

gNOMO2: a comprehensive and modular pipeline for integrated multi-omics analyses of microbiomes

Muzaffer Arıkan ^{1,*} and Thilo Muth ^{2,*}

¹Biotechnology Division, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Türkiye

²Domain Data Competence Center (MF 2), Robert Koch Institute (RKI), 13353, Berlin, Germany

*Correspondence address. Muzaffer Arıkan, E-mail: muzafferarikan@gmail.com and Thilo Muth, E-mail: mutht@rki.de

Abstract

Background: In recent years, omics technologies have offered an exceptional chance to gain a deeper insight into the structural and functional characteristics of microbial communities. As a result, there is a growing demand for user-friendly, reproducible, and versatile bioinformatic tools that can effectively harness multi-omics data to provide a holistic understanding of microbiomes. Previously, we introduced gNOMO, a bioinformatic pipeline tailored to analyze microbiome multi-omics data in an integrative manner. In response to the evolving demands within the microbiome field and the growing necessity for integrated multi-omics data analysis, we have implemented substantial enhancements to the gNOMO pipeline.

Results: Here, we present gNOMO2, a comprehensive and modular pipeline that can seamlessly manage various omics combinations, ranging from 2 to 4 distinct omics data types, including 16S ribosomal RNA (rRNA) gene amplicon sequencing, metagenomics, metatranscriptomics, and metaproteomics. Furthermore, gNOMO2 features a specialized module for processing 16S rRNA gene amplicon sequencing data to create a protein database suitable for metaproteomics investigations. Moreover, it incorporates new differential abundance, integration, and visualization approaches, enhancing the toolkit for a more insightful analysis of microbiomes. The functionality of these new features is showcased through the use of 4 microbiome multi-omics datasets encompassing various ecosystems and omics combinations. gNOMO2 not only replicated most of the primary findings from these studies but also offered further valuable perspectives.

Conclusions: gNOMO2 enables the thorough integration of taxonomic and functional analyses in microbiome multi-omics data, offering novel insights in both host-associated and free-living microbiome research. gNOMO2 is available freely at <https://github.com/muzafferarikan/gNOMO2>.

Keywords: microbiome, multi-omics, data integration, amplicon sequencing, metagenomics, metatranscriptomics, metaproteomics

Background

Microbiomes play pivotal roles in shaping the environments they inhabit such as influencing host health and disease [1] and contributing to the overall diversity of life on Earth [2]. The comprehensive understanding of microbial communities and their impact on human health, ecosystems, and numerous other domains has become an increasingly prominent field of investigation [3].

Over the past decade, there has been a substantial increase in various omics data types generated from various microbiomes due to the development of novel techniques and reduced experimental costs [4, 5]. Hence, the multi-omics approach has emerged as a powerful strategy to elucidate the functional potential of microbiomes, going beyond taxonomic profiling to decipher the molecular mechanisms [6–8]. The metabolic pathways, ecological interactions, and adaptive responses of microbial communities can be uncovered by integrating multiple omics data [9]. Such a comprehensive perspective is invaluable for potential implications in diverse fields, such as human health, agriculture, and environmental conservation.

To unravel the complex web of interactions within microbiomes and extract meaningful insights from the vast amount of data generated by advanced omics technologies, the development of sophisticated analytical tools and data analysis pipelines is essential [10]. Consequently, many approaches and

tools have emerged to address these needs [11–15]. One such pipeline, gNOMO, facilitates the integrated multi-omics analysis encompassing metagenomics (MG), metatranscriptomics (MT), and metaproteomics (MP) through the efficient generation and use of a proteogenomic database, as well as differential abundance analysis-based integration at the pathway and taxa levels [16]. However, gNOMO (along with other existing multi-omics analysis tools in the microbiome field) currently lacks the capability of processing 16S ribosomal RNA (rRNA) gene amplicon sequencing (AS) data to create a proteogenomic database while it is well known that the protein sequence database directly impacts the outcome of any MP analysis [17].

For MP, it was shown that unnecessarily large databases can lead to the exclusion of valid peptide spectrum matches [18], demanding more time and memory resources. Conversely, smaller databases carry the risk of generating false-positive results that are irrelevant to the sample. In multi-omics-based microbiome studies that combine MP with MG or MT, protein databases are typically generated from MG and MT data. However, for studies that integrate MP with AS, there is currently no tool available to automatically create a protein database from AS data for MP analysis. Generating an AS-based protein database can also be valuable for studies that integrate MP, MG, and MT, as sequencing depth limitations may affect the detection of microbes and

Received: January 29, 2024. Revised: May 4, 2024. Accepted: June 16, 2024

© The Author(s) 2024. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

genes, thereby influencing MP analysis. Additionally, there is a lack of tools for conducting end-to-end integrated analysis of AS data in conjunction with MP results. Most existing multi-omics analysis tools are tailored to specific omics combinations and lack a modular architecture that can accommodate various omics combinations. Furthermore, there is a shortage of multi-omics analysis tools that incorporate multiple integration approaches and present results at different analysis stages, facilitating further investigations using other tools.

To address abovementioned needs of multi-omics data analyses in microbiome research, we have made significant improvements to the gNOMO pipeline. These enhancements encompass the following key modifications: (i) We have restructured the pipeline, introducing a flexible and modular architecture that empowers gNOMO2 to seamlessly process a wide array of multi-omics data derived from microbiomes. With 6 independent modules, gNOMO2 can effortlessly manage a vast spectrum of omics combinations, ranging from 2 to 4 distinct omics data types, which include AS, MG, MT, and MP. (ii) One of standout features of gNOMO2 is its ability to process AS data and generate a protein database suitable for MP studies. (iii) Additionally, gNOMO2 incorporates 3 distinct approaches for integrated multi-omics analysis: proteogenomic database-based integration, differential abundance-based integration (at taxa, functional category, and pathway levels), and joint visualization-based integration. These innovative approaches offer a comprehensive perspective on the microbiomes, enabling researchers to gain deeper insights into the structural and functional properties. gNOMO2 is an open-source tool and freely available at [19].

Methods

Overview of the gNOMO2 pipeline

The gNOMO2 (RRID:SCR_025293) pipeline is designed as a tool that relies on Snakemake (RRID:SCR_003475) [20], a well-established bioinformatic workflow management system. This framework guarantees scalable data analyses and the generation of consistent and reproducible output data. The pipeline incorporates a suite of software tools written in various programming languages, including R (RRID:SCR_001905), Python (RRID:SCR_008394), Shell, and Perl, enabling the seamless execution of multi-omics analysis steps for microbiome data. The input data and program parameters in Snakemake are easily defined through a straightforward configuration file. gNOMO2 streamlines this process by automatically generating the configuration file from the provided input data along with default parameters.

To enhance user experience, the pipeline relies on publicly accessible tools distributed as Conda environments, simplifying the installation process for individual software components for the end user. gNOMO2 ensures result consistency and makes it user-friendly for individuals with basic bioinformatics skills to analyze multi-omics data. The pipeline accepts raw sequencing files (in fastq.gz format) for AS, MG, and MT and tandem mass spectrometry (MS/MS) spectrum files (in mgf format) for MP data.

The original gNOMO accepts MG, MT, and MP data as input and generates results for differential abundance analysis in each omics layer. It also constructs a protein database using MG and MT data and performs both differential abundance and pathway-level integrated analyses (Fig. 1A). In contrast, the gNOMO2 pipeline comprises 6 modules that facilitate direct analysis of various omics combinations. Each module includes pre-processing, analysis of each omics dataset, data integration, and

visualization steps (Fig. 1B). We implemented changes to both the analysis workflow and pipeline structure. For workflow adjustments, we updated the quality control, merging, assembly, differential abundance, and visualization steps. In the quality control phase, we switched from using PrinSeq (RRID:SCR_005454) [21] to Trimmomatic (RRID:SCR_011848) [22] for cleaning and trimming reads. For read merging, we replaced fastq-join with FLASH2 (RRID:SCR_005531) [23] to merge paired-end reads. In the assembly step, we transitioned from Ray (RRID:SCR_001916) [24] to metaSPAdes (RRID:SCR_000131) [25] for de novo assembly of metagenomic sequences and from Ray to rnaSPAdes (RRID:SCR_016992) [26] for de novo assembly of metatranscriptomic sequences. In the differential abundance analysis step, we replaced LefSe (RRID:SCR_014609) [27] with MaAsLin2 (RRID:SCR_023241) [28]. For visualization, we replaced Krona (RRID:SCR_012785) [29] with ggplot2 (RRID:SCR_014601) [30] to analyze taxonomic composition, enabling combined visualization of samples. We also replaced LefSe with MaAsLin2 for visualizing the results of differential abundance analysis. For pathway-level analysis results, we kept Pathview (RRID:SCR_002732) [31] unchanged, but for joint visualization analysis, we used the combi (RRID:SCR_024986) [32] package to visualize outputs. These workflow changes and comparisons between gNOMO and gNOMO2 are depicted in *Supplementary Fig. S1*.

