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Abstract

Motivation: Nanopore sequencing represents a significant advancement in genomics, enabling direct long-read DNA sequencing at the single-
molecule level. Accurate simulation of nanopore sequencing signals from nucleotide sequences is crucial for method development and for
complementing experimental data. Most existing approaches rely on predefined statistical models, which may not adequately capture the properties
of experimental signal data. Furthermore, these simulators were developed for earlier versions of nanopore chemistry, which limits their applicability
and adaptability to the latest flow cell data.

23 Stephan Fuchs ©%,

Results: To enhance the quality of artificial signals, we introduce seg2squiggle, a novel transformer-based, non-autoregressive model designed
to generate nanopore sequencing signals from nucleotide sequences. Unlike existing simulators that rely on static k-mer models, our approach
learns sequential contextual information from segmented signal data. We benchmark segZsquiggle against state-of-the-art simulators on real
experimental R9.4.1 and R10.4.1 data, evaluating signal similarity, basecalling accuracy, and variant detection rates. Seq2squiggle consistently
outperforms existing tools across multiple datasets, demonstrating superior similarity to real data and offering a robust solution for simulating

nanopore sequencing signals with the latest flow cell generation.

Availability and implementation: seq2squiggle is freely available on GitHub at: github.com/ZKI-PH-ImageAnalysis/seq2squiggle.

1 Introduction

Long-read nanopore sequencing has emerged as a transforma-
tive technology in the field of genomics, offering rapid and cost-
effective DNA sequencing capabilities with applications ranging
from fundamental research to clinical diagnostics (Giesselmann
2021). The translocation of analyte molecules through a
nanometer-sized pore generates a distinct current signal that
represents the physical properties of the molecule inside the
pore. These signals are then translated into corresponding DNA
sequences (Delahaye and Nicolas 2021). Nanopore sequencing
has significantly advanced our ability to detect single nucleotide
variations (SNVs) and insertions/deletions (indels), which are
crucial for understanding genetic diversity and susceptibility to
diseases. SN'Vs, or single nucleotide polymorphisms, play a piv-
otal role in genomic diversity and disease susceptibility, while
indels involve mutations where nucleotides are either inserted or
deleted from the DNA sequence. Accurate detection of these
variations is particularly challenging with nanopore sequencing
due to potential errors introduced by homopolymer regions,
which can lead to false-positive calls (Delahaye and Nicolas
2021, Wang et al. 2021). The potential of long-read sequencing
has sparked the development of a large variety of methods for

basecalling, modification detection, error correction, genome as-
sembly, and detection of structural variations (Amarasinghe
et al. 2020).

Simulation of sequencing signals from nucleotide data is
crucial to complement experimental nanopore data and to
benchmark recently developed methods. It allows researchers
to refine experimental protocols, evaluate sequencing perfor-
mance, and deepen the understanding of the interactions be-
tween DNA molecules and nanopores (Li et al. 2018).
Sequencing simulators such as DeepSimulator (Li et al.
2018), NanosigSim (Chen et al. 2020), and squigulator
(Gamaarachchi et al. 2024) generate nanopore sequencing
signals using input nucleotide sequences and pre-existing k-
mer models. These simulators first calculate the event level of
each k-mer based on pore models provided by Oxford
Nanopore Technologies (ONT), then sample the duration of
each event from a random distribution (e.g. gamma distribu-
tion), and finally add Gaussian noise to the signal (Fig. 1A).
Although DeepSimulator and NanosigSim incorporate deep
learning techniques in their methods, these are limited to spe-
cific modules for improvements in pore model accuracy or
noise generation. Moreover, these simulators were developed
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A Workflow of traditional nanopore simulators
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Figure 1. Comparison of nanopore signal simulators with seq2squiggle. (A) Traditional nanopore simulators process either read-input (FASTQ/A) or
genome-input (FASTA). For genome-input, these simulators first use a sequence generator to produce reads. They then calculate event levels using pre-
defined pore models, sample event durations from random distributions, and add Gaussian noise with fixed parameters across all input sequences. While
some tools incorporate deep learning for specific sub-modules (e.g. pore models or low-pass filter), these methods are limited to enhancing certain
components. (B) In contrast, seq2squiggle uses an end-to-end deep learning approach to predict signals directly from nucleotide input, allowing the
model to learn signal levels, event durations, and noise distributions from the training data itself.

