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Objective: Evaluating the performance of multiple complex models, such as those found in biology, medicine, 
climatology, and machine learning, using conventional approaches is often challenging when using various 
evaluation metrics simultaneously. The traditional approach, which relies on presenting multi-model evaluation 
scores in the table, presents an obstacle when determining the similarities between the models and the order of 
performance.

Methods: By combining statistics, information theory, and data visualization, juxtaposed Taylor and Mutual 
Information Diagrams permit users to track and summarize the performance of one model or a collection of 
different models. To uncover linear and nonlinear relationships between models, users may visualize one or both 
charts.

Results: Our library presents the first publicly available implementation of the Mutual Information Diagram and 
its new interactive capabilities, as well as the first publicly available implementation of an interactive Taylor 
Diagram. Extensions have been implemented so that both diagrams can display temporality, multimodality, and 
multivariate data sets, and feature one scalar model property such as uncertainty. Our library, named polar-

diagrams, supports both continuous and categorical attributes.

Conclusion: The library can be used to quickly and easily assess the performances of complex models, such as 
those found in machine learning, climate, or biomedical domains.
1. Introduction

One of the last steps of any simulation or predictive analytics ex-

periment is to determine the effectiveness of the used models and 
find the one that best explains the observed phenomenon. The visual 
comparison of one or two complex models containing multiple vari-

ables (dimensions) becomes impractical and often impossible when the 
number of dimensions exceeds three [1,2]. However, those models are 
standard in meteorological, medical, biological, and other similar do-

mains. When considering more than two complex models, determining 
which model is the best becomes unachievable. Although we provide 
an in-depth examination of model interpretation in Section 4, it is im-

perative to note that any 𝑛-dimensional numerical vector is considered 
a model — hence the definition of a model is not restricted to a specific 
context within this paper.

* Corresponding author.

To address the task of determining the best model, a quantifica-

tion of the models’ quality is required. The related work relies on the 
observed data by calculating summary statistics or other types of mea-

sures (attributes). To present such attributes and statistics, visualization 
is needed. By visualizing and representing each model in 2-dimensional 
(2-D) or 3-dimensional (3-D) plots, reducing the dimensionality of the 
data is an intrinsic part of the process. Commonly used visualization 
plot solutions typically rely on scatter plots and heatmaps. Both plot 
types can be seen in Fig. 1. However, these two plot types only allow 
pairwise comparisons [3]. A possible solution is a scatterplot matrix, 
which is an arrangement of scatter plots organized in a grid or matrix 
to visualize bivariate relationships among variable combinations. The 
matrix includes multiple scatter plots, each of which illustrates the re-

lationship between a pair of variables, enabling the examination of sev-

eral relationships within a single chart. While scatterplot matrix charts 
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Fig. 1. Traditional visualization approaches for pairwise comparison. Scatter plot (left) and heatmap chart (right) visualizing the relationship and confusion 
matrix between Ground_Truth and KNN model trained and evaluated on the Glass [10] data set. On one hand, by using the scatter plot, we can only find out whether 
the KNN model was good or bad. Since no diagonal structure is formed from points, we conclude the model was bad for this task. For example, if we take one sample 
where the Ground_Truth value is 7 (lower right point), we can see the predicted value by the model to be, in some cases 7, and, in others, 2. On the other hand, the 
heatmap chart enables us to assert the quality of model predictions as well by showing us the number of times the model made a mistake. It is important to mention 
that, in order to maintain consistency, we also consider the Ground_Truth as a “model”. This is because the Ground_Truth serves as a standard reference model against 
which all other models are evaluated. The same applies to Figs. 2 and 3.
are useful for understanding bivariate relationships between multiple 
variables, they do have limitations. First, they can get cluttered with a 
large number of variables, making it difficult to distinguish individual 
plots and trends. Second, outliers can skew the distribution and make 
it challenging to visualize correlations accurately. Third, it can be dif-

ficult to identify cause-and-effect relationships and additional analysis 
may be required to understand how variables relate to each other [4,5]. 
As indicated by Fig. 2, the first drawback becomes evident even with 
three variables. Alternatively, the parallel coordinates plot is a solu-

tion to multivariate analysis where attributes are represented as parallel 
vertical axes scaled within their data range, as demonstrated in Fig. 3. 
However, visual cluttering in this plot type can pose a significant prob-

lem for the exploration of relationships between the neighboring axes. 
Ordering of the axes and visual clutter are limiting factors. This prob-

lem has been extensively explored in the past [1,6–9]. For these plot 
types, the task of visually comparing large corpora of models becomes 
intractable. This defines a bottleneck for high-dimensional models’ com-

parison.

Over the last years, many model-comparison visualization solutions 
have been developed, yet a majority of them are domain-specific and 
cannot be translated for use in other fields. One example of a domain-

specific visualization tool in the field of Machine Learning (ML) by Zhou 
et al. [11] uses a radial-structure approach, which allows for the com-

parison of ML models with different numbers of features. While this 
approach is indeed a viable solution for ML models, it is limited by its 
domain-specificity and the lack of open-source code, preventing its use 
in other domains. Another example of a domain-specific visualization 
tool in the field of ML by Talbot et al. [12] is EnsembleMatrix, an in-

teractive visualization tool that provides a graphical view of confusion 
matrices to assess ML classifier models. Unfortunately, this visualization 
solution is heavily domain-specific and cannot be translated for use in 
other fields. The same can be said for Squares by Ren et al. [13], a perfor-

mance visualization method for multiclass classification problems. The 
method utilizes standard classification metrics and instance-level distri-
2

bution information to leverage better explainability of used classifiers. 
In the field of climatology, besides the Taylor and Mutual Information 
diagrams, Yatkin et al. [14] developed a modified Target Diagram to 
evaluate the performance of low-cost sensors for air quality monitoring. 
However, this visualization approach is complicated and requires a level 
of expertise and extensive training to interpret, making it unsuitable for 
use in ML or biomedical domains. The limitations of domain-specific vi-

sualization methods highlight the need for more generalized techniques 
that can be applied across different fields.

Previously mentioned limitations were addressed with the publica-

tion of the Taylor Diagram [15], which was initially developed for the 
assessment of climate models. This polar chart efficiently summarizes 
the model effectiveness according to the observation using three sta-

tistical measures: standard deviation, Pearson’s correlation coefficient, 
and centered root mean squared (CRMS) difference or error. However, 
even though it uses both first- and second-order statistics, the Taylor 
Diagram cannot capture nonlinear dependencies between models (see 
Section 2.1.2). Furthermore, if two models are relatively similar but one 
or both produce outliers, the correlation between them may be low and, 
in turn, wrongly depict more significant dissimilarity between them.

The Mutual Information Diagram (MID) [16] addresses both issues 
using information theory. Instead of relying on statistical measures to 
summarize the models’ performance as in the Taylor Diagram, the MID 
uses entropy, scaled mutual information (SMI), and variation of infor-

mation (VI). Alternatively, a variant of the diagram incorporates square 
root of entropy, normalized mutual information (NMI), and the square 
root of variation of information (RVI). Contrary to the Taylor Diagram, 
the MID can expose nonlinear dependencies (more in Section 2.1.2), 
works with both numerical and categorical data, and is far less sensi-

tive to noise (outliers).

Unfortunately, the MID alone does not provide a solution to the 
original problem because it cannot distinguish between negatively and 
positively correlated models. Therefore, both diagrams are required in 
order to get a realistic picture of all model relationships (linear and non-

linear). Moreover, to create the MID, entropy and mutual information 

have to be calculated for each model. The current implementation re-
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Fig. 2. Scatterplot Matrix. A scatterplot matrix with three variables taken into account — Ground_Truth, KNN, and Random_Forest_C. The Glass [10] data set is used 
to present this plot type.
quires a domain specialist to tune the parameters for each experiment 
to calculate both the entropy and the mutual information. The choice of 
these parameters strongly affects resulting diagram [16], thus present-

ing a significant obstacle to using the MID without any prior knowledge 
of information theory.

Furthermore, no publicly available open-source library or tool exists 
to help users create the MID for uncertainty visualization. The authors 
of the original paper did not provide any source code or data to re-

produce the presented results. Consequently, until now, no publicly 
available implementation of the MID has been available, even though 
the need for it was shown [17]. On the other hand, the existing li-

braries for creating the Taylor Diagram (MATLAB [18,19], Python [20], 
R [21]) do not provide any interactive aspects of the diagram. The 
resulting visualizations are static images in PNG or JPEG format. More-

over, these libraries do not support the raw input — the user has to 
provide pre-calculated standard deviations of all models and correla-

tions of all models with the reference models, severely limiting their 
adoption.

Even though certain Taylor Diagram libraries and tools allow the vi-

sualization of multiple model versions, those implementations rely on 
adding arrows as visual marks that encode the movements of the mod-

els’ performances. However, when many models have to be visualized, 
the diagram quickly becomes overcrowded with visual elements, hence 
the decreased readability and lower transfer of information from the vi-
3

sualization to the user. Moreover, a set of limiting factors has severely 
impeded the adoption of polar diagrams until now, including the Tay-

lor Diagram and the Mutual Information Diagram. From static charts to 
non-scalable graphical formats, to requiring a large set of pre-calculated 
summary statistics, or even requiring expertise, the adoption and de-

ployment of polar diagrams in the analysis pipeline has suffered greatly.

We show that our library, named polar-diagrams, solves completely 
or partially all of the aforementioned issues. Furthermore, it extends 
the functionality of both diagrams by allowing users to also visually 
encode one scalar property of each model or two model versions si-
multaneously. The resulting diagrams convey more information without 
overloading the visual space. Moreover, they allow a more granular con-

trol by employing multiple interactive techniques such as single- and 
multi-selection, filter, zoom, and hover. In addition, the back end of 
polar-diagrams employs state-of-the-art methods for calculating mutual 
information and entropy. As a result, the diagrams become interactive 
charts that provide accurate information, enable interactivity, and sup-

port both discrete and continuous variables.