Additionally, we introduced changes to facilitate the incorporation of metadata tables into analyses and automated the creation of the configuration file. To enhance and update the structure of the original gNOMO, we implemented 6 modules in the new gNOMO2 pipeline, allowing for the processing of different omics combinations. The original gNOMO pipeline consisted of only 1 module (Module 5 in gNOMO2), while gNOMO2 introduced 5 more modules for specific combinations, along with the ability to accept AS data as input.

Module 1: Processing AS data and generating a protein database for MP analysis

Module 1 is designed to process raw AS data in both paired-end and single-end formats, providing a directly usable protein database for MP data analysis. The first step in this module involves using Trimmomatic to remove sequencing adapters, low-quality bases from raw reads, and reads that are too short (default minimum length >25 bp). The quality of both raw and trimmed reads is assessed using FastQC (RRID:SCR_014583) [33], and analysis results for all samples are summarized using MultiQC (RRID:SCR_014982) [34]. If the data are in paired-end format, the quality controlled reads are merged using FLASH2. Subsequently, DADA2 (RRID:SCR_023519) [35] is used in conjunction with the SILVA database (RRID:SCR_006423) [36] to obtain an amplicon sequence variant (ASV) abundance table and taxonomy assignments for each ASV. After determining the user-defined top “n” most abundant taxa at a user-defined taxonomic level, protein sequences of all complete genomes for these taxa are downloaded from the National Center for Biotechnology Information (NCBI) database using the ncbi-genome-download (RRID:SCR_024977) [37]. All downloaded sequences are merged and cleaned, and a single protein sequence is retained from identical protein sequences to effectively remove redundancy using SeqKit (RRID:SCR_018926) [38]. Importantly, for host-associated microbiome samples, the user can define host species name in a configuration file. Host protein sequences are then included in the final protein database together with microbial proteins. Module 1 allows researchers to construct a comprehensive pro-

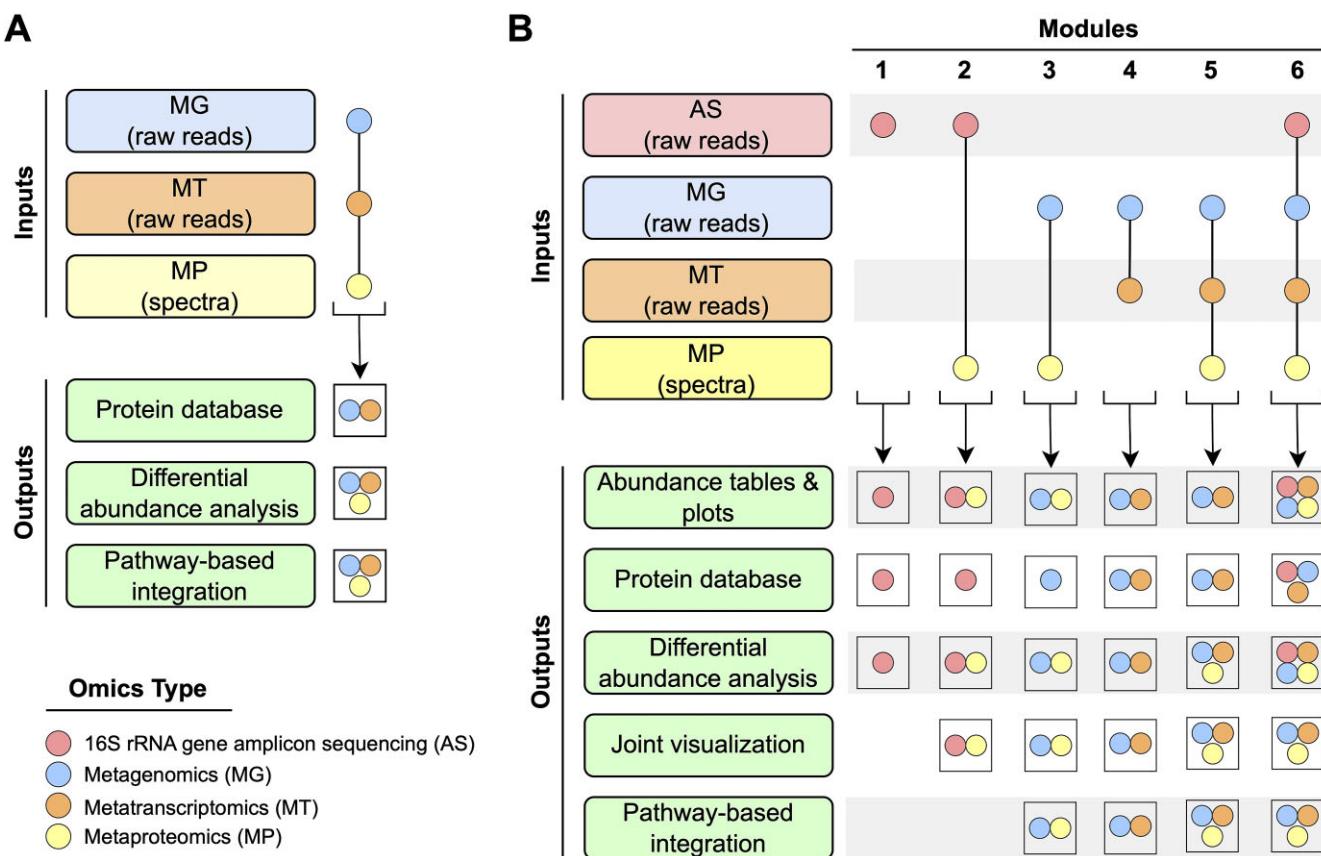


Figure 1: Overview of gNOMO and gNOMO2 pipelines. (A) gNOMO accepts MG, MT, and MP data as input, providing differential abundance analysis results for each omics layer. It also generates a protein database using MG and MT data and performs a pathway-level integrated analysis. (B) gNOMO2 comprises 6 modules, each tailored for specific omics data. Module 1 accepts 16S rRNA gene amplicon sequencing data (AS) as input and generates a protein database suitable for metaproteomics studies, a taxa abundance plot, and a phyloseq object that can be used for downstream analysis in other microbiome tools. Modules 2 to 6 handle different combinations of AS, MG, MT, and MP data, creating omics-specific protein databases, abundance tables, plots, differential abundance analysis results, and pathway-level integration analysis results.

tein database, either from their own AS datasets or publicly available ones. Furthermore, this module creates a phyloseq ([RRID:SCR_013080](#)) [39] object containing an abundance table, a taxonomy table, and additional metadata. This enables ongoing microbiome analysis using other analysis tools. In addition, an abundance plot is automatically generated to assess the abundance distribution of the top “n” taxa as defined by the user.

Module 2: Integrated multi-omics analysis of AS and MP data

Module 2 accepts raw paired-end and single-end AS and MP data as inputs. The AS data undergo the processing steps described in Module 1. The generated AS-based protein database is then used for the database search algorithm MS-GF+ ([RRID:SCR_015646](#)) [40] to identify peptides in the raw MP data. A peptide abundance table is subsequently created by aggregating results from individual samples. Taxonomy and enzyme commission (EC) assignments for the identified peptides are carried out using Pyteomics ([RRID:SCR_024988](#)) [41] and UniPept ([RRID:SCR_024987](#)) [42]. Then, MaAsLin2 is employed to determine differentially abundant taxa based on both AS and MP data. In this analysis, linear models are employed to identify taxa that exhibit significant differences in abundance between sample groups at AS and MP levels while accounting for confounding variables and other factors that might impact the abundance of microbial taxa. Users can define the phenotype of interest, covariates in the Snakemake

configuration file. Furthermore, users can specify the normalization or transformation to apply prior to conducting the differential abundance analysis. Furthermore, a joint visualization of MP and AS results is performed using the combi R package. This joint visualization allows to integrate and compare the results from both types of omics data (taxa for AS and peptides for MP), providing a comprehensive view on a single ordination plot and helping researchers to identify associations of features from different omics datasets and covariates in metadata table. The final outputs include abundance tables based on both AS and MP data, detailing the abundance of taxa and peptides in each sample, respectively. Module 1 also generates results from the differential abundance analysis, highlighting the taxa that were significantly different between sample groups based on their AS and MP profiles and the joint visualization analysis results providing a graphical representation of the combined AS and MP features, aiding in the interpretation of the integrated results.

