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Abstract 

Bac kgr ound: In recent years, omics technologies hav e offer ed an exceptional chance to gain a deeper insight into the structural and 

functional c har acteristics of micr obial comm unities. As a r esult, ther e is a gr owing demand for user-friendl y, r e pr oducib le, and v ersa- 
tile bioinformatic tools that can effecti v el y harness multi-omics data to provide a holistic understanding of micr obiomes. Pr eviousl y, 
we introduced gNOMO, a bioinformatic pipeline tailored to anal yze micr obiome m ulti-omics data in an inte gr ati v e manner. In r e- 
sponse to the evolving demands within the microbiome field and the growing necessity for inte gr ated multi-omics data analysis, we 
have implemented substantial enhancements to the gNOMO pipeline. 

Results: Here , w e present gNOMO2, a comprehensive and modular pipeline that can seamlessly manage various omics combinations, 
ranging from 2 to 4 distinct omics data types, including 16S ribosomal RN A (rRN A) gene amplicon sequencing, metagenomics, meta- 
transcriptomics, and metapr oteomics. Furthermor e, gNOMO2 featur es a specialized module for pr ocessing 16S rRNA gene amplicon 

sequencing data to create a protein database suitable for metaproteomics investigations. Moreover, it incorporates new differential 
abundance , inte gr ation, and visualization approac hes, enhancing the toolkit for a more insightful analysis of microbiomes. The func- 
tionality of these new features is showcased through the use of 4 microbiome multi-omics datasets encompassing various ecosystems 
and omics combinations. gNOMO2 not only replicated most of the primary findings from these studies but also offered further valu- 
a b le perspecti v es. 

Conclusions: gNOMO2 ena b les the thor ough inte gr ation of taxonomic and functional anal yses in micr obiome m ulti-omics data, of- 
fering novel insights in both host-associated and free-living microbiome resear c h. gNOMO2 is available freely at https://github.com 

/muzafferarikan/gNOMO2 . 

Ke yw ords: micr obiome, m ulti-omics, data inte gr ation, amplicon sequencing, metagenomics, metatr anscriptomics, metaproteomics 
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Bac kgr ound 

Microbiomes play pivotal roles in shaping the environments they 
inhabit such as influencing host health and disease [ 1 ] and con- 
tributing to the ov er all div ersity of life on Earth [ 2 ]. The compr e- 
hensive understanding of microbial communities and their im- 
pact on human health, ecosystems, and numerous other domains 
has become an incr easingl y pr ominent field of inv estigation [ 3 ]. 

Over the past decade, there has been a substantial increase 
in various omics data types generated from various microbiomes 
due to the de v elopment of nov el tec hniques and r educed experi- 
mental costs [ 4 , 5 ]. Hence, the multi-omics approach has emerged 

as a po w erful strategy to elucidate the functional potential of 
microbiomes, going beyond taxonomic profiling to decipher the 
molecular mechanisms [ 6–8 ]. The metabolic pathways, ecologi- 
cal inter actions, and ada ptiv e r esponses of micr obial comm uni- 
ties can be uncov er ed by integr ating m ultiple omics data [ 9 ]. Such 

a compr ehensiv e perspectiv e is inv aluable for potential implica- 
tions in diverse fields, such as human health, agriculture, and en- 
vir onmental conserv ation. 

To unr av el the complex web of interactions within micro- 
biomes and extract meaningful insights from the vast amount 
of data generated by advanced omics technologies, the de- 
velopment of sophisticated analytical tools and data analysis 
pipelines is essential [ 10 ]. Consequentl y, man y a ppr oac hes and 
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ools have emerged to address these needs [ 11–15 ]. One such
ipeline, gNOMO, facilitates the integr ated m ulti-omics anal y-
is encompassing metagenomics (MG), metatranscriptomics (MT),
nd meta pr oteomics (MP) thr ough the efficient gener ation and
se of a proteogenomic database, as well as differential abun-
ance anal ysis-based integr ation at the pathway and taxa lev-
ls [ 16 ]. Ho w e v er, gNOMO (along with other existing m ulti-omics
nalysis tools in the microbiome field) currently lacks the capa-
ility of processing 16S ribosomal RN A (rRN A) gene amplicon se-
uencing (AS) data to create a proteogenomic database while it is
 ell kno wn that the protein sequence database dir ectl y impacts

he outcome of any MP analysis [ 17 ]. 
For MP, it was shown that unnecessaril y lar ge databases can

ead to the exclusion of valid peptide spectrum matches [ 18 ], de-
anding more time and memory resources . Con versely, smaller 