and optimized using the earlier R9.4.1 chemistry and have
not been evaluated with the most recent R10.4.1 chemistry,
which exhibits a distinct signal profile due to its modified
protein pore and two measurement points (Ahsan et al.
2024). Of the mentioned tools only squigulator is capable of
generating data for the latest pore chemistry.

The reliance on pre-defined pore models and constant
statistical assumptions across all sequences poses a risk of
inaccuracies in generating in-silico signal data. Teng et al.
highlighted that the segmentation of raw signals is a critical
source of errors in basecalling algorithms (Teng et al. 2018),
which has led to a paradigm shift in basecalling methodolo-
gies toward “end-to-end” deep learning architectures.
Applying a similar end-to-end approach to signal simulation
offers the potential to enhance the quality of simulated data.
These frameworks bypass the segmentation step and directly
infer nucleotide sequences from raw signals, improving accu-
racy, and robustness. However, simulating signals from DNA
sequences presents a one-to-many mapping challenge, where
each DNA sequence corresponds to a variety of possible tar-
get signals of alternative event lengths and noise levels. This
inherent complexity introduces unique hurdles in defining
appropriate loss functions, designing model architectures ca-
pable of capturing intricate relationships between sequences
and signals, and identifying suitable evaluation metrics.
Overcoming these challenges with deep learning frameworks

is crucial for improving the accuracy of artificial nanopore
signals and supporting the development and benchmarking
of new analytical methods.

In this study, we introduce seq2squiggle, an innovative
transformer-based simulator designed for nanopore sequencing
data. Similar to the trend in basecallers, our objective is to
predict raw signals from sequence data without directly relying
on pore models. By leveraging feed-forward transformer (FFT)
blocks, our model effectively captures broader sequential
contexts, enabling the generation of artificial signals that closely
resemble experimental observations. Furthermore, seq2squiggle
includes modules capable of learning event length and ampli-
tude noise distributions from training data (Fig. 1B). Evaluation
against multiple experimental R9.4.1. and R10.4.1 datasets
reveals that our proposed model outperforms existing tools in
generating high-quality simulated reads with higher match rates
and Q-scores, while its adjustable noise modules enable approx-
imation of real-world data variability.

2 Materials and methods

2.1 General workflow overview

In this section, we present a general overview of our proposed
simulator seq2squiggle, a novel tool designed for simulating
nanopore sequencing signals using FFT blocks. Similar to
previous simulators, the initial module of our tool is the
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sequence generator. Given a user-specified reference genome,
as well as the desired coverage or number of reads, this mod-
ule randomly selects starting positions on the genome or con-
tigs to generate sequences that meet the coverage
requirements and mimic the length distribution of experimen-
tal nanopore reads. Seq2squiggle can generate reads from a
genome to simulate signals or use experimental reads via
the—read-input command. The read length distribution can
be influenced by various factors, such as the sample species
and experimental setup (Baker er al. 2016, Li et al. 2018).
Given that realistic read-length simulation is complex and
not the primary focus of our research, we chose to adopt the
read-length distributions previously defined and used in
DeepSimulator (Li et al. 2018). These include an exponential
distribution, a beta distribution, and a mixed gamma distri-
bution, which provide a practical and established framework
for our simulator.

To enhance the quality of the simulated signals, seq2squig-
gle avoids the direct use of pore models and instead learns the
signal characteristics from segmented signal data. The details
of the signal generation using FFTs are described in the
next chapter.

The simulated reads are either exported to the community-
driven SLOWS format (Gamaarachchi et al. 2022) or the
new PODS format by ONT, enabling seamless integration
for basecalling and subsequent analysis. This ensures compat-
ibility with existing nanopore sequencing analysis pipelines
and supports comprehensive downstream evaluations.