For the sake of clarity and disambiguation, we adopt the conven-

tional names of the Taylor and the Mutual Information Diagrams for 
the implemented polar charts, respectively.

2. Methods

This section will cover the mathematical aspects of both diagrams, as 

well as the technological aspect used to design, implement, and present 
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Fig. 3. Parallel Coordinates Plot. A parallel coordinates chart presents a better alternative to the scatter plot matrix and allows a more compact visualization 
of more than three variables. After performing an evaluation of machine learning models trained on the Glass [10] data set, we visualized the performance of six 
models — KNN, SVM_Linear, SVM_Gaussian, Gaussian_PC, Random_Forest_C, and SGDC, along with the Ground_Truth.
the results. The first part is covered by Section 2.1, and the second part 
by Section 2.2. In this section, the terms variable and model have the 
same meaning, and we use them interchangeably.

2.1. Mathematical background

As mentioned earlier, the Taylor diagram relies on first- and second-

order statistics to summarize model properties, while the MID relies 
on the information theory. However, both diagrams exploit the same 
property of the polar diagrams where the position of each point in 
a diagram is determined by a distance (radial distance, radial coordi-

nate, or radius) from a reference point (pole) and an angle (polar angle, 
angular coordinate or azimuth) from a reference direction [22]. Sim-

ilarities between diagrams essentially end here. We will now present 
the differences in the construction of both diagrams. In addition, we 
will denote and explain the mathematical deviations from the original 
works present in our study.

2.1.1. Taylor diagram

The power of the Taylor Diagram lies in representing each model us-

ing three statistical measures: standard deviation, Pearson’s correlation 
coefficient, and centered root mean square error (CRMSE). The “cen-

tered” aspect of the RMS error definition refers to the subtraction of the 
respective mean values of both the predicted and observed sets of values 
before calculating the RMS. This procedure contributes towards rectify-

ing any offset or bias that might have been introduced in the model’s 
predictions, thereby resulting in a more accurate representation of the 
prediction error [23].

Let us consider a pair of discrete random variables (𝑋, 𝑌 ), with the 
cardinality ∣𝑋 ∣=∣ 𝑌 ∣= 𝑛, their standard deviations 𝜎𝑋 and 𝜎𝑌 , and their 
means 𝜇𝑋 and 𝜇𝑌 , respectively. We define the mean of a discrete ran-

dom variable 𝑋 with the cardinality 𝑛 as

𝜇𝑋 =𝐸(𝑋) =
∑
𝑥∈𝑋

𝑥𝑃 (𝑥) =
𝑛∑
𝑖=1

𝑥𝑖𝑃 (𝑥𝑖) =
1
𝑛

𝑛∑
𝑖=1

𝑥𝑖 (1)

where 𝑥 represents the values of the random variable 𝑋 and 𝑃 (𝑥) rep-

resents the corresponding probability. The mean of a discrete random 
variable 𝑋 is also known as its expected value and is symbolized as 
4

𝐸(𝑋). Furthermore, and for the sake of completeness, we also define 
the standard deviation of a discrete random variable 𝑋 with the cardi-

nality 𝑛 as

𝜎𝑋 =
√

𝜎2
𝑋
=
√∑

𝑥∈𝑋
(𝑥− 𝜇𝑋 )2𝑃 (𝑥) =

√√√√ 𝑛∑
𝑖=1

(𝑥𝑖 − 𝜇𝑋 )2𝑃 (𝑥𝑖)

=

√√√√1
𝑛

𝑛∑
𝑖=1

(𝑥𝑖 − 𝜇𝑋 )2 (2)

where 𝜎2
𝑋

is also known as the variance of a discrete random variable 
𝑋. If we define covariance between 𝑋 and 𝑌 as

𝑐𝑜𝑣(𝑋,𝑌 ) = 1
𝑛

𝑛∑
𝑖=1

(𝑥𝑖 − 𝜇𝑋 )(𝑦𝑖 − 𝜇𝑌 ) (3)

then Pearson’s correlation coefficient is

𝑅𝑋𝑌 = 𝑐𝑜𝑣(𝑋,𝑌 )
𝜎𝑋𝜎𝑌

. (4)

By using the definition of the cosine formula

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos𝜃 (5)

where 𝑎, 𝑏, and 𝑐 are the sides of an arbitrary triangle, and the formula 
for CRMSE

𝐶𝑅𝑀𝑆𝐸(𝑋,𝑌 ) =

√√√√ 1
𝑛

𝑛∑
𝑖=1

[(𝑥𝑖 − 𝜇𝑋 )(𝑦𝑖 − 𝜇𝑌 )]2 (6)

we get

𝐶𝑅𝑀𝑆𝐸(𝑋,𝑌 )2 = 𝜎2
𝑋
+ 𝜎2

𝑌
− 2𝜎𝑋𝜎𝑌 𝑅𝑋𝑌 (7)

hence 𝜃 = arccos (𝑅𝑋𝑌 ). The relation between the CRMSE and the total 
RMSE can be described by the following expression:

𝐶𝑅𝑀𝑆𝐸2 =𝑅𝑀𝑆𝐸2 − (𝜇𝑋 − 𝜇𝑌 )2

=
⎛⎜⎜⎝
√√√√ 1

𝑛

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2
⎞⎟⎟⎠
2

− (𝜇𝑋 − 𝜇𝑌 )2 (8)
which also demonstrates how we get Equation (6).
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The Taylor Diagram can now be easily constructed using the follow-

ing procedure:

1. calculate standard deviations for all models,

2. pick one model as a reference model (the variable 𝑋 in all equa-

tions),

3. calculate Pearson’s correlation coefficient between the reference 
model and all other models,

4. calculate the angles using Pearson’s correlation coefficient,

5. visualize each model using its standard deviation value as the ra-

dius and the calculated angle as the polar angle where the reference 
direction starts from the pole horizontally to the right, and the po-

lar angle increases to positive angles when traversing the diagram 
in the counterclockwise direction.

When working with multiple models, it is not uncommon for those 
models to use different units of measure. That can influence the statisti-

cal measures used in the Taylor Diagram. When facing such a situation, 
CRMSE and standard deviations are normalized (𝐶𝑅𝑀𝑆𝐸′(𝑋, 𝑌 ) =
𝐶𝑅𝑀𝑆𝐸(𝑋, 𝑌 )∕𝜎𝑋 , 𝜎′

𝑌
= 𝜎𝑌 ∕𝜎𝑋 ), and those “fixed” values are then vi-

sualized. As a result, the reference model is now placed on the abscissa 
with the radius 1.

2.1.2. Mutual information diagram

On the other hand, the Mutual Information Diagram exploits 
information-theoretic properties of measures such as entropy, mutual 
information, and variation of information for the construction of the 
polar diagram. Let us again consider a pair of discrete random vari-

ables (𝑋, 𝑌 ), with the cardinality ∣ 𝑋 ∣=∣ 𝑌 ∣= 𝑛. We define discrete or 
Shannon entropy as

𝐻(𝑋) = −
𝑛∑
𝑖=1

𝑃 (𝑥𝑖) log𝑃 (𝑥𝑖) (9)

and mutual information (MI) between 𝑋 and 𝑌 as

𝐼(𝑋;𝑌 ) =
∑
𝑥∈𝑋

∑
𝑦∈𝑌

𝑃(𝑋,𝑌 )(𝑥, 𝑦) log
𝑃(𝑋,𝑌 )(𝑥, 𝑦)
𝑃𝑋 (𝑥)𝑃𝑌 (𝑦)

=𝐻(𝑋) +𝐻(𝑌 ) −𝐻(𝑋,𝑌 ) (10)

where 𝐻(𝑋, 𝑌 ) is the joint entropy of 𝑋 and 𝑌 defined as

𝐻(𝑋,𝑌 ) = −
∑
𝑥∈𝑋

∑
𝑦∈𝑌

𝑃(𝑋,𝑌 )(𝑥, 𝑦) log2 𝑃(𝑋,𝑌 )(𝑥, 𝑦) (11)

The term 𝑃(𝑋,𝑌 )(𝑥, 𝑦) in Equations (10) and (11) denotes the joint proba-

bility of values 𝑥 ∈𝑋 and 𝑦 ∈ 𝑌 occurring together, and 𝑃𝑋 (𝑥) and 𝑃𝑌 (𝑦)
are the marginal probability mass functions of 𝑋 and 𝑌 , respectively. 
Both equations also demonstrate why MI is a robust measure of de-

pendence as it can identify any connections between random variables 
that deviate from random chance (i.e., it measures general dependence). 
When two random variables are independent, the sum of their marginal 
entropies equals their joint entropy. If the joint entropy is less than the 
sum of the marginal entropies, it reveals some form of dependency. Un-

like correlation, MI is non-parametric, and does not require any specific 
distributions or mathematical forms of dependence to determine the re-

lationship between random variables. This makes it ideal in detecting 
both linear and nonlinear correlations [24,25].

The last measure, known as the variation of information (VI), unifies 
entropy and mutual information and enables us to construct the Mutual 
Information Diagram. This measure, which is also a metric as shown 
in [16], is defined as

𝑉 𝐼(𝑋,𝑌 ) =𝐻(𝑋) +𝐻(𝑌 ) − 2𝐼(𝑋;𝑌 )
(13)
= (12)

= 𝐼(𝑋;𝑋) + 𝐼(𝑌 ;𝑌 ) − 2𝐼(𝑋;𝑌 )

where in Equation (12), we used a known property of mutual informa-
5

tion where
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𝐼(𝑋;𝑋) =𝐻(𝑋). (13)

If we further notice that Equation (12) can be written as√
𝑉 𝐼(𝑋,𝑌 )

2
=
√
𝐻(𝑋)

2
+
√
𝐻(𝑌 )

2
(14)

− 2
√
𝐻(𝑋)

√
𝐻(𝑌 ) 𝐼(𝑋;𝑌 )√

𝐻(𝑋)
√
𝐻(𝑌 )

and apply the cosine formula (Equation (5)) we easily get

𝜃 = arccos

(
𝐼(𝑋;𝑌 )√

𝐻(𝑋)
√
𝐻(𝑌 )

)
= arccos (𝑁𝑀𝐼𝑋𝑌 ) (15)

where 𝑁𝑀𝐼𝑋𝑌 denotes the normalized mutual information between 𝑋
and 𝑌 [26]. The authors of the paper [16] named the resulting Mutual 
Information Diagram, which uses the root entropy value for radius and 
the NMI for calculating the polar angle of a diagram, as Normalized 
Mutual Information Diagram (NMID).

