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Abstract

Background: In recent years, omics technologies have offered an exceptional chance to gain a deeper insight into the structural and
functional characteristics of microbial communities. As a result, there is a growing demand for user-friendly, reproducible, and versa-
tile bioinformatic tools that can effectively harness multi-omics data to provide a holistic understanding of microbiomes. Previously,
we introduced gNOMO, a bioinformatic pipeline tailored to analyze microbiome multi-omics data in an integrative manner. In re-
sponse to the evolving demands within the microbiome field and the growing necessity for integrated multi-omics data analysis, we
have implemented substantial enhancements to the gNOMO pipeline.

Results: Here, we present gNOMO2, a comprehensive and modular pipeline that can seamlessly manage various omics combinations,
ranging from 2 to 4 distinct omics data types, including 16S ribosomal RNA (rRNA) gene amplicon sequencing, metagenomics, meta-
transcriptomics, and metaproteomics. Furthermore, gNOMO2 features a specialized module for processing 16S rRNA gene amplicon
sequencing data to create a protein database suitable for metaproteomics investigations. Moreover, it incorporates new differential
abundance, integration, and visualization approaches, enhancing the toolkit for a more insightful analysis of microbiomes. The func-
tionality of these new features is showcased through the use of 4 microbiome multi-omics datasets encompassing various ecosystems
and omics combinations. gNOMO?2 not only replicated most of the primary findings from these studies but also offered further valu-
able perspectives.

Conclusions: gNOMO?2 enables the thorough integration of taxonomic and functional analyses in microbiome multi-omics data, of-
fering novel insights in both host-associated and free-living microbiome research. gNOMO?2 is available freely at https://github.com
/muzafferarikan/gNOMO?2.
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Background

Microbiomes play pivotal roles in shaping the environments they
inhabit such as influencing host health and disease [1] and con-
tributing to the overall diversity of life on Earth [2]. The compre-
hensive understanding of microbial communities and their im-
pact on human health, ecosystems, and numerous other domains
has become an increasingly prominent field of investigation [3].

Over the past decade, there has been a substantial increase
in various omics data types generated from various microbiomes
due to the development of novel techniques and reduced experi-
mental costs [4, 5]. Hence, the multi-omics approach has emerged
as a powerful strategy to elucidate the functional potential of
microbiomes, going beyond taxonomic profiling to decipher the
molecular mechanisms [6-8]. The metabolic pathways, ecologi-
cal interactions, and adaptive responses of microbial communi-
ties can be uncovered by integrating multiple omics data [9]. Such
a comprehensive perspective is invaluable for potential implica-
tions in diverse fields, such as human health, agriculture, and en-
vironmental conservation.

To unravel the complex web of interactions within micro-
biomes and extract meaningful insights from the vast amount
of data generated by advanced omics technologies, the de-
velopment of sophisticated analytical tools and data analysis
pipelines is essential [10]. Consequently, many approaches and

tools have emerged to address these needs [11-15]. One such
pipeline, gNOMO, facilitates the integrated multi-omics analy-
sis encompassing metagenomics (MG), metatranscriptomics (MT),
and metaproteomics (MP) through the efficient generation and
use of a proteogenomic database, as well as differential abun-
dance analysis-based integration at the pathway and taxa lev-
els [16]. However, gNOMO (along with other existing multi-omics
analysis tools in the microbiome field) currently lacks the capa-
bility of processing 16S ribosomal RNA (rRNA) gene amplicon se-
quencing (AS) data to create a proteogenomic database while it is
well known that the protein sequence database directly impacts
the outcome of any MP analysis [17].

For MP, it was shown that unnecessarily large databases can
lead to the exclusion of valid peptide spectrum matches [18], de-
manding more time and memory resources. Conversely, smaller
databases carry the risk of generating false-positive results that
are irrelevant to the sample. In multi-omics-based microbiome
studies that combine MP with MG or MT, protein databases are
typically generated from MG and MT data. However, for studies
that integrate MP with AS, there is currently no tool available
to automatically create a protein database from AS data for MP
analysis. Generating an AS-based protein database can also be
valuable for studies that integrate MP, MG, and MT, as sequenc-
ing depth limitations may affect the detection of microbes and
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genes, thereby influencing MP analysis. Additionally, thereis alack
of tools for conducting end-to-end integrated analysis of AS data
in conjunction with MP results. Most existing multi-omics anal-
ysis tools are tailored to specific omics combinations and lack a
modular architecture that can accommodate various omics com-
binations. Furthermore, there is a shortage of multi-omics anal-
ysis tools that incorporate multiple integration approaches and
present results at different analysis stages, facilitating further in-
vestigations using other tools.

