between coding and

non-CDSs has been widely demonstrated. This makes sense, because

CDSs have lower ratios than non-CDSs because they have undergone

purifying selection during evolution. A commonly used implementation

of the dN/dS test uses PAML as the scoring matrix, which is based on
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substitution rates observed in standard-length ORFs, which in turn

are not necessarily similar to those observed in shorter sequences, as

shown for short exon sequences [60, 61].

2.4 Hybrid methods

Hybrid methods exploit the strengths of ab initio, similarity-based and

ML approaches to improve prediction accuracy andminimise false pos-

itives in the detection of small proteins without relying exclusively on

prior gene annotation or homology-based comparisons with known

proteins. These methods typically incorporate multiple algorithms and

data sources, such as sequence features, conservation patterns and

structural properties, to improve gene prediction. More recently, addi-

tional hybrid tools specifically designed for the detection of sORFs

have been introduced (Table 1).

Tools such as COMBREX, CRITICA and SearchDOGs combine

homology searches with statistical measures or synteny analysis [41].

All tools were successfully applied to predict bacterial sORFs [43,

62–65]. However, they are limited to comparing closely related organ-

isms and cannot predict novel sORFs that do not share homology with

an annotated gene.On the other hand,OCCAM [42] followsmainly the

similarity-based workflow as proposed by Warren and colleagues but

considers sORFs between 36 and 300 bp [31]. To increase sensitivity

without compromising specificity, false positive BLAST hits are filtered

using anML-based target-decoy approach.

Evidence-basedhybridmethods share the ability to integrate exper-

imental information, such as ribosome profiling (Ribo-seq) and pro-

teomics data, providing empirical evidence of active translation and

improving the overall accuracy of small protein identification. By

exploiting the complementary strengths of different approaches and

data types, these methods can offer more comprehensive and reli-

able means of predicting small proteins within genomic data, and are

discussed in the next chapter.

3 EVIDENCE-BASED STRATEGIES OF
PREDICTION OF SMALL OPEN READING FRAMES

In addition to bioinformatic algorithms, information from experimen-

tal approaches such as RNA-seq, Ribo-seq or MS data is increasingly

being used for genome annotation and, in particular, to support

in silico sORF prediction [2, 7, 9, 30, 56, 66–74]. Ribosome pro-

filing and MS-based protein data have the advantage of detecting

ORFs that are actually translated, whereas transcriptomic data exclu-

sively provide evidence of transcriptional activity at the respective

genomic region. However, experimentally based predictions are gener-

ally dependent on cultivation conditions. They only capture snapshots

of (potential) sORFs. To get a more complete picture of protein-

coding sORFs, it is therefore extremely useful to combine refined

in silico bioinformatics predictions with evidence from experimental

approaches.

3.1 Transriptomics

High-throughput transcriptomic approaches based on RNA-seq tech-

nologies or tiling DNA microarrays have provided genome-wide maps

for many bacteria, including transcription start sites and operons,

and have led to the identification of a large number of previously

unknown transcripts, many of which are very small and apparently

lack long protein-coding ORFs [75–80]. They were assumed to be non-

coding. While their existence was well documented, their biological

function was controversial. For many of them it is now clear that the

RNA-molecule itself has regulatory activities. However, a closer look

revealed that some of them may have a dual function, acting both as

mRNA and as regulatory RNA [81], raising the question of whether

these are actually translated. Targeted or systemic detection of the

translation activity and the resulting proteins showed that translation

of these RNAs is much more widespread than expected [7, 67, 68, 71,

82]. Based on these data, software tools have been developed to sup-

port the prediction of ORFs, including sORFs and to generate protein

databases. μProteIns employs RNA-seq data to execute a reference-

based assembly, utilising both genomic and transcriptomic data to

construct a protein database via 6- and 3-frame translation, respec-

tively. Following the peptide search, an RF classifier is used to filter out

low-quality spectra. The remaining unique peptides are then used to

validate the identified sORFs, increasing the integrity of the findings

[37].