2.2 Model architecture

Our proposed model seq2squiggle predicts nanopore
sequencing signals using a FFT (Fig. 2A), a deep learning ar-
chitecture developed and successfully applied for speech syn-
thesis (Ren et al. 2019, 2022). Similar to text-to-speech
approaches, we map the shorter source sequence (DNA) to
the larger target sequence (nanopore signal) for which we
used a feed-forward architecture instead of an autoregres-
sive network.

As input for training seq2squiggle, we use segmented DNA-
to-signal mapping obtained from the eventalign output of
uncalled4, a toolkit for nanopore signal alignment developed by
Kovaka et al. (2024). The eventalign table includes each
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mapped k-mer sequence, its aligned raw signal data, and its
deviation from the ideal pore model value. For each prediction,
seq2squiggle takes input chunks of 16 overlapping k-mer
sequences and maps them to a maximum of 250 signal points.
The reference signal is created by concatenating raw signal val-
ues from these overlapping k-mers, with shorter signals zero-
padded and chunks exceeding 250 signal points filtered out.
The model vocabulary includes five symbols: the four DNA
bases (“A,” “C,” “G,” “T”) and an empty symbol (“_").

To generate DNA embeddings, we one-hot encoded each
nucleotide within each 16-k-mer chunk, where each nucleo-
tide is represented by a unique binary vector. This one-hot
encoding is subsequently flattened and processed through a
dense layer that maps the one-hot encoded vector to a higher-
dimensional space using a Rectified Linear Unit (ReLU) acti-
vation function. Once embedded, the DNA sequences are
processed by a FFT encoder, which includes two FFT blocks
to capture positional and contextual information across the
sequence. Each FFT block consists of a standard multi-head
attention mechanism and feed-forward dense layers, allowing
the model to capture complex dependencies and relationships
within the input sequence (Fig. 2B).

To address the alignment issue between input and target
sequences, a length regulator is implemented. This compo-
nent upscales the hidden states of the DNA sequence accord-
ing to the event duration of the corresponding nanopore
signal (Fig. 2C). Following the length regulator, the upscaled
DNA hidden states are processed by an FFT decoder, which
consists of two FFT blocks to further align the context with
the target nanopore signal.

To infer the duration lengths of each signal, we use a dura-
tion sampler consisting of two dense layers with ReLU activa-
tion resulting in two scalars a and g (Fig. 2D). These two
scalars are used for parameterizing a gamma distribution
from which we sample the duration lengths. Our proposed
duration sampler takes the sequence embeddings as input for
generating event lengths based on a random distribution. The
event lengths from the duration sampler are only used in the
inference phase since we can use the reference event duration
during training.

In addition, we incorporate a noise module consisting of
two dense layers with ReLU activation, which predicts the
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Figure 2. The architecture of seq2squiggle. (A) The FFT is the core model architecture, using feed-forward networks to map DNA sequences to nanopore
signals. (B) The feed-foward block consists of multi-head attention and dense layers for cross-position information extraction. (C) The length regulator
adjusts the hidden states of the DNA sequences to match the predicted event duration of the nanopore signal. (D) The duration sampler uses a gamma
distribution to sample the event lengths based on the DNA embeddings. (E) The noise sampler predicts the standard deviation of gaussian noise based
on the DNA embeddings and adds it to the signal to create realistic noise patterns.
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standard deviation ¢ of the signal. Similar to the duration
sampler, the prediction is based on the embedded nucleotide
sequence, serving as input for the noise module. The pre-
dicted standard deviation is then used to sample Gaussian
noise distribution, which is subsequently added to the signal
after the FFT decoder, contributing to the generation of real-
istic noise patterns (Fig. 2E).