To address abovementioned needs of multi-omics data analy-
ses in microbiome research, we have made significant improve-
ments to the gNOMO pipeline. These enhancements encompass
the following key modifications: (i) We have restructured the
pipeline, introducing a flexible and modular architecture that em-
powers gNOMO?2 to seamlessly process a wide array of multi-
omics data derived from microbiomes. With 6 independent mod-
ules, gNOMO2 can effortlessly manage a vast spectrum of omics
combinations, ranging from 2 to 4 distinct omics data types, which
include AS, MG, MT, and MP. (ii) One of standout features of
gNOMO? is its ability to process AS data and generate a pro-
tein database suitable for MP studies. (iii) Additionally, gNOMO?2
incorporates 3 distinct approaches for integrated multi-omics
analysis: proteogenomic database-based integration, differential
abundance-based integration (at taxa, functional category, and
pathway levels), and joint visualization-based integration. These
innovative approaches offer a comprehensive perspective on the
microbiomes, enabling researchers to gain deeper insights into the
structural and functional properties. gNOMO?2 is an open-source
tool and freely available at [19].

Methods

Overview of the gNOMO2 pipeline

The gNOMO2 (RRID:SCR_025293) pipeline is designed as a
tool that relies on Snakemake (RRID:SCR_003475) [20], a well-
established bioinformatic workflow management system. This
framework guarantees scalable data analyses and the genera-
tion of consistent and reproducible output data. The pipeline in-
corporates a suite of software tools written in various program-
ming languages, including R (RRID:SCR_001905), Python (RRID:
SCR_008394), Shell, and Perl, enabling the seamless execution of
multi-omics analysis steps for microbiome data. The input data
and program parameters in Snakemake are easily defined through
a straightforward configuration file. gNOMO?2 streamlines this
process by automatically generating the configuration file from
the provided input data along with default parameters.

To enhance user experience, the pipeline relies on publicly ac-
cessible tools distributed as Conda environments, simplifying the
installation process for individual software components for the
end user. gNOMO2 ensures result consistency and makes it user-
friendly for individuals with basic bioinformatics skills to analyze
multi-omics data. The pipeline accepts raw sequencing files (in
fastq.gz format) for AS, MG, and MT and tandem mass spectrom-
etry (MS/MS) spectrum files (in mgf format) for MP data.

The original gNOMO accepts MG, MT, and MP data as in-
put and generates results for differential abundance analysis
in each omics layer. It also constructs a protein database us-
ing MG and MT data and performs both differential abundance
and pathway-level integrated analyses (Fig. 1A). In contrast, the
gNOMO?2 pipeline comprises 6 modules that facilitate direct anal-
ysis of various omics combinations. Each module includes pre-
processing, analysis of each omics dataset, data integration, and

visualization steps (Fig. 1B). We implemented changes to both the
analysis workflow and pipeline structure. For workflow adjust-
ments, we updated the quality control, merging, assembly, dif-
ferential abundance, and visualization steps. In the quality con-
trol phase, we switched from using PrinSeq (RRID:SCR_005454)
[21] to Trimmomatic (RRID:SCR_011848) [22] for cleaning and
trimming reads. For read merging, we replaced fastg-join with
FLASH2 (RRID:SCR_005531) [23] to merge paired-end reads. In
the assembly step, we transitioned from Ray (RRID:SCR_001916)
[24] to metaSPAdes (RRID:SCR_000131) [25] for de novo assembly
of metagenomic sequences and from Ray to rnaSPAdes (RRID:
SCR_016992) [26] for de novo assembly of metatranscriptomic
sequences. In the differential abundance analysis step, we re-
placed LefSe (RRID:SCR_014609) [27] with MaAsLin2 (RRID:SCR_
023241) [28]. For visualization, we replaced Krona (RRID:SCR_
012785) [29] with ggplot2 (RRID:SCR_014601) [30] to analyze tax-
onomic composition, enabling combined visualization of sam-
ples. We also replaced LefSe with MaAsLin?2 for visualizing the re-
sults of differential abundance analysis. For pathway-level analy-
sis results, we kept Pathview (RRID:SCR_002732) [31] unchanged,
but for joint visualization analysis, we used the combi (RRID:
SCR_024986) [32] package to visualize outputs. These workflow
changes and comparisons between gNOMO and gNOMO?2 are de-
picted in Supplementary Fig. S1.