A crucial prerequisite for this is a very comprehensive transcrip-

tome analysis using RNA-seq [79], which makes it possible to create a

database with almost all actively transcribed protein-coding genes of

a bacterium. Large amounts of RNA-seq data are available in publicly

accessible databases for many bacteria under a wide range of growth

conditions and represent an important source for evidence-based

global sORF predictions in these organisms.

3.2 Ribosome profiling

Ribosome profiling provides direct evidence for the translation of

potential ORFs, regardless of their length or start and stop codons

and is therefore independent of genome annotation. It is based on

deep sequencing of ribosome-protected mRNA fragments, also called

as ‘ribosome footprints’, and has great potential to improve the anno-

tation of prokaryotic genomes [19, 69, 71, 83, 84]. Advanced ribosome

profiling approaches can resolve ORF translation down to the single-

codon level. Precise identification of translation start and stop sites

is facilitated by either stopping bacterial ribosomes at initiation with

retapamulin, Onc12 or tetracyclin, also known as TIS-profiling, or

stalling them at termination using apidaecin (translation termination

site [TTS]-profiling). This increases the density of ribosomes at either

translation start or translation stop codons [19, 71, 85, 86]. Progress

has also been made in determining translation activity at ORFs dur-

ing elongation [87, 88]. Application of the different approaches allows

accurate mapping of ORFs, including sORFs and alternative ORFs by
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identifying also multiple alternative start and stop sites within or out-

side the coding regions [28]. In addition to ATG, TTG and GTG were

found to function as translation start sites [73, 83]. Identification of

multiple alternative start sites within the same reading frame provide

evidence for the generation of proteoforms, that is, proteins whose

translation is initiated from different start sites within the same read-

ing frame and which are characterised by different N-termini but an

identical C-terminus. Inmost cases, it remains to be seenwhether they

exist and have a distinct function. In addition, internal start codons

belonging to alternative ORFs in a different reading frame, whose

translation product is completely different from that encoded in the

main ORF, can be detected [28, 89]. Alternative ORFs have so far been

excluded from the conventional annotation of bacterial genomes to

maintain a lowFDR, butmayplay an important role in theproductionof

small proteins. These studies also show that RBSs are not essential for

ribosomes to find the TIS, but that they do influence the efficiency of

translational initiation [90]. The integration of RNA-seq data revealed

that leaderless transcripts also serve as templates for protein synthe-

sis [84, 91]. While ribosome profiling can be applied to a wide range of

bacteria, this is not fully the case for special applications such as TIS-

and TTS-profiling based on the activity of specific antibiotics. Various

antibiotics are available for the latter two procedures [71, 85]. How-

ever, they are not equally effective against all bacteria and, it often

takes a lot of effort to find the most appropriate drug and its effective

concentration [67, 71, 85]. To increase the efficacy of antibiotics, itmay

also be necessary to genetically modify the bacterium of interest, as

described for retapamulin in Gram-negative bacteria, where the drug

had limited activity. Deletions of genes encoding major efflux compo-

nents were the only way to map TISs in E. coli (tolC) and Campylobacter

jejuni (cmeB) [67, 85].

Several algorithms have been developed to improve genome anno-

tation on the basis of ribosome, TIS- and TTS-profiling data and more

specifically to detect sORFs in bacteria [50, 39, 40]. REPARATION

introduces an innovative algorithm designed to systematically iden-

tify putative protein-coding ORFs in bacterial genomes. It utilises an

RF classifier, trained on patterns identified from Ribo-seq data within

protein-coding ORFs. To mitigate the biases often associated with

in silico prediction methods, it incorporates several validation steps.

These include logistic regression models to represent the relationship

between ribosome density and ribosome protected fragment (RPF)

coverage, thereby estimating minimum read density and ORF RPF

coverage. In addition, it implements a rule-based post-processing algo-

rithm to filter out false positives, particularly those overlapping with

confirmed codingORFs.

With smORFer [40] another tool has been introduced that inte-

grates genetic sequence’s structural features, in-frame translation data

and Fourier transform to generate a measurable score. By integrat-

ing TIS-profiling data, the sensitivity of the prediction of start codons

of bacterial ORFs is improved. Its modular design allows users to

customise sORF searches based on an organism’s specific data. Like

ab initio methods smORFer identifies putative sORFs without relying

solely on existing gene annotations or homology comparisons, making

it a useful tool for gaining new insights into the genomic landscape.