Hence, seq2squiggle incorporates three loss functions, in
which 7 denotes the number of samples in a batch and 7 in-
dexes the position within a sample in the eventalign table:

1) Signal loss, measured by the mean squared error (MSE),
compares the ground truth signal s,.¢ with the predicted
signal speq:

1w
MSEsignal = ;Zi:l (Sref,i - spred,i)2

2) Duration loss utilizes the negative log-likelihood (NLL)
to observe the reference event lengths ly,., given the pa-
rameterized gamma distribution with predicted shape a
and rate . The derived parameters a and f are predicted
from the DNA embeddings using a dense layer. To en-
sure that the scale of this loss is comparable to the other
loss functions, it is adjusted by the factor = = 0.0005.

1
NLLguration = 7 X ;Zi:l [710gp(ldata.,i | avﬁ)}

3) Noise loss, also measured by the MSE, compares the
standard deviation of the real data o, obtained from
the eventalign table, with the predicted standard devia-
tion opeq generated by the noise sampler, thereby cap-
turing the variability in the real data.

1
MSEnoise = ;Zi:l (O'ref,i - O-precl,i)2

To optimize the model, the three loss functions are com-
bined into a total loss via weighted summation. Summing
multiple loss functions, a common approach in multi-task
learning (Liang and Zhang 2021), ensures a balanced optimi-
zation process by integrating different aspects of model per-
formance, thereby allowing all objectives to be addressed
simultaneously during training:

Lossoal = MSEsignal (Sref7 Spred)
+ NLLduration (ldatm a, ﬂ) + MSEnoise (Urcfv Gpred)

2.3 Experimental setup
2.3.1 Datasets for training and evaluation

For our experiments, we used five publicly available DNA
datasets sequenced with different sequencing kits, flow cell
chemistries and sampling rates. These included the R10.4.1
Human HCT116 and Drosophila melanogaster datasets,
both sequenced with Kit14 chemistry at a 4kHz sampling
rate, an Escherichia coli dataset sequenced with R10.4.1
Kit14 chemistry at a 5SkHz sampling rate, and the R9.4.1
NA12878 Human and SARS-CoV-2 SP1 datasets, both se-
quenced with Kit10 chemistry at a 4kHz sampling rate
(Supplementary Table S1).

Beslic et al.

All datasets were converted to the PODS5 format when nec-
essary using blue-crab (Samarakoon et al. 2023) or the PODS
library. Basecalling was performed with dorado (v0.8.0) us-
ing the models specified in Supplementary Table S1, and the
reads were then aligned with minimap2 (v2.26) to reference
sequences indicated therein. To segment the reads and estab-
lish a mapping between the DNA sequence and the nanopore
signal, we used the eventalign option from uncalled4 (v4.1).

For training the R10.4.1 model of seq2squiggle, we used
198 893 973 chunks derived from 1 424 222 reads of chro-
mosome 2, 3, and 4 (chr2-4) of the Human HCT116 dataset.
For validation, we used 100 000 chunks from 56 reads of
chromosome 22 (chr22) from the same dataset. For evalua-
tion, we used 100 000 reads from chromosome 1 (chrl) of
the Human HCT116 dataset, 100 000 reads from the D.mel-
anogaster dataset, and 100 000 reads from the E.coli dataset.
Similarly, the R9.4.1 model of seq2squiggle was trained using
62 486 122 chunks from 108 649 reads of chromosomes 2,
3, and 4 (chr2-4) from the Human NA13878 dataset, vali-
dated on 100 000 chunks from chromosome 22 (chr22). For
evaluation, we used 50 000 reads from chromosome 1 (chr1)
of the Human NA12878 dataset, and 50 000 reads from the
SARS-CoV-2 SP1 dataset. This approach allowed us to com-
prehensively assess the performance of seq2squiggle across
different genomic contexts. Details on the parameters used
during training are described in Supplementary Data.

2.3.2 Evaluation methods

We evaluated the performance of seq2squiggle and squigula-
tor through two modes: Read-mode and Genome-mode.