Module 3: Integrated multi-omics analysis of MG and MP data

Module 3 is designed to handle raw paired-end MG and MP data. MP data are processed as outlined in Module 2. MG raw reads are quality checked and cleaned using Trimmomatic, followed by merging with FLASH2. The quality of both raw and trimmed reads is assessed using FastQC, and analysis results for all samples are summarized using MultiQC. Cleaned and merged reads

are then mapped to the NCBI nonredundant (nr) database using Kaiju ([RRID:SCR_022775](#)) [43], which generates taxonomic classification results. In parallel, clean reads are also used for assembly with metaSPAdes, and obtained contigs are classified as eukaryotic and prokaryotic using EukRep ([RRID:SCR_024985](#)) [44]. Proteins within the prokaryotic contigs are predicted using Prodigal ([RRID:SCR_011936](#)) [45] while Augustus ([RRID:SCR_008417](#)) [46] is used for proteins within eukaryotic contigs. Then, functional annotation of these predicted proteins is carried out using eggNOG ([RRID:SCR_002456](#)) [47] to obtain KEGG ([RRID:SCR_012773](#)) [48] Orthology (KO) identifiers, while InterProScan ([RRID:SCR_005829](#)) [49] is employed for TIGRFAMs ([RRID:SCR_005493](#)) [50] functional annotation.

Module 3 generates several final outputs for both MG and MP analyses. These include taxonomic abundance tables, taxonomic composition plots, and results from taxa and functional annotation (TIGRFAMs)-based differential abundance analyses. The module also provides integrated analysis outputs: (i) a joint visualization of omics layers as described in Module 2 and (ii) a pathway-level integrated analysis conducted using the Pathview package. The Pathview plots in this analysis illustrate the log₂ ratio of the mean abundance of individual omic features under different user-defined conditions across various omics levels, following a fold change normalization. These log₂ ratios are calculated and compared using shared enzyme and KEGG ids between different omics layers. Coverages for gene sequences of each predicted protein by MG are calculated using BBMap ([RRID:SCR_016965](#)) [51]. The calculated ratios are visualized on metabolic pathway nodes, which are split into omics types (for example, 2 splits for Module 3 for MG and MP data). The color of each split part shows the abundance change in the relevant features between sample groups for the specific omics level, allowing for the visual tracking of changes in different omics levels on the same node.

Module 4: Integrated multi-omics analysis of MG and MT data

Module 4 is designed to handle raw paired-end MG and both paired-end and single-end MT data. MG data follow the processing steps outlined in Module 3. For MT data, a similar workflow is employed, with the exception that a *de novo* assembly step is conducted using rnaSPAdes in place of metaSPAdes. The final outputs of Module 4 include an MG- and MT-based proteogenomic database, taxonomic and functional annotation-based differential abundance analysis results for both omics levels, taxonomic abundance tables and plots, joint visualization of omics layers as described in Module 2, and pathway-level integrated analysis results as outlined in Module 3.

Module 5: Integrated multi-omics analysis of MG, MT, and MP data

Module 5 accepts raw paired-end MG, as well as both paired-end and single-end MT and MP data. MG and MT data follow the processing steps outlined in Module 4 while MP data are processed as described in Module 2. The final outputs of Module 5 include a MG- and MT-based proteogenomic database, taxonomic and functional annotation-based differential abundance analysis results for 3 omics levels, taxonomic abundance tables and plots, peptide abundance table for MP, joint visualization of omics layers, and pathway-level integrated analysis results as outlined in Module 3.

Module 6: Integrated multi-omics analysis of AS, MG, MT, and MP data

Module 6 accepts both paired-end and single-end AS and MT data, paired-end MG, and MP data. MG, MT, and MP data follow the processing steps outlined in Module 5. However, the final outputs of Module 6 include a proteogenomic database, which is generated by combining AS-, MG-, and MT-based downloaded/predicted protein sequences, taxonomic and functional annotation-based differential abundance analysis results for 4 omics levels, taxonomic/peptide abundance tables and plots, joint visualization of omics layers, and pathway-level integrated analysis results as outlined in Module 3.

Analyses

To illustrate the utility of gNOMO2, we reanalyzed samples from 4 previously published microbiome studies involving various multi-omics combinations, using the respective publicly available datasets.

Analyzing the association of saliva content with oral cancer

Saliva is a complex biofluid that comprises various components, including DNA, RNA, proteins, metabolites, and microbiota. As a result, it is considered a promising source of relevant biomarkers for a variety of diseases [52]. Granato et al. [53] combined AS and MP analyses to investigate the association between saliva content and oral cancer. The study suggests that oral microbiota and their protein abundance have potential diagnosis and prognosis value for oral cancer patients. Here, we showcase how Modules 1 (AS) and 2 (AS and MP) of gNOMO2 can be used to efficiently reproduce the findings.

The AS data were obtained from NCBI SRA under BioProject identifier PRJNA700849 while MP data were retrieved from PRIDE ([RRID:SCR_003411](#)) [54] under accession number PXD022859. The dataset included saliva samples from 8 healthy controls and 15 oral cancer patients. To streamline downstream analyses, we merged triplicates of AS samples and used cell debris MP samples for all analyses. The taxonomic composition results based on AS data across samples, as generated by gNOMO2, were consistent with the reported results, demonstrating similar abundance distributions and the presence of the same most abundant genera (Fig. 2A). In their study, Granato et al. [53] constructed a protein database containing 1,160,275 protein sequences from the 12 most abundant bacterial genera and humans. We applied the same parameters in gNOMO2 to achieve comparable results, with setting such as `taxa_level`: Genus, `top_n`: 12 and `host`: *Homo sapiens*. gNOMO2 automatically generated a protein database from AS data by determining the 12 most abundant bacterial genera. It then retrieved all protein sequences from 1,992 genomes belonging these bacterial genera, along with human host proteins, resulting in a total of 1,240,988 protein sequences. The discrepancy in the number of protein sequences between the generated protein databases may be attributed to variations in analysis timing and database differences. Granato et al. [53] used the HOMD, a specific database used for oral microbiome studies while gNOMO2 uses the NCBI database, intended to target all microbiome study types.

Within gNOMO2, users can also perform differential abundance analysis at both omics levels, yielding statistical test results and plots for differential abundant taxa. For instance, we presented one of differential taxa from AS-based (Fig. 2B, upper) and