If we square the left side of Equation (12), we get the following 
equation

𝑉 𝐼2(𝑋,𝑌 ) = (𝐻(𝑋) +𝐻(𝑌 ) − 2𝐼(𝑋;𝑌 ))2 =⋯ = (16)

=𝐻2(𝑋) +𝐻2(𝑌 ) − 2𝐻(𝑋)𝐻(𝑌 ) ∗ 𝑐𝑋𝑌

where

𝑐𝑋𝑌 = 2𝐼(𝑋;𝑌 ) 𝐻(𝑋,𝑌 )
𝐻(𝑋)𝐻(𝑌 )

. (17)

Again, by using the cosine formula, we get 𝜃 = arccos 𝑐𝑋𝑌 . Since 𝑐𝑋𝑌 ∈
[−1, 1], the authors of [16] proposed using the unbiased version of mu-

tual information for the diagram creation. The new version is called 
scaled mutual information and is defined as

𝑆𝑀𝐼𝑋𝑌 = (𝑐𝑋𝑌 + 1)∕2 (18)

In turn, the resulting diagram is now placed in the range [0, 1] ∋ 𝑆𝑋𝑌

and called Scaled Mutual Information Diagram (SMID).

Since 𝑁𝑀𝐼𝑋𝑌 ∈ [0, 1], 𝑆𝑀𝐼𝑋𝑌 ∈ [0, 1], and 𝑅𝑋𝑌 ∈ [−1, 1] both posi-

tive and negative correlations map to positive mutual information.

Both versions of the Mutual Information Diagram can be constructed 
similarly to the Taylor Diagram by following the procedure below:

1. calculate

(SMID) entropies for all models,

(NMID) square root of entropies for all models,

2. pick one model as a reference model (the variable 𝑋 in all equa-

tions),

3. calculate mutual information between the reference model and all 
other models,

4. calculate joint entropies between the reference model and all other 
models using Equation (10),

5. calculate

(SMID) scaled mutual information using Equation (18)

(NMID) normalized mutual information using Equation (15)

between the reference model and all other models,

6. visualize each model using its

(SMID) entropy value as radius, and the calculated angle from 
Equation (17)

(NMID) root entropy value as radius, and the calculated angle 
from Equation (15)

as the polar angle where the reference direction starts from the 

pole horizontally to the right, and the polar angle increases to pos-
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Fig. 4. Taylor Diagram (a), NMID (b), and SMID (c) are presented. As we can see, while the Taylor Diagram and the SMID span the first and the second quadrants, 
the NMID spans only the first quadrant. The reader should note that the Taylor Diagram presented in this figure is a trimmed version of the full diagram since the 
negative correlations are not presented. This procedure is usually applied to the SMID as well.
itive angles when traversing the diagram in the counterclockwise 
direction.

As with the Taylor Diagram, measures are often normalized 
(𝐼 ′(𝑋; 𝑌 ) = 𝐼(𝑋; 𝑌 )(𝐻(𝑋)∕𝐼(𝑋; 𝑋)), 𝐻 ′(𝑌 ) = 𝐻(𝑌 )∕𝐻(𝑋)), and those 
new values are then visualized. As a result, the reference model is now 
placed on the abscissa with the radius 1, and the property in Equa-

tion (13) is maintained. All three polar diagrams can be seen in Fig. 4.

2.1.3. Important notes and the deviations from the original work

In this section, we will cover some aspects of both diagrams we deem 
important and describe the deviations from the original MID presented 
in [16].

We started Sections 2.1.1 and 2.1.2 by considering a pair of discrete 
random variables (𝑋, 𝑌 ) and then explained the constructions of both 
diagrams by relying on that initial condition. However, not all data sets 
will contain only discrete variables. All statistical measures required for 
creating the Taylor Diagram and presented in Section 2.1.1 are also 
applicable to continuous random variables. The situation is far more 
complex for the MID.

One way to calculate entropy for continuous variables is to esti-

mate the underlying probability density function (PDF) of that variable. 
The authors of the original MID explored and tested multiple differ-

ent methods for estimating PDF. Their results show that the choice of a 
method and its parameters significantly influence the resulting MID, 
even though the locations of the distributions in the MID are more 
or less preserved. Yet, each of the continuous data set examples they 
presented in Section 5. RESULTS uses different methods for estimating 
PDF. In essence, Example 5.1 Intercomparison Studies used histograms, 
and Example 5.2 Analysis of Climate Ensembles used kernel density esti-

mation with the optimal bandwidth for a bivariate normal distribution 
and Epanechnikov kernels. The lack of consistency in the methodology 
for the PDF estimation step in the original paper and the lack of trans-

parency in parameter selection shows that each MID may have been 
tailored to each data set separately. This presents a great obstacle for 
any user that is not a domain specialist and wants to use the MID.

To address this problem, we designed polar-diagrams by consider-

ing the results from the original paper and state-of-the-art methods for 
calculating continuous entropy and MI.

First, we wanted to give as much flexibility to the user as possible 
by allowing them to input mixed data sets (i.e., data sets with both con-

tinuous and discrete models). To accommodate the possibility of mixed 
data sets as an input we relied on the results of paper [27]. The au-

thors of the study verified the nearest neighbor method as being far 
more accurate, less computationally, and less memory expensive than 
binning-based MI estimators. This is why we decided to use the non-

parametric method, known as Kraskov’s method [28], to calculate only 
the MI between variables. Our decision is further corroborated by pa-

per [16], that demonstrates the higher accuracy of this method when 
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estimating MI but larger error when estimating entropy.
Second, our library uses different methods for entropy calculations 
depending on the data type of the models and the parsed optional ar-

guments. If the model in question is discrete, Equation (9) is used to 
calculate entropy. If the model is continuous, the entropy is known as 
differential or continuous entropy and measures the average information 
content of a random variable with a continuous probability distribu-

tion. Our library selects different methods to calculate entropy based 
on the given sample size of the (unknown) distribution. If the data set 
has less than 10 samples, the Van Es estimator [29] is used. In case 
the sample size is between 11 and 1000, the Ebrahimi estimator [30] is 
used. For larger sample sizes, the Vasicek estimator [31] is used with 
the heuristic value for the window length parameter proposed in [32]. 
The selection behavior and implementation details are described and 
presented in [33]. Even though our library selects the differential en-

tropy estimation method automatically depending on the sample size, 
the users are able to override this functionality and manually select one 
of the previously mentioned methods.

Third and last, our proposed methodology gives more accurate re-

sults. However, since we are not treating continuous variables as dis-

crete (and vice versa) and we are using task-specific methods, one new 
problem arises. Unlike discrete entropy, differential entropy can be neg-

ative. Since MID is only able to show models with positive entropies, 
this means that models with negative differential entropy will not be 
present on the resulting MID. We do not consider this a flaw but a limi-

tation of the MID. In that case, the user is encouraged to use the Taylor 
Diagram to evaluate the results. This motivates and supports the cou-

pling of the polar diagrams presented in this work.

2.2. Technical background

We decided to develop polar-diagrams using Python programming 
language [34] due to its flexibility and cross-domain popularity. We 
also relied on multiple well-established libraries for data manipulation, 
analysis, and visualization. This section will cover all essential libraries 
on which our library depends and explain the functionalities we use to 
create the polar diagrams.

The first step in visualizing model results using polar-diagrams is to 
prepare the data set. The user should use Pandas [35,36] library to 
import the raw data into wide-formatted Pandas DataFrame. The re-

sulting DataFrame must have a 1-level index, model names as column 
names, and model results in rows. Hence, the DataFrame has dimen-

sions 𝑛𝑥𝑚 where 𝑛 is the number of rows, and 𝑚 is the number of models 
(columns). This is the only format of the input data our library accepts. 
We decided to use Pandas because of its ability to parse a plethora of 
raw data formats (e.g., XML, JSON, CSV, SQL, etc.), and its wide-spread 
use across many domains.

Our library also extends the functionalities of both Taylor and MID 
by enabling users to visualize a scalar property for each model and 
visualize two different versions of each model on the same diagram si-

multaneously. However, the user is able to use only one of the extended 
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functionalities at the same time. In case the user wants to visualize 
one additional scalar property of each model, instead of parsing one

DataFrame with model results, users should parse a Python list. The 
first element of that list should be a DataFrame that contains model 
results, as described in the previous paragraph. The second element 
should also be a DataFrame that has dimensions 1𝑥𝑚, where the sin-

gle row contains the scalar value a user wants to visualize. Column 
names must be the same for both arguments. All scalar values are in-

ternally scaled to [0, 1] domain in order to prevent the “explosions” of 
scalar markers on a visual canvas. This means that scalar markers can 
only be double the size of model markers, thus preventing visual clut-

ter. If the user wants to visualize two different versions of models, a 
Python list should be parsed as an argument. The list elements are 
two 𝑛𝑥𝑚-dimensional DataFrames representing different versions of 𝑚
models. As with the previous case, column names must be the same for 
both arguments (DataFrames).

To calculate all statistical measures necessary for the creation of the 
Taylor Diagram, we used Pandas, NumPy [37], and Scikit-learn [38,39]

libraries. To calculate the discrete entropy, we implemented an in-house 
algorithm according to the original Shannon’s definition presented 
in [40]. Differential entropy is calculated as described in Section 2.1.3

using the SciPy [41] library. The MI is calculated using Kraskov’s 
method by adopting the implementation provided in the Scikit-learn

library. Papers [28,27] show the best MI estimation occurs when the 
number of neighbors for the method is 3. We also use this as a default 
value, but the user may change it as necessary.