Additionally, we introduced changes to facilitate the incorpo-
ration of metadata tables into analyses and automated the cre-
ation of the configuration file. To enhance and update the struc-
ture of the original gNOMO, we implemented 6 modules in the new
gNOMO?2 pipeline, allowing for the processing of different omics
combinations. The original gNOMO pipeline consisted of only 1
module (Module 5 in gNOMO2), while gNOMO?2 introduced 5 more
modules for specific combinations, along with the ability to accept
AS data as input.

Module 1: Processing AS data and generating a
protein database for MP analysis

Module 1 is designed to process raw AS data in both paired-
end and single-end formats, providing a directly usable protein
database for MP data analysis. The first step in this module in-
volves using Trimmomatic to remove sequencing adapters, low-
quality bases from raw reads, and reads that are too short (de-
fault minimum length >25 bp). The quality of both raw and
trimmed reads is assessed using FastQC (RRID:SCR_014583) [33],
and analysis results for all samples are summarized using Mul-
tiQC (RRID:SCR_014982) [34]. If the data are in paired-end for-
mat, the quality controlled reads are merged using FLASH2. Sub-
sequently, DADA2 (RRID:SCR_023519) [35] is used in conjunc-
tion with the SILVA database (RRID:SCR_006423) [36] to obtain
an amplicon sequence variant (ASV) abundance table and tax-
onomy assignments for each ASV. After determining the user-
defined top ‘n” most abundant taxa at a user-defined taxo-
nomic level, protein sequences of all complete genomes for these
taxa are downloaded from the National Center for Biotechnology
Information (NCBI) database using the ncbi-genome-download
(RRID:SCR_024977) [37]. All downloaded sequences are merged
and cleaned, and a single protein sequence is retained from iden-
tical protein sequences to effectively remove redundancy using
SegKit (RRID:SCR_018926) [38]. Importantly, for host-associated
microbiome samples, the user can define host species name in
a configuration file. Host protein sequences are then included
in the final protein database together with microbial proteins.
Module 1 allows researchers to construct a comprehensive pro-
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Figure 1: Overview of gNOMO and gNOMO?2 pipelines. (A) gNOMO accepts MG, MT, and MP data as input, providing differential abundance analysis
results for each omics layer. It also generates a protein database using MG and MT data and performs a pathway-level integrated analysis. (B) gNOMO2
comprises 6 modules, each tailored for specific omics data. Module 1 accepts 16S rRNA gene amplicon sequencing data (AS) as input and generates a
protein database suitable for metaproteomics studies, a taxa abundance plot, and a phyloseq object that can be used for downstream analysis in other
microbiome tools. Modules 2 to 6 handle different combinations of AS, MG, MT, and MP data, creating omics-specific protein databases, abundance
tables, plots, differential abundance analysis results, and pathway-level integration analysis results.

tein database, either from their own AS datasets or publicly
available ones. Furthermore, this module creates a phyloseq
(RRID:SCR_013080) [39] object containing an abundance table, a
taxonomy table, and additional metadata. This enables ongoing
microbiome analysis using other analysis tools. In addition, an
abundance plot is automatically generated to assess the abun-

w

dance distribution of the top “n” taxa as defined by the user.

Module 2 accepts raw paired-end and single-end AS and MP data
as inputs. The AS data undergo the processing steps described in
Module 1. The generated AS-based protein database is then used
for the database search algorithm MS-GF+ (RRID:SCR_015646)
[40] to identify peptides in the raw MP data. A peptide abun-
dance table is subsequently created by aggregating results from
individual samples. Taxonomy and enzyme commission (EC) as-
signments for the identified peptides are carried out using Py-
teomics (RRID:SCR_024988) [41] and Unipept (RRID:SCR_024987)
[42]. Then, MaAsLin2 is employed to determine differentially
abundant taxa based on both AS and MP data. In this analysis,
linear models are employed to identify taxa that exhibit signifi-
cant differences in abundance between sample groups at AS and
MP levels while accounting for confounding variables and other
factors that might impact the abundance of microbial taxa. Users
can define the phenotype of interest, covariates in the Snakemake

configuration file. Furthermore, users can specify the normaliza-
tion or transformation to apply prior to conducting the differential
abundance analysis. Furthermore, a joint visualization of MP and
AS results is performed using the combi R package. This joint vi-
sualization allows to integrate and compare the results from both
types of omics data (taxa for AS and peptides for MP), providing
a comprehensive view on a single ordination plot and helping re-
searchers to identify associations of features from different omics
datasets and covariates in metadata table. The final outputs in-
clude abundance tables based on both AS and MP data, detailing
the abundance of taxa and peptides in each sample, respectively.
Module 1 also generates results from the differential abundance
analysis, highlighting the taxa that were significantly different be-
tween sample groups based on their AS and MP profiles and the
joint visualization analysis results providing a graphical represen-
tation of the combined AS and MP features, aiding in the interpre-
tation of the integrated results.