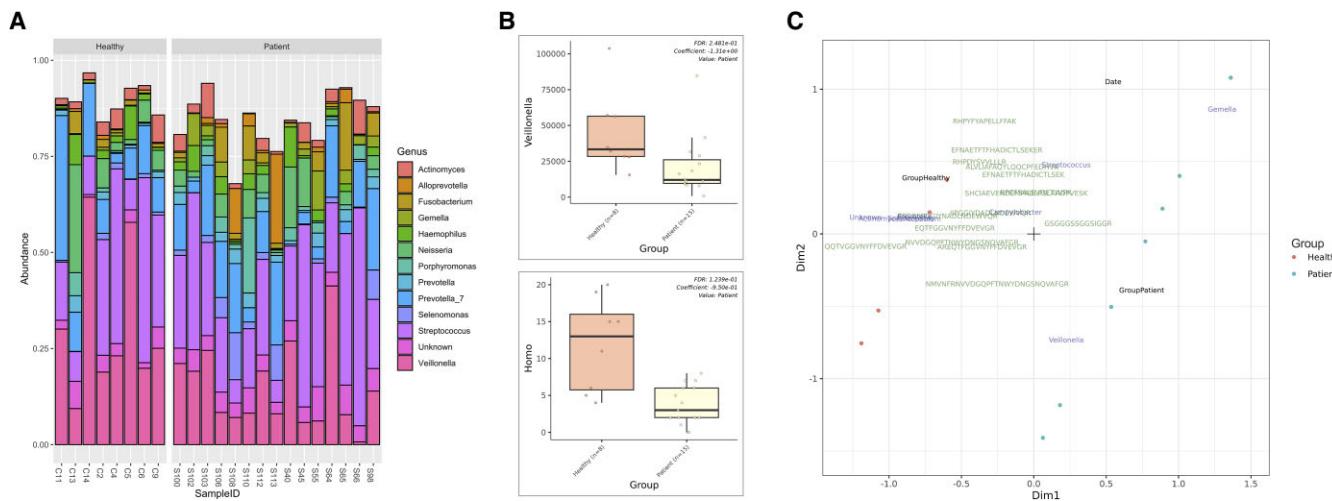


Figure 2: Overview of gNOMO2 results for the Granato et al. [53] study. (A) Representation of the 10 most prevalent genera in saliva microbiota samples. AS-based representations of salivary microbiota composition across samples, highlighting the 10 most common bacterial genera. Each bar indicates the relative abundance distribution for a sample. (B) Abundance distribution of differentially abundant taxa across study groups, presented separately for AS (upper) and MP (lower) data. (C) Joint visualization-based integration results for AS, MP, and metadata. Blue labels represent taxa, green labels represent peptides, and black labels represent metadata columns. Patient samples are marked with blue dots, while healthy samples are marked with red dots.

MP-based results (Fig. 2B, lower). AS-based differential abundance analysis showed a decrease in the abundance of *Veillonella* associated with oral cancer (Fig. 2B, upper), which corresponds to a key finding in the Granato et al. [53] study and previous studies [55]. Interestingly, gNOMO2 detected a reduction in the abundance of peptides classified as *Homo* in oral cancer patients (Fig. 2B, lower) while the original study did not report any statistically significant changes. This divergence may result from differences in analysis approaches, as gNOMO2 employs a peptide-based taxonomy by UniPept and MaAslin2 for differential abundance analysis instead of a protein-based approach. Furthermore, it is important to note that we did not account for other covariates that may affect the results.

Finally, gNOMO2 generates a joint visualization plot for AS, MP, and metadata (Fig. 2C). This plot confirms the association of *Veillonella* based on AS with oral health status based on AS data and additionally reveals associations between some detected peptides and the oral health status of the participants. Notably, InterPro entries assigned to these peptides included human albumin proteins, which were previously reported to be associated with oral cancer [56, 57].

Exploring potential and active functions within the human gut microbiota

The human gut microbiota is widely recognized for its important roles in both health and disease. A comprehensive understanding of both potential and active features can provide valuable insights into the mechanisms governing various physiological processes and pathologies, ultimately leading to more effective strategies for maintaining and improving human well-being.

Tanca et al. [58] employed MG and MP to explore the potential and active functions in the gut microbiota of a healthy human cohort. Here, we used Module 3 (MG and MP) of gNOMO2 to efficiently reanalyze the multi-omics data from their study. The MG data were obtained from the NCBI SRA under BioProject identifier PRJEB19090, while the MP data were retrieved from PRIDE under accession number PXD005780. The dataset included gut microbiota samples from 6 males and 8 females.

We employed gNOMO2 to investigate potential differences between male and female participants. Taxonomic composition results based on MG and MP data, as generated by gNOMO2, exhibited a significant overlap with the findings of Tanca et al. [58], particularly concerning the most abundant genera (Fig. 3A, upper). MG-based differential abundance analysis, using default parameters, indicated a notably higher abundance of *Legionella* in females. Nevertheless, it is important to approach this finding with caution, given that *Legionella* is a bacterial genus typically associated with water and soil environments, often considered a potential source of contamination in human microbiome studies [59].

Functional annotations derived from TIGRFAMs for the differential abundance analysis indicated a reduction in biotin synthesis (Fig. 3B, lower). The joint visualization plot depicted both MG and MP features along with covariates such as body mass index, age, and sex (Fig. 3C). In our pathway-level integration analysis, we illustrated the components of pyrimidine metabolism and how variations in their abundance can be observed among study groups across different omics levels (Fig. 3D). As a case in point, cytidine deaminase (EC 3.5.4.5) displayed a decreased abundance in females at the MG level (colored green, left), while its abundance increased at the MP level (colored red, right). This discrepancy suggests a decrease in the abundance of taxa carrying the corresponding gene but a higher expression of the protein. Again, this highlights the significance of adopting a multi-omics perspective when drawing conclusions in microbiome studies.

Investigating the role of microbiota of the Maasdam cheese during ripening

The microbiota present in cheese plays a crucial role in the maturation and development of its distinctive flavor, making it a pivotal aspect for the cheese industry. Duru et al. [60] combined MG and MT to track shifts in both taxonomic compositions and gene expressions of Swiss-type Maasdam cheese microbiota during the ripening process. Here, we used Module 4 (MG and MT) of gNOMO2 to efficiently reanalyze multi-omics data from their research.