atabases carry the risk of gener ating false-positiv e r esults that
r e irr ele v ant to the sample. In m ulti-omics–based micr obiome
tudies that combine MP with MG or MT, protein databases are
ypicall y gener ated fr om MG and MT data. Ho w e v er, for studies
hat integrate MP with AS, there is currently no tool available
o automatically create a protein database from AS data for MP
nal ysis. Gener ating an AS-based protein database can also be
aluable for studies that integrate MP, MG, and MT, as sequenc-
ng depth limitations may affect the detection of microbes and
 Open Access article distributed under the terms of the Cr eati v e Commons 
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enes, ther eby influencing MP anal ysis. Additionall y, ther e is a lack
f tools for conducting end-to-end integrated analysis of AS data
n conjunction with MP results. Most existing multi-omics anal-
sis tools are tailored to specific omics combinations and lack a
odular arc hitectur e that can accommodate various omics com-

inations . Furthermore , there is a shortage of multi-omics anal-
sis tools that incor por ate m ultiple integr ation a ppr oac hes and
r esent r esults at differ ent anal ysis sta ges, facilitating further in-
estigations using other tools. 

To addr ess abov ementioned needs of m ulti-omics data anal y-
es in microbiome resear ch, w e have made significant improve-
ents to the gNOMO pipeline . T hese enhancements encompass

he following k e y modifications: (i) We hav e r estructur ed the
ipeline, introducing a flexible and modular arc hitectur e that em-
o w ers gNOMO2 to seamlessly process a wide array of multi-
mics data derived from microbiomes. With 6 independent mod-
les, gNOMO2 can effortlessl y mana ge a vast spectrum of omics
ombinations, r anging fr om 2 to 4 distinct omics data types, whic h
nclude AS, MG, MT, and MP. (ii) One of standout features of
NOMO2 is its ability to process AS data and generate a pro-
ein database suitable for MP studies. (iii) Additionally, gNOMO2
ncor por ates 3 distinct a ppr oac hes for integrated multi-omics
nal ysis: pr oteogenomic database-based integr ation, differ ential
bundance-based integration (at taxa, functional category, and
athway le v els), and joint visualization-based integr ation. These

nnov ativ e a ppr oac hes offer a compr ehensiv e perspectiv e on the
icr obiomes, enabling r esearc hers to gain deeper insights into the

tructural and functional properties. gNOMO2 is an open-source
ool and fr eel y av ailable at [ 19 ]. 

ethods 

verview of the gNOMO2 pipeline 

he gNOMO2 ( RRID:SCR _ 025293 ) pipeline is designed as a
ool that relies on Snak emak e ( RRID:SCR _ 003475 ) [ 20 ], a well-
stablished bioinformatic w orkflo w management system. This
r ame work guar antees scalable data anal yses and the gener a-
ion of consistent and r epr oducible output data. The pipeline in-
or por ates a suite of software tools written in various program-
ing languages, including R ( RRID:SCR _ 001905 ), Python ( RRID:

CR _ 008394 ), Shell, and Perl, enabling the seamless execution of
 ulti-omics anal ysis steps for micr obiome data. The input data

nd pr ogr am par ameters in Snak emak e ar e easil y defined thr ough
 straightforw ar d configuration file. gNOMO2 streamlines this
r ocess by automaticall y gener ating the configur ation file fr om
he provided input data along with default parameters. 

To enhance user experience, the pipeline relies on publicly ac-
essible tools distributed as Conda en vironments , simplifying the
nstallation process for individual software components for the
nd user. gNOMO2 ensures result consistency and makes it user-
riendly for individuals with basic bioinformatics skills to analyze

ulti-omics data. The pipeline accepts raw sequencing files (in
astq.gz format) for AS, MG, and MT and tandem mass spectrom-
try (MS/MS) spectrum files (in mgf format) for MP data. 

The original gNOMO accepts MG, MT, and MP data as in-
ut and generates results for differential abundance analysis

n each omics layer. It also constructs a protein database us-
ng MG and MT data and performs both differential abundance
nd pathway-le v el integr ated anal yses (Fig. 1 A). In contrast, the
NOMO2 pipeline comprises 6 modules that facilitate direct anal-
sis of various omics combinations. Each module includes pre-
r ocessing, anal ysis of eac h omics dataset, data integr ation, and
isualization steps (Fig. 1 B). We implemented changes to both the
nalysis w orkflo w and pipeline structure. For w orkflo w adjust-
ents, we updated the quality contr ol, mer ging, assembl y, dif-