A thorough comparison study [50] was conducted on various Ribo-

seq-based ORF prediction tools including REPARATION, DeepRibo

and smORFer. Using Ribo-seq data from four distinct bacterial species,

DeepRibo emerged as a robust tool across the testing data. Despite

this, a notable limitation common to all tools was the lack of high sen-

sitivity in detecting sORFs. Even with sufficient Ribo-seq signals, a

significant number of experimentally validated sORFs remained unde-

tected by any tool. This finding highlights an ongoing challenge in

genomic analysis and emphasises the need for improvements in sORF

detection capabilities.

3.3 Proteogenomics

The aim of theMS-based proteomics is to provide a complete list of the

proteins present in a bacterial cell, for example. Proteins are typically

identified by matching MS/MS spectra of peptides against theoreti-

cal spectra of all candidate peptides derived from proteins encoded

by annotated ORFs in the respective genome sequence. However, this

also means that only those proteins for which an ORF has been pre-

dicted can be identified. To identify novel peptides that are missing

from protein databases based on conventional genome annotations,

a so-called ‘proteogenomics’ approach can be applied [92]. Instead of

comparing peptide spectra to databases of previously annotated pro-

teins, the MS/MS data need to be compared to customised protein

databases [93].

Databases such as translation databases, which consider the full

coding capacity of a given bacterial genome, are widely used to anal-

yse MS/MS-data in proteogenomics [2, 72, 94]. Protein sequences are

generated using six-frame translation of the genomic sequence. SALT

is a freely available algorithm that supports the global translation of

bacterial genomes using all six reading frames [2]. A limitation of this

strategy is the extremely large size of the resulting database, with

a significant (or even excessive) proportion of non-existent protein

sequences, which complicates protein identification. Different strate-

gies can be applied to create translational databases. Using stop-to

stop translation, a separate protein entry is created for each sequence

between two stop codons. This results in a non-redundant database

that represents the full coding potential of a given genome sequence

[2]. The resulting database size depends on the minimum sequence

length cutoff used. An obvious drawback of this database is that

the majority of protein sequences obtained are artificial. Addition-

ally, the resulting protein databases almost invariably fail to capture

realN-terminal peptides. Alternatively, start-to-stop translation canbe

applied. Thevalidityof this databasedependson the selectionof poten-

tial translation start sites. Extensive characterisation of the activity of

several start codons in E. coli and ribosome profiling in several bacteria

revealed that ATG in bacteria is mainly used by ribosomes for transla-

tion initiation, followed by TTG andGTG [9, 73, 83, 95]. However, other

codons such as CTG, ATT, ATC and ATA, which are characterised by dif-

fering from ATG in only one position, showed translation initiation in

E. coli [95]. Which of these codons, and how often, should be used to

artificially translate bacterial chromosomes? One strategy would be to
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prefer ATG and translation of the longest ORF. If there is no ATG, the

next alternative start codon that results in the longest translationprod-

uct could be considered. This also generates a non-redundant database

that covers almost the entire coding potential, but similar to stop-to-

stop translation, many protein sequences obtained are artificial and

do not contain the true N-terminus. This problem can be solved by a

start-to-stop translation that considers all possible translation prod-

ucts starting fromboth theATGand all non-canonical start codons. The

resulting database would have the clear advantage of including all pos-

sible N-terminal peptides and would also be suitable for proteoform

detection. However, this is a very large and highly redundant database.

For amore qualifiedMS/MS data analysis, it is recommended to create

a non-redundant peptide database [9, 72].

To capture the full protein-coding potential of a given bacterial

genome sequence, Omasits et al. [94] created an integrated proteoge-

nomics database (iPtgxDB) by combining reference genome anno-

tations with the results of the ab initio gene prediction algorithms

Prodigal [34] and ChemGenome [96], and all potential in silico ORFs

obtained by a modified six-frame translation considering alternative

start codons above a defined length threshold. This database is more

specific and therefore less complex than the translational databases

described above, as the proportion of non-existent protein sequences

is significantly reduced. This has a positive effect on the reliability of

MS-basedprotein identifications. iPtgxDBshave alreadybeen success-

fully used to identify small proteins in a number of bacteria, including

Bartonella henselae, B. subtilis, Listeria monocytogenes and Sinorhizobium

meliloti (Table 2) [68, 94, 97, 98].