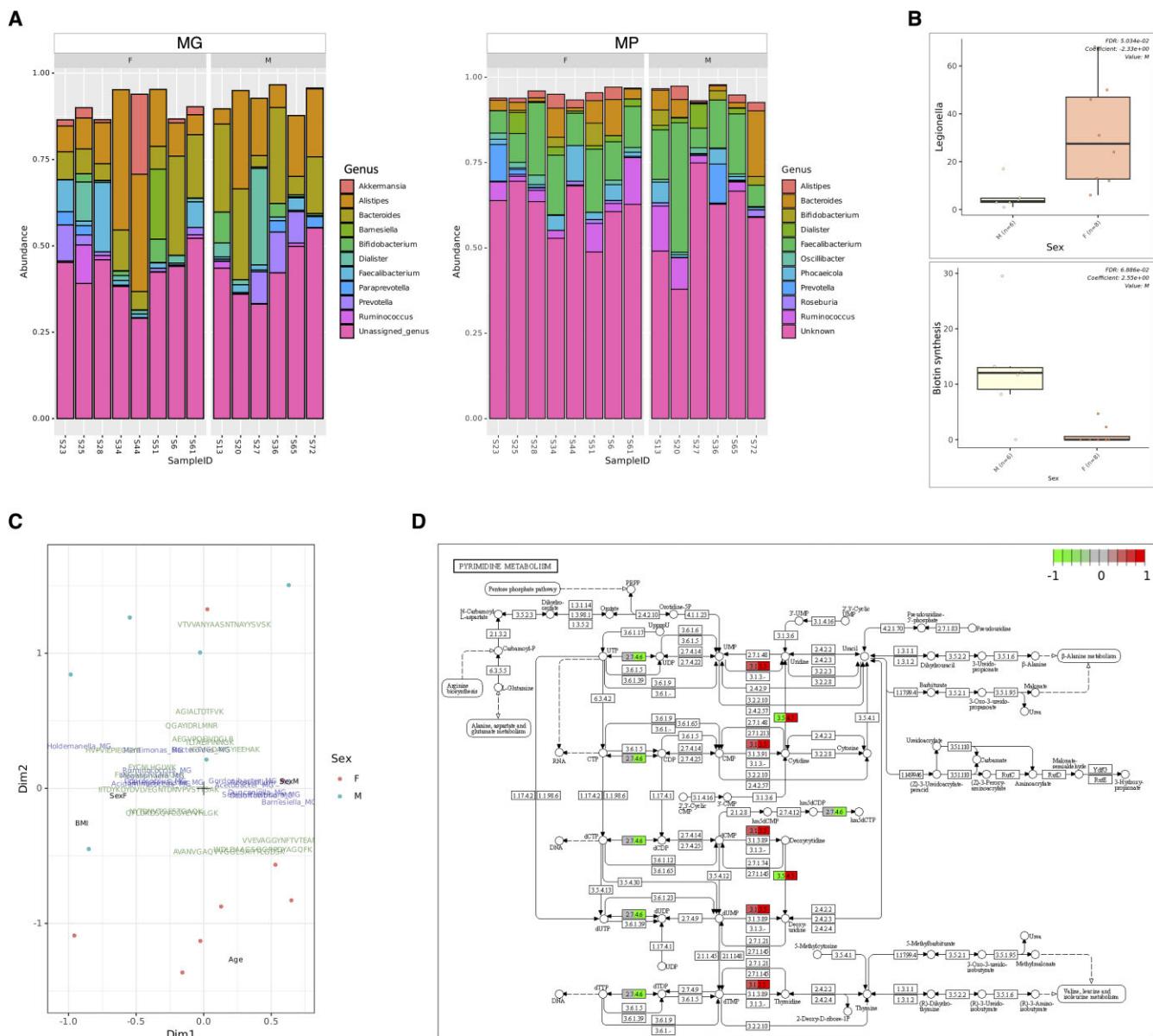


Figure 3: Overview of gnomo2 results for the Tanca et al. [58] study. (A) Representation of the 10 most prevalent genera in gut microbiota samples, as shown by MG and MP. The left side illustrates the 10 most common bacterial genera based on MG data, while the right side represents MP-based findings. Each bar represents relative abundance distribution for a sample. (B) Abundance distribution of differentially abundant taxa across study groups, separately for MG (upper) and MP (lower) data. (C) Joint visualization-based integration results for MG, MP, and metadata. Blue labels represent taxa, green labels show peptides, and black labels represent metadata columns. Male samples are marked with blue dots, while female samples are marked with red dots. (D) Pathway-level integration results, demonstrating the relationship across different omics levels. The findings from MG and MP are illustrated separately as split nodes on the left and right, respectively.

MG and MT data were retrieved from the EBI ENA under BioProject identifier PRJEB23938. The dataset comprised 3 samples from day 12 and 3 samples from day 37 of the ripening process.

We employed gNOMO2 to investigate potential differences between different stages of ripening process. Taxonomic composition results generated by gNOMO2 based on MG and MT data showed that *Lactococcus*, *Lactobacillus*, and *Propionibacterium* were 3 most abundant genera across samples (Fig. 4A), consistent with the findings of Duru et al. [60]. Differential abundance analyses revealed significantly higher relative abundance of *Propionibacterium*, the main bacterial genus responsible for propionate metabolism in the Maasdam cheese, in cold ripening samples in both MG and MT levels (Fig. 4B), which also well aligns with the results of the original study.

The joint visualization plot depicted both MG and MT features along with the ripening types (Fig. 4C). In our exploration of pathway-level integration, we depicted the elements of propionate metabolism and highlighted how fluctuations in their abundance varied across study groups at MG and MT levels (Fig. 4D). Notably, genes related to propionate production exhibited higher abundance in cold ripening samples (day 37) compared to warm ripening ones (day 12) at the MT level (colored red, right), while their levels were not significantly different at the MG level (colored gray, left). As a result, we did not observe a decrease in expression of genes responsible for propionate production, contrary to findings in the original study. This discrepancy may originate from methodological differences between the studies. The gNOMO2 pipeline compares the expression of propionate production genes

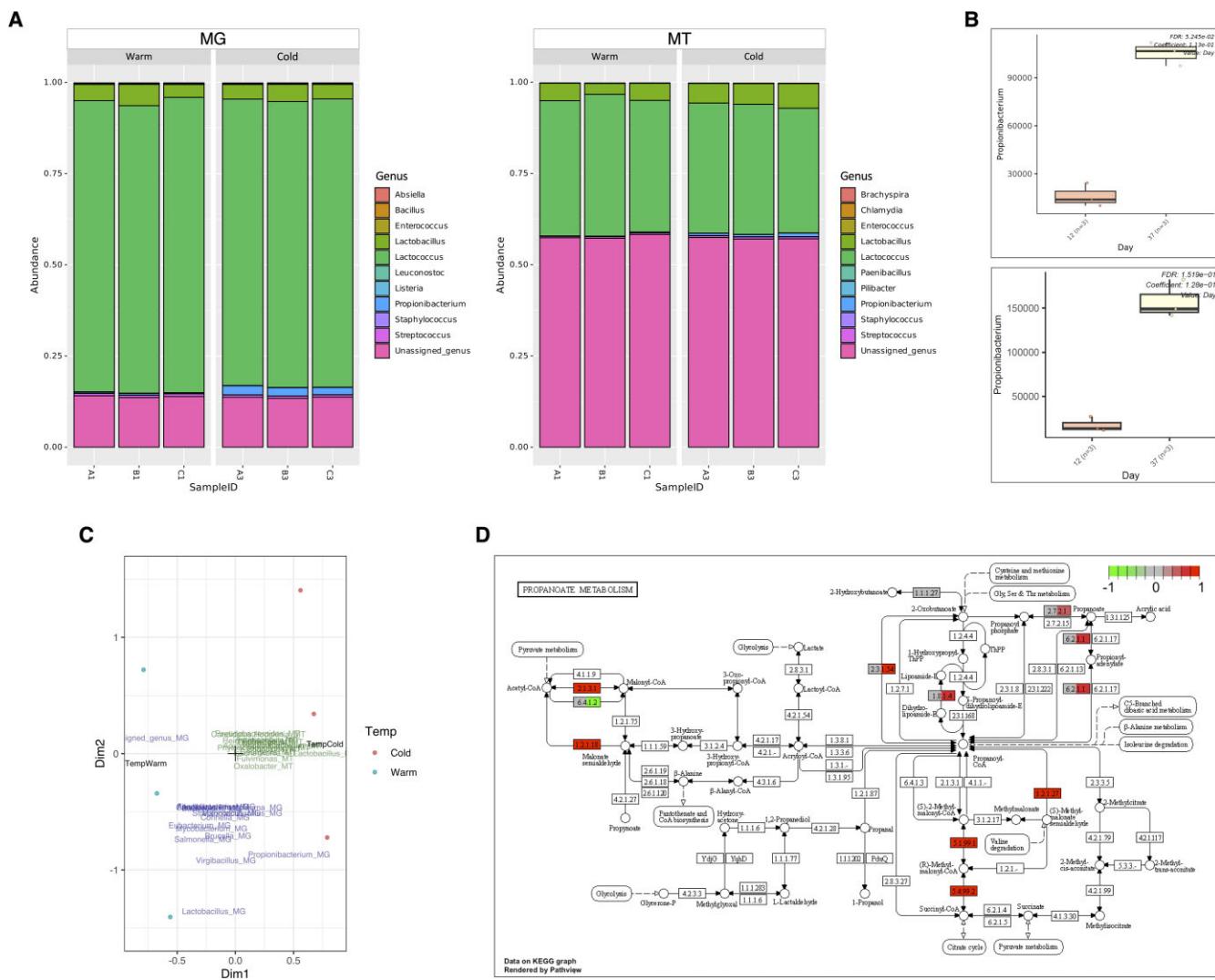


Figure 4: Overview of gNOMO2 results for the Duru et al. [60] study. (A) Representation of the 10 most common genera in cheese microbiota samples. MG- and MT-based overview of gut microbiota composition across samples. The 10 most common bacterial genera in cheese microbiota samples are shown for MG (left) and MT (right). Each bar represents relative abundance distribution for a sample. (B) Abundance distribution of differentially abundant taxa across study groups by MG (upper) and MT (lower). (C) Joint visualization-based integration results for MG, MT, and metadata. (D) Pathway-level integration results, demonstrating the relationship across different omics levels. The findings from MG and MT are illustrated separately as split nodes on the left and right, respectively.

against total gene expression, whereas the Duru et al. [60] study compared these genes against the overall expression of the *Propionibacterium* genome obtained in their research. Consequently, the relative expression of these genes might appear higher when assessed against all genes but lower when measured against only *Propionibacterium* genes. To validate this, we conducted comparisons using the *Propionibacterium* genome from the original study in the gNOMO2 pipeline for gene expression levels. Changing the denominator from all genes to *Propionibacterium* genes yielded results consistent with the original study.

Our findings emphasize the critical role of accurately interpreting analysis outcomes based on the structure of the analytical pipeline. Assuming a default approach, particularly during comparison steps, could lead to unsupported conclusions. In metagenomics studies, various approaches can be employed for data analysis. While none of these approaches are inherently wrong, they may not align with the goals set by the research group. When the pipeline's structure is well defined, no inconsistencies in biological conclusions would be expected. Additionally, we stress the impor-

tance of clear language in explaining results in research articles, as failure to do so may mislead readers. In this instance, the discrepancy was primarily due to differences between the approach depending on comparisons at the individual metagenome assembled genome (MAG) level and the gNOMO2 approach, which compares with the whole community.