erential abundance, and visualization steps. In the quality con-
rol phase, we switc hed fr om using PrinSeq ( RRID:SCR _ 005454 )
 21 ] to Trimmomatic ( RRID:SCR _ 011848 ) [ 22 ] for cleaning and
rimming reads. For read merging, we replaced fastq-join with
LASH2 ( RRID:SCR _ 005531 ) [ 23 ] to merge paired-end reads. In
he assembly step, we transitioned from Ray ( RRID:SCR _ 001916 )
 24 ] to metaSPAdes ( RRID:SCR _ 000131 ) [ 25 ] for de novo assembly
f metagenomic sequences and from Ray to rnaSPAdes ( RRID:
CR _ 016992 ) [ 26 ] for de novo assembly of metatranscriptomic
equences. In the differential abundance analysis step, we re-
laced LefSe ( RRID:SCR _ 014609 ) [ 27 ] with MaAsLin2 ( RRID:SCR _
23241 ) [ 28 ]. For visualization, we replaced Krona ( RRID:SCR _
12785 ) [ 29 ] with ggplot2 ( RRID:SCR _ 014601 ) [ 30 ] to analyze tax-
nomic composition, enabling combined visualization of sam-
les. We also replaced LefSe with MaAsLin2 for visualizing the re-
ults of differential abundance analysis. For pathway-le v el anal y-
is results, we k e pt Pathview ( RRID:SCR _ 002732 ) [ 31 ] unchanged,
ut for joint visualization analysis, we used the combi ( RRID:
CR _ 024986 ) [ 32 ] pac ka ge to visualize outputs . T hese w orkflo w
hanges and comparisons between gNOMO and gNOMO2 are de-
icted in Supplementary Fig. S1 . 

Additionall y, we intr oduced c hanges to facilitate the incor po-
ation of metadata tables into analyses and automated the cre-
tion of the configuration file. To enhance and update the struc-
ure of the original gNOMO, we implemented 6 modules in the new
NOMO2 pipeline, allowing for the processing of different omics
ombinations . T he original gNOMO pipeline consisted of only 1
odule (Module 5 in gNOMO2), while gNOMO2 introduced 5 more
odules for specific combinations, along with the ability to accept
S data as input. 

odule 1: Processing AS data and generating a 

rotein database for MP analysis 

odule 1 is designed to process raw AS data in both paired-
nd and single-end formats , pro viding a directly usable protein
atabase for MP data analysis . T he first step in this module in-
olves using Trimmomatic to remove sequencing adapters, low-
uality bases from raw reads, and reads that are too short (de-
ault minimum length > 25 bp). The quality of both raw and
rimmed reads is assessed using FastQC ( RRID: SCR_014583) [ 33 ],
nd analysis results for all samples are summarized using Mul-
iQC ( RRID: SCR_014982) [ 34 ]. If the data are in paired-end for-

at, the quality controlled reads are merged using FLASH2. Sub-
equently, D AD A2 ( RRID: SCR_023519) [ 35 ] is used in conjunc-
ion with the SILVA database ( RRID: SCR_006423) [ 36 ] to obtain
n amplicon sequence variant (ASV) abundance table and tax-
nomy assignments for each ASV. After determining the user-
efined top “n” most abundant taxa at a user-defined taxo-
omic le v el, pr otein sequences of all complete genomes for these
axa are downloaded from the National Center for Biotechnology
nformation (NCBI) database using the ncbi-genome-download
 RRID: SCR_024977) [ 37 ]. All downloaded sequences are merged
nd cleaned, and a single protein sequence is retained from iden-
ical protein sequences to effectiv el y r emov e r edundancy using
eqKit ( RRID: SCR_018926) [ 38 ]. Importantly, for host-associated
icrobiome samples, the user can define host species name in
 configuration file. Host protein sequences are then included
n the final protein database together with microbial proteins.

odule 1 allows r esearc hers to construct a compr ehensiv e pr o-

https://scicrunch.org/resolver/RRID:SCR_025293
https://scicrunch.org/resolver/RRID:SCR_003475
https://scicrunch.org/resolver/RRID:SCR_001905
https://scicrunch.org/resolver/RRID:SCR_008394
https://scicrunch.org/resolver/RRID:SCR_005454
https://scicrunch.org/resolver/RRID:SCR_011848
https://scicrunch.org/resolver/RRID:SCR_005531
https://scicrunch.org/resolver/RRID:SCR_001916
https://scicrunch.org/resolver/RRID:SCR_000131
https://scicrunch.org/resolver/RRID:SCR_016992
https://scicrunch.org/resolver/RRID:SCR_014609
https://scicrunch.org/resolver/RRID:SCR_023241
https://scicrunch.org/resolver/RRID:SCR_012785
https://scicrunch.org/resolver/RRID:SCR_014601
https://scicrunch.org/resolver/RRID:SCR_002732
https://scicrunch.org/resolver/RRID:SCR_024986
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae038#supplementary-data
https://scicrunch.org/resolver/RRID:
https://scicrunch.org/resolver/RRID:
https://scicrunch.org/resolver/RRID:
https://scicrunch.org/resolver/RRID:
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Figure 1: Ov ervie w of gNOMO and gNOMO2 pipelines. (A) gNOMO accepts MG, MT, and MP data as input, pr oviding differ ential abundance anal ysis 
r esults for eac h omics layer. It also generates a protein database using MG and MT data and performs a pathway-le v el integr ated anal ysis. (B) gNOMO2 
comprises 6 modules, each tailored for specific omics data. Module 1 accepts 16S rRNA gene amplicon sequencing data (AS) as input and generates a 
protein database suitable for metaproteomics studies, a taxa abundance plot, and a phyloseq object that can be used for downstream analysis in other 
microbiome tools. Modules 2 to 6 handle different combinations of AS, MG, MT, and MP data, creating omics-specific protein databases, abundance 
tables , plots , differential abundance analysis results, and pathway-le v el integr ation anal ysis r esults. 
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tein database, either from their own AS datasets or publicly 
a vailable ones . Furthermore , this module creates a phyloseq 

( RRID: SCR_013080) [ 39 ] object containing an abundance table, a 
taxonomy table, and additional metadata. This enables ongoing 
micr obiome anal ysis using other anal ysis tools. In addition, an 

abundance plot is automatically generated to assess the abun- 
dance distribution of the top “n” taxa as defined by the user. 