We used Plotly [42] library to design and create all diagrams. It also 
affords all interactive functionalities of both diagrams and the ability to 
export them in static image formats.

3. Results

Our library presents the first open-source implementation of the in-

teractive Taylor Diagram and the first public implementation of the 
MID. In addition, it extends the functional aspects of both diagrams 
by enabling users to visualize one scalar property of each model and 
two different versions of models on the same diagram. The users can 
take advantage of the first functionality to visualize any scalar value 
that is important to the experiment. We used it to encode the training 
and prediction time of a selection of ML models presented in Sec-

tion 3.2. The results are presented in Fig. 9. The second functionality 
can be exploited for visualizing models in two time points or with the 
changed (hyper-)parameters, thus allowing the user to examine the shift 
in model performance. We showcased the latter in Fig. 8.

The resulting diagrams can be exported in the following formats:

PNG, JPEG, WebP, PDF, and SVG. Before exporting the diagram in a 
static image format, the user is able to interact with it and explore 
it. We now follow the nested model of visualization [43] to dissect and 
present all functionalities of our library’s resulting charts.

First, incorporating interactive elements into our diagrams presents 
one of the major advantages over traditional Taylor and Mutual Infor-

mation diagrams, which are static images. Polar coordinate charts often 
have multiple axes radiating from a central point, which can make it 
challenging to accurately assess certain properties without proper in-

teractivity. For example, it can be difficult to compare the magnitude of 
different data points on the chart or to determine the exact coordinates 
of a particular point. Similarly, interpreting the distances between the 
axes may be challenging without the ability to zoom in on specific areas 
of the chart, i.e., to adjust the scaling of the radial axis. Additionally, 
given the circular nature of polar coordinate charts, it may be difficult 
to identify trends or patterns in the data without the ability to interac-

tively adjust various display options such as color-coding or labeling. 
All of these points were tackled either singularly or simultaneously in 
works by Burch et al. [44], Yee et al. [45], Qiang et al. [46], and Vehlow 
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et al. [47]. Overall, interactivity is essential for accurately interpreting 
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and exploring the properties of polar coordinate charts in a way that is 
intuitive and meaningful to the user.

By relying on previous studies that researched interactivity in polar 
coordinates, we incorporated multiple interactive idioms to allow users 
to explore the data and change the charts before they are exported in 
a static image format. Hovering the mouse over any model in the dia-

gram reveals a tooltip with additional information about the underlying 
model. The border of each tooltip is colored the same as the model it 
refers to. This interactive element can be seen in Fig. 7. Users are also 
allowed to click on the models’ graphical representation in the legend 
and exclude them from the results. If users double-click on the model in 
the legend, all models except for the selected one are excluded from the 
diagram. Besides Single selection, Zoom is the next and default interac-

tive tool a user can employ to navigate the polar diagrams. This allows 
users to select specific radial intervals or areas to be visible on the dia-

gram. It is important to note that the Zoom tool does not actually zoom 
into the visualization canvas, rather it rescales the radial axis of the di-

agrams. The upper-right part of the visualization canvas contains two 
more tools that allow more granular control on which models to high-

light — Box Select and Lasso Select. The first tool allows the creation 
of rectangular regions outside which the models will be de-emphasized 
by decreasing the saturation. The latter provides the same functional-

ity by defining the region using any polygon. They both are elements of 
the multi-selection interactive aspect. The resulting diagram with some 
models highlighted could then be easily exported in any of the previ-

ously mentioned static image formats, thus better conveying the story 
of the underlying experiment. All interactive tools are shown in the 
upper-right corner in Fig. 7.

Second, we used three encoding channels to encode model data. 
Circles are used as graphical markers that represent models. They rep-

resent elements of the shape channel, where each marker has the same 
size. Hence, when using polar-diagrams to visualize model results con-

sidering only one version of the models, this channel does not contain 
any significant information about the models. However, if users invoke 
the functionality of visualizing two versions of all models at the same 
time, this channel is used to create a differentiation between model 
versions. Circles that encode the second-version models have a solid 
border, while the circles that encode the first-version models are bor-

derless. We also used the shape channel to encode the second extended 
functionality polar-diagrams supports — visualizing a scalar property of 
each model. When the user wants to visualize the scalar property, the 
values are encoded using the concentric circle around the model marker 
(circle) with the same color. The size channel for the concentric circle is 
used to encode the normalized scalar value. The difference between the 
models is encoded using the color channel. The reference model is al-

ways encoded using the black color, while all other models are encoded 
using either Tableau 10 or Tableau 20 [48] categorical color schemes 
depending on the number of models. Each color has 60% opacity, thus 
allowing an easier model distinction when visual markers overlap.

Our library also supports inspecting and exporting intermediary 
results for diagram creation. Those results are returned as a Pan-

das DataFrame object and can be further exported in any tabular 
format supported by the Pandas library.

One of the example arguments presented in [16] for using the MID 
instead of the Taylor Diagram is Anscombe’s data set [49]. This data 
set is a set of four data sets, and each of them has the same sum-

mary statistics (i.e., mean, standard deviation, and correlation). The 
authors showed that certain components of Anscombe’s data set fully 
overlap on the Taylor Diagram while being dispersed on the MID. We 
also tested this on a “newer” version of Anscombe’s data sets called The 
Datasaurus Dozen data set [50]. Even though this collection of thirteen 
data sets contains totally different data sets when visualized, they all 
have the same summary statistics (𝑋∕𝑌 mean, 𝑋∕𝑌 standard deviation, 
and Pearson’s correlation). Indeed, the MID shows better results for this 
example as well. Despite the fact that the Taylor Diagram produces re-
sults where models are hard to differentiate, by using the interactive 
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Fig. 5. The Datasaurus Dozen data set. The top row models present x-axis values, while the bottom row models present y-axis values for all thirteen data sets. The 
models overlap in all diagrams. However, the Taylor Diagrams (top and bottom left) contain models that fully overlap. The user is notified with a Python warning 
about this phenomenon. The MIDs (top and bottom right) give much better results.
Zoom tool, the user is able to closely inspect if some models are better. 
We present our results in Fig. 5.

Even though the phenomenon of overlapping model markers occurs 
less often in the MID, it still can occur under specific circumstances. 
To solve this problem, we implemented a Python RuntimeWarning, 
which notifies the users if any of the diagrams contains overlapping 
models. Furthermore, the warning reveals the exact models that are 
overlapping on the diagram, thus providing the user an insight into the 
data and motivating them to use the interactive functionalities offered 
by the polar diagrams.

In the following sections, we present our results using the data from 
three different domains — climate research, machine learning, and bi-

ology/medicine.

3.1. Example 1 — climate model evaluation

One of the most important projects of the World Climate Re-
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search Programme (WCRP) is the Coupled Model Intercomparison 
Project (CMIP). The project’s objective is to gain insights into past, 
present, and future climate changes, thus supporting policy-makers and 
communities worldwide. The understanding of climate phenomena in-

clude, among other things, the assessment of various climate models 
and the quantification of their performance for future projects.

We specifically picked CMIP Phase 3 (CMIP3) data set [51] in an ef-

fort to reproduce the results from Section 5.1 Intercomparison Studies of 
the original MID paper [16]. However, during this process, we discov-

ered the following pitfalls that prevented us from fully replicating the 
results:

• the lack of guidelines that specify how to acquire the data from the 
CMIP3 data repository,

• the lack of details on what data properties (i.e., ensemble runs) 
were used from CMIP3 data set,

• missing information about the temperature averaging due to the 

spatial nature of the CMIP3 data set,
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Fig. 6. CMIP3 data set. Taylor Diagram and Mutual Information Diagram of CMIP3 air surface temperature data for the historical experiment, of only the first 
ensamble run. The top row shows the diagrams reprinted with permissions from the original study [16], while the bottom row diagrams were created and exported 
using the library we created — polar-diagrams. Model bccr_bcm2_0 is selected as a reference model. We can see that some models are not visualized on the MID; 
those models have negative entropies and negative MIs with the reference model. Therefore, by using the Taylor Diagram, we can see the models miroc3_2_medres

and csiro_mk3_0 are the most similar to the reference model. This example shows the need to present both diagrams side-by-side. The upper figure is used with 
permission of Begell House Digital Library, from The mutual information diagram for uncertainty visualization, Correa, C. D., & Lindstrom, P., International Journal 
for Uncertainty Quantification, 3(3), 2013; permission conveyed through Copyright Clearance Center, Inc.
• missing information about the source of the reference or observa-

tion (OBS) data (model),

• the example-specific probability density estimation method.

Nevertheless, we solved each of the problems mentioned above by 
following our intuition and commonly used approaches when working 
with climate data. We acquired CMIP3 data by creating the follow-

ing link query https://esgf -data .dkrz .de /esg -search /wget ?download _
structure =model &project =CMIP3 &experiment =historical &ensemble

=run1 &variable =ts and downloading the official wget script which 
downloads all model data. As in the original study, the script down-

loads the data set, which consists of 21 models. The query shows that 
we selected the data from the CMIP3 project of the historical experiment 
and for the surface air temperature (ts) variable. Since the original work 
is missing the ensamble information, we decided to use only run1 val-

ues. Due to the lack of positional information on the data in the original 
study, we calculated the average of all temperatures across the globe 
per year and used those values for each model. Fig. 6 shows the original 
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and reproduced results.
As we can see in Fig. 6, both Taylor and MID look very different 
than those in the original study. The difference is caused by the lack 
of a step-by-step procedure to replicate the original results and by us-

ing a different probability density estimation algorithm. Although the 
diagrams are not comparable in this way, the overall goal of providing 
an open-access library is to support the community at large and enable 
not only static information visualizations but also the creation of inter-

active data visualizations and the sharing of source code to reproduce 
the underlying work. Our results reproduce the fundamental principles 
and analytical steps used in the related work. Although not entirely irre-

producible, this also shines a positive light on open tools that facilitate 
source code adoption, reuse, sharing, and reproducibility. More partic-

ularly, positively affecting the advancement of thematic analytics in the 
field of climate change.