Determining microbiome dynamics in a wastewater treatment plant

Characterization of microbial communities across various metagenomics layers offers important insights into their potential traits and functionalities. Herold et al. [61] utilized MG, MT, MP, and metabolomics to explore the responses of microbial populations in a biological wastewater treatment plant to disturbances. In our study, we demonstrate how Modules 5 (MG, MT, and MP) and 6 (AS, MG, MT, and MP) of gNOMO2 effectively replicate some of their findings using a subset of the samples.

We obtained AS, MG, and MT sequencing data from EBI ENA (BioProject identifier PRJNA230567) and MP data from PRIDE (ac-

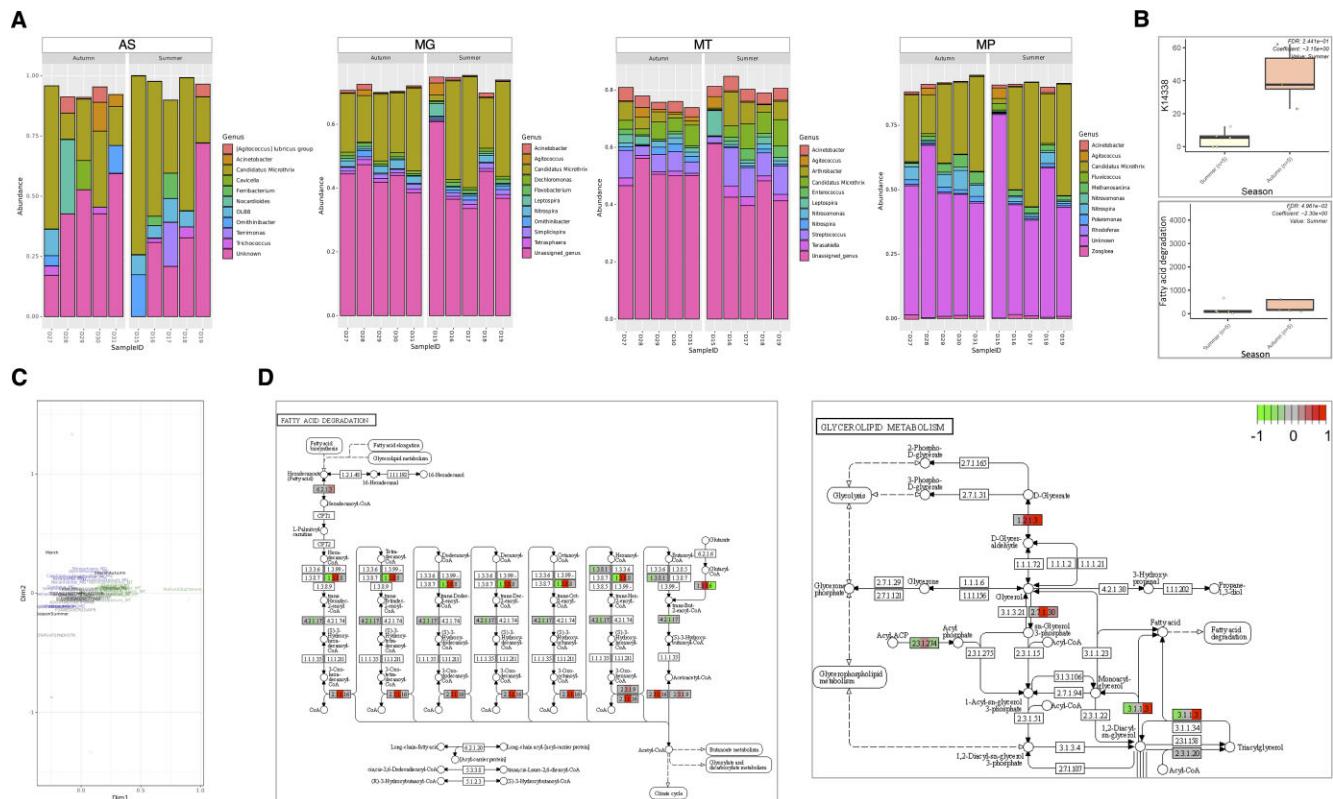


Figure 5: Overview of gNOMO2 results for the Herold et al. (2020) study. (A) Representation of the 10 most common genera in wastewater microbiota samples. MG-, MT-, and MP-based overview of gut microbiota composition across samples. The 10 most common bacterial genera in wastewater microbiota samples by MG (left), MT (middle), and MP (right). Each bar represents relative abundance distribution for a sample. (B) Abundance distribution of differentially abundant taxa across study groups by MG (upper), MT (middle), and MP (lower). (C) Joint visualization-based integration results for MG, MT, MP, and metadata. (D) Pathway-level integration results, demonstrating the relationship across different omics levels. The findings from MG, MT, and MP are illustrated separately as split nodes on the left, middle, and right, respectively.

cession number PXD013655). To investigate seasonal variations reported by Herold et al. [61], we selected samples showcasing the most distinct differences between summer and winter seasons, encompassing 5 samples from each. Additionally, we incorporated 10 AS samples previously collected from the same wastewater treatment plant by the same research group to assess Module 6.

Our analysis, performed using gNOMO2, revealed taxonomic composition results (AS, MG, MT, and MP data) that partially aligned with the findings by Herold et al. [61] (Fig. 5A). However, unlike the original study, we did not observe pronounced compositional changes in winter samples (Fig. 5A). This discrepancy may be attributed to differing approaches in taxonomic composition analysis as Herold et al. utilized taxonomic assignments of a subset of metagenome-assembled genomes, while gNOMO2 employs Kaiju for direct taxonomic classification of reads.

While gNOMO2 did not detect differentially abundant taxa between seasons across MG, MT, and MP layers, our TIGRFAMs and KEGG pathway-based analyses indicated an elevation in fatty acid degradation at the MT level (Fig. 5B), aligning with the original study. The joint visualization plot highlighted MG, MT, and MP features along with covariates (Fig. 5C). As a case point, the plot revealed the association of *Tetrasphaera* with autumn, which has been reported in previous studies to be associated with sludge bulking that frequently occurs in wastewater treatment plants [62, 63].

In our pathway-level integration analysis (Fig. 5D), we illustrated variations in the components of fatty acid degradation and glycerolipid metabolism among study groups across different

omics levels. Specifically, gNOMO2 showcased an increase in fatty acid degradation at the MT level while detecting an elevation in glycerolipid metabolism at both MT and MP levels, as indicated and discussed in detail in the original study.

When AS data were integrated using Module 6, gNOMO2 constructed a proteogenomic database comprising 4,959,677 proteins, incorporating 859,729 nonredundant proteins derived from the top 10 most abundant genera identified in the AS analysis, in addition to the 4,025,111 proteins obtained from MG and MT analyses. Interestingly, this integration resulted in a slight decrease in the number of detected unique peptides (~2%), indicating the importance of database size optimization in the multi-omics studies, including MP. The inclusion of AS data did not alter the other outcomes derived from the MP data analysis.

Our findings highlight that read-based and MAG-based taxonomic composition analysis approaches can lead to divergent results and interpretations. Since neither approach is inherently wrong, this disparity underscores the significance and advantage of thoroughly examining meta-omics datasets using various methodologies. Hence, we underscore that employing diverse approaches and perspectives in complex multi-omics datasets may reveal novel insights extending beyond the original hypothesis.

Discussion

gNOMO2 stands as a versatile and modular bioinformatic pipeline designed for integrated multi-omics analyses of AS, MG, MT, and

MP data in a reproducible fashion. Our open-source tool efficiently employs techniques that process raw data and generates summary tables and figures with just a single, straightforward command. gNOMO2 encompasses preprocessing, genome mapping, assembly, protein predictions, taxonomic and functional annotations, proteogenomic database generation, and differential abundance analysis steps for each omics layer. Furthermore, gNOMO2 offers a holistic perspective through integrated visualization of omics layers and facilitates pathway-level integrative analysis. In addition, it includes a dedicated module for AS data processing and the automatic protein database generation for MP studies. gNOMO2 generates results that can serve as inputs for subsequent microbiome analyses using various bioinformatics tools, enhancing user flexibility throughout the process. Demonstrated efficacy of gNOMO2 with real datasets underscores it as an invaluable tool across various multi-omics combinations in microbiome research. Finally, the emphasis on reproducibility is a cornerstone of gNOMO2, as it not only streamlines the analytical process but also ensures the reliability of results by providing users with fully documented and executable workflows, enhancing the transparency and replicability in omics-driven microbiome research.