Module 3 is designed to handle raw paired-end MG and MP data.
MP data are processed as outlined in Module 2. MG raw reads
are quality checked and cleaned using Trimmomatic, followed
by merging with FLASH2. The quality of both raw and trimmed
reads is assessed using FastQC, and analysis results for all sam-
ples are summarized using MultiQC. Cleaned and merged reads
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are then mapped to the NCBI nonredundant (nr) database using
Kaiju (RRID:SCR_022775) [43], which generates taxonomic classi-
fication results. In parallel, clean reads are also used for assembly
with metaSPAdes, and obtained contigs are classified as eukary-
otic and prokaryotic using EukRep (RRID:SCR_024985) [44]. Pro-
teins within the prokaryotic contigs are predicted using Prodigal
(RRID:SCR_011936) [45] while Augustus (RRID:SCR_008417) [46] is
used for proteins within eukaryotic contigs. Then, functional an-
notation of these predicted proteins is carried out using eggNOG
(RRID:SCR_002456) [47] to obtain KEGG (RRID:SCR_012773) [48]
Orthology (KO) identifiers, while InterProScan (RRID:SCR_005829)
[49] is employed for TIGRFAMs (RRID:SCR_005493) [50] functional
annotation.

Module 3 generates several final outputs for both MG and MP
analyses. These include taxonomic abundance tables, taxonomic
composition plots, and results from taxa and functional anno-
tation (TIGRFAMs)-based differential abundance analyses. The
module also provides integrated analysis outputs: (i) a joint visual-
ization of omics layers as described in Module 2 and (ii) a pathway-
level integrated analysis conducted using the Pathview package.
The Pathview plots in this analysis illustrate the log2 ratio of the
mean abundance of individual omic features under different user-
defined conditions across various omics levels, following a fold
change normalization. These log? ratios are calculated and com-
pared using shared enzyme and KEGG ids between different omics
layers. Coverages for gene sequences of each predicted protein by
MG are calculated using BBMap (RRID:SCR_016965) [51]. The cal-
culated ratios are visualized on metabolic pathway nodes, which
are split into omics types (for example, 2 splits for Module 3 for
MG and MP data). The color of each split part shows the abun-
dance change in the relevant features between sample groups for
the specific omics level, allowing for the visual tracking of changes
in different omics levels on the same node.

Module 4: Integrated multi-omics analysis of MG
and MT data

Module 4 is designed to handle raw paired-end MG and both
paired-end and single-end MT data. MG data follow the process-
ing steps outlined in Module 3. For MT data, a similar workflow is
employed, with the exception that a de novo assembly step is con-
ducted using rnaSPAdes in place of metaSPAdes. The final out-
puts of Module 4 include an MG- and MT-based proteogenomic
database, taxonomic and functional annotation-based differen-
tial abundance analysis results for both omics levels, taxonomic
abundance tables and plots, joint visualization of omics layers as
described in Module 2, and pathway-level integrated analysis re-
sults as outlined in Module 3.

Module 5: Integrated multi-omics analysis of MG,
MT, and MP data

Module 5 accepts raw paired-end MG, as well as both paired-end
and single-end MT and MP data. MG and MT data follow the pro-
cessing steps outlined in Module 4 while MP data are processed
as described in Module 2. The final outputs of Module 5 include a
MG- and MT-based proteogenomic database, taxonomic and func-
tional annotation-based differential abundance analysis results
for 3 omics levels, taxonomic abundance tables and plots, peptide
abundance table for MP, joint visualization of omics layers, and
pathway-level integrated analysis results as outlined in Module 3.

Module 6: Integrated multi-omics analysis of AS,
MG, MT, and MP data

Module 6 accepts both paired-end and single-end AS and MT data,
paired-end MG, and MP data. MG, MT, and MP data follow the pro-
cessing steps outlined in Module 5. However, the final outputs
of Module 6 include a proteogenomic database, which is gener-
ated by combining AS-, MG-, and MT-based downloaded/predicted
protein sequences, taxonomic and functional annotation-based
differential abundance analysis results for 4 omics levels, taxo-
nomic/peptide abundance tables and plots, joint visualization of
omics layers, and pathway-level integrated analysis results as out-
lined in Module 3.

Analyses

To illustrate the utility of gNOMO2, we reanalyzed samples from
4 previously published microbiome studies involving various
multi-omics combinations, using the respective publicly available
datasets.