Read-mode: Here, signals were simulated based on experi-
mentally basecalled reads (FASTQ/A data). This approach
enabled a direct comparison between simulators and the ex-
perimental data using the same set of reads, focusing on sig-
nal similarity and basecalling metrics. We used dynamic time
warping (DTW) to assess signal similarity because it effec-
tively handles variations in signal length and temporal align-
ment, which are common in nanopore sequencing data. We
used mrmsdtw (Pratzlich et al. 2016), a memory-efficient im-
plementation of DTW provided by the linmdtw package
(Tralie and Dempsey 2020). Mrmsdtw offers reduced mem-
ory usage compared to the traditional DTW implementation,
making it suitable for handling large-scale nanopore signal
comparisons. We normalized the mrmsdtw values to account
for read length differences and limited our analysis to 2000
reads to manage computational demands.

Genome-mode: In this mode, simulators generated reads
from the same input genome (FASTA data). Thereafter, sig-
nals are simulated based on these generated reads. This
allowed us to evaluate the simulators' ability to replicate the
quality of real nanopore sequencing reads. Key metrics in-
cluded successful alignment rate, alignment ratio, match rate,
mismatch rate, insertion rate, deletion rate, and the AUC of
the average match rate, as described previously (Pages-
Gallego and De Ridder 2023).

In addition, we examined the variant detection rate by inte-
grating high-confidence NA12878 variants from Genome in
a Bottle (v3.3.2) into chromosome 22 of the human reference
genome, similar to previous work by Gamaarachchi et al.
(Gamaarachchi et al. 2024). These modified sequences were
simulated using two tools, seq2squiggle and squigulator, on
R10.4.1 chemistry, generating 250 000 reads with each simu-
lator. In addition, we generated 50 000 reads on R9.4.1
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chemistry using seq2squiggle, squigulator, and two configu-
rations of DeepSimulator (context-dependent and context-
independent). All simulated reads were subsequently base-
called and aligned to the hg38 reference genome, following a
similar procedure performed by Gamaarachchi ez al. (2024).
Variant calling was performed using Clair3 (Zheng et al.
2022) and the results were evaluated using RTGtools (Cleary
et al. 2014) against the integrated high-confidence variants.
Detailed commands and additional information are provided
in the Supplementary Data.

3 Results
3.1 Signal similarity and basecalling accuracy

To evaluate the performance of seq2squiggle, we conducted a
series of experiments on both R9.4.1 and R10.4.1 datasets,
comparing our tool against other simulators and experimental
data. Squigulator was initially chosen as a baseline due to its su-
perior performance on R9.4.1 data over existing simulators,
such as DeepSimulator, as reported by Gamaarachchi et al.
(2024), and because it is currently the only simulator supporting
R10.4.1 chemistry. For our extended analysis on R9.4.1 chem-
istry, we also compared seq2squiggle with DeepSimulator in
both context-dependent and context-independent modes.

Initially, on R10.4.1 data, we compared seq2squiggle and
squigulator both simulators in Read-mode, where they simu-
lated the same set of experimental input reads. For this com-
parison, we evaluated both tools in their default mode, which
added noise to both the event-length and signal-amplitude
domains. In Read-mode, we compared the DTW distance of
each simulated read to the corresponding real experimental
read (Supplementary Fig. S1). The results indicated that reads
generated by squigulator exhibited a slightly larger DTW de-
viation (median 10.01) from the real experimental reads com-
pared to those generated by seq2squiggle (median 9.78). This
represents a small but notable increase in DTW deviation for
squigulator. However, while DTW distance provides an ini-
tial measure of signal similarity, it does not differentiate be-
tween DNA bases and thus does not fully capture the impact
on downstream analysis. DTW measures overall signal simi-
larity but cannot account for how deviations in the signal
might affect the accuracy of basecalling. For certain DNA
bases, these deviations might be tolerable and still result in
correct basecalls, whereas for others, they could significantly
alter the basecalling outcome. Such nuances are not reflected
by DTW alone and can only be understood through down-
stream analysis.