Module 2: Integr a ted multi-omics analysis of AS 

and MP data 

Module 2 accepts raw paired-end and single-end AS and MP data 
as inputs . T he AS data under go the pr ocessing steps described in 

Module 1. The generated AS-based protein database is then used 

for the database search algorithm MS-GF + ( RRID: SCR_015646) 
[ 40 ] to identify peptides in the raw MP data. A peptide abun- 
dance table is subsequently created by aggregating results from 

indi vidual samples. Taxonom y and enzyme commission (EC) as- 
signments for the identified peptides are carried out using Py- 
teomics ( RRID:SCR _ 024988 ) [ 41 ] and Unipept ( RRID:SCR _ 024987 ) 
[ 42 ]. Then, MaAsLin2 is emplo y ed to determine differ entiall y 
abundant taxa based on both AS and MP data. In this analysis,
linear models are emplo y ed to identify taxa that exhibit signifi- 
cant differences in abundance between sample groups at AS and 

MP le v els while accounting for confounding variables and other 
factors that might impact the abundance of microbial taxa. Users 
can define the phenotype of inter est, cov ariates in the Snak emak e 
onfigur ation file. Furthermor e, users can specify the normaliza-
ion or transformation to a ppl y prior to conducting the differential
bundance anal ysis. Furthermor e, a joint visualization of MP and
S results is performed using the combi R pac ka ge . T his joint vi-
ualization allows to integrate and compare the r esults fr om both
ypes of omics data (taxa for AS and peptides for MP), providing
 compr ehensiv e vie w on a single ordination plot and helping r e-
earchers to identify associations of features from different omics 
atasets and covariates in metadata table . T he final outputs in-
lude abundance tables based on both AS and MP data, detailing
he abundance of taxa and peptides in each sample, respectively.
odule 1 also generates results from the differential abundance 

nalysis, highlighting the taxa that were significantly different be- 
ween sample groups based on their AS and MP profiles and the
oint visualization analysis results providing a graphical represen- 
ation of the combined AS and MP features, aiding in the interpre-
ation of the integrated results. 

odule 3: Integr a ted multi-omics analysis of MG 

nd MP data 

odule 3 is designed to handle raw paired-end MG and MP data.
P data ar e pr ocessed as outlined in Module 2. MG r aw r eads

r e quality c hec ked and cleaned using Trimmomatic, follo w ed
y merging with FLASH2. The quality of both raw and trimmed
eads is assessed using FastQC, and analysis results for all sam-
les are summarized using MultiQC. Cleaned and merged reads 
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r e then ma pped to the NCBI nonr edundant (nr) database using
aiju ( RRID:SCR _ 022775 ) [ 43 ], which generates taxonomic classi-
cation results. In parallel, clean reads are also used for assembly
ith metaSPAdes, and obtained contigs are classified as eukary-
tic and prokaryotic using EukRep ( RRID:SCR _ 024985 ) [ 44 ]. Pro-
eins within the prokaryotic contigs are predicted using Prodigal
 RRID:SCR _ 011936 ) [ 45 ] while Augustus ( RRID:SCR _ 008417 ) [ 46 ] is
sed for proteins within eukaryotic contigs . T hen, functional an-
otation of these predicted proteins is carried out using eggNOG
 RRID:SCR _ 002456 ) [ 47 ] to obtain KEGG ( RRID:SCR _ 012773 ) [ 48 ]
rthology (KO) identifiers, while InterProScan ( RRID:SCR _ 005829 )

 49 ] is emplo y ed for TIGRFAMs ( RRID:SCR _ 005493 ) [ 50 ] functional
nnotation. 