Analyzing the association of saliva content with
oral cancer

Saliva is a complex biofluid that comprises various components,
including DNA, RNA, proteins, metabolites, and microbiota. As a
result, it is considered a promising source of relevant biomarkers
for a variety of diseases [52]. Granato et al. [53] combined AS and
MP analyses to investigate the association between saliva content
and oral cancer. The study suggests that oral microbiota and their
protein abundance have potential diagnosis and prognosis value
for oral cancer patients. Here, we showcase how Modules 1 (AS)
and 2 (AS and MP) of gNOMO?2 can be used to efficiently reproduce
the findings.

The AS data were obtained from NCBI SRA under BioProject
identifier PRINA700849 while MP data were retrieved from PRIDE
(RRID:SCR_003411) [54] under accession number PXD022859. The
dataset included saliva samples from 8 healthy controls and
15 oral cancer patients. To streamline downstream analyses, we
merged triplicates of AS samples and used cell debris MP sam-
ples for all analyses. The taxonomic composition results based on
AS data across samples, as generated by gNOMO?2, were consis-
tent with the reported results, demonstrating similar abundance
distributions and the presence of the same most abundant gen-
era (Fig. 2A). In their study, Granato et al. [53] constructed a pro-
tein database containing 1,160,275 protein sequences from the
12 most abundant bacterial genera and humans. We applied the
same parameters in gNOMO?2 to achieve comparable results, with
setting such as taxa_level: Genus, top_n: 12 and host: Homo sapi-
ens. gNOMO?2 automatically generated a protein database from
AS data by determining the 12 most abundant bacterial genera.
It then retrieved all protein sequences from 1,992 genomes be-
longing these bacterial genera, along with human host proteins,
resulting in a total of 1,240,988 protein sequences. The discrep-
ancy in the number of protein sequences between the generated
protein databases may be attributed to variations in analysis tim-
ing and database differences. Granato et al. [53] used the HOMD, a
specific database used for oral microbiome studies while gNOMO2
uses the NCBI database, intended to target all microbiome study
types.

Within gNOMO2, users can also perform differential abun-
dance analysis at both omics levels, yielding statistical test results
and plots for differential abundant taxa. For instance, we pre-
sented one of differential taxa from AS-based (Fig. 2B, upper) and
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Figure 2: Overview of gNOMO?2 results for the Granato et al. [53] study. (A) Representation of the 10 most prevalent genera in saliva microbiota
samples. AS-based representations of salivary microbiota composition across samples, highlighting the 10 most common bacterial genera. Each bar
indicates the relative abundance distribution for a sample. (B) Abundance distribution of differentially abundant taxa across study groups, presented
separately for AS (upper) and MP (lower) data. (C) Joint visualization-based integration results for AS, MP, and metadata. Blue labels represent taxa,
green labels represent peptides, and black labels represent metadata columns. Patient samples are marked with blue dots, while healthy samples are

marked with red dots.

MP-based results (Fig. 2B, lower). AS-based differential abundance
analysis showed a decrease in the abundance of Veillonella associ-
ated with oral cancer (Fig. 2B, upper), which corresponds to a key
finding in the Granato et al. [53] study and previous studies [55].
Interestingly, gNOMO?2 detected a reduction in the abundance of
peptides classified as Homo in oral cancer patients (Fig. 2B, lower)
while the original study did not report any statistically significant
changes. This divergence may result from differences in analysis
approaches, as gNOMO2 employs a peptide-based taxonomy by
Unipept and MaAslin2 for differential abundance analysis instead
of a protein-based approach. Furthermore, it is important to note
that we did not account for other covariates that may affect the
results.

Finally, gNOMO?2 generates a joint visualization plot for AS, MP,
and metadata (Fig. 2C). This plot confirms the association of Veil-
lonella based on AS with oral health status based on AS data and
additionally reveals associations between some detected peptides
and the oral health status of the participants. Notably, InterPro
entries assigned to these peptides included human albumin pro-
teins, which were previously reported to be associated with oral
cancer [56, 57].

Exploring potential and active functions within
the human gut microbiota

The human gut microbiota is widely recognized for its important
roles in both health and disease. A comprehensive understanding
of both potential and active features can provide valuable insights
into the mechanisms governing various physiological processes
and pathologies, ultimately leading to more effective strategies
for maintaining and improving human well-being.

Tanca et al. [58] employed MG and MP to explore the potential
and active functions in the gut microbiota of a healthy human
cohort. Here, we used Module 3 (MG and MP) of gNOMO? to effi-
ciently reanalyze the multi-omics data from their study. The MG
data were obtained from the NCBI SRA under BioProject identifier
PRJEB19090, while the MP data were retrieved from PRIDE under
accession number PXD005780. The dataset included gut micro-
biota samples from 6 males and 8 females.

