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Abstract

Summary: Sequence technology advancements have led to an exponential increase in bacterial genomes, necessitating robust taxonomic clas-
sification methods. The Percentage Of Conserved Proteins (POCP), proposed initially by Qin et al. (2014), is a valuable metric for assessing pro-
karyote genus boundaries. Here, | introduce a computational pipeline for automated POCP calculation, aiming to enhance reproducibility and

ease of use in taxonomic studies.

Availability and implementation: The POCP-nf pipeline uses DIAMOND for faster protein alignments, achieving similar sensitivity to BLASTP.
The pipeline is implemented in Nextflow with Conda and Docker support and is freely available on GitHub under https://github.com/hoelzer/
pocp. The open-source code can be easily adapted for various prokaryotic genome and protein datasets. Detailed documentation and usage

instructions are provided in the repository.

1 Introduction

Advances in sequencing technologies have driven the genomics
era and led to an unprecedented influx of bacterial genomes.
Taxonomic classification of these genomes is crucial for under-
standing microbial diversity and evolutionary relationships.
Various metrics are employed to delineate the taxonomy of bac-
teria, each providing unique insights into their genomic charac-
teristics and evolutionary history. Typical metrics include
Average Nucleotide Identity, digital DNA-DNA hybridization,
and 16S rRNA gene sequence similarity (Hayashi Sant’Anna
et al. 2019). These metrics offer valuable information but may
exhibit limitations, especially in prokaryotes with high genomic
plasticity. As such, researchers need to employ a combination of
metrics to comprehensively assess the evolutionary relationships
between bacterial taxa.

One such metric is the Percentage of Conserved Proteins
(POCP), a genome-based measure of taxonomic diversity origi-
nally proposed by Qin ez al. (2014). POCP quantifies the degree
of protein conservation between two genomes, providing a mea-
sure of genomic similarity. Unlike metrics based solely on nucle-
otide sequences, POCP focuses on functional elements, offering
a more biologically relevant perspective on genomic relatedness.
Thus, POCP is particularly well-suited for assessing genus
boundaries, a challenging task in prokaryotic taxonomy. By
considering the conservation of proteins, which are critical play-
ers in cellular function, POCP offers a nuanced understanding
of the genomic distinctions between bacterial genera. The metric
complements other methods and contributes to a more

comprehensive characterization of microbial taxonomy. In the
past, POCP calculations have been used in combination with
other metrics in various studies to assess the genus boundaries
of prokaryotes (Pannekoek et al. 2016, Harris et al. 2017,
Leclercq et al. 2019, Ormeno-Orrillo and Martinez-Romero
2019, Suresh et al. 2019, Esquivel-Elizondo et al. 2020, Lalucat
et al. 2020, Miyake et al. 2020, Xu et al. 2020, Joshi et al.
2021, Meng et al. 2021, Pan et al. 2021, Vorimore et al. 2021,
Azpiazu-Muniozguren et al. 2022), in metagenomic contexts
(Lagkouvardos et al. 2016, Zou et al. 2019, Wylensek et al.
2020, Amulyasai et al. 2022), and even fungi (Wibberg et al.
2021). In all of these studies, the POCP calculations were imple-
mented and carried out slightly differently, mainly using the cri-
teria defined in the original publication by Qin ez al. (2014).

To harmonize calculations for the assessment of genus
boundaries and to make the results more reproducible and com-
parable, I present a Nextflow pipeline for the automatic calcula-
tion of POCP values called POCP-nf. The pipeline’s modular
design allows seamless integration into larger analysis work-
flows, enabling researchers to leverage POCP alongside other
metrics for a holistic exploration of bacterial evolutionary rela-
tionships. Through this contribution, I aim to enhance the ac-
cessibility and utility of POCP as a straightforward yet powerful
metric in the rapidly evolving field of microbial genomics.

2 Pipeline description

The POCP-nf pipeline is developed in Nextflow (Di
Tommaso et al. 2017), a workflow management system that
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ensures portability and scalability across different computing
environments. The pipeline accepts bacterial genome or pro-
tein datasets in standard FASTA format as input, one per
bacterial species. Protein-coding genes are predicted by
Prokka (Seemann 2014). If protein sequences are provided,
the protein annotation step is skipped.

The pipeline identifies orthologous proteins between spe-
cies using the blastp subcommand and ‘ultra-sensitive’ mode
of DIAMOND (Buchfink et al. 2015). Per default, the pro-
teomes of two strains are compared by bidirectional all-vs-all
orthology searches. The user can define an optional target ge-
nome or protein FASTA to switch to one-vs-all comparisons
when needed and save runtime. Those proteins of the query
genome that have a hit with an e-value of <le-35, an identity
of >40%, and an alignable region of >50% are called con-
served based on the original POCP definition (Qin et al.
2014). Although the user can customize these parameters, I
recommend sticking to the original parameters as defined by
Qin et al. (2014) and otherwise clearly indicating any
changed parameter options along with the version of POCP-
nf used when sharing POCP results. The pipeline displays a
warning if nonstandard parameters are used.

Each POCP value corresponds to the sum of the conserved
proteins of two genomes divided by the sum of the total num-
ber of proteins of both genomes. A POCP of 50% was origi-
nally proposed as the genus limit, but it should be noted that
the difference in proteome size between two strains influences
the POCP value (Hayashi Sant’Anna et al. 2019).

The final output is a tab-separated table with all calculated
pairwise POCP values and summary statistics to assess the
results further. The modular design of the pipeline allows cus-
tomization for specific datasets and enables integration into
larger analysis workflows.