3.2. Example 2 — machine learning model evaluation

The non-parametric and data-type agnostic nature of our library al-
lows us to work with continuous variables without the discretization 

https://esgf-data.dkrz.de/esg-search/wget?download_structure=model&project=CMIP3&experiment=historical&ensemble=run1&variable=ts
https://esgf-data.dkrz.de/esg-search/wget?download_structure=model&project=CMIP3&experiment=historical&ensemble=run1&variable=ts
https://esgf-data.dkrz.de/esg-search/wget?download_structure=model&project=CMIP3&experiment=historical&ensemble=run1&variable=ts
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Fig. 7. Breast Cancer data set. Multiple ML models evaluated on Breast Cancer data set. The upper part of the figure contains bar charts of commonly used evaluation 
scores of classification tasks. We can see all models performed similarly well. However, without further inspection of the bar charts using zooming or a tooltip, it 
is hard to estimate which model performed the best, which model is the second best, and so on. As an alternative to this approach, the user is able to present the 
performance of each model by creating a table that holds the final scores. On the other hand, Taylor Diagram and MID facilitate clear distinctions between models 
without any additional work. We can clearly see the Random_Forest_C models being the best, MLPC being the second best, and Ada_Boost_C being the worst model. We 
can also notice that some models like KNN, SVM_Linear, and SVM_Gaussian are missing. However, this is not the case. The models are overlapping in both diagrams, 
and the user is notified with a Python warning about this phenomenon.
step and the selection of example-specific PDF estimation method, as 
opposed to the procedure presented in [16]. To showcase the power of 
polar-diagrams, we selected various traditional ML data sets that contain 
all discrete, all continuous, or some discrete and some continuous fea-

tures. Furthermore, we chose eleven classification and nine regression 
models. The main task of the experiment was to assess model perfor-

mance using the diagrams our library provides, find the best model, 
and check if our assessment is in line with commonly used performance 
metrics. We present the experiment in more detail below.

3.2.1. Data sets
We used the following data sets for our ML experiment: Iris [52], 

Breast Cancer [53], Glass [10], E. Coli [54], Mushroom [55], California 
Housing [56], and Ames Housing [57]. The first five data sets contain 
a discrete target feature (classification task), while the latter two con-

tain a continuous target feature (regression task). The portion of the 
target feature used as the test data represents our reference model. We 
conducted the same preprocessing procedure for all data sets. First, we 
removed columns that contain identification (ID) numbers. Second, we 
used the label-encoding method to encode categorical columns of each 
data set. This step allows the use of the Taylor Diagram for model as-

sessment besides the MID. Third, we removed rows or columns that 
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contain Null values. Fourth, and only in the case of the Mushroom data 
set, we sampled the data set using stratification and considered only 
40% of all samples. Due to its memory requirements, we had to reduce 
the size of this specific data set. Fifth, we split the data into the training 
and test parts with proportions 0.67 ∶ 0.33. For the classification tasks, 
this procedure was completed in a stratified fashion. Sixth, we scaled 
both training and test data using Scikit-Learn’s StandardScaler that 
was trained on the training data only. We then proceeded with the ML 
model training.

3.2.2. Machine learning models

The ML example includes all commonly used ML classification 
and regression models implemented in the Scikit-Learn [38,39] library. 
We used the following models for both the classification and regres-

sion tasks: k-Nearest Neighbors [58], Linear Support Vector (SV) Ma-

chine [59–61], Kernelized SV Machine [60,61], Decision Tree [62], Ran-

dom Forest [63–65], Multi-layer Perceptron [66–68], Ada Boost [69–71], 
Gradient Boost [72,73], and Stochastic Gradient Descent (SGD) [74–76]. 
Besides these models, we also used Gaussian Naive Bayes (NB) [77,78]

for the classification tasks and Gaussian Process Regressor [79] for the 
regression tasks. All models were using the default hyper-parameters, 
as defined in the Scikit-Learn library. For the Kernelized SV Machine, 
we used the Radial Basis Function (RBF) kernel with default hyper-
parameters.
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Fig. 8. E. Coli data set. A selection of ML model was used with E. Coli data set. To showcase the library’s ability to visualize two versions of all models, we conducted 
two classification experiments using four ML models. In the first experiment, we used models with default hyper-parameters, while in the second experiment, we 
slightly tweaked hyper-parameters, thus causing some models to perform better and some models to perform worse than in the first run. Models from both 
experiments were evaluated and visualized, as seen in Figs. 8a and 8b. The visible change in these figures is the decrease in performance of the SVM_Gaussian model. 
This can also be seen in both diagrams since the grey dot with a solid border (which encodes the second version of the model) is further from the Ground_Truth than 
the same borderless grey dot. Moreover, diagrams allow us to easily notice the increase in performance of the Random_Forest_C model.
To train the models, we used stratified 5-fold cross-validation on 
the training data while using the following scoring methods to eval-

uate the performances of the classification models: accuracy, weighted 
precision, weighted recall, and weighted F1-score. To evaluate regression 
models during training, we used 5-fold cross-validation on the training 
data with the following scoring methods: 𝑅2 score [80], negative mean 
absolute error, negative mean squared error, negative mean squared log er-
ror, and negative root of mean squared error. The negative values are used 
due to the nature of the library, where estimators with higher scores are 
considered better.

The final evaluation of all models was done with the test data set as 
defined in Section 3.2.1 and using the scoring methods mentioned ear-

lier. Besides visualizing the model performance using our library, we 
also visualized different scores acquired during the evaluation. For data 
sets used in the classification task, we visualized weighted F1-score, 𝜙 co-

efficient or Matthews Correlation Coefficient (MCC) [81,82], and Cohen’s 
Kappa coefficient [83]. On the other hand, for data sets used in the re-

gression task, we visualized the 𝑅2 score, mean squared error (MSE), and 
mean absolute error (MAE). It is important to note that when inspecting 
figures in the paper, higher values are better for all but two metrics: 
MSE and MAE. For these two metrics, the opposite is true.

Model results for Breast Cancer, E. Coli, Ames Housing, Glass, Iris, 
Mushroom, and California Housing data sets can be seen in Figs. 7, 8, 9, 
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10, 11, 12, and 13, respectively. Fig. 8 showcases the first extended 
functionality of polar-diagrams that enables users to visualize multi-

ple versions of the same models. Fig. 9 presents the second extended 
functionality that enables users to visualize one scalar property of each 
model.

3.3. Example 3 — biomedical similarity assertion

With the rise of electronic medical records and population-level pa-

tient profiles, we are getting closer to the widespread use of precision 
medicine. In order to achieve this goal, it is often required to find sim-

ilarities between patients, cluster them, and determine the similarity 
of each new patient to these defined clusters. Besides being compara-

ble to standard medical diagnosis and hence being familiar to physi-

cians, this step also ensures patient privacy and speeds up the decision 
process [84,85]. On the other hand, comparative studies present an 
important part of biological research as well. Comparative biology en-

compasses a plethora of biological sciences (e.g., Ecology, Genomics, 
Paleontology). It enables users to identify similarities and more specifi-

cally the distance of one organism (or other taxa) in relation to another 
and derive the phylogeny [86,87]. In this section, and for the sake of 
consistency, we will use the term model when considering organisms (or 
other taxa) and patients.

More than often, the end goal of asserting similarities and finding 

clusters is the representation of the results in a 2-D space. There-
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Fig. 9. Ames Housing data set. This example displays the ML models’ performances for the regression problem of Ames Housing data set. Since the target feature of 
this data set is continuous, model predictions and ground truth are also continuous. Hence, to visualize all models, the library uses continuous (differential) versions 
of algorithms for the calculation of entropy and MI. We can see the resulting diagrams are not completely in line, but they agree with both Random_Forest_R and 
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Gradient_BR being one of the best models for this task. This is completely in line with the commonly used metrics (top row).
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Fig. 10. Glass data set. The performance of ML models while solving the classification task of the Glass data set differs greatly from all other results. The traditional 
way of visualizing ML model performance using bar plots (top row) gives us a clear distinction between model performances instead of being hard to read, as in 
other examples. Therefore, this approach presents a satisfactory way to visualize ML model performances for this data set. The MID created and exported using 
polar-diagrams (bottom row, right) completely agrees with the results of the previously mentioned approach. The best models are Random_Forest_C, Decision_Tree_C, 
and Gaussian_PC respectively. The lack of power to capture nonlinear relationships between the models hinders the use of the Taylor Diagram for this example.
fore, the traditional approach consists of selecting one of the clustering 
algorithms (e.g., K-Means [88], OPTICS [89], BIRCH [90]), choosing 
the distance metric to be used in the algorithm (e.g., Euclidean dis-

tance, Manhattan distance), and using some dimensionality reduction 
technique (e.g., Principal Component Analysis (PCA) [91], Multidimen-

sional Scaling (MDS) [92], T-distributed Stochastic Neighbor Embedding 
(t-SNE) [93]) to project the data to 2 dimensions and visualize it in a 
Cartesian plot with colors (or shapes) encoding clusters.

Due to the nature of the Taylor Diagram and the MID, we can 
skip all these steps and use CRMSE and VI, respectively, to determine 
similarities between single models, models and clusters, and clusters 
and clusters (inter-cluster similarity). Multiple studies have shown that 
VI shows multiple desirable theoretical properties (such as its metric 
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property and its alignment with the lattice of partitions) and, as such, 
can be used to compare clusters and, by extension, its individual ele-

ments [94–96].

To showcase the ability to assert similarities between biomedical 
models using polar-diagrams, we used the Fertility [97] (all discrete fea-

tures) and Hepatitis [98] (all continuous features) data sets.