We employed gNOMO?2 to investigate potential differences be-
tween male and female participants. Taxonomic composition re-
sults based on MG and MP data, as generated by gNOMO2, ex-
hibited a significant overlap with the findings of Tanca et al.
[58], particularly concerning the most abundant genera (Fig. 3A,
upper). MG-based differential abundance analysis, using default
parameters, indicated a notably higher abundance of Legionella
in females. Nevertheless, it is important to approach this find-
ing with caution, given that Legionella is a bacterial genus typi-
cally associated with water and soil environments, often consid-
ered a potential source of contamination in human microbiome
studies [59].

Functional annotations derived from TIGRFAMs for the differ-
ential abundance analysis indicated a reduction in biotin syn-
thesis (Fig. 3B, lower). The joint visualization plot depicted both
MG and MP features along with covariates such as body mass in-
dex, age, and sex (Fig. 3C). In our pathway-level integration anal-
ysis, we illustrated the components of pyrimidine metabolism
and how variations in their abundance can be observed among
study groups across different omics levels (Fig. 3D). As a case in
point, cytidine deaminase (EC 3.5.4.5) displayed a decreased abun-
dance in females at the MG level (colored green, left), while its
abundance increased at the MP level (colored red, right). This dis-
crepancy suggests a decrease in the abundance of taxa carry-
ing the corresponding gene but a higher expression of the pro-
tein. Again, this highlights the significance of adopting a multi-
omics perspective when drawing conclusions in microbiome
studies.

Investigating the role of microbiota of the
Maasdam cheese during ripening

The microbiota present in cheese plays a crucial role in the mat-
uration and development of its distinctive flavor, making it a piv-
otal aspect for the cheese industry. Duru et al. [60] combined MG
and MT to track shifts in both taxonomic compositions and gene
expressions of Swiss-type Maasdam cheese microbiota during the
ripening process. Here, we used Module 4 (MG and MT) of gNOMO2
to efficiently reanalyze multi-omics data from their research.
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Figure 3: Overview of gNOMO?2 results for the Tanca et al. [58] study. (A) Representation of the 10 most prevalent genera in gut microbiota samples, as
shown by MG and MP. The left side illustrates the 10 most common bacterial genera based on MG data, while the right side represents MP-based
findings. Each bar represents relative abundance distribution for a sample. (B) Abundance distribution of differentially abundant taxa across study
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marked with red dots. (D) Pathway-level integration results, demonstrating the relationship across different omics levels. The findings from MG and

MP are illustrated separately as split nodes on the left and right, respectively.

MG and MT data were retrieved from the EBI ENA under BioPro-
ject identifier PRJEB23938. The dataset comprised 3 samples from
day 12 and 3 samples from day 37 of the ripening process.

We employed gNOMO?2 to investigate potential differences be-
tween different stages of ripening process. Taxonomic composi-
tion results generated by gNOMO?2 based on MG and MT data
showed that Lactococcus, Lactobacillus, and Propionibacterium were 3
most abundant genera across samples (Fig. 4A), consistent with
the findings of Duru et al. [60]. Differential abundance analy-
ses revealed significantly higher relative abundance of Propioni-
bacterium, the main bacterial genus responsible for propionate
metabolism in the Maasdam cheese, in cold ripening samples in
both MG and MT levels (Fig. 4B), which also well aligns with the
results of the original study.

The joint visualization plot depicted both MG and MT fea-
tures along with the ripening types (Fig. 4C). In our exploration
of pathway-level integration, we depicted the elements of propi-
onate metabolism and highlighted how fluctuations in their abun-
dance varied across study groups at MG and MT levels (Fig. 4D).
Notably, genes related to propionate production exhibited higher
abundance in cold ripening samples (day 37) compared to warm
ripening ones (day 12) at the MT level (colored red, right), while
their levels were not significantly different at the MG level (colored
gray, left). As a result, we did not observe a decrease in expression
of genes responsible for propionate production, contrary to find-
ings in the original study. This discrepancy may originate from
methodological differences between the studies. The gNOMO2
pipeline compares the expression of propionate production genes
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Figure 4: Overview of gNOMO?2 results for the Duru et al. [60] study. (A) Representation of the 10 most common genera in cheese microbiota samples.
MG- and MT-based overview of gut microbiota composition across samples. The 10 most common bacterial genera in cheese microbiota samples are
shown for MG (left) and MT (right). Each bar represents relative abundance distribution for a sample. (B) Abundance distribution of differentially
abundant taxa across study groups by MG (upper) and MT (lower). (C) Joint visualization-based integration results for MG, MT, and metadata. (D)
Pathway-level integration results, demonstrating the relationship across different omics levels. The findings from MG and MT are illustrated

separately as split nodes on the left and right, respectively.