To evaluate the practical significance of these deviations on
R10.4.1 data, we extended our comparison to basecalling accu-
racy and alignment metrics in both Read-mode and Genome-
mode using three publicly available datasets. First, we compared
the rate of successfully aligned reads and the alignment ratio
(Fig. 3A and B). Here, seq2squiggle’s reads showed a higher
alignment ratio and successful alignments in both Read-mode
and Genome-mode. As expected, the alignment ratio in
Genome-mode was higher for both simulators since reads were
generated directly from the target genome. In Read-mode, how-
ever, the signals were generated from basecalled experimental
reads, which may contain basecalling errors that impact the
alignment accuracy. Our proposed model generated reads with
an overall higher median match rate of 91.91 (human Read-
mode) to 95.29 (E.coli Genome-mode) across all datasets
(Fig. 3C). In contrast, squigulator showed a lower match rate of

87.71-93.00. Further, seq2squiggle showed a lower mismatch
rate (Fig. 3D), a lower deletion rate, and a lower insertion rate
(Supplementary Fig. S2) compared to squigulator. Notably, the
differences in insertion rates were smaller compared to the dif-
ferences in mismatch and deletion rates. Reads generated by
seq2squiggle exhibited an overall higher median PHRED score
of 11.61-13.67 while squigulator generated reads with a me-
dian Q-score of 8.91-11.91 (Fig. 3E). Finally, we plotted the
AUC of the average match rate of the reads sorted by the aver-
age PHRED score (Supplementary Fig. S3). Again, seq2squiggle
showed higher AUC values across all datasets compared to squi-
gulator (Fig. 3F). We also compared the read length distribution
of both tools with the experimental data (Supplementary Fig.
S2D). Here, both simulators exhibited realistic read length dis-
tributions, although variations were observed due to factors
such as the species being sequenced, the type of sequencing de-
vice used, and other experimental parameters.

For the R9.4.1 data, we compared seq2squiggle, squigulator,
and DeepSimulator using the same basecalling performance
metrics on two publicly available datasets. Seq2squiggle consis-
tently demonstrated superior performance, achieving the highest
median match rate and the lowest mismatch and deletion rates
across all simulators, reflecting an overall higher simulated read
quality (Supplementary Fig. S10). Its reads also showed higher
median PHRED scores, indicating better overall read quality.
Notably, both seq2squiggle and squigulator, in their default
configurations, generated reads with slightly higher match rates
and quality scores than those observed in experimental data.
However, both tools offer adjustable noise parameters, enabling
users to fine-tune simulated reads to more closely reflect real-
world error profiles.

3.2 Detection of SNVs and indels

In this section, we present the results of our analysis of SNVs
and insertions/deletions (indels) using simulated data. We simu-
lated 250 000 reads from chromosome 22 of the human refer-
ence genome for R10.4.1 data, and 50 000 reads for R9.4.1
data, using seq2squiggle, squigulator, and DeepSimulator in
both context-dependent and context-independent modes. The
larger dataset for R10.4.1 was generated to account for its
lower average match rate of simulated reads compared to
R9.4.1, ensuring sufficient data for a comprehensive evaluation.

Reads generated with seq2squiggle showed a higher number
of true-positive SNVs, along with an overall higher recall and
precision compared to squigulator and DeepSimulator (Fig. 4).
However, upon examining the performance of Indel variants on
R10.4.1 data (Supplementary Figs S6 and S7), seq2squiggle and
squigulator both displayed relatively high false-positive rates.
The challenges in detecting small Indels with nanopore sequenc-
ing, attributed to homopolymer-induced errors, were further ex-
acerbated by the insertion and deletion rates observed in both
seq2squiggle and squigulator (Supplementary Fig. S2). Hence,
the average match rate in homopolymer regions for seq2squig-
gle and squigulator was generally lower compared to experi-
mental data (Supplementary Fig. S8).

Furthermore, we inspected the number of false-positive
SNV and Indel calls on R10.4.1 data across specific genomic
regions, specifically homopolymer regions (defined as sequen-
ces with at least five consecutive identical bases), tandem re-
peat regions [defined using Tandem Repeat Finder (Benson
1999)], and regions without homopolymers or tandem repeat
elements (Supplementary Fig. S9). Our analysis revealed that
homopolymer regions yielded a lower percentage of true
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Figure 3. Performance comparison of seq2squiggle, squigulator, and experimental data across multiple R.10.4.1 datasets and several performance
metrics. (A) Proportion of successfully aligned reads to the reference genome. (B) Distribution of aligned bases to the reference genome. (C) Distribution
of match rates. (D) Distribution of mismatch rates. (E) Distribution of PHRED quality scores (F) Area under the curve (AUC) values for match rates sorted

by average PHRED scores.

positives for squigulator and seq2squiggle. However, seq2s-
quiggle demonstrated a higher number of true-positive vari-
ant calls across all three regions.

3.3 Influence of noise on performance

We examined the impact of noise parameters and modules on
the basecalling performance, a topic previously noted by the
authors of squigulator who observed differing effects of noise
in the time and amplitude domains on basecalling perfor-
mance. It was found that higher noise levels in event lengths
reduced the accuracy of basecalling. However, intriguingly,
optimal basecalling performance was not achieved when no

additional amplitude noise was introduced. This observation
can be attributed to the basecaller's training on experimental
data, which inherently contains noise in the amplitude do-
main (Gamaarachchi et al. 2024).

Here, we conducted similar experiments, where we exe-
cuted seq2squiggle and squigulator across four noise modes
on R10.4.1 data: (i) no noise in the amplitude or event-length
domain, (ii) noise in the amplitude domain only, (iii) noise in
the event-length domain only, and (iv) noise in both the am-
plitude and event-length domains. These experiments were
performed using a subset of 50 000 reads from the D.mela-
nogaster dataset. Consistent with prior research, we observed
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Figure 4. Evaluation of SNP detection accuracy by Clair3 comparing seg2squiggle, squigulator, DeepSimulator in context-dependent mode and
DeepSimulator in context-independent mode. (A) ROC curve depicting the trade-off between false positives and true positives on R9.4.1 data. (B)
Precision-Recall curve showing precision and recall performance on R9.4.1 data. (C) ROC curve for SNP detection on R10.4.1 data. (D) Precision-Recall

curve for SNP detection on R10.4.1 data.

that the incorporation of noise in the amplitude domain en-
hanced the average match rate compared to noise-free signal
simulation in  both seq2squiggle and squigulator
(Supplementary Figs S4 and S5). For seq2squiggle, the AUC
value increased from 85.41 to 93.93, while for squigulator, it
increased from 76.26 to 90.70. Introducing additional noise
in the event-length domain resulted in a reduced average
match rate, indicating that varying event durations did not
significantly aid in distinguishing different DNA bases during
basecalling. Introducing duration-noise involved balancing
the generation of realistic signals with a slight compromise in
performance. Comparing the AUC value of seq2squiggle and
squigulator, we observed that seq2squiggle outperformed
squigulator across all four noise modes based on the AUC
value (Table 1).

Furthermore, we modified seq2squiggle by replacing both
the duration sampler and the noise sampler with static nor-
mal distributions (mean=9.0, SD=4.0 for length, and
mean = 0.0, SD=1.0 for noise), in accordance to the noise
sampling method used in squigulator. This adjustment

allowed us to compare the benefits of using duration and
noise modules that learned distributions based on DNA
sequences, rather than relying on predefined statistical mod-
els. Our findings indicated that the noise module in seq2s-
quiggle generated signals with a slightly higher match rate
(Supplementary Table S4), suggesting that our approach bet-
ter captured noise patterns that resembled real experimental
data. However, the learned duration module resulted in a
slightly lower match rate, highlighting that learned variations
in event lengths might not enhance performance as effectively
as amplitude noise.

In addition, we also compared the median match rate of
seq2squiggle and squigulator for varying noise degrees in the
amplitude domain and event-length domain (Supplementary
Figs S12 and S13). For a fair comparison, we again replaced
the duration sampler with static noise distributions. As antici-
pated, higher event-length noise slightly reduced performance
for both simulators. Interestingly, our results revealed that
for squigulator, the optimal amplitude standard deviation
was around 1.0, while for seq2squiggle, the optimal value
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Table 1. Benchmark Area under the curve (AUC) values of match rates sorted by PHRED scores for seq2squiggle and squigulator in four different noise
modes on R10.4.1 data: (1) no noise in amplitude or event-length domain, (2) noise in amplitude domain only, (3) noise in event-length domain only, and

(4) noise in both amplitude and event-length domains.

Noise in amplitude domain Noise in event-length domain

AUC values of seq2squiggle AUC values of squigulator

v

ANRN

v

85.41 76.26
93.93 90.70
83.71 73.15
93.24 88.14

was closer to 2.0. Furthermore, seq2squiggle consistently
demonstrated a higher median match rate under the same
noise conditions, highlighting the advantages of its FFT-
based signal generation approach.

4 Discussion

In this study, we introduced seq2squiggle, an innovative sim-
ulator designed for nanopore sequencing data. Unlike exist-
ing simulators, our model leverages a FFT architecture to
learn the intricate relationship between the input DNA se-
quence and the corresponding nanopore signal sequence di-
rectly from the training data. This approach avoids the direct
need for pre-defined statistical models and pore models,
which are commonly used in other simulators. By avoiding
these models, seq2squiggle mitigates potential biases and in-
accuracies that can arise from relying on static statistical
assumptions.

Our experiments have demonstrated that seq2squiggle sur-
passed existing simulators in generating signals that closely
resemble real nanopore sequencing data, achieving higher
match rates, PHRED scores, SNP detection rates, and other
critical performance metrics on R9.4.1 and R10.4.1 datasets
of various species. Despite these advancements, discrepancies
between simulated and experimental R10.4.1 data still per-
sist, possibly due to sub-optimal segmentation and the higher
complexity of R10.4.1 data compared to R9.4.1 data.

In future work, we aim to improve the architecture of seq2s-
quiggle to further increase the basecalling accuracy of simulated
reads, aiming for closer alignment with real-world data.
Although we currently use modules in the amplitude and
event-length domains to sample noise, we make certain assump-
tions about the noise distributions, such as normal and gamma
distributions. Recent innovations in speech synthesis (Huang
et al. 2022, Zhang et al. 2023), particularly the integration of
diffusion modules, show promise for advancing our model. By
incorporating more sophisticated noise modeling techniques
and leveraging diffusion-based approaches, we anticipate
further improvements in the quality of our simulated nanopore
sequencing signals. In addition, we intend to explore the use of
seq2squiggle for detecting DNA methylations, expanding its
utility in epigenetic studies. Another promising avenue is simu-
lating ONT direct-RNA sequencing (DRS) data, which has
become increasingly important in recent years. Although
seq2squiggle is currently optimized for DNA sequencing, its ar-
chitecture can be adapted to generate realistic RNA signals by
retraining the model on DRS datasets. In future work, we aim
to focus on this aspect, allowing seq2squiggle to support RNA
sequencing applications, which would provide valuable bench-
marks and insights for DRS-based research.

It is important to note that seq2squiggle has higher runtime
and memory consumption compared to squigulator. This is due
to its deep learning-based approach, which, while resource-

intensive, results in significantly higher quality of the generated
signals. The trade-off between computational resources and ac-
curacy is a common challenge in deep learning applications, but
the improved performance of seq2squiggle justifies its use for
applications requiring realistic nanopore signals. Further, its
non-autoregressive architecture keeps the runtime in a manage-
able timeframe to conduct large-scale simulations. Moreover,
seq2squiggle supports retraining on new datasets or pore chem-
istries, providing researchers with the flexibility to adapt the
model to evolving sequencing platforms. While this capability
requires additional computational resources, as detailed in the
Supplementary Data, it ensures that seq2squiggle remains appli-
cable for future sequencing advancements.

In summary, seq2squiggle represents a significant advance-
ment in the simulation of nanopore sequencing data and pro-
vides a powerful tool for the nanopore community. Its ability
to generate realistic nanopore signals for the latest flow cell
generation has great potential for a variety of applications,
including method development, benchmarking, and compre-
hensive genomic analysis.

Supplementary data

Supplementary data are available at Bioinformatics online.
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