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Abstract
Motivation: Nanopore sequencing represents a significant advancement in genomics, enabling direct long-read DNA sequencing at the single- 
molecule level. Accurate simulation of nanopore sequencing signals from nucleotide sequences is crucial for method development and for 
complementing experimental data. Most existing approaches rely on predefined statistical models, which may not adequately capture the properties 
of experimental signal data. Furthermore, these simulators were developed for earlier versions of nanopore chemistry, which limits their applicability 
and adaptability to the latest flow cell data.
Results: To enhance the quality of artificial signals, we introduce seq2squiggle, a novel transformer-based, non-autoregressive model designed 
to generate nanopore sequencing signals from nucleotide sequences. Unlike existing simulators that rely on static k-mer models, our approach 
learns sequential contextual information from segmented signal data. We benchmark seq2squiggle against state-of-the-art simulators on real 
experimental R9.4.1 and R10.4.1 data, evaluating signal similarity, basecalling accuracy, and variant detection rates. Seq2squiggle consistently 
outperforms existing tools across multiple datasets, demonstrating superior similarity to real data and offering a robust solution for simulating 
nanopore sequencing signals with the latest flow cell generation.
Availability and implementation: seq2squiggle is freely available on GitHub at: github.com/ZKI-PH-ImageAnalysis/seq2squiggle.

1 Introduction
Long-read nanopore sequencing has emerged as a transforma
tive technology in the field of genomics, offering rapid and cost- 
effective DNA sequencing capabilities with applications ranging 
from fundamental research to clinical diagnostics (Giesselmann 
2021). The translocation of analyte molecules through a 
nanometer-sized pore generates a distinct current signal that 
represents the physical properties of the molecule inside the 
pore. These signals are then translated into corresponding DNA 
sequences (Delahaye and Nicolas 2021). Nanopore sequencing 
has significantly advanced our ability to detect single nucleotide 
variations (SNVs) and insertions/deletions (indels), which are 
crucial for understanding genetic diversity and susceptibility to 
diseases. SNVs, or single nucleotide polymorphisms, play a piv
otal role in genomic diversity and disease susceptibility, while 
indels involve mutations where nucleotides are either inserted or 
deleted from the DNA sequence. Accurate detection of these 
variations is particularly challenging with nanopore sequencing 
due to potential errors introduced by homopolymer regions, 
which can lead to false-positive calls (Delahaye and Nicolas 
2021, Wang et al. 2021). The potential of long-read sequencing 
has sparked the development of a large variety of methods for 

basecalling, modification detection, error correction, genome as
sembly, and detection of structural variations (Amarasinghe 
et al. 2020).

Simulation of sequencing signals from nucleotide data is 
crucial to complement experimental nanopore data and to 
benchmark recently developed methods. It allows researchers 
to refine experimental protocols, evaluate sequencing perfor
mance, and deepen the understanding of the interactions be
tween DNA molecules and nanopores (Li et al. 2018). 
Sequencing simulators such as DeepSimulator (Li et al. 
2018), NanosigSim (Chen et al. 2020), and squigulator 
(Gamaarachchi et al. 2024) generate nanopore sequencing 
signals using input nucleotide sequences and pre-existing k- 
mer models. These simulators first calculate the event level of 
each k-mer based on pore models provided by Oxford 
Nanopore Technologies (ONT), then sample the duration of 
each event from a random distribution (e.g. gamma distribu
tion), and finally add Gaussian noise to the signal (Fig. 1A). 
Although DeepSimulator and NanosigSim incorporate deep 
learning techniques in their methods, these are limited to spe
cific modules for improvements in pore model accuracy or 
noise generation. Moreover, these simulators were developed 
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and optimized using the earlier R9.4.1 chemistry and have 
not been evaluated with the most recent R10.4.1 chemistry, 
which exhibits a distinct signal profile due to its modified 
protein pore and two measurement points (Ahsan et al. 
2024). Of the mentioned tools only squigulator is capable of 
generating data for the latest pore chemistry.

The reliance on pre-defined pore models and constant 
statistical assumptions across all sequences poses a risk of 
inaccuracies in generating in-silico signal data. Teng et al. 
highlighted that the segmentation of raw signals is a critical 
source of errors in basecalling algorithms (Teng et al. 2018), 
which has led to a paradigm shift in basecalling methodolo
gies toward “end-to-end” deep learning architectures. 
Applying a similar end-to-end approach to signal simulation 
offers the potential to enhance the quality of simulated data. 
These frameworks bypass the segmentation step and directly 
infer nucleotide sequences from raw signals, improving accu
racy, and robustness. However, simulating signals from DNA 
sequences presents a one-to-many mapping challenge, where 
each DNA sequence corresponds to a variety of possible tar
get signals of alternative event lengths and noise levels. This 
inherent complexity introduces unique hurdles in defining 
appropriate loss functions, designing model architectures ca
pable of capturing intricate relationships between sequences 
and signals, and identifying suitable evaluation metrics. 
Overcoming these challenges with deep learning frameworks 

is crucial for improving the accuracy of artificial nanopore 
signals and supporting the development and benchmarking 
of new analytical methods.

In this study, we introduce seq2squiggle, an innovative 
transformer-based simulator designed for nanopore sequencing 
data. Similar to the trend in basecallers, our objective is to 
predict raw signals from sequence data without directly relying 
on pore models. By leveraging feed-forward transformer (FFT) 
blocks, our model effectively captures broader sequential 
contexts, enabling the generation of artificial signals that closely 
resemble experimental observations. Furthermore, seq2squiggle 
includes modules capable of learning event length and ampli
tude noise distributions from training data (Fig. 1B). Evaluation 
against multiple experimental R9.4.1. and R10.4.1 datasets 
reveals that our proposed model outperforms existing tools in 
generating high-quality simulated reads with higher match rates 
and Q-scores, while its adjustable noise modules enable approx
imation of real-world data variability.

2 Materials and methods
2.1 General workflow overview
In this section, we present a general overview of our proposed 
simulator seq2squiggle, a novel tool designed for simulating 
nanopore sequencing signals using FFT blocks. Similar to 
previous simulators, the initial module of our tool is the 

Figure 1. Comparison of nanopore signal simulators with seq2squiggle. (A) Traditional nanopore simulators process either read-input (FASTQ/A) or 
genome-input (FASTA). For genome-input, these simulators first use a sequence generator to produce reads. They then calculate event levels using pre- 
defined pore models, sample event durations from random distributions, and add Gaussian noise with fixed parameters across all input sequences. While 
some tools incorporate deep learning for specific sub-modules (e.g. pore models or low-pass filter), these methods are limited to enhancing certain 
components. (B) In contrast, seq2squiggle uses an end-to-end deep learning approach to predict signals directly from nucleotide input, allowing the 
model to learn signal levels, event durations, and noise distributions from the training data itself.
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sequence generator. Given a user-specified reference genome, 
as well as the desired coverage or number of reads, this mod
ule randomly selects starting positions on the genome or con
tigs to generate sequences that meet the coverage 
requirements and mimic the length distribution of experimen
tal nanopore reads. Seq2squiggle can generate reads from a 
genome to simulate signals or use experimental reads via 
the—read-input command. The read length distribution can 
be influenced by various factors, such as the sample species 
and experimental setup (Baker et al. 2016, Li et al. 2018). 
Given that realistic read-length simulation is complex and 
not the primary focus of our research, we chose to adopt the 
read-length distributions previously defined and used in 
DeepSimulator (Li et al. 2018). These include an exponential 
distribution, a beta distribution, and a mixed gamma distri
bution, which provide a practical and established framework 
for our simulator.

To enhance the quality of the simulated signals, seq2squig
gle avoids the direct use of pore models and instead learns the 
signal characteristics from segmented signal data. The details 
of the signal generation using FFTs are described in the 
next chapter.

The simulated reads are either exported to the community- 
driven SLOW5 format (Gamaarachchi et al. 2022) or the 
new POD5 format by ONT, enabling seamless integration 
for basecalling and subsequent analysis. This ensures compat
ibility with existing nanopore sequencing analysis pipelines 
and supports comprehensive downstream evaluations.

2.2 Model architecture
Our proposed model seq2squiggle predicts nanopore 
sequencing signals using a FFT (Fig. 2A), a deep learning ar
chitecture developed and successfully applied for speech syn
thesis (Ren et al. 2019, 2022). Similar to text-to-speech 
approaches, we map the shorter source sequence (DNA) to 
the larger target sequence (nanopore signal) for which we 
used a feed-forward architecture instead of an autoregres
sive network.

As input for training seq2squiggle, we use segmented DNA- 
to-signal mapping obtained from the eventalign output of 
uncalled4, a toolkit for nanopore signal alignment developed by 
Kovaka et al. (2024). The eventalign table includes each 

mapped k-mer sequence, its aligned raw signal data, and its 
deviation from the ideal pore model value. For each prediction, 
seq2squiggle takes input chunks of 16 overlapping k-mer 
sequences and maps them to a maximum of 250 signal points. 
The reference signal is created by concatenating raw signal val
ues from these overlapping k-mers, with shorter signals zero- 
padded and chunks exceeding 250 signal points filtered out. 
The model vocabulary includes five symbols: the four DNA 
bases (“A,” “C,” “G,” “T”) and an empty symbol (“_”).

To generate DNA embeddings, we one-hot encoded each 
nucleotide within each 16-k-mer chunk, where each nucleo
tide is represented by a unique binary vector. This one-hot 
encoding is subsequently flattened and processed through a 
dense layer that maps the one-hot encoded vector to a higher- 
dimensional space using a Rectified Linear Unit (ReLU) acti
vation function. Once embedded, the DNA sequences are 
processed by a FFT encoder, which includes two FFT blocks 
to capture positional and contextual information across the 
sequence. Each FFT block consists of a standard multi-head 
attention mechanism and feed-forward dense layers, allowing 
the model to capture complex dependencies and relationships 
within the input sequence (Fig. 2B).

To address the alignment issue between input and target 
sequences, a length regulator is implemented. This compo
nent upscales the hidden states of the DNA sequence accord
ing to the event duration of the corresponding nanopore 
signal (Fig. 2C). Following the length regulator, the upscaled 
DNA hidden states are processed by an FFT decoder, which 
consists of two FFT blocks to further align the context with 
the target nanopore signal.

To infer the duration lengths of each signal, we use a dura
tion sampler consisting of two dense layers with ReLU activa
tion resulting in two scalars α and β (Fig. 2D). These two 
scalars are used for parameterizing a gamma distribution 
from which we sample the duration lengths. Our proposed 
duration sampler takes the sequence embeddings as input for 
generating event lengths based on a random distribution. The 
event lengths from the duration sampler are only used in the 
inference phase since we can use the reference event duration 
during training.

In addition, we incorporate a noise module consisting of 
two dense layers with ReLU activation, which predicts the 

Figure 2. The architecture of seq2squiggle. (A) The FFT is the core model architecture, using feed-forward networks to map DNA sequences to nanopore 
signals. (B) The feed-foward block consists of multi-head attention and dense layers for cross-position information extraction. (C) The length regulator 
adjusts the hidden states of the DNA sequences to match the predicted event duration of the nanopore signal. (D) The duration sampler uses a gamma 
distribution to sample the event lengths based on the DNA embeddings. (E) The noise sampler predicts the standard deviation of gaussian noise based 
on the DNA embeddings and adds it to the signal to create realistic noise patterns.
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standard deviation σ of the signal. Similar to the duration 
sampler, the prediction is based on the embedded nucleotide 
sequence, serving as input for the noise module. The pre
dicted standard deviation is then used to sample Gaussian 
noise distribution, which is subsequently added to the signal 
after the FFT decoder, contributing to the generation of real
istic noise patterns (Fig. 2E).

Hence, seq2squiggle incorporates three loss functions, in 
which n denotes the number of samples in a batch and i in
dexes the position within a sample in the eventalign table:

1) Signal loss, measured by the mean squared error (MSE), 
compares the ground truth signal sref with the predicted 
signal spred: 

MSEsignal ¼
1
n

Xn

i¼1
sref;i � spred;ið Þ

2 

2) Duration loss utilizes the negative log-likelihood (NLL) 
to observe the reference event lengths ldata given the pa
rameterized gamma distribution with predicted shape α 
and rate β. The derived parameters α and β are predicted 
from the DNA embeddings using a dense layer. To en
sure that the scale of this loss is comparable to the other 
loss functions, it is adjusted by the factor τ ¼ 0.0005. 

NLLduration ¼ τ×
1
n

Xn

i¼1
� logP ldata;i j α; β

� �� �

3) Noise loss, also measured by the MSE, compares the 
standard deviation of the real data σref, obtained from 
the eventalign table, with the predicted standard devia
tion σpred generated by the noise sampler, thereby cap
turing the variability in the real data. 

MSEnoise ¼
1
n

Xn

i¼1
σref;i � σpred;ið Þ

2 

To optimize the model, the three loss functions are com
bined into a total loss via weighted summation. Summing 
multiple loss functions, a common approach in multi-task 
learning (Liang and Zhang 2021), ensures a balanced optimi
zation process by integrating different aspects of model per
formance, thereby allowing all objectives to be addressed 
simultaneously during training: 

Losstotal ¼MSEsignal sref; spredð Þ

þNLLduration ldata; α; βð ÞþMSEnoise σref; σpredð Þ

2.3 Experimental setup
2.3.1 Datasets for training and evaluation
For our experiments, we used five publicly available DNA 
datasets sequenced with different sequencing kits, flow cell 
chemistries and sampling rates. These included the R10.4.1 
Human HCT116 and Drosophila melanogaster datasets, 
both sequenced with Kit14 chemistry at a 4 kHz sampling 
rate, an Escherichia coli dataset sequenced with R10.4.1 
Kit14 chemistry at a 5 kHz sampling rate, and the R9.4.1 
NA12878 Human and SARS-CoV-2 SP1 datasets, both se
quenced with Kit10 chemistry at a 4 kHz sampling rate 
(Supplementary Table S1).

All datasets were converted to the POD5 format when nec
essary using blue-crab (Samarakoon et al. 2023) or the POD5 
library. Basecalling was performed with dorado (v0.8.0) us
ing the models specified in Supplementary Table S1, and the 
reads were then aligned with minimap2 (v2.26) to reference 
sequences indicated therein. To segment the reads and estab
lish a mapping between the DNA sequence and the nanopore 
signal, we used the eventalign option from uncalled4 (v4.1).

For training the R10.4.1 model of seq2squiggle, we used 
198 893 973 chunks derived from 1 424 222 reads of chro
mosome 2, 3, and 4 (chr2-4) of the Human HCT116 dataset. 
For validation, we used 100 000 chunks from 56 reads of 
chromosome 22 (chr22) from the same dataset. For evalua
tion, we used 100 000 reads from chromosome 1 (chr1) of 
the Human HCT116 dataset, 100 000 reads from the D.mel
anogaster dataset, and 100 000 reads from the E.coli dataset. 
Similarly, the R9.4.1 model of seq2squiggle was trained using 
62 486 122 chunks from 108 649 reads of chromosomes 2, 
3, and 4 (chr2-4) from the Human NA13878 dataset, vali
dated on 100 000 chunks from chromosome 22 (chr22). For 
evaluation, we used 50 000 reads from chromosome 1 (chr1) 
of the Human NA12878 dataset, and 50 000 reads from the 
SARS-CoV-2 SP1 dataset. This approach allowed us to com
prehensively assess the performance of seq2squiggle across 
different genomic contexts. Details on the parameters used 
during training are described in Supplementary Data.

2.3.2 Evaluation methods
We evaluated the performance of seq2squiggle and squigula
tor through two modes: Read-mode and Genome-mode.

Read-mode: Here, signals were simulated based on experi
mentally basecalled reads (FASTQ/A data). This approach 
enabled a direct comparison between simulators and the ex
perimental data using the same set of reads, focusing on sig
nal similarity and basecalling metrics. We used dynamic time 
warping (DTW) to assess signal similarity because it effec
tively handles variations in signal length and temporal align
ment, which are common in nanopore sequencing data. We 
used mrmsdtw (Pratzlich et al. 2016), a memory-efficient im
plementation of DTW provided by the linmdtw package 
(Tralie and Dempsey 2020). Mrmsdtw offers reduced mem
ory usage compared to the traditional DTW implementation, 
making it suitable for handling large-scale nanopore signal 
comparisons. We normalized the mrmsdtw values to account 
for read length differences and limited our analysis to 2000 
reads to manage computational demands.

Genome-mode: In this mode, simulators generated reads 
from the same input genome (FASTA data). Thereafter, sig
nals are simulated based on these generated reads. This 
allowed us to evaluate the simulators' ability to replicate the 
quality of real nanopore sequencing reads. Key metrics in
cluded successful alignment rate, alignment ratio, match rate, 
mismatch rate, insertion rate, deletion rate, and the AUC of 
the average match rate, as described previously (Pag�es- 
Gallego and De Ridder 2023).

In addition, we examined the variant detection rate by inte
grating high-confidence NA12878 variants from Genome in 
a Bottle (v3.3.2) into chromosome 22 of the human reference 
genome, similar to previous work by Gamaarachchi et al. 
(Gamaarachchi et al. 2024). These modified sequences were 
simulated using two tools, seq2squiggle and squigulator, on 
R10.4.1 chemistry, generating 250 000 reads with each simu
lator. In addition, we generated 50 000 reads on R9.4.1 
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chemistry using seq2squiggle, squigulator, and two configu
rations of DeepSimulator (context-dependent and context- 
independent). All simulated reads were subsequently base
called and aligned to the hg38 reference genome, following a 
similar procedure performed by Gamaarachchi et al. (2024). 
Variant calling was performed using Clair3 (Zheng et al. 
2022) and the results were evaluated using RTGtools (Cleary 
et al. 2014) against the integrated high-confidence variants. 
Detailed commands and additional information are provided 
in the Supplementary Data.

3 Results
3.1 Signal similarity and basecalling accuracy
To evaluate the performance of seq2squiggle, we conducted a 
series of experiments on both R9.4.1 and R10.4.1 datasets, 
comparing our tool against other simulators and experimental 
data. Squigulator was initially chosen as a baseline due to its su
perior performance on R9.4.1 data over existing simulators, 
such as DeepSimulator, as reported by Gamaarachchi et al. 
(2024), and because it is currently the only simulator supporting 
R10.4.1 chemistry. For our extended analysis on R9.4.1 chem
istry, we also compared seq2squiggle with DeepSimulator in 
both context-dependent and context-independent modes.

Initially, on R10.4.1 data, we compared seq2squiggle and 
squigulator both simulators in Read-mode, where they simu
lated the same set of experimental input reads. For this com
parison, we evaluated both tools in their default mode, which 
added noise to both the event-length and signal-amplitude 
domains. In Read-mode, we compared the DTW distance of 
each simulated read to the corresponding real experimental 
read (Supplementary Fig. S1). The results indicated that reads 
generated by squigulator exhibited a slightly larger DTW de
viation (median 10.01) from the real experimental reads com
pared to those generated by seq2squiggle (median 9.78). This 
represents a small but notable increase in DTW deviation for 
squigulator. However, while DTW distance provides an ini
tial measure of signal similarity, it does not differentiate be
tween DNA bases and thus does not fully capture the impact 
on downstream analysis. DTW measures overall signal simi
larity but cannot account for how deviations in the signal 
might affect the accuracy of basecalling. For certain DNA 
bases, these deviations might be tolerable and still result in 
correct basecalls, whereas for others, they could significantly 
alter the basecalling outcome. Such nuances are not reflected 
by DTW alone and can only be understood through down
stream analysis.

To evaluate the practical significance of these deviations on 
R10.4.1 data, we extended our comparison to basecalling accu
racy and alignment metrics in both Read-mode and Genome- 
mode using three publicly available datasets. First, we compared 
the rate of successfully aligned reads and the alignment ratio 
(Fig. 3A and B). Here, seq2squiggle’s reads showed a higher 
alignment ratio and successful alignments in both Read-mode 
and Genome-mode. As expected, the alignment ratio in 
Genome-mode was higher for both simulators since reads were 
generated directly from the target genome. In Read-mode, how
ever, the signals were generated from basecalled experimental 
reads, which may contain basecalling errors that impact the 
alignment accuracy. Our proposed model generated reads with 
an overall higher median match rate of 91.91 (human Read- 
mode) to 95.29 (E.coli Genome-mode) across all datasets 
(Fig. 3C). In contrast, squigulator showed a lower match rate of 

87.71–93.00. Further, seq2squiggle showed a lower mismatch 
rate (Fig. 3D), a lower deletion rate, and a lower insertion rate 
(Supplementary Fig. S2) compared to squigulator. Notably, the 
differences in insertion rates were smaller compared to the dif
ferences in mismatch and deletion rates. Reads generated by 
seq2squiggle exhibited an overall higher median PHRED score 
of 11.61–13.67 while squigulator generated reads with a me
dian Q-score of 8.91–11.91 (Fig. 3E). Finally, we plotted the 
AUC of the average match rate of the reads sorted by the aver
age PHRED score (Supplementary Fig. S3). Again, seq2squiggle 
showed higher AUC values across all datasets compared to squi
gulator (Fig. 3F). We also compared the read length distribution 
of both tools with the experimental data (Supplementary Fig. 
S2D). Here, both simulators exhibited realistic read length dis
tributions, although variations were observed due to factors 
such as the species being sequenced, the type of sequencing de
vice used, and other experimental parameters.

For the R9.4.1 data, we compared seq2squiggle, squigulator, 
and DeepSimulator using the same basecalling performance 
metrics on two publicly available datasets. Seq2squiggle consis
tently demonstrated superior performance, achieving the highest 
median match rate and the lowest mismatch and deletion rates 
across all simulators, reflecting an overall higher simulated read 
quality (Supplementary Fig. S10). Its reads also showed higher 
median PHRED scores, indicating better overall read quality. 
Notably, both seq2squiggle and squigulator, in their default 
configurations, generated reads with slightly higher match rates 
and quality scores than those observed in experimental data. 
However, both tools offer adjustable noise parameters, enabling 
users to fine-tune simulated reads to more closely reflect real- 
world error profiles.

3.2 Detection of SNVs and indels
In this section, we present the results of our analysis of SNVs 
and insertions/deletions (indels) using simulated data. We simu
lated 250 000 reads from chromosome 22 of the human refer
ence genome for R10.4.1 data, and 50 000 reads for R9.4.1 
data, using seq2squiggle, squigulator, and DeepSimulator in 
both context-dependent and context-independent modes. The 
larger dataset for R10.4.1 was generated to account for its 
lower average match rate of simulated reads compared to 
R9.4.1, ensuring sufficient data for a comprehensive evaluation.

Reads generated with seq2squiggle showed a higher number 
of true-positive SNVs, along with an overall higher recall and 
precision compared to squigulator and DeepSimulator (Fig. 4). 
However, upon examining the performance of Indel variants on 
R10.4.1 data (Supplementary Figs S6 and S7), seq2squiggle and 
squigulator both displayed relatively high false-positive rates. 
The challenges in detecting small Indels with nanopore sequenc
ing, attributed to homopolymer-induced errors, were further ex
acerbated by the insertion and deletion rates observed in both 
seq2squiggle and squigulator (Supplementary Fig. S2). Hence, 
the average match rate in homopolymer regions for seq2squig
gle and squigulator was generally lower compared to experi
mental data (Supplementary Fig. S8).

Furthermore, we inspected the number of false-positive 
SNV and Indel calls on R10.4.1 data across specific genomic 
regions, specifically homopolymer regions (defined as sequen
ces with at least five consecutive identical bases), tandem re
peat regions [defined using Tandem Repeat Finder (Benson 
1999)], and regions without homopolymers or tandem repeat 
elements (Supplementary Fig. S9). Our analysis revealed that 
homopolymer regions yielded a lower percentage of true 
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positives for squigulator and seq2squiggle. However, seq2s
quiggle demonstrated a higher number of true-positive vari
ant calls across all three regions.

3.3 Influence of noise on performance
We examined the impact of noise parameters and modules on 
the basecalling performance, a topic previously noted by the 
authors of squigulator who observed differing effects of noise 
in the time and amplitude domains on basecalling perfor
mance. It was found that higher noise levels in event lengths 
reduced the accuracy of basecalling. However, intriguingly, 
optimal basecalling performance was not achieved when no 

additional amplitude noise was introduced. This observation 
can be attributed to the basecaller's training on experimental 
data, which inherently contains noise in the amplitude do
main (Gamaarachchi et al. 2024).

Here, we conducted similar experiments, where we exe
cuted seq2squiggle and squigulator across four noise modes 
on R10.4.1 data: (i) no noise in the amplitude or event-length 
domain, (ii) noise in the amplitude domain only, (iii) noise in 
the event-length domain only, and (iv) noise in both the am
plitude and event-length domains. These experiments were 
performed using a subset of 50 000 reads from the D.mela
nogaster dataset. Consistent with prior research, we observed 

Figure 3. Performance comparison of seq2squiggle, squigulator, and experimental data across multiple R.10.4.1 datasets and several performance 
metrics. (A) Proportion of successfully aligned reads to the reference genome. (B) Distribution of aligned bases to the reference genome. (C) Distribution 
of match rates. (D) Distribution of mismatch rates. (E) Distribution of PHRED quality scores (F) Area under the curve (AUC) values for match rates sorted 
by average PHRED scores.
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that the incorporation of noise in the amplitude domain en
hanced the average match rate compared to noise-free signal 
simulation in both seq2squiggle and squigulator 
(Supplementary Figs S4 and S5). For seq2squiggle, the AUC 
value increased from 85.41 to 93.93, while for squigulator, it 
increased from 76.26 to 90.70. Introducing additional noise 
in the event-length domain resulted in a reduced average 
match rate, indicating that varying event durations did not 
significantly aid in distinguishing different DNA bases during 
basecalling. Introducing duration-noise involved balancing 
the generation of realistic signals with a slight compromise in 
performance. Comparing the AUC value of seq2squiggle and 
squigulator, we observed that seq2squiggle outperformed 
squigulator across all four noise modes based on the AUC 
value (Table 1).

Furthermore, we modified seq2squiggle by replacing both 
the duration sampler and the noise sampler with static nor
mal distributions (mean¼ 9.0, SD¼4.0 for length, and 
mean¼ 0.0, SD¼ 1.0 for noise), in accordance to the noise 
sampling method used in squigulator. This adjustment 

allowed us to compare the benefits of using duration and 
noise modules that learned distributions based on DNA 
sequences, rather than relying on predefined statistical mod
els. Our findings indicated that the noise module in seq2s
quiggle generated signals with a slightly higher match rate 
(Supplementary Table S4), suggesting that our approach bet
ter captured noise patterns that resembled real experimental 
data. However, the learned duration module resulted in a 
slightly lower match rate, highlighting that learned variations 
in event lengths might not enhance performance as effectively 
as amplitude noise.

In addition, we also compared the median match rate of 
seq2squiggle and squigulator for varying noise degrees in the 
amplitude domain and event-length domain (Supplementary 
Figs S12 and S13). For a fair comparison, we again replaced 
the duration sampler with static noise distributions. As antici
pated, higher event-length noise slightly reduced performance 
for both simulators. Interestingly, our results revealed that 
for squigulator, the optimal amplitude standard deviation 
was around 1.0, while for seq2squiggle, the optimal value 

Figure 4. Evaluation of SNP detection accuracy by Clair3 comparing seq2squiggle, squigulator, DeepSimulator in context-dependent mode and 
DeepSimulator in context-independent mode. (A) ROC curve depicting the trade-off between false positives and true positives on R9.4.1 data. (B) 
Precision-Recall curve showing precision and recall performance on R9.4.1 data. (C) ROC curve for SNP detection on R10.4.1 data. (D) Precision-Recall 
curve for SNP detection on R10.4.1 data.
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was closer to 2.0. Furthermore, seq2squiggle consistently 
demonstrated a higher median match rate under the same 
noise conditions, highlighting the advantages of its FFT- 
based signal generation approach.

4 Discussion
In this study, we introduced seq2squiggle, an innovative sim
ulator designed for nanopore sequencing data. Unlike exist
ing simulators, our model leverages a FFT architecture to 
learn the intricate relationship between the input DNA se
quence and the corresponding nanopore signal sequence di
rectly from the training data. This approach avoids the direct 
need for pre-defined statistical models and pore models, 
which are commonly used in other simulators. By avoiding 
these models, seq2squiggle mitigates potential biases and in
accuracies that can arise from relying on static statistical 
assumptions.

Our experiments have demonstrated that seq2squiggle sur
passed existing simulators in generating signals that closely 
resemble real nanopore sequencing data, achieving higher 
match rates, PHRED scores, SNP detection rates, and other 
critical performance metrics on R9.4.1 and R10.4.1 datasets 
of various species. Despite these advancements, discrepancies 
between simulated and experimental R10.4.1 data still per
sist, possibly due to sub-optimal segmentation and the higher 
complexity of R10.4.1 data compared to R9.4.1 data.

In future work, we aim to improve the architecture of seq2s
quiggle to further increase the basecalling accuracy of simulated 
reads, aiming for closer alignment with real-world data. 
Although we currently use modules in the amplitude and 
event-length domains to sample noise, we make certain assump
tions about the noise distributions, such as normal and gamma 
distributions. Recent innovations in speech synthesis (Huang 
et al. 2022, Zhang et al. 2023), particularly the integration of 
diffusion modules, show promise for advancing our model. By 
incorporating more sophisticated noise modeling techniques 
and leveraging diffusion-based approaches, we anticipate 
further improvements in the quality of our simulated nanopore 
sequencing signals. In addition, we intend to explore the use of 
seq2squiggle for detecting DNA methylations, expanding its 
utility in epigenetic studies. Another promising avenue is simu
lating ONT direct-RNA sequencing (DRS) data, which has 
become increasingly important in recent years. Although 
seq2squiggle is currently optimized for DNA sequencing, its ar
chitecture can be adapted to generate realistic RNA signals by 
retraining the model on DRS datasets. In future work, we aim 
to focus on this aspect, allowing seq2squiggle to support RNA 
sequencing applications, which would provide valuable bench
marks and insights for DRS-based research.

It is important to note that seq2squiggle has higher runtime 
and memory consumption compared to squigulator. This is due 
to its deep learning-based approach, which, while resource- 

intensive, results in significantly higher quality of the generated 
signals. The trade-off between computational resources and ac
curacy is a common challenge in deep learning applications, but 
the improved performance of seq2squiggle justifies its use for 
applications requiring realistic nanopore signals. Further, its 
non-autoregressive architecture keeps the runtime in a manage
able timeframe to conduct large-scale simulations. Moreover, 
seq2squiggle supports retraining on new datasets or pore chem
istries, providing researchers with the flexibility to adapt the 
model to evolving sequencing platforms. While this capability 
requires additional computational resources, as detailed in the 
Supplementary Data, it ensures that seq2squiggle remains appli
cable for future sequencing advancements.

In summary, seq2squiggle represents a significant advance
ment in the simulation of nanopore sequencing data and pro
vides a powerful tool for the nanopore community. Its ability 
to generate realistic nanopore signals for the latest flow cell 
generation has great potential for a variety of applications, 
including method development, benchmarking, and compre
hensive genomic analysis.

Supplementary data
Supplementary data are available at Bioinformatics online.
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