against total gene expression, whereas the Duru et al. [60] study
compared these genes against the overall expression of the Propi-
onibacterium genome obtained in their research. Consequently, the
relative expression of these genes might appear higher when as-
sessed against all genes but lower when measured against only
Propionibacterium genes. To validate this, we conducted compar-
isons using the Propionibacterium genome from the original study
in the gNOMO?2 pipeline for gene expression levels. Changing the
denominator from all genes to Propionibacterium genes yielded re-
sults consistent with the original study.

Our findings emphasize the critical role of accurately interpret-
ing analysis outcomes based on the structure of the analytical
pipeline. Assuming a default approach, particularly during com-
parison steps, could lead to unsupported conclusions. In meta-
omics studies, various approaches can be employed for data anal-
ysis. While none of these approaches are inherently wrong, they
may not align with the goals set by the research group. When the
pipeline’s structure is well defined, no inconsistencies in biological
conclusions would be expected. Additionally, we stress the impor-

tance of clear language in explaining results in research articles,
as failure to do so may mislead readers. In this instance, the dis-
crepancy was primarily due to differences between the approach
depending on comparisons at the individual metagenome assem-
bled genome (MAG) level and the gNOMO?2 approach, which com-
pares with the whole community.

Determining microbiome dynamics in a
wastewater treatment plant
Characterization of microbial communities across various meta-
omics layers offers important insights into their potential traits
and functionalities. Herold et al. [61] utilized MG, MT, MP, and
metabolomics to explore the responses of microbial populations
in a biological wastewater treatment plant to disturbances. In our
study, we demonstrate how Modules 5 (MG, MT, and MP) and 6 (AS,
MG, MT, and MP) of gNOMO?2 effectively replicate some of their
findings using a subset of the samples.

We obtained AS, MG, and MT sequencing data from EBI ENA
(BioProject identifier PRINA230567) and MP data from PRIDE (ac-
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C D

Figure 5: Overview of gNOMO?2 results for the Herold et al. (2020) study. (A) Representation of the 10 most common genera in wastewater microbiota
samples. MG-, MT-, and MP-based overview of gut microbiota composition across samples. The 10 most common bacterial genera in wastewater
microbiota samples by MG (left), MT (middle), and MP (right). Each bar represents relative abundance distribution for a sample. (B) Abundance
distribution of differentially abundant taxa across study groups by MG (upper), MT (middle), and MP (lower). (C) Joint visualization-based integration
results for MG, MT, MP, and metadata. (D) Pathway-level integration results, demonstrating the relationship across different omics levels. The findings
from MG, MT, and MP are illustrated separately as split nodes on the left, middle, and right, respectively.

cession number PXD013655). To investigate seasonal variations
reported by Herold et al. [61], we selected samples showcasing the
most distinct differences between summer and winter seasons,
encompassing 5 samples from each. Additionally, we incorporated
10 AS samples previously collected from the same wastewater
treatment plant by the same research group to assess Module 6.

Our analysis, performed using gNOMO?2, revealed taxonomic
composition results (AS, MG, MT, and MP data) that partially
aligned with the findings by Herold et al. [61] (Fig. 5A). However,
unlike the original study, we did not observe pronounced compo-
sitional changes in winter samples (Fig. SA). This discrepancy may
be attributed to differing approaches in taxonomic composition
analysis as Herold et al. utilized taxonomic assignments of a sub-
set of metagenome-assembled genomes, while gNOMO2 employs
Kaiju for direct taxonomic classification of reads.

While gNOMO?2 did not detect differentially abundant taxa be-
tween seasons across MG, MT, and MP layers, our TIGRFAMs and
KEGG pathway-based analyses indicated an elevation in fatty acid
degradation at the MT level (Fig. 5B), aligning with the original
study. The joint visualization plot highlighted MG, MT, and MP
features along with covariates (Fig. 5C). As a case point, the plot
revealed the association of Tetrasphaera with autumn, which has
been reported in previous studies to be associated with sludge
bulking that frequently occurs in wastewater treatment plants
(62, 63].

In our pathway-level integration analysis (Fig. 5D), we illus-
trated variations in the components of fatty acid degradation
and glycerolipid metabolism among study groups across different

omics levels. Specifically, gNOMO2 showcased an increase in fatty
acid degradation at the MT level while detecting an elevation in
glycerolipid metabolism at both MT and MP levels, as indicated
and discussed in detail in the original study.