The Hepatitis or HCV data set consists of patients that are described 
by demographic properties and laboratory-collected blood values. All 
patients fall into one of the following categories: blood donor, suspected 
blood donor, hepatitis C patient, fibrosis patient, and cirrhosis patient. For 
the purposes of our study, we included only hepatitis C patients that 
do not contain Null values and without demographic properties. As 
a result, we were left with twenty patients, each containing ten blood 
parameters. The results for the Hepatitis and the Fertility data sets can 

be seen in Figs. 14 and 15.
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Fig. 11. Iris data set. Both commonly used ML metrics (top row) and diagrams from our library (bottom row) align with SVM_Linear and MLPC being the worst 
models on the Iris data set, respectively. The best model performances are hard to read from the top-row visualization, but this problem remains in the case of 
diagrams as well. However, a quick use of the Zoom tool provided by polar-diagrams would allow us to zoom into the clusters and determine which model is the best.
Besides visualizing patients using our library, we also visualized 
them using the traditional approach. First, we used the Caliński and 
Harabasz score [99] to find the best number of clusters for the K-Means

clustering algorithm. Second, we clustered patients using K-Means. 
Third, we used t-SNE [93] to reduce the dimensionality of our data 
to two dimensions. Fourth and last, we visualized data using a 2-D scat-

ter plot, with clusters color-coded and patients represented by shapes. 
The results can be found in the upper part of Figs. 14 and 15.

The overview of all results of our study can be seen in Table 1.

4. Discussion

Thanks to our library, we solve multiple hurdles of MID that were 
mentioned in the original work. However, certain limiting factors re-

main as “weak” problems, and we take the liberty to discuss them along 
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with other possible improvements.
First, polar-diagrams only supports models represented by 𝑛-dimen-

sional numerical vectors, which may be perceived as a “hard” con-

straint. However, representing the data as numerical vectors is a com-

mon practice.

Second, the number of models users want to visualize can be per-

ceived as a “soft” constraint. This is caused by the limitation of the 
human perceptual and cognitive system in its ability to both perceive 
and retain a large number of categorical colors [43,100–103]. This is es-

pecially true for colorblind-safe schemes/palettes which can be used to 
make designs more accessible to users with visual impairments. Indeed, 
our library does not prevent users from parsing more than twenty mod-

els since the colors are repeated after the twentieth model. Although a 
serious problem in color usage, this is why this constraint is considered 
“soft”. Yet, it does not prevent users from exploring the data interac-

tively since they can exclude models that are not of interest by using the 
interactive legend. When users are faced with more than twenty mod-
els, ambiguity is created with repeating colors. Unfortunately, creating 
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Fig. 12. Mushroom data set. In the case of the Mushroom data set, both diagrams from polar-diagrams (bottom row) and commonly used ML metrics (top row) align 
with each other. As with the Iris data set, it is hard to assess the best models using the top-row visualization. This is also the case with the diagrams. The interactive 
Zoom tool would help us to single out the best models for this data set quickly. Indeed, it is clear that Random_Forest_C and MLPC performed the best, which is in 
alignment with the results from the original study [55].
a color palette with more than twenty distinguishable colors is unattain-

able. As an example, Colorgorical, a tool by Gramazio et al. [104], which 
creates discriminable color palettes using three color-discriminability 
scores and a color-preference score, returns a partial palette and an 
error when more than twenty-one colors are generated due to the ex-

haustion of the color space. Indeed, more classes require more colors, 
which are increasingly difficult to distinguish. Depending on the task 
at hand and the audience, the number of colors varies. For the exam-

ple of color coding of symbols, Colin Ware suggests using no more than 
ten colors if reliable identification is required, especially if the symbols 
are to be used against a variety of backgrounds [105]. Additionally, we 
explored the possibility of using color harmonies to expand our color 
palette [106]. However, we have found that this method is insufficient 
when the number of colors in the palette is more than four. The seven 
major color schemes are monochromatic, analogous, complementary, 
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split complementary, triadic, square, and rectangle (or tetradic); result-
ing in a maximum number of four colors. In the first iterations of the 
library, we tried encoding models using shapes as well in order to in-

crease the number of distinct model encodings. However, that approach 
yielded diagrams that were cluttered and hard to read. Our results are 
further corroborated by works [107,108]. We currently give users the 
freedom and responsibility to decide which models are visualized and 
control for repeated colors.

Third, another limitation is with models that have a continuous data 
type. In this case, as we described in Section 2.1.3, our library calculates 
continuous (differential) entropy and MI for the creation of MID. Since 
these parameters can be negative, the resulting MID might be empty 
or without some models, as can be seen in Figs. 13 and 6. However, 
as mentioned earlier, we do not consider this a true limitation since it 
presents the nature of continuous entropy.

Fourth, the MID can be further improved by incorporating a nor-
malized variation of information (NVI) as presented in paper [109]. 
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Fig. 13. California Housing data set. In the case of the California data set, due to it being a regression problem, all entropies and MIs are negative, hence an empty 
MID (bottom row, right). Taylor Diagram (bottom row, left) gives better results since it aligns with all commonly used metrics (top row). Both the diagram and bar 
16

charts agree with Random_Forest_R, MLPR, and Gradient_BR being the best models for this task, respectively.
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Fig. 14. Hepatitis data set. Hepatitis C patients are visualized using the traditional approach (top row) and polar-diagrams (bottom row). While the creation of the 
top-row scatter plot required algorithm selection, data processing, and computer science knowledge, the bottom-row polar diagrams do not require any domain-

specific knowledge or experience. Patient_0 is selected as a reference model. We can notice the traditional approach (top row) declaring Patient_0 as the only element 
of the cluster. However, if we consider distance in a 2-D plot created by t-SNE, we see that the most similar patients with the reference patient are Patient_13 and 
Patient_1. This agrees with both diagrams. However, both diagrams also tell us that Patient_14 and Patient_15 are the most dissimilar to the reference model.
However, this implementation was out of the scope of our paper since 
it requires further research into its application in the form of a dia-

gram.

Fifth, it is important to note that the differential entropy imple-

mented in SciKit-Learn library and used for the creation of MID is not 
the actual continuous analogue of discrete (Shannon) entropy [110]. All 
methods mentioned in Section 2.2 present the limiting case of the actual 
continuous version of discrete entropy called the limiting density of dis-

crete points (LDDP). To the best of our knowledge, the implementation 
of this measure in Python does not currently exist. However, we plan to 
include this measure as another option for calculating the differential 
entropy in one of our future versions.

Sixth, we also acknowledge another model comparison chart type 
— the Target Diagram [111]. This Cartesian plot type extends the func-
17

tionalities of the Taylor Diagram by including the sign of the bias to the 
summary information (which is unbiased) and summarizes how they 
each contribute to the total RMSE. The need for a summary diagram 
that also encodes and visualizes the statistical bias was also confirmed 
in [112]. However, our library solves this problem with the previously 
introduced functionality to visualize one scalar property of each model. 
Implementing this plot type in polar-diagrams is thus unnecessary and 
out of scope due to it not being of a polar type.

Seventh and last, it is important to mention that our diagrams do 
not contain isolines indicating CRMSE, VI, and RVI. Instead, we chose 
to show these values in a tooltip. One of the reasons behind this decision 
is the lack of support for such functionality in all high-level visualization 
libraries we reviewed. The other reason is to make diagrams as visually 
decluttered and readable as possible. The same rationale applies to our 
decision not to use the traditional approaches for multi-version model 

visualizations. These approaches use arrows to indicate the flow of in-
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Fig. 15. Fertility data set. Fertility data set proves to be one of the examples where the results from the diagrams do not align and disagree with the traditional 
approach (top row). As we can see, the Taylor Diagram (bottom row, left) depicts Patient_9, Patient_8, and Patient_2 as being the most similar to the reference 
Patient_0. On the other hand, MID (bottom row, right) shows Patient_11 as being the most similar to the reference model. Due to the equidistant nature of models 
(all having the same VI), the second most similar models are Patient_5 and Patient_2. This is confirmed by the Python warning the library produced. The traditional 
approach places Patient_10 and Patient_3 in the same cluster as the reference patient. Due to such a great disagreement, more analysis is required for this data set.
formation. However, when there are ten or more models, the resulting 
diagrams have twenty or more model markers with ten arrow lines. De-

pending on the model shift, those lines can have multiple intersections 
with each other, thus rendering the resulting visualization incompre-

hensible. This is the reason we decided to encode the second versions 
with the same markers as the first versions, but with the added solid 
border for the purpose of differentiating them.

5. Conclusion

Our library provides the first public implementation of the MID and 
the first implementation of the interactive Taylor Diagram. It was de-

veloped by following all “good” programming conventions (e.g., PEP 8, 
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PEP 20, PEP 257, PEP 287 [34]) and with state-of-the-art open-source 
data manipulation, scientific computing, mathematics, machine learn-

ing, and high-level visualization libraries. The resulting diagrams can 
be exported in publication-ready static-image formats.

Furthermore, our library extends the expressiveness of both dia-

grams by providing two additional functionalities — the ability to vi-

sualize multiple versions of all models and the ability to visualize one 
scalar property of each model.

By providing the interactive aspects to both diagrams, the users 
are encouraged to explore results in a way not available until now. 
We expect polar-diagrams to be a valuable tool in climate, biomedi-

cal, machine learning, and other domains that produce complex models 
and offer further insights into interdependencies between such mod-
els.
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Table 1

Overview of the results. The Agreement column shows whether 
the diagrams from our library are in agreement with the traditional 
evaluation approaches. The Reproducibility column shows whether 
the results are reproducible.

Data set Agreement Reproducibility Result

CMIP3 No1 No1 Fig. 6

Iris Yes Yes Fig. 11

Breast Cancer Yes Yes Fig. 7

Glass Yes Yes Fig. 10

E. Coli Yes Yes Fig. 8

Mushroom Yes Yes Fig. 12

California Housing No Yes Fig. 13

Ames Housing Yes Yes Fig. 9

Hepatitis Yes Yes Fig. 14

Fertility No Yes Fig. 15

1 Due to the lack of data in the original study [16].
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the GNU General Public License, Version 3.0 and can be manipulated, 
improved, and extended freely by any user.