Module 3 generates several final outputs for both MG and MP
nalyses . T hese include taxonomic abundance tables, taxonomic
omposition plots, and r esults fr om taxa and functional anno-
ation (TIGRFAMs)–based differential abundance analyses . T he

odule also provides integrated analysis outputs: (i) a joint visual-
zation of omics layers as described in Module 2 and (ii) a pathway-
e v el integr ated anal ysis conducted using the P athvie w pac ka ge.
he P athvie w plots in this analysis illustrate the log2 ratio of the
ean abundance of individual omic features under different user-

efined conditions acr oss v arious omics le v els, following a fold
hange normalization. These log2 ratios are calculated and com-
ar ed using shar ed enzyme and KEGG ids between differ ent omics

a yers . Co v er a ges for gene sequences of eac h pr edicted pr otein by
G are calculated using BBMap ( RRID:SCR _ 016965 ) [ 51 ]. The cal-

ulated r atios ar e visualized on metabolic pathwa y nodes , which
re split into omics types (for example, 2 splits for Module 3 for
G and MP data). The color of each split part shows the abun-

ance change in the r ele v ant featur es between sample gr oups for
he specific omics le v el, allowing for the visual tr ac king of c hanges
n different omics levels on the same node. 

odule 4: Integr a ted multi-omics analysis of MG 

nd MT data 

odule 4 is designed to handle r aw pair ed-end MG and both
aired-end and single-end MT data. MG data follow the process-

ng steps outlined in Module 3. For MT data, a similar w orkflo w is
mplo y ed, with the exception that a de novo assembly step is con-
ucted using rnaSPAdes in place of metaSPAdes . T he final out-
uts of Module 4 include an MG- and MT-based proteogenomic
atabase, taxonomic and functional annotation-based differen-
ial abundance analysis results for both omics levels, taxonomic
bundance tables and plots, joint visualization of omics layers as
escribed in Module 2, and pathway-le v el integr ated anal ysis r e-
ults as outlined in Module 3. 

odule 5: Integr a ted multi-omics anal ysis of MG,
T, and MP data 

odule 5 accepts r aw pair ed-end MG, as well as both paired-end
nd single-end MT and MP data. MG and MT data follow the pro-
essing steps outlined in Module 4 while MP data are processed
s described in Module 2. The final outputs of Module 5 include a
G- and MT-based proteogenomic database, taxonomic and func-

ional annotation-based differential abundance analysis results
or 3 omics le v els, taxonomic abundance tables and plots, peptide
bundance table for MP, joint visualization of omics la yers , and
athway-le v el integr ated anal ysis r esults as outlined in Module 3.
odule 6: Integr a ted multi-omics analysis of AS, 
G, MT, and MP data 

odule 6 accepts both paired-end and single-end AS and MT data,
aired-end MG, and MP data. MG, MT, and MP data follow the pro-
essing steps outlined in Module 5. Ho w e v er, the final outputs
f Module 6 include a proteogenomic database, which is gener-
ted by combining AS-, MG-, and MT-based downloaded/predicted
rotein sequences, taxonomic and functional annotation-based
iffer ential abundance anal ysis r esults for 4 omics le v els, taxo-
omic/peptide abundance tables and plots, joint visualization of
mics la yers , and pathwa y-le v el integr ated anal ysis r esults as out-
ined in Module 3. 

nalyses 

o illustrate the utility of gNOMO2, we r eanal yzed samples fr om
 pr e viousl y published micr obiome studies involving v arious
ulti-omics combinations, using the respective publicly available

atasets. 

nalyzing the association of saliva content with 

ral cancer 
aliva is a complex biofluid that comprises various components,
ncluding DN A, RN A, proteins , metabolites , and microbiota. As a
 esult, it is consider ed a pr omising source of r ele v ant biomarkers
or a variety of diseases [ 52 ]. Granato et al. [ 53 ] combined AS and
P analyses to investigate the association between saliva content

nd oral cancer. The study suggests that oral microbiota and their
r otein abundance hav e potential dia gnosis and pr ognosis v alue
or oral cancer patients . Here , w e sho wcase ho w Modules 1 (AS)
nd 2 (AS and MP) of gNOMO2 can be used to efficiently reproduce
he findings. 

The AS data were obtained from NCBI SRA under BioProject
dentifier PRJNA700849 while MP data were retrieved from PRIDE
 RRID:SCR _ 003411 ) [ 54 ] under accession number PXD022859. The
ataset included saliva samples from 8 healthy controls and
5 oral cancer patients. To streamline downstream analyses, we
erged triplicates of AS samples and used cell debris MP sam-

les for all analyses . T he taxonomic composition results based on
S data across samples, as generated by gNOMO2, were consis-

ent with the reported results, demonstrating similar abundance
istributions and the presence of the same most abundant gen-
ra (Fig. 2 A). In their study, Granato et al . [ 53 ] constructed a pro-
ein database containing 1,160,275 protein sequences from the
2 most abundant bacterial genera and humans. We applied the
ame parameters in gNOMO2 to achieve comparable results, with
etting such as taxa_level: Genus, top_n: 12 and host: Homo sapi-
ns. gNOMO2 automatically generated a protein database from
S data by determining the 12 most abundant bacterial genera.

t then r etrie v ed all pr otein sequences fr om 1,992 genomes be-
onging these bacterial genera, along with human host proteins,
esulting in a total of 1,240,988 protein sequences . T he discrep-
ncy in the number of protein sequences between the generated
rotein databases may be attributed to variations in analysis tim-

ng and database differ ences. Gr anato et al. [ 53 ] used the HOMD, a
pecific database used for oral microbiome studies while gNOMO2
ses the NCBI database, intended to target all microbiome study
ypes. 