When AS data were integrated using Module 6, gNOMO2 con-
structed a proteogenomic database comprising 4,959,677 pro-
teins, incorporating 859,729 nonredundant proteins derived from
the top 10 most abundant genera identified in the AS analysis, in
addition to the 4,025,111 proteins obtained from MG and MT anal-
yses. Interestingly, this integration resulted in a slight decrease in
the number of detected unique peptides (~2%), indicating the im-
portance of database size optimization in the multi-omics studies,
including MP. The inclusion of AS data did not alter the other out-
comes derived from the MP data analysis.

Our findings highlight that read-based and MAG-based tax-
onomic composition analysis approaches can lead to divergent
results and interpretations. Since neither approach is inher-
ently wrong, this disparity underscores the significance and ad-
vantage of thoroughly examining meta-omics datasets using
various methodologies. Hence, we underscore that employing
diverse approaches and perspectives in complex multi-omics
datasets may reveal novel insights extending beyond the original
hypothesis.

Discussion

gNOMO?2 stands as a versatile and modular bioinformatic pipeline
designed for integrated multi-omics analyses of AS, MG, MT, and

920z Aleniga4 Z| Uo Jasn Jnisul-yooy Haqoy Aq G99z ///8s09elb/e0usiosebiB/ga0 L "0 L/10p/aonie/aousioselif/woo dnorolwapese)/:sdpy woly papeojumoq



MP data in a reproducible fashion. Our open-source tool efficiently
employs techniques that process raw data and generates sum-
mary tables and figures with just a single, straightforward com-
mand. gNOMO2 encompasses preprocessing, genome mapping,
assembly, protein predictions, taxonomic and functional annota-
tions, proteogenomic database generation, and differential abun-
dance analysis steps for each omics layer. Furthermore, gNOMO2
offers a holistic perspective through integrated visualization of
omics layers and facilitates pathway-level integrative analysis.
In addition, it includes a dedicated module for AS data process-
ing and the automatic protein database generation for MP stud-
ies. gNOMO2 generates results that can serve as inputs for sub-
sequent microbiome analyses using various bioinformatics tools,
enhancing user flexibility throughout the process. Demonstrated
efficacy of gNOMO?2 with real datasets underscores it as an in-
valuable tool across various multi-omics combinations in micro-
biome research. Finally, the emphasis on reproducibility is a cor-
nerstone of gNOMO2, as it not only streamlines the analytical pro-
cess but also ensures the reliability of results by providing users
with fully documented and executable workflows, enhancing the
transparency and replicability in omics-driven microbiome re-
search.

Despite its usefulness and effectiveness in multi-omics based
microbiome research, gNOMO?2 still has certain limitations. First,
its performance may be influenced by the quality and depth of
input data, thereby necessitating potential parameter optimiza-
tions by the user. Second, gNOMO?2 relies on existing databases
for taxonomic and functional annotations, which may restrict
the detection of features not cataloged within these databases.
Moreover, gNOMO2’s efficacy may also be influenced by the com-
plexity of microbial communities, particularly in cases of high di-
versity or rare taxa, where accurate profiling may be challeng-
ing. Lastly, users should be aware that gNOMO?2 assumes a cer-
tain level of computational proficiency, and while efforts have
been made to enhance user-friendliness, beginners may still face
a learning curve because there is no graphical user interface
provided.

Future versions of gNOMO2 could address these limitations
through continuous updates, improved algorithmic approaches,
and increased flexibility in handling diverse omics types, datasets,
and microbial community structures.

Availability of Source Code and
Requirements

Project name: gNOMO?2

Project homepage: https://github.com/muzafferarikan/gNOMO2
Operating system(s): GNU/Linux

Programming language: Python, R, Shell, and Perl

Other requirements: Conda and Snakemake are required for im-
plementation. At least 1 TB hard drive space and 200 GB memory
are recommended to run the pipeline, dependent on databases
and input file sizes used.

License: MIT

Restrictions to use by nonacademics: No

RRID:SCR_025293

BioTools ID: gnomo?2

Additional Files

Supplementary Fig S1. The workflow changes between gNOMO
and gNOMO2 pipelines. The original gNOMO accepts MG, MT and

gNOMO2 | 9

MP data as input and generates results for differential abundance
analysis for each omics layer. gNOMO?2 pipeline comprises six
modules (shown enclosed in trapezoids or rectangles) that al-
low analysis of various omics combinations. A step-by-step com-
parison between Module 5 of gNOMO?2 and the original gNOMO
pipeline is also shown (gNOMO & 5)
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