Availability of data and materials

The data used in this study can be either found or downloaded us-

ing the scripts present at https://github .com /AAnzel /Polar -Diagrams -
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Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. 
Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, 
F. Pedregosa, P. van Mulbregt, SciPy 1.0 contributors, SciPy 1.0: fundamental al-

gorithms for scientific computing in Python, Nat. Methods 17 (2020) 261–272, 
https://doi .org /10 .1038 /s41592 -019 -0686 -2.

[42] P.T. Inc, Collaborative data science, https://plot .ly, 2015.

[43] T. Munzner, A nested model for visualization design and validation, IEEE Trans. 
Vis. Comput. Graph. 15 (6) (2009) 921–928, https://doi .org /10 .1109 /TVCG .2009 .
111.

[44] M. Burch, D. Weiskopf, On the benefits and drawbacks of radial diagrams, in: On 
the Benefits and Drawbacks of Radial Diagrams, Springer, New York, New York, 
NY, 2014, pp. 429–451.

[45] K.-P. Yee, D. Fisher, R. Dhamija, M. Hearst, Animated exploration of dynamic 
graphs with radial layout, in: IEEE Symposium on Information Visualization, 2001, 
INFOVIS 2001, 2001, pp. 43–50.

[46] L. Qiang, C. Bingjie, Storycake: a hierarchical plot visualization method for sto-

rytelling in polar coordinates, in: 2016 International Conference on Cyberworlds 
(CW), 2016, pp. 211–218.

[47] C. Vehlow, M. Burch, H. Schmauder, D. Weiskopf, Radial layered matrix visual-

ization of dynamic graphs, in: 2013 17th International Conference on Information 
Visualisation, 2013, pp. 51–58.

[48] L. Beard, N. Aghassibake, Tableau (version 2020.3), J. Med. Libr. Assoc. 109 (1) 
(Jan. 2021), https://doi .org /10 .5195 /jmla .2021 .1135.

[49] F.J. Anscombe, Graphs in statistical analysis, Am. Stat. 27 (1) (1973) 
17–21, https://doi .org /10 .1080 /00031305 .1973 .10478966, arXiv: https://

www .tandfonline .com /doi /pdf /10 .1080 /00031305 .1973 .10478966, https://
20

www .tandfonline .com /doi /abs /10 .1080 /00031305 .1973 .10478966.
Computer Methods and Programs in Biomedicine 242 (2023) 107843

[50] J. Matejka, G. Fitzmaurice, Same stats, different graphs: generating datasets with 
varied appearance and identical statistics through simulated annealing, in: Pro-

ceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 
2017, pp. 1290–1294.

[51] G.A. Meehl, C. Covey, T. Delworth, M. Latif, B. McAvaney, J.F.B. Mitchell, 
R.J. Stouffer, K.E. Taylor, The wcrp cmip3 multimodel dataset: a new 
era in climate change research, Bull. Am. Meteorol. Soc. 88 (9) (2007) 
1383–1394, https://doi .org /10 .1175 /BAMS -88 -9 -1383, https://journals .ametsoc .
org /view /journals /bams /88 /9 /bams -88 -9 -1383 .xml.

[52] R.A. Fisher, The use of multiple measurements in taxonomic problems, 
Ann. Eugen. 7 (2) (1936) 179–188, https://doi .org /10 .1111 /j .1469 -1809 .1936 .
tb02137 .x, arXiv: https://onlinelibrary .wiley .com /doi /pdf /10 .1111 /j .1469 -1809 .
1936 .tb02137 .x, https://onlinelibrary .wiley .com /doi /abs /10 .1111 /j .1469 -1809 .
1936 .tb02137 .x.

[53] W. Wolberg, O. Mangasarian, Multisurface method of pattern separation for med-

ical diagnosis applied to breast cytology, Proc. Natl. Acad. Sci. USA 87 (1991) 
9193–9196, https://doi .org /10 .1073 /pnas .87 .23 .9193.

[54] P. Horton, K. Nakai, A probabilistic classification system for predicting the cellular 
localization sites of proteins, in: Proceedings of the Fourth International Confer-

ence on Intelligent Systems for Molecular Biology, AAAI Press, 1996, pp. 109–115.

[55] D. Wagner, D. Heider, G. Hattab, Mushroom data creation, curation, and simu-

lation to support classification tasks, Sci. Rep. 11 (04 2021), https://doi .org /10 .
1038 /s41598 -021 -87602 -3.

[56] R. Kelley Pace, R. Barry, Sparse spatial autoregressions, Stat. Probab. 
Lett. 33 (3) (1997) 291–297, https://doi .org /10 .1016 /S0167 -7152(96 )00140 -X, 
https://www .sciencedirect .com /science /article /pii /S016771529600140X.

[57] D. Cock, Ames, Iowa: alternative to the Boston housing data as an end of semester 
regression project, J. Stat. Educ. 19 (11 2011), https://doi .org /10 .1080 /10691898 .
2011 .11889627.

[58] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans. Inf. Theory 
13 (1) (1967) 21–27, https://doi .org /10 .1109 /TIT .1967 .1053964.

[59] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, C.-J. Lin Liblinear, A library for 
large linear classification, J. Mach. Learn. Res. 9 (61) (2008) 1871–1874, http://

jmlr .org /papers /v9 /fan08a .html.

[60] C.-C. Chang, C.-J. Lin Libsvm, A library for support vector machines, ACM 
Trans. Intell. Syst. Technol. 2 (3) (May 2011), https://doi .org /10 .1145 /1961189 .
1961199.

[61] K. Crammer, Y. Singer, On the algorithmic implementation of multiclass kernel-

based vector machines, J. Mach. Learn. Res. 2 (2002) 265–292.

[62] A.D. Gordon, Classification and regression trees, Biometrics 40 (3) (1984) 874, 
http://www .jstor .org /stable /2530946.

[63] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32, https://doi .org /10 .
1023 /A :1010933404324.

[64] L. Breiman, Arcing classifiers, Ann. Stat. 26 (3) (1998) 801–824, http://www .jstor .
org /stable /120055.

[65] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Mach. Learn. 63 (1) 
(2006) 3–42, https://doi .org /10 .1007 /s10994 -006 -6226 -1.

[66] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level 
performance on ImageNet classification, in: 2015 IEEE International Conference on 
Computer Vision (ICCV), 2015.

[67] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward 
neural networks, in: Y.W. Teh, M. Titterington (Eds.), Proceedings of the Thirteenth 
International Conference on Artificial Intelligence and Statistics, in: Proceedings of 
Machine Learning Research, vol. 9, PMLR, Chia Laguna Resort, Sardinia, Italy, 
2010, pp. 249–256, https://proceedings .mlr .press /v9 /glorot10a .html.

[68] G.E. Hinton, Connectionist learning procedures, Artif. Intell. 40 (1) 
(1989) 185–234, https://doi .org /10 .1016 /0004 -3702(89 )90049 -0, https://

www .sciencedirect .com /science /article /pii /0004370289900490.

[69] Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learn-

ing and an application to boosting, J. Comput. Syst. Sci. 55 (1) (1997) 
119–139, https://doi .org /10 .1006 /jcss .1997 .1504, https://www .sciencedirect .
com /science /article /pii /S002200009791504X.

[70] J. Zhu, S. Rosset, H. Zou, T. Hastie, Multi-class adaboost, Stat. Interface 2 (02 
2006), https://doi .org /10 .4310 /SII .2009 .v2 .n3 .a8.

[71] T. Hastie, R. Tibshirani, J. Friedman, Ensemble learning, in: Ensemble Learning, 
Springer New York, New York, NY, 2009, pp. 605–624.

[72] J.H. Friedman, Greedy function approximation: a gradient boosting machine, Ann. 
Stat. 29 (5) (2001) 1189–1232, https://doi .org /10 .1214 /aos /1013203451.

[73] J.H. Friedman, Stochastic gradient boosting, Comput. Stat. Data Anal. 38 (4) 
(2002) 367–378, https://doi .org /10 .1016 /S0167 -9473(01 )00065 -2.

[74] L. Bottou, Large-scale machine learning with stochastic gradient descent, in: Y. 
Lechevallier, G. Saporta (Eds.), Proceedings of COMPSTAT’2010, Physica-Verlag 
HD, Heidelberg, 2010, pp. 177–186.

[75] S. Shalev-Shwartz, Y. Singer, N. Srebro, Pegasos: primal estimated sub-GrAdient 
SOlver for SVM, in: ICML ’07, Association for Computing Machinery, New York, 
NY, USA, 2007.

[76] Y. Tsuruoka, J. Tsujii, S. Ananiadou, Stochastic gradient descent training for L1-

regularized log-linear models with cumulative penalty, in: ACL ’09, Association for 
Computational Linguistics, USA, 2009.