When using translation databases that mostly represent artificial

peptide sequences, the next critical step is to derive the ORFs from

the lists of identified peptides. For this purpose, Pepper, a rule-based

expert system (see Info Box 1), has been developed that integrates

MS proteomic data with genomic information. The fully automated

pipeline processes peptide identifications obtained from searches

against a database created from full-genome translations. For ab initio

ORFprediction, thepipeline applies a set of expertly curated rules, con-

sidering factors such as genomic locations of identified peptides, types

of start codons, presence of RBSs and RBS spacer region lengths. [2].

The successful application of Pepper has led to the detection of previ-

ously unknown small proteins in different bacterial species, including S.

aureus and C. jejuni, as well as the archaeonHaloferax volcanii [2, 7, 67].

It is becoming increasingly clear, at least fromextensiveTIS-profiling

studies, that more than one variant of a protein can arise from a single

ORF either through multiple translation or through post-translational

modifications [28, 85, 89, 103]. This can have significant effect on the

length of the predicted gene products and therefore their functional

properties. To increase the accuracy of ORF prediction, especially for

sORFs, MS-based proteomics can also assist in the identification of

5-end(s) of ORFs among them sORFs by experimentally identifying

the N-terminal end of the proteins [102]. Selective enrichment of N-

terminal peptides in combinationwith high-throughputMS is currently

the standard approach for the identification of protein N-terminal

sequences, also known as N-terminomics [104, 105]. Blocking free

aminogroupson the intact proteinsbyacetylationand subsequentpro-

teolysis of the acetylated proteins results in a mixture of N-terminally

acetylated (trueN-terminal) and non-acetylated (internal and carboxy-

terminal) peptides. The non-acetylated peptides are then removed

from acetylated and formylated peptides by amino-specific affinity

chromatography. The resulting unbound fraction is highly enriched in

N-terminal peptides. These can be analysed by LC-MS/MS [105].

4 EXPERIMENTAL IDENTIFICATION OF SMALL
PROTEINS BY MS-BASED PROTEOMICS IN
BACTERIA

In recent years, the identification of small proteins using MS-based

techniques has been intensified. Although MS has great potential

for the discovery, validation and functional characterisation of small

proteins, standard MS approaches have limited applicability for the

identification of known and novel small proteins. The identification of

small proteins by MS-based proteomics has been hampered not only

by the fact that they were ignored by conventional genome annota-

tion algorithms and were therefore missing from protein databases,

but also by their low molecular weight, which makes them difficult to

prepare and also reduces the number of MS-compatible peptides. As

shown for Salmonella typhimurium, small proteins clearly suffer from a

lower peptide identification rate. It was almost 9% for proteins with

more than 100 aa, but only 2.5% for proteins up to 50 aa and 4.5% for

proteins between 50 and 100 aa [9].

As a result, the detection of a small protein in a given sample using

conventional protocols wasmore or less random, even if it was present

in the database. These problems have been approached in different

ways by studies focusing on the systematic identification of small

proteins in bacteria. A key objective of method development was to

increase the number and intensity of MS-compatible peptides from

small proteins in order to improve the sequence coverage and the qual-

ity of MS/MS spectra. Critical steps are sample preparation, protease

digestion, liquid chromatography (LC), MS data acquisition, peptide

spectrummatching, MS-data analysis and protein identification.

4.1 Enrichment and digestion of small proteins

Several analytical pipelines have been developed to separate small pro-

teins from larger proteins in complex bacterial protein samples prior

to digestion and highly sensitive LC-MS analysis. This has been suc-

cessfully achieved using solid-phase enrichment columns that combine

reversed-phase binding and size-based separation [7, 68, 97] (Table 2).