Within gNOMO2, users can also perform differential abun-
ance analysis at both omics le v els, yielding statistical test results
nd plots for differential abundant taxa. For instance, we pre-
ented one of differential taxa from AS-based (Fig. 2 B, upper) and

https://scicrunch.org/resolver/RRID:SCR_022775
https://scicrunch.org/resolver/RRID:SCR_024985
https://scicrunch.org/resolver/RRID:SCR_011936
https://scicrunch.org/resolver/RRID:SCR_008417
https://scicrunch.org/resolver/RRID:SCR_002456
https://scicrunch.org/resolver/RRID:SCR_012773
https://scicrunch.org/resolver/RRID:SCR_005829
https://scicrunch.org/resolver/RRID:SCR_005493
https://scicrunch.org/resolver/RRID:SCR_016965
https://scicrunch.org/resolver/RRID:SCR_003411
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Figure 2: Ov ervie w of gNOMO2 r esults for the Gr anato et al. [ 53 ] study. (A) Repr esentation of the 10 most pr e v alent gener a in saliv a micr obiota 
samples. AS-based r epr esentations of saliv ary micr obiota composition acr oss samples, highlighting the 10 most common bacterial gener a. Eac h bar 
indicates the r elativ e abundance distribution for a sample. (B) Abundance distribution of differ entiall y abundant taxa across study gr oups, pr esented 
separ atel y for AS (upper) and MP (lo w er) data. (C) Joint visualization-based integration results for AS, MP, and metadata. Blue labels r epr esent taxa, 
green labels represent peptides, and black labels represent metadata columns. Patient samples are marked with blue dots, while healthy samples are 
marked with red dots. 
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MP-based results (Fig. 2 B, lo w er). AS-based differential abundance 
analysis sho w ed a decrease in the abundance of Veillonella associ- 
ated with oral cancer (Fig. 2 B, upper), which corresponds to a k e y 
finding in the Granato et al. [ 53 ] study and previous studies [ 55 ].
Inter estingl y, gNOMO2 detected a reduction in the abundance of 
peptides classified as Homo in oral cancer patients (Fig. 2 B, lo w er) 
while the original study did not report any statistically significant 
changes . T his divergence may result from differences in analysis 
a ppr oac hes, as gNOMO2 employs a pe ptide-based taxonom y by 
Unipept and MaAslin2 for differential abundance analysis instead 

of a protein-based approach. Furthermore, it is important to note 
that we did not account for other covariates that may affect the 
results. 

Finall y, gNOMO2 gener ates a joint visualization plot for AS, MP,
and metadata (Fig. 2 C). This plot confirms the association of Veil- 
lonella based on AS with oral health status based on AS data and 

additionall y r e v eals associations between some detected peptides 
and the oral health status of the participants. Notabl y, InterPr o 
entries assigned to these peptides included human albumin pro- 
teins, whic h wer e pr e viousl y r eported to be associated with or al 
cancer [ 56 , 57 ]. 

Exploring potential and acti v e functions within 

the human gut microbiota 

The human gut microbiota is widely recognized for its important 
roles in both health and disease. A comprehensive understanding 
of both potential and active features can provide valuable insights 
into the mechanisms governing various physiological processes 
and pathologies, ultimately leading to more effective strategies 
for maintaining and improving human well-being. 

Tanca et al. [ 58 ] emplo y ed MG and MP to explore the potential 
and active functions in the gut microbiota of a healthy human 

cohort. Here, we used Module 3 (MG and MP) of gNOMO2 to effi- 
cientl y r eanal yze the m ulti-omics data fr om their study. The MG 

data were obtained from the NCBI SRA under BioProject identifier 
PRJEB19090, while the MP data wer e r etrie v ed fr om PRIDE under 
accession number PXD005780. The dataset included gut micro- 
biota samples from 6 males and 8 females. 
We emplo y ed gNOMO2 to investigate potential differences be-
ween male and female participants. Taxonomic composition re- 
ults based on MG and MP data, as generated by gNOMO2, ex-
ibited a significant ov erla p with the findings of Tanca et al.
 58 ], particularly concerning the most abundant genera (Fig. 3 A,
pper). MG-based differential abundance analysis, using default 
ar ameters, indicated a notabl y higher abundance of Legionella 

n females. Ne v ertheless, it is important to a ppr oac h this find-
ng with caution, given that Legionella is a bacterial genus typi-
ally associated with water and soil en vironments , often consid-
red a potential source of contamination in human microbiome 
tudies [ 59 ]. 