[77] H. Zhang, The Optimality of Naive Bayes, American Association for Artificial Intel-
ligence, 2004.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/sta4.96
https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.96
https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.96
https://doi.org/10.1016/j.softx.2021.100686
https://doi.org/10.1016/j.softx.2021.100686
https://www.sciencedirect.com/science/article/pii/S2352711021000315
https://www.sciencedirect.com/science/article/pii/S2352711021000315
https://doi.org/10.1162/153244303321897735
https://doi.org/10.1162/153244303321897735
https://doi.org/10.1371/journal.pone.0087357
https://doi.org/10.1103/PhysRevE.69.066138
https://link.aps.org/doi/10.1103/PhysRevE.69.066138
https://link.aps.org/doi/10.1103/PhysRevE.69.066138
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib7B3EF2BE22E54F8C9A626D2F98D402C6s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib7B3EF2BE22E54F8C9A626D2F98D402C6s1
https://doi.org/10.1016/0167-7152(94)90046-9
https://doi.org/10.1111/j.2517-6161.1976.tb01566.x
https://doi.org/10.1111/j.2517-6161.1976.tb01566.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1976.tb01566.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1976.tb01566.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1976.tb01566.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1976.tb01566.x
https://doi.org/10.1080/03610929908832351
https://doi.org/10.1080/03610929908832351
https://doi.org/10.1007/s40745-015-0045-9
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib4A67A38BE6A0636C68122D7B233D042Bs1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib4A67A38BE6A0636C68122D7B233D042Bs1
https://doi.org/10.5281/zenodo.7344967
https://doi.org/10.5281/zenodo.7344967
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibE9DE32F30EC7F1CAB6A31BA75C3C37EBs1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibE9DE32F30EC7F1CAB6A31BA75C3C37EBs1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibE9DE32F30EC7F1CAB6A31BA75C3C37EBs1
https://doi.org/10.1038/s41586-020-2649-2
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib08F62AE376F619C4DC7A61B7A41FAF48s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib08F62AE376F619C4DC7A61B7A41FAF48s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib08F62AE376F619C4DC7A61B7A41FAF48s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib08F62AE376F619C4DC7A61B7A41FAF48s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib4393551ADEE176312A00EAD32B6195E0s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib4393551ADEE176312A00EAD32B6195E0s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib4393551ADEE176312A00EAD32B6195E0s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib4393551ADEE176312A00EAD32B6195E0s1
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1038/s41592-019-0686-2
https://plot.ly
https://doi.org/10.1109/TVCG.2009.111
https://doi.org/10.1109/TVCG.2009.111
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibC96724760572D471E8A3DC8CA6B469C2s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibC96724760572D471E8A3DC8CA6B469C2s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibC96724760572D471E8A3DC8CA6B469C2s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib002074D3E6AF49EEB620A4D5346F78A3s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib002074D3E6AF49EEB620A4D5346F78A3s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib002074D3E6AF49EEB620A4D5346F78A3s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibFD121F0DED4132F210467AA1DF371460s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibFD121F0DED4132F210467AA1DF371460s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibFD121F0DED4132F210467AA1DF371460s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib60630A6D4958EC69A897E74CF1E52272s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib60630A6D4958EC69A897E74CF1E52272s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib60630A6D4958EC69A897E74CF1E52272s1
https://doi.org/10.5195/jmla.2021.1135
https://doi.org/10.1080/00031305.1973.10478966
https://www.tandfonline.com/doi/pdf/10.1080/00031305.1973.10478966
https://www.tandfonline.com/doi/pdf/10.1080/00031305.1973.10478966
https://www.tandfonline.com/doi/abs/10.1080/00031305.1973.10478966
https://www.tandfonline.com/doi/abs/10.1080/00031305.1973.10478966
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib2AB94FB2CF53630191B727A869A73E17s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib2AB94FB2CF53630191B727A869A73E17s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib2AB94FB2CF53630191B727A869A73E17s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib2AB94FB2CF53630191B727A869A73E17s1
https://doi.org/10.1175/BAMS-88-9-1383
https://journals.ametsoc.org/view/journals/bams/88/9/bams-88-9-1383.xml
https://journals.ametsoc.org/view/journals/bams/88/9/bams-88-9-1383.xml
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1073/pnas.87.23.9193
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibE43084DC32A00E2F77B40DB30F6BA2EDs1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibE43084DC32A00E2F77B40DB30F6BA2EDs1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibE43084DC32A00E2F77B40DB30F6BA2EDs1
https://doi.org/10.1038/s41598-021-87602-3
https://doi.org/10.1038/s41598-021-87602-3
https://doi.org/10.1016/S0167-7152(96)00140-X
https://www.sciencedirect.com/science/article/pii/S016771529600140X
https://doi.org/10.1080/10691898.2011.11889627
https://doi.org/10.1080/10691898.2011.11889627
https://doi.org/10.1109/TIT.1967.1053964
http://jmlr.org/papers/v9/fan08a.html
http://jmlr.org/papers/v9/fan08a.html
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibE2430AECB148096B3E87C914A7E2538As1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibE2430AECB148096B3E87C914A7E2538As1
http://www.jstor.org/stable/2530946
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://www.jstor.org/stable/120055
http://www.jstor.org/stable/120055
https://doi.org/10.1007/s10994-006-6226-1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibEA61E38457F5BEE353EF377B8AF7276Fs1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibEA61E38457F5BEE353EF377B8AF7276Fs1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibEA61E38457F5BEE353EF377B8AF7276Fs1
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1016/0004-3702(89)90049-0
https://www.sciencedirect.com/science/article/pii/0004370289900490
https://www.sciencedirect.com/science/article/pii/0004370289900490
https://doi.org/10.1006/jcss.1997.1504
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://doi.org/10.4310/SII.2009.v2.n3.a8
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibE30E0039CC50945A41CE40F03FF1FE98s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibE30E0039CC50945A41CE40F03FF1FE98s1
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/S0167-9473(01)00065-2
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibE4B0E82441BB11B812A9AA9697F64991s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibE4B0E82441BB11B812A9AA9697F64991s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibE4B0E82441BB11B812A9AA9697F64991s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib65107B9CD9A5B5FB6FD37FE28432051As1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib65107B9CD9A5B5FB6FD37FE28432051As1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib65107B9CD9A5B5FB6FD37FE28432051As1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib38CFF357FBF96319C76F57A158BDF1B1s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib38CFF357FBF96319C76F57A158BDF1B1s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bib38CFF357FBF96319C76F57A158BDF1B1s1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibB5E069A3C5E51CF1DD273E943EA1C66Ds1
http://refhub.elsevier.com/S0169-2607(23)00509-6/bibB5E069A3C5E51CF1DD273E943EA1C66Ds1


Computer Methods and Programs in Biomedicine 242 (2023) 107843A. Anžel, D. Heider and G. Hattab

[78] T.F. Chan, G.H. Golub, R.J. LeVeque, Updating formulae and a pairwise algorithm 
for computing sample variances, Tech. Rep., Stanford University, Stanford, CA, 
USA, 1979.

[79] C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning, The 
MIT Press, 2005.

[80] D. Chicco, M.J. Warrens, G. Jurman, The coefficient of determination r-squared 
is more informative than smape, mae, mape, mse and rmse in regression analysis 
evaluation, PeerJ Comput. Sci. 7 (2021), https://doi .org /10 .7717 /peerj -cs .623.

[81] B. Matthews, Comparison of the predicted and observed secondary struc-

ture of t4 phage lysozyme, Biochim. Biophys. Acta, Protein Struct. 405 (2) 
(1975) 442–451, https://doi .org /10 .1016 /0005 -2795(75 )90109 -9, https://www .
sciencedirect .com /science /article /pii /0005279575901099.

[82] D. Chicco, G. Jurman, The advantages of the matthews correlation coefficient 
(mcc) over f1 score and accuracy in binary classification evaluation, BMC Ge-

nomics 21 (1) (2020) 6, https://doi .org /10 .1186 /s12864 -019 -6413 -7.

[83] J. Cohen, A coefficient of agreement for nominal scales, Educ. Psychol. Meas. 20 (1) 
(1960) 37–46, https://doi .org /10 .1177 /001316446002000104.

[84] E. Parimbelli, S. Marini, L. Sacchi, R. Bellazzi, Patient similarity for precision 
medicine: a systematic review, J. Biomed. Inform. 83 (2018) 87–96, https://doi .
org /10 .1016 /j .jbi .2018 .06 .001, https://www .sciencedirect .com /science /article /
pii /S1532046418301072.

[85] S. Pai, G.D. Bader, Patient similarity networks for precision medicine, in: The-

ory and Application of Network Biology Toward Precision Medicine, J. Mol. Biol. 
430 (18, Part A) (2018) 2924–2938, https://doi .org /10 .1016 /j .jmb .2018 .05 .037, 
https://www .sciencedirect .com /science /article /pii /S0022283618305321.

[86] L. Wei, Y. Liu, I. Dubchak, J. Shon, J. Park, Comparative genomics ap-

proaches to study organism similarities and differences, J. Biomed. Inform. 35 (2) 
(2002) 142–150, https://doi .org /10 .1016 /S1532 -0464(02 )00506 -3, https://www .
sciencedirect .com /science /article /pii /S1532046402005063.

[87] G. Kaya, C. Ezekannagha, D. Heider, G. Hattab, Context-aware phylogenetic trees 
for phylogeny-based taxonomy visualization, Front. Genet. 13 (2022), https://doi .
org /10 .3389 /fgene .2022 .891240, https://www .frontiersin .org /articles /10 .3389 /
fgene .2022 .891240.

[88] D. Arthur, S. Vassilvitskii, K-means++: the advantages of careful seeding, in: 
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-

rithms, SODA ’07, Society for Industrial and Applied Mathematics, USA, 2007, 
pp. 1027–1035.

[89] M. Ankerst, M.M. Breunig, H.-P. Kriegel, J. Sander, Optics: ordering points to 
identify the clustering structure, in: Proceedings of the 1999 ACM SIGMOD In-

ternational Conference on Management of Data, SIGMOD ’99, Association for 
Computing Machinery, New York, NY, USA, 1999, pp. 49–60.

[90] T. Zhang, R. Ramakrishnan, M. Livny Birch, An efficient data clustering method 
for very large databases, SIGMOD Rec. 25 (2) (1996) 103–114, https://doi .org /10 .
1145 /235968 .233324.

[91] M.E. Tipping, C.M. Bishop, Mixtures of probabilistic principal component an-

alyzers, Neural Comput. 11 (2) (1999) 443–482, https://doi .org /10 .1162 /
089976699300016728, arXiv: https://direct .mit .edu /neco /article -pdf /11 /2 /443 /
814064 /089976699300016728 .pdf.

[92] M.A.A. Cox, T.F. Cox, Multidimensional scaling, in: Multidimensional Scaling, 
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 315–347.

[93] L. van der Maaten, G. Hinton, Visualizing high-dimensional data using t-sne, J. 
Mach. Learn. Res. 9 (Nov 2008) 2579–2605, pagination: 27.
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