During the enrichment step, only small proteins can enter the pores

of the column and interact with the column material, while larger pro-

teins pass directly through the column. In B. subtilis, this has been

shown to increase the absolute number of small proteins identified

by a factor of two [97]. Alternatively, intact bacterial proteins can be

separated on a gel-free fractionation system [106]. The principle of

this technique is based on that of classical SDS-PAGE, in which the gel

is polymerised in a columnar cartridge. In this way, proteins migrate
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TABLE 2 A selection of studies aimed at the systematic identification of small proteins in bacteria usingMS-based shotgun proteomics
approaches.

Organism Protein fraction Protein prefractionation Endoprotease Protein database Reference

S. typhimurium Soluble proteins None Trypsin

LysC

- Reference protein database for S. typhimurium
strain SL1344 – six frame translation with all

ORFs of at least 30 bp initiated fromATG, GTG

and TTG

[9]

S. typhimurium Soluble proteins None Trypsin - Six frame translation with all ORFs of at least

30 bp initiated fromATG, GTG and TTG

[72]

S. typhimurium Soluble proteins - GradSeq

- 1D SDS-PAGE

Trypsin - Reference protein database for S. typhimurium
SL1344 combinedwith computational sORF

predictions (sPepFinder and experimental

data (RNA-seq and Ribo-seq data)

[66]

H. volcanii Soluble proteins - Solid phase enrichment LysC - H. volcanii reference protein database
- Six frame translation from stop to stop

[7]

B. subtilis Soluble proteins - Solid phase enrichment Trypsin

LysC

- B. subtilis 168 reference protein database
- iPtgxDB

[97]

P. aeruginosa
E. coli
S. aureus
M. pneumonia

Soluble proteins - Novex 10%−20%Tricine

gels

LysC/Trypsin - Customised protein databases based on

RanSEP

[4]

S. aureus Soluble proteins - 1D SDS-PAGE Trypsin

LysC

AspN

- Six frame translation from stop to stop [2]

Simplified human

intestinal

microbiota

(SIHUMIx)

Soluble proteins - 1D SDS-PAGE

- Tricine-SDS gel

- FASP/MWCO filtration

- C8 cartridges

- Gelfree 8100

fractionator

- Reversed acetone

precipitation

Trypsin - Reference protein database [6]

M.mazei Soluble proteins - Gelfree 8100

fractionator

Trypsin - Merged protein database, which includes the

M.mazei,M. barkeri andM. acetivorans
(non-redundant) protein sequences, combined

with sORF predictions based on

transcriptomic data

[99]

M.mazei Soluble proteins - 1D SDS-PAGE Trypsin - Reference protein database [100]

M.mazei Soluble proteins - 1D SDS-PAGE Trypsin

Chymotrypsin

GluC

LysArginase

LysC

- Reference protein database ofM.mazei
combinedwith sORF predictions based on

transcriptomic data

[101]

M.mazei Soluble proteins None Trypsin - Reference protein database [82]

M.mazei Soluble proteins - Acetonitrile-based

protein precipitation in

combinationwith 1D

SDS-PAGE

Trypsin - Reference protein database ofM.mazei
combinedwith sORF predictions based on

transcriptomic data

[3]

B. henselae Subcellular

fractions (Cyt,

TM, IM, OM)

none Trypsin

Chymotrypsin

- iPtgxDB [94]

C. jejuni Soluble proteins - Gelfree 8100

fractionator

Trypsin

Chymotrypsin

- Reference protein database of C. jejuni
combinedwith sORF predictions based on

Ribo-seq data

- Six frame translation from stop to stop

[67]

(Continues)
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TABLE 2 (Continued)

Organism Protein fraction Protein prefractionation Endoprotease Protein database Reference

L. monocytogenes Soluble proteins None LysC/Trypsin - iPtgxDB [98]

L. monocytogenes Soluble proteins Isolation of N-terminal

peptides by COFRADIC

Trypsin

GluC

- Six frame translation from any of the known

start codons (ATG, GTG, TTG, CTG, ATT, ATA,

ATC) with aminimal length of six amino acids

[102]

S. meliloti Soluble proteins - Solid phase enrichment Trypsin

LysC

- iPtgxDB [68]