Functional annotations derived from TIGRFAMs for the differ- 
ntial abundance analysis indicated a reduction in biotin syn- 
hesis (Fig. 3 B, lo w er). The joint visualization plot depicted both
G and MP features along with covariates such as body mass in-

ex, age, and sex (Fig. 3 C). In our pathway-le v el integr ation anal-
sis, we illustrated the components of pyrimidine metabolism 

nd how variations in their abundance can be observed among 
tudy gr oups acr oss differ ent omics le v els (Fig. 3 D). As a case in
oint, cytidine deaminase (EC 3.5.4.5) displayed a decreased abun- 
ance in females at the MG le v el (color ed gr een, left), while its
bundance increased at the MP level (colored red, right). This dis-
repancy suggests a decrease in the abundance of taxa carry-
ng the corresponding gene but a higher expression of the pro-
ein. Again, this highlights the significance of adopting a multi-
mics perspective when drawing conclusions in microbiome 
tudies. 

n vestiga ting the role of microbiota of the 

aasdam cheese during ripening 

he micr obiota pr esent in c heese plays a crucial role in the mat-
r ation and de v elopment of its distinctiv e flavor, making it a piv-
tal aspect for the cheese industry. Duru et al. [ 60 ] combined MG
nd MT to tr ac k shifts in both taxonomic compositions and gene
xpressions of Swiss-type Maasdam cheese microbiota during the 
ipening pr ocess. Her e, we used Module 4 (MG and MT) of gNOMO2
o efficiently reanalyze multi-omics data from their research. 
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Figure 3: Ov ervie w of gNOMO2 r esults for the Tanca et al. [ 58 ] study. (A) Repr esentation of the 10 most pr e v alent gener a in gut micr obiota samples, as 
sho wn b y MG and MP. The left side illustr ates the 10 most common bacterial gener a based on MG data, while the right side r epr esents MP-based 
findings. Each bar represents relative abundance distribution for a sample. (B) Abundance distribution of differentially abundant taxa across study 
gr oups, separ atel y for MG (upper) and MP (lo w er) data. (C) Joint visualization-based integration results for MG, MP, and metadata. Blue labels r epr esent 
taxa, green labels show peptides, and black labels represent metadata columns. Male samples are marked with blue dots, while female samples are 
marked with red dots. (D) Pathway-level integration results, demonstrating the relationship across different omics levels . T he findings from MG and 
MP are illustrated separately as split nodes on the left and right, respectively. 
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MG and MT data wer e r etrie v ed fr om the EBI ENA under BioPro-
ect identifier PRJEB23938. The dataset comprised 3 samples from
ay 12 and 3 samples from day 37 of the ripening process. 

We emplo y ed gNOMO2 to investigate potential differences be-
ween differ ent sta ges of ripening pr ocess. Taxonomic composi-
ion results generated by gNOMO2 based on MG and MT data
ho w ed that Lactococcus , Lactobacillus , and Propionibacterium were 3
ost abundant genera across samples (Fig. 4 A), consistent with

he findings of Duru et al. [ 60 ]. Differ ential abundance anal y-
es r e v ealed significantl y higher r elativ e abundance of Propioni-
acterium , the main bacterial genus responsible for propionate
etabolism in the Maasdam cheese, in cold ripening samples in

oth MG and MT le v els (Fig. 4 B), whic h also well aligns with the
esults of the original study. 
The joint visualization plot depicted both MG and MT fea-
ures along with the ripening types (Fig. 4 C). In our exploration
f pathway-le v el integr ation, we depicted the elements of pr opi-
nate metabolism and highlighted how fluctuations in their abun-
ance v aried acr oss study gr oups at MG and MT le v els (Fig. 4 D).
otabl y, genes r elated to pr opionate pr oduction exhibited higher
bundance in cold ripening samples (day 37) compared to warm
ipening ones (day 12) at the MT le v el (color ed r ed, right), while
heir le v els wer e not significantl y differ ent at the MG le v el (color ed
ray, left). As a result, we did not observe a decrease in expression
f genes responsible for propionate production, contrary to find-
ngs in the original study. This discrepancy may originate from

ethodological differences between the studies . T he gNOMO2
ipeline compares the expression of propionate production genes
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Figure 4: Ov ervie w of gNOMO2 r esults for the Duru et al. [ 60 ] study. (A) Repr esentation of the 10 most common gener a in c heese micr obiota samples. 
MG- and MT-based ov ervie w of gut microbiota composition across samples . T he 10 most common bacterial genera in cheese microbiota samples are 
shown for MG (left) and MT (right). Each bar represents relative abundance distribution for a sample. (B) Abundance distribution of differentially 
abundant taxa across study groups by MG (upper) and MT (lower). (C) Joint visualization-based integration results for MG, MT, and metadata. (D) 
P athway-le v el integr ation r esults, demonstr ating the r elationship acr oss differ ent omics le v els . T he findings fr om MG and MT ar e illustr ated 
separ atel y as split nodes on the left and right, r espectiv el y. 

t  

a  

c  

d
b  

p

D
w
C  

o
a  

m
i  

s  

M  

fi
 

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae038/7712665 by R

obert Koch-Institut user on 12 February 2026
against total gene expression, whereas the Duru et al. [ 60 ] study 
compared these genes against the overall expression of the Propi- 
onibacterium genome obtained in their r esearc h. Consequentl y, the 
r elativ e expr ession of these genes might a ppear higher when as- 
sessed against all genes but lo w er when measured against only 
Propionibacterium genes. To validate this, we conducted compar- 
isons using the Propionibacterium genome from the original study 
in the gNOMO2 pipeline for gene expression levels. Changing the 
denominator from all genes to Propionibacterium genes yielded re- 
sults consistent with the original study. 

Our findings emphasize the critical role of accur atel y inter pr et- 
ing analysis outcomes based on the structure of the analytical 
pipeline. Assuming a default a ppr oac h, particularl y during com- 
parison steps, could lead to unsupported conclusions. In meta- 
omics studies, various approaches can be emplo y ed for data anal- 
ysis. While none of these a ppr oac hes ar e inher entl y wr ong, they 
may not align with the goals set by the r esearc h gr oup. When the 
pipeline’s structure is well defined, no inconsistencies in biological 
conclusions would be expected. Additionally, we stress the impor- 
(
ance of clear language in explaining results in r esearc h articles,
s failure to do so may mislead readers. In this instance, the dis-
repanc y w as primaril y due to differ ences between the a ppr oac h
epending on comparisons at the individual metagenome assem- 
led genome (MAG) le v el and the gNOMO2 a ppr oac h, whic h com-
ares with the whole community. 

etermining microbiome dynamics in a 

 astew ater treatment plant 
har acterization of micr obial comm unities acr oss v arious meta-
mics layers offers important insights into their potential traits 
nd functionalities. Herold et al. [ 61 ] utilized MG, MT, MP, and
etabolomics to explore the responses of microbial populations 

n a biological w astew ater treatment plant to disturbances. In our
tudy, we demonstrate how Modules 5 (MG, MT, and MP) and 6 (AS,
G, MT, and MP) of gNOMO2 effectiv el y r eplicate some of their

ndings using a subset of the samples. 
We obtained AS, MG, and MT sequencing data from EBI ENA

BioProject identifier PRJNA230567) and MP data from PRIDE (ac- 
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Figure 5: Ov ervie w of gNOMO2 r esults for the Her old et al. (2020) study. (A) Repr esentation of the 10 most common gener a in waste water micr obiota 
samples. MG-, MT-, and MP-based ov ervie w of gut microbiota composition across samples . T he 10 most common bacterial genera in w astew ater 
microbiota samples by MG (left), MT (middle), and MP (right). Each bar represents relative abundance distribution for a sample. (B) Abundance 
distribution of differ entiall y abundant taxa across study groups by MG (upper), MT (middle), and MP (lo w er). (C) Joint visualization-based integration 
results for MG, MT, MP, and metadata. (D) P athway-le v el integr ation r esults, demonstr ating the r elationship acr oss differ ent omics le v els . T he findings 
from MG, MT, and MP ar e illustr ated separ atel y as split nodes on the left, middle, and right, r espectiv el y. 
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ession number PXD013655). To investigate seasonal variations
eported by Herold et al. [ 61 ], we selected samples showcasing the

ost distinct differences between summer and winter seasons,
ncompassing 5 samples fr om eac h. Additionall y, we incor por ated
0 AS samples pr e viousl y collected from the same w astew ater
reatment plant by the same research group to assess Module 6. 

Our analysis, performed using gNOMO2, r e v ealed taxonomic
omposition results (AS, MG, MT, and MP data) that partially
ligned with the findings by Herold et al. [ 61 ] (Fig. 5 A). Ho w e v er,
nlike the original study, we did not observe pronounced compo-
itional changes in winter samples (Fig. 5 A). This discrepancy may
e attributed to differing a ppr oac hes in taxonomic composition
nal ysis as Her old et al. utilized taxonomic assignments of a sub-
et of metagenome-assembled genomes, while gNOMO2 employs
aiju for direct taxonomic classification of reads. 

While gNOMO2 did not detect differ entiall y abundant taxa be-
ween seasons across MG, MT, and MP la yers , our TIGRFAMs and
EGG pathway-based analyses indicated an elevation in fatty acid
egradation at the MT level (Fig. 5 B), aligning with the original
tudy. The joint visualization plot highlighted MG, MT, and MP
eatures along with covariates (Fig. 5 C). As a case point, the plot
 e v ealed the association of Tetr asphaer a with autumn, which has
een reported in previous studies to be associated with sludge
ulking that fr equentl y occurs in w astew ater treatment plants
 62 , 63 ]. 

In our pathway-le v el integr ation anal ysis (Fig. 5 D), we illus-
r ated v ariations in the components of fatty acid degradation
nd gl ycer olipid metabolism among study gr oups acr oss differ ent
mics le v els. Specificall y, gNOMO2 showcased an incr ease in fatty
cid degradation at the MT level while detecting an elevation in