Calculating alignments, BLASTP versus DIAMOND:
Please note that in the original POCP publication Qin et al.
(2014) used BLASTP (Altschul et al. 1997) for calculating the
alignments. However, DIAMOND is not only faster, which is
an advantage when calculating POCP values for larger input
datasets, but also achieves the sensitivity of BLASTP
(Buchfink et al. 2021), especially when using the ‘ultra-sensi-
tive’ mode, which is activated by default in POCP-nf.
Another study comparing different alignment programs
found that DIAMOND offered the best compromise between
speed, sensitivity, and quality when a sensitivity option other
than the default setting was selected (Herndndez-Salmerén
and Moreno-Hagelsieb 2020). I compared BLASTP and
DIAMOND in ultra-sensitive mode within POCP-nf (v2.3.1)
on five bacterial datasets with 15 to 167 genomes. I found an
average difference in the percentage values of the calculated
POCP of ~0.16%. The runtime (protein input) for 44
Enterococcus genomes is halved from 10h 12m (POCP-nf
with BLASTP) to 5h 30 m (POCP-nf with DIAMOND) on a
laptop with eight cores. Further details can be found in the
GitHub manual. I have, therefore, decided to wuse
DIAMOND as a more modern solution for calculating the
alignments in POCP-nf.

3 Installation and usage

Only Nextflow and either Conda, Mamba, Docker, or
Singularity for dependency handling are needed to run the
POCP-nf pipeline. The pipeline can be installed and executed
with just two commands:

Holzer

# install pipeline
nextflow pull hoelzer/pocp

# run selected release on input genomes
nextflow run hoelzer/pocp -r 2.3.1\
--genomes '<path/to/genomes/*fasta>"’\
-profile local, docker

The repository’s  documentation  provides  detailed
instructions, more advanced commands, and dependencies.
Customization options and parameters are documented to ac-
commodate different input formats and analysis environments.

4 Example analysis

To showcase the pipeline performance and output, I re-
analyzed genomic data of 15 species from a study about the
genus delineation of Chlamydiales species, where the authors
used POCP values to justify the reunifying of the genera
Chlamydia and Chlamydophila into one single genus
Chlamydia (Pannekoek et al. 2016). I obtained the genome
FASTAs from NCBI based on Supplementary Table S1 from
the previously mentioned study. The pipeline in version 2.3.1
ran 26 min on a Linux laptop with eight cores, using <2 GB
RAM. Figure 1 shows the calculated POCP values from the
study in 2016 (upper triangle) compared to the re-calculated
POCP values using the Nextflow pipeline (bottom triangle).
The POCP values differ slightly, most likely due to
differences in the protein annotation used in 2016 and with
POCP-nf, and underlines the importance of a uniform
method for calculating comparable POCP values. Note that
the same results can only be achieved if the same protein
FASTAs are used as input for the same method (same tools,
tool versions, and parameters). However, the resulting
POCP values correspond to those calculated and published
in 2016.

5 Conclusion

POCP can serve as a robust genomic index for defining genus
boundaries for prokaryotic groups. However, it is also im-
portant to emphasize that POCP is only one genomic metric
among others. Researchers must interpret the results in the
context of additional analyses for a holistic understanding of
prokaryotic taxonomy. For example, POCP with a standard
cutoff of 50% was not suitable for delimiting taxa of the
family Bacillaceae at the genus level (Aliyu ef al. 2016) and
cannot yield a single criterion for dividing the genus Borrelia
into two genera (Gupta 2019).

In this context, I also want to mention Protologger (Hitch
et al. 2021), an all-in-one genome description tool designed
to simplify the data collection required to generate proto-
logues. The software, available for local installation and as a
Galaxy (Afgan et al. 2022) tool, can calculate various met-
rics, including POCP values. However, while Protologger is a
comprehensive software package for various computations
comprising taxonomic placement, functional annotations,
and ecological analyses, applying it only for POCP calcula-
tions on larger datasets, integrating it with other pipelines, or
running it on a high-performance cluster or in the cloud can
be challenging. In addition, Protologger is associated with a
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Figure 1. Pairwise POCP values from the original study of Pannekoek et al. (2016) (upper triangle) and recalculated with POCP-nf (lower triangle) of
Chlamydia strains and outgroups. The average difference of percentage is 1.72% between all POCP values. Chlamydia (C.) abortus (cab), C.avium (cav),
C.caviae (cca), C.felis (cfe), C.gallinacea (cga), C.ibidis (cib), C.muridarum (cmu), C.pecorum (cpe), C.pneumoniae (cpn), C.psittaci (cps), C.trachomatis
(ctr), Parachlamydia acanthamoebae (pac), Simkania negevensis (sne), Waddlia chondrophila (wch), Candidatus Rubidus massiliensis (cru)

high computing effort, a long installation routine, and high
memory requirements if the user is only interested in POCP
values. Another alternative for calculating POCP values is
provided in the web service EDGAR3.0 (Dieckmann et al.
2021), a comparative genomics and phylogenomics platform
hosted via Galaxy. EDGAR3.0 is also an easy-to-use web ser-
vice, especially for nonexperts, but it is subject to restrictions
like those mentioned above. For users unfamiliar with the
command line interface, I recommend using web services
such as Protologger and EDGAR3.0 for the POCP calcula-
tion. However, I would encourage them to use POCP-nf on
the command line as the necessary installations are already
reduced to a minimum by using Nextflow (see example above
and GitHub manual).

The POCP-nf pipeline fills a crucial gap by providing a
user-friendly, lightweight, locally installable, and automated
tool for calculating and harmonizing the percentages of con-
served proteins. By facilitating efficient taxonomic classifica-
tion, researchers can leverage the pipeline to gain insights
into genus boundaries based on genomic data.
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