Human

microbiome

B. thetaiotaomi-
cron

Soluble proteins -Acetic acid-based protein

precipitation and

MWCO filtration

Trypsin - Reference protein databases combinedwith

customised protein databases with sORFs

prediction using Prodigal [34] orMetaProdigal

[33]

[56]

MS, mass spectrometry; sORF, small open reading frame.

through the gel and can be collected in soluble fractions. This strategy

has been successfully used to increase the number of small proteins

identified in several bacteria, both in pure cultures and in a simplified

gut microbiome [6, 67, 99] (Table 2). In addition, specific precipitation

with organic solvents, such as in acetone or different concentrations

of acetonitrile, which depletes the majority of proteins above 15 kDa,

has been used to identify small proteins in soluble bacterial protein

extracts [3, 6] (Table 2). As is the case with large proteins, the physico-

chemical properties of small proteins are highly heterogeneous. It is

therefore highly unlikely that any single approachwill be able to enrich

all small proteins expressed in a given organism. For a very comprehen-

sive analysis of small proteins, several studies have combined multiple

complementary methods to increase both the number and the confi-

dence of protein identifications [3, 6, 99] (Table 2). In some cases, the

total protein concentration can be significantly reduced by using these

protocols. For very low concentrated small protein samples, protein

digestion using the Single-Pot Solid-Phase-Enhanced Sample Prepara-

tion technique has been performed to obtain the maximum number of

peptides detectable byMS [67, 107].

Clearly MS-detectability of peptides represents an important limit-

ing factor for identification of small proteins. Peptide predictor tools

based on ML have been established to identify theoretical peptides

that are refractory towards MS-based detection [108, 109]. These

tools can be used for selecting endoproteases more suitable for the

identification of small proteins in a given protein database. As the total

number of MS compatible peptides is usually very small for small pro-

teins,multi-protease approaches are frequently applied to increase the

number of MS-detectable peptides for identification of these proteins

[2, 4, 9, 67, 68, 94, 97, 102, 101]. The suitability of the endoproteases

used for the identification of small proteins may vary from bacterium

to bacterium [2, 67, 97, 101] (Table 2). A very systematic approach

using multiple proteases (trypsin, chymotrypsin, LysC, Lysargi-Nase

and GluC) in GeLC–MS/MS analysis for the archaeon Methanosarcina

mazei showed a significant improvement in the identification of small

proteins. In total, 91 small proteins were identified with at least two

unique peptides and for 39 small proteins a complete sequence cov-

erage was achieved. Using trypsin alone, only 77 small proteins could

be identified [101]. For S. aureus, the differences between the differ-

ent endoproteases (LysC, AspN, Trypsin) in small protein identification

were not as significant. The results showed that AspN with 48 SP100

was less efficient than LysC (69 SP100) and trypsin (104 SP100).

However, a unique set of small proteins (55 SP100 for trypsin, 5 for

LysC and 8 for AspN) was also identified for S. aureus using those

enzymes [2].

4.2 LC-MS/MS and data analyses

The low number of MS detecteable peptides is also a particular chal-

lenge for MS and data analyses in the detection of small proteins.

Often only one unique peptide is available for protein identification.

High quality MS/MS spectra, stringent filtering criteria and rigorous

validation of identified peptides are therefore essential to facili-

tate high-confidence protein detection and to avoid the reporting of

spurious novel protein identifications.

The majority of studies focusing on the identification of small

proteins have used conventional bottom-up proteomics approaches

based on electrospray ionisation (ESI) MS [1]. Matrix assisted laser

desorption/ionisation (MALDI) ionisation has been used as a promising

alternative for the identification of small membrane proteins and low

complexity samples [1, 110]. Selection of peptide ions for MS/MS

analysis is commonly based on peak intensity and resolution (=data

dependent acquisition [DAA] mode). However, this results in a loss of

peptide information, which is particularly critical for small proteins.

Therefore, the use of the data-independent mode may prove to be a

clear advantage for the identification of small proteins in the future, as

all ions are fragmented forMS/MS [111]. This is also essential for a sub-

sequent global quantification of these proteins using protein/peptide

labelling approaches. To improve the detection and sequence coverage

of peptides, additional fragmentation methods can be used including

higher-energy collision dissociation (HCD), electron-transfer disso-

ciation (ETD) and electron-transfer combined with higher-energy

collision dissociation (EThcD) [5, 112–114]. This is useful when longer

peptides are expected, for example when using endoproteases with

fewer cleavage sites such as AspN or GluC, or when using top-down

proteomics for small protein identification [113]. While the commonly

used collision-induced dissociation (CID) method selectively frag-

ments the most labile bonds in the peptides and therefore provides
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limited protein coverage, the use of electron capture/transfer disso-

ciation (ECD/ETD) has been shown to improve sequence coverage

[115–117].

When using comprehensive databases, such as translation

databases (see above), the search space becomes much larger,

resulting in a higher number of random PSMs with high scores and

thus significantly reducing the sensitivity of peptide identification

[25]. Because the vast majority of entries in a six-frame translation

database belong to very small proteins, the likelihood of false positives

is therefore greater in this subset [118]. For these reasons, and often

only one unique peptide is available to identify small proteins, the

FDR of novel peptides or peptides belonging to small proteins differs

from the FDR of annotated peptides by several orders of magnitude.

The degree of this effect strongly depends on the genome annotation

completeness [119]. Therefore, for the identification of small proteins,

many studies have used FDRs for PSMs or peptides below 0.1 [2, 7,

94, 101, 100]. In addition, to limit the analyses to high quality PSMs,

various spectral and quality-based filtering criteria were applied.

Specifically, only MS/MS spectra with sequence tags of at least five

consecutive b or y fragment ions or two times four consecutive b or y

ionswere included [2, 7, 67, 120]. Proteogenomics tool Pepper enables

automated assessment of MS/MS spectrum quality [2]. Assignment of

correct peptide identifications can also be aided by re-scoring PSMs

usingML tools such as Percolator that applies a target decoy approach

[121]. Several features describing the quality of PSMs are used for

scoring, for example, PSM features provided by the MS-GF+ search

engine, including a specific MS-GF+ score andmatched fragment peak

mass deviations [122]. Other scoring features that were used by ML

are the deviation of the predicted peptide retention time (RT) and the

intensity of peptide fragment ions [123–125].

Due to their small size, small proteins are excellent candidates

for top-down proteomics using native protein extracts. However, this

requires special expertise and MS instruments that can routinely

achieve high sensitivity, mass accuracy and isotopic resolution, as well

as efficient fragmentation of peptides, resulting in high quality MS2

and MS3 spectra that provide the most information about the primary

structure of peptides/proteins. This approach is promising in particular

for the identification and characterisation of small proteins. However,

it is not yet widely used because of the challenges it faces [110, 112,

126, 127]. Top-downdata can also be used in combinationwith de novo

sequencing to identify small proteins. This is a completely database-

independent approach in which protein sequences are inferred from

aa-specific mass increases between adjacent fragment peaks and

has been successfully applied to the identification of small proteins

encoded by the human genome.Meier-Credo et al. [110] present a top-

downMALDI-MS/MS approach that iswell suited for the identification

and sequence analysis of membrane proteins. Using photosystem II

as an example, they were able to analyse proteins in the range of

2.5 and 9 kDa with high accuracy and sensitivity. Recently, nanopore

sequencing has emerged as an alternative for single-molecule-based

primary sequencing and conformational analysis of peptides and pro-

teins [128–134]. In the near future, this technique may also support

the identification of small proteins and peptides, either by de novo

sequencing or by protein fingerprinting, not only at a global level but

also at the level of individual cells.

5 CONSTRAINTS AND CRITICAL VALIDATION
METHODS IN PREDICTING NOVEL SMALL
PROTEINS

Bacteria are highly dependent on their environment and closely adapt

the expression of their genes to the prevailing conditions. Factors

such as temperature, pH, availability of nutrients and interaction with

other microbial species as well as host cells all contribute to the gene

expression within these microorganisms. For instance, the expression

of CsrA, a small RNA-binding protein that serves as global regula-

tor of carbon storage, is modulated in bacteria such as E. coli in

response to biofilm formation and environmental stressors [135, 136].

Another example is RNAIII in S. aureus, which encodes delta-hemolysin,

which is mainly expressed during the post-exponential growth phase

and whose expression level varies greatly between different isolates

[137, 138]. Beyond mere gene expression, the stability of the result-

ing RNAs and proteins is critical for successful detection, especially

when using transcriptomics and/or proteomics methods. By using data

from the transcriptome and proteome, activity of metabolic pathways

under the conditions studied can be roughly estimated. Complemen-

tary genomic analyses can then help to complete our understanding

of the role of small proteins. In a noteworthy genomic study involv-

ing 1773 metagenomes from four different human body microbiomes

(mouth, gut, vagina and skin), more than 4500 conserved families

of small proteins were predicted bona fide using MetaProdigal and

RNAcode [56]. Surprisingly, the vast majority of these proteins were

previously unknown and does not exhibit sequence homology to

known protein domains. This work highlights the importance of meth-

ods that can be used to study entire microbial consortia to discover

novel gene products and provide initial clues to their physiological

role.

However, it is important to recognise that genome-wide evidence-

basedmethods for predicting small proteins, including transcriptomics,

ribosome profiling andMS-based proteogenomics, generate false pos-

itives. Thus, rigorous validation of small proteins predictions with a

second independent experimentalmethod ismandatory. For small pro-

teins predicted from transcriptomic or ribosome profiling data, it is

recommended that they be detected directly byMS-basedmethods by

integrating the sequence information of the proteins into the database

used for MS/MS data analysis [9, 66–68, 99]. Small proteins that have

been identified solely by MS-based methods using a proteogenomics

approach based on translational databases will also need to be con-

firmed by a second method. These include immunological methods

using specific antibodies, the expression of tagged proteins encoded on

a plasmid, or the use of synthetic peptides that match the experimen-

tally detected peptides of the small proteins to check RTs and peptide

fragmentation [7, 67, 94].
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6 A GLIMPSE INTO THE FUTURE

ML approaches, particularly deep learning algorithms, have the poten-

tial to infer peptide sequences directly from MS/MS spectra without

the need for a protein database (for review see [139]). This is a

much more challenging task, as it essentially involves de novo peptide

sequencing, but it can also provide more comprehensive and unbiased

identifications particularly for small proteins. DeepNovo and SMSNet,

to name just two, are examples of a deep learning-based algorithms

for de novo peptide sequencing. Both use deep CNNs and RNNs to

model the patterns in the MS/MS spectra and infer the aa sequence

of the peptide that produced the spectrum [140, 141] (see Info Box 1).

These algorithms demonstrate the potential of ML for direct peptide

identification from MS spectra. However, they also highlight the chal-

lenges involved in this task, particularly in terms of the complexity

and variability of the spectral data and the need for large, high-quality

training datasets. Therefore, although significant progress has been

made, there is still much research to be done in this area. Oxford

Nanopore Technologies (ONT) has made significant contributions to

long-read sequencing technology in genomics [142]. The possibility of

applying this technology to direct protein sequencing is currently being

explored. The principle of the ONT’s nanopore sequencing technology

is to detect changes in electrical current as a single molecule (DNA,

RNA or possibly protein) passes through a nanopore. These changes

can identify single bases in DNA or RNA, or possibly aa in proteins. The

adaptation of ONT technology to protein sequencing is still in its early

stages and faces significant technical challenges. These include the

need to distinguish between the 21 different aa in proteins (compared

to the fourbases inDNAorRNA), thevariable chargeand sizeof aa, and

the complex three-dimensional structure of proteins [128–134]. How-

ever, if the applicationof nanopore sequencing toproteins is successful,

it could amount to a revolution in proteomics, driving the discovery of

new protein families.

The discovery of many small proteins whose CDSs are hidden in

microbial genomes is opening up research opportunities across dis-

ciplines. Among the crucial questions that remain to be answered in

this developing field are howmany of these newly discovered proteins

are functional and, if so, what their functional roles are—in particu-

lar, whether they are involved in pathogenicity or in interactions with

the human host or other microorganisms—and how their expression is

regulated.
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