Despite its usefulness and effectiveness in multi-omics based microbiome research, gNOMO2 still has certain limitations. First, its performance may be influenced by the quality and depth of input data, thereby necessitating potential parameter optimizations by the user. Second, gNOMO2 relies on existing databases for taxonomic and functional annotations, which may restrict the detection of features not cataloged within these databases. Moreover, gNOMO2's efficacy may also be influenced by the complexity of microbial communities, particularly in cases of high diversity or rare taxa, where accurate profiling may be challenging. Lastly, users should be aware that gNOMO2 assumes a certain level of computational proficiency, and while efforts have been made to enhance user-friendliness, beginners may still face a learning curve because there is no graphical user interface provided.

Future versions of gNOMO2 could address these limitations through continuous updates, improved algorithmic approaches, and increased flexibility in handling diverse omics types, datasets, and microbial community structures.

Availability of Source Code and Requirements

Project name: gNOMO2

Project homepage: <https://github.com/muzafferarikan/gNOMO2>

Operating system(s): GNU/Linux

Programming language: Python, R, Shell, and Perl

Other requirements: Conda and Snakemake are required for implementation. At least 1 TB hard drive space and 200 GB memory are recommended to run the pipeline, dependent on databases and input file sizes used.

License: MIT

Restrictions to use by nonacademics: No

RRID: SCR_025293

BioTools ID: gnomo2

Additional Files

Supplementary Fig S1. The workflow changes between gNOMO and gNOMO2 pipelines. The original gNOMO accepts MG, MT and

MP data as input and generates results for differential abundance analysis for each omics layer. gNOMO2 pipeline comprises six modules (shown enclosed in trapezoids or rectangles) that allow analysis of various omics combinations. A step-by-step comparison between Module 5 of gNOMO2 and the original gNOMO pipeline is also shown (gNOMO & 5)

Abbreviations

AS: amplicon sequencing; ASV: amplicon sequence variant; EC: enzyme commission; ENA: European Nucleotide Archive; KEGG: Kyoto Encyclopedia of Genes and Genomes; MG: metagenomics; MIT: Massachusetts Institute of Technology; MP: metaproteomics; MT: metatranscriptomics; NCBI: National Center for Biotechnology Information; rRNA: ribosomal RNA; SRA: Sequence Read Archive.

Author Contributions

M.A. and T.M. conceived the idea and designed the pipeline. M.A. implemented the pipeline, performed analyses, and wrote the manuscript. T.M. reviewed and edited the manuscript. Both authors approved the final version of the manuscript.

Funding

This work was supported through funding from the Scientific and Technological Research Council of Turkey (TUBITAK), BIDEB 2219-International Postdoctoral Research Fellowship granted to Muzaffer Arikán.

Data Availability

The datasets supporting the conclusions of this article are available in the NCBI SRA and PRIDE databases. Sequencing datasets can be searched under the following NCBI BioProject identifiers: PRJNA700849 [53], PRJEB19090 [58], PRJEB23938 [60], PRJNA230567 [61]. Metaproteomics datasets can be searched under the following PRIDE accession numbers: PXD022859 [53], and PXD013655 [61]. The gNOMO2 software is freely available under the MIT license and can be accessed through [19]. Snapshots of our code and other data further supporting this work are openly available in the GigaScience repository, GigaDB [64].

Competing Interests

The authors declare that they have no competing interests.

References

1. Ogunrinola GA, Oyewale JO, Oshamika OO, et al. The human microbiome and its impacts on health. *Int J Microbiol* 2020;2020:1-7. <https://doi.org/10.1155/2020/8045646>.
2. Blaser MJ, Cardon ZG, Cho MK, et al. Toward a predictive understanding of Earth's microbiomes to address 21st century challenges. *mBio* 2016;7: 10.1128/mBio.00714-16. <https://doi.org/10.1128/mBio.00714-16>.
3. Berg G, Rybakova D, Fischer D, et al. Microbiome definition revisited: old concepts and new challenges. *Microbiome* 2020;8:103. <https://doi.org/10.1186/s40168-020-00875-0>.
4. Zhang X, Li L, Butcher J, et al. Advancing functional and translational microbiome research using meta-omics approaches. *Microbiome* 2019;7:154. <https://doi.org/10.1186/s40168-019-0767-6>.

5. Ari Ş, Arikan M. Next-generation sequencing: advantages, disadvantages, and future. In: Hakeem KR, Tombuloglu H, Tombuloglu G, editors. *Plant Omics: Trends and Applications*. Cham: Springer International Publishing; 2016; p. 109–136.

6. Daliri EB-M, Ofosu FK, Chelliah R, et al. Challenges and perspective in integrated multi-omics in gut microbiota studies. *Biomolecules* 2021;11:300. <https://doi.org/10.3390/biom11020300>.

7. Ferrocino I, Rantsiou K, McClure R, et al. The need for an integrated multi-OMICs approach in microbiome science in the food system. *Comp Rev Food Sci Food Safe* 2023;22:1082–103. <https://doi.org/10.1111/1541-4337.13103>.

8. Zhang N, Kandalai S, Zhou X, et al. Applying multi-omics toward tumor microbiome research. *iMeta* 2023;2:e73. <https://doi.org/10.1002/imt2.73>.

9. Arikan M, Muth T. Integrated multi-omics analyses of microbial communities: a review of the current state and future directions. *Mol Omics* 2023;19:607–23. <https://doi.org/10.1039/D3MO00089C>.

10. Bharti R, Grimm DG. Current challenges and best-practice protocols for microbiome analysis. *Brief Bioinform* 2021;22:178–93. <https://doi.org/10.1093/bib/bbz155>.

11. Narayanasamy S, Jarosz Y, Muller EEL, et al. IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses. *Genome Biol* 2016;17:260. <https://doi.org/10.1186/s13059-016-1116-8>.

12. Singh A, Shannon CP, Gautier B, et al. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. *Bioinformatics* 2019;35:3055–62. <https://doi.org/10.1093/bioinformatics/bty1054>.

13. Argelaguet R, Velten B, Arnol D, et al. Multi-omics factor analysis—a framework for unsupervised integration of multi-omics data sets. *Mol Syst Biol* 2018;14:e8124. <https://doi.org/10.1525/msb.20178124>.

14. Eren AM, Esen OC, Quince C, et al. Anvi'o: an advanced analysis and visualization platform for 'omics data. *PeerJ* 2015;3:e1319. <https://doi.org/10.7717/peerj.1319>.

15. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. *Nat Biotechnol* 2019;37:852–57. <https://doi.org/10.1038/s41587-019-0209-9>.

16. Muñoz-Benavent M, Hartkopf F, Van Den Bossche T, et al. gNOMO: a multi-omics pipeline for integrated host and microbiome analysis of non-model organisms. *NAR Genomics Bioinformatics* 2020;2:lqaa058. <https://doi.org/10.1093/nargab/lqaa058>.

17. Blakeley-Ruiz JA, Kleiner M. Considerations for constructing a protein sequence database for metaproteomics. *Comput Struct Biotechnol J* 2022;20:937–52. <https://doi.org/10.1016/j.csbj.2022.01.018>.

18. Muth T, Kolmeder CA, Salojärvi J, et al. Navigating through metaproteomics data: a logbook of database searching. *Proteomics* 2015;15:3439–53. <https://doi.org/10.1002/pmic.201400560>.

19. gNOMO2 GitHub repository. <https://github.com/muzafferikanc/gNOMO2>. Accessed 2024 Jun 13.

20. Koster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. *Bioinformatics* 2012;28:2520–22. <https://doi.org/10.1093/bioinformatics/bts480>.

21. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. *Bioinformatics* 2011;27:863–64. <https://doi.org/10.1093/bioinformatics/btr026>.

22. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* 2014;30:2114–20. <https://doi.org/10.1093/bioinformatics/btu170>.

23. Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. *Bioinformatics* 2011;27:2957–63. <https://doi.org/10.1093/bioinformatics/btr507>.

24. Boisvert S, Laviolette F, Corbeil J. Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. *J Comput Biol* 2010;17:1519–33. <https://doi.org/10.1089/cmb.2009.0238>.

25. Nurk S, Meleshko D, Korobeynikov A, et al. metaSPAdes: a new versatile metagenomic assembler. *Genome Res* 2017;27:824–34. <https://doi.org/10.1101/gr.213959.116>.

26. Bushmanova E, Antipov D, Lapidus A, et al. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-seq data. *Gigascience* 2019;8:giz100. <https://doi.org/10.1093/gigascience/giz100>.

27. Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. *Genome Biol* 2011;12:R60. <https://doi.org/10.1186/gb-2011-12-6-r60>.

28. Mallick H, Rahnavard A, McIver LJ, et al. Multivariable association discovery in population-scale meta-omics studies. *PLoS Comput Biol* 2021;17:e1009442. <https://doi.org/10.1371/journal.pcbi.1009442>.

29. Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a web browser. *BMC Bioinf* 2011;12:385. <https://doi.org/10.1186/1471-2105-12-385>.

30. Wickham H. 2009. *ggplot2*. New York, NY: Springer.

31. Luo W, Brouwer C. Pathview: an R/bioconductor package for pathway-based data integration and visualization. *Bioinformatics* 2013;29:1830–31. <https://doi.org/10.1093/bioinformatics/btt285>.

32. Hawinkel S, Bijnens L, Cao K-AL, et al. Model-based joint visualization of multiple compositional omics datasets. *NAR Genomics Bioinformatics* 2020;2:lqaa050. <https://doi.org/10.1093/nargab/lqaa050>.

33. Andrews S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics. 2010. <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.

34. Ewels P, Magnusson M, Lundin S, et al. MultiQC: summarize analysis results for multiple tools and samples in a single report. *Bioinformatics* 2016;32:3047–48. <https://doi.org/10.1093/bioinformatics/btw354>.

35. Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. *Nat Methods* 2016;13:581–83. <https://doi.org/10.1038/nmeth.3869>.

36. Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. *Nucleic Acids Res* 2013;41:D590–96. <https://doi.org/10.1093/nar/gks1219>.

37. ncbi-genome-download GitHub repository. <https://github.com/kblin/ncbi-genome-download>. Accessed 2024 Jun 13.

38. Shen W, Le S, Li Y, et al. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. *PLoS One* 2016;11:e0163962. <https://doi.org/10.1371/journal.pone.0163962>.

39. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. *PLoS One* 2013;8:e61217. <https://doi.org/10.1371/journal.pone.0061217>.

40. Kim S, Pevzner PA. MS-GF+ makes progress towards a universal database search tool for proteomics. *Nat Commun* 2014;5:5277. <https://doi.org/10.1038/ncomms6277>.

41. Levitsky LI, Klein JA, Ivanov MV, et al. Pyteomics 4.0: five years of development of a Python proteomics framework. *J Proteome Res* 2019;18:709–14. <https://doi.org/10.1021/acs.jproteome.8b00717>.

42. Gurdeep Singh R, Tanca A, Palomba A, et al. UniPept 4.0: functional analysis of metaproteome data. *J Proteome Res* 2019;18:606–15. <https://doi.org/10.1021/acs.jproteome.8b00716>.

43. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. *Nat Commun* 2016;7:11257. <https://doi.org/10.1038/ncomms11257>.

44. West PT, Probst AJ, Grigoriev IV, et al. Genome-reconstruction for eukaryotes from complex natural microbial communities. *Genome Res* 2018;28:569–80. <https://doi.org/10.1101/gr.228429.117>.

45. Hyatt D, Chen G-L, LoCascio PF, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC Bioinf* 2010;11:119. <https://doi.org/10.1186/1471-2105-11-119>.

46. Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. *Nucleic Acids Res* 2005;33:W465–67. <https://doi.org/10.1093/nar/gk1458>.

47. Huerta-Cepas J, Szklarczyk D, Heller D, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. *Nucleic Acids Res* 2019;47:D309–14. <https://doi.org/10.1093/nar/gky1085>.

48. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic Acids Res* 2000;28:27–30. <https://doi.org/10.1093/nar/28.1.27>.

49. Jones P, Binns D, Chang H-Y, et al. InterProScan 5: genome-scale protein function classification. *Bioinformatics* 2014;30:1236–40. <https://doi.org/10.1093/bioinformatics/btu031>.

50. Haft DH, Selengut JD, Richter RA, et al. TIGRFAMs and genome properties in 2013. *Nucleic Acids Res* 2013;41:D387–95. <https://doi.org/10.1093/nar/gks1234>.

51. Bushnell B. BBMap: a fast, accurate, splice-aware aligner. 2019. Berkeley, CA: Lawrence Berkeley Natl Lab (LBNL).

52. Aro K, Wei F, Wong DT, et al. Saliva liquid biopsy for point-of-care applications. *Front Public Health* 2017;5:77. <https://doi.org/10.3389/fpubh.2017.00077>.

53. Granato DC, Neves LX, Trino LD, et al. Meta-omics analysis indicates the saliva microbiome and its proteins associated with the prognosis of oral cancer patients. *Biochim Biophys Acta Proteins Proteomics* 2021;1869:140659. <https://doi.org/10.1016/j.bbapap.2021.140659>.

54. Perez-Riverol Y, Bai J, Bandla C, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. *Nucleic Acids Res* 2022;50:D543–52. <https://doi.org/10.1093/nar/gkab1038>.

55. Chang X, Chen Y, Cui D, et al. Propionate-producing Veillonella parvula regulates the malignant properties of tumor cells of OSCC. *Med Oncol* 2023;40:98. <https://doi.org/10.1007/s12032-023-01962-6>.

56. Shpitzer T, Bahar G, Feinmesser R, et al. A comprehensive salivary analysis for oral cancer diagnosis. *J Cancer Res Clin Oncol* 2007;133:613–17. <https://doi.org/10.1007/s00432-007-0207-z>.

57. Mu AK-W, Chan YS, Kang SS, et al. Detection of host-specific immunogenic proteins in the saliva of patients with oral squamous cell carcinoma. *J Immunoassay Immunochem* 2014;35:183–93. <https://doi.org/10.1080/15321819.2013.836535>.

58. Tanca A, Abbondio M, Palomba A, et al. Potential and active functions in the gut microbiota of a healthy human cohort. *Microbiome* 2017;5:79. <https://doi.org/10.1186/s40168-017-0293-3>.

59. Milani C, Duranti S, Bottacini F, et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. *Microbiol Mol Biol Rev* 2017;81:10.1128/mmbr.00036-17. <https://doi.org/10.1128/MMBR.00036-17>.

60. Duru IC, Laine P, Andreevskaya M, et al. Metagenomic and meta-transcriptomic analysis of the microbial community in Swiss-type Maasdam cheese during ripening. *Int J Food Microbiol* 2018;281:10–22. <https://doi.org/10.1016/j.ijfoodmicro.2018.05.017>.

61. Herold M, Martínez Arbas S, Narayanasamy S, et al. Integration of time-series meta-omics data reveals how microbial ecosystems respond to disturbance. *Nat Commun* 2020;11:5281. <https://doi.org/10.1038/s41467-020-19006-2>.

62. Wang P, Yu Z, Qi R, et al. Detailed comparison of bacterial communities during seasonal sludge bulking in a municipal wastewater treatment plant. *Water Res* 2016;105:157–66. <https://doi.org/10.1016/j.watres.2016.08.050>.

63. Xu S, Yao J, Ainiwaer M, et al. Analysis of bacterial community structure of activated sludge from wastewater treatment plants in winter. *Biomed Res Int* 2018;2018:1–8. <https://doi.org/10.1155/2018/8278970>.

64. Ankan M, Muth T. Supporting data for “gNOMO2: A Comprehensive and Modular Pipeline for Integrated Multi-omics Analyses of Microbiomes.” *GigaScience Database*. 2024. <https://doi.org/10.5524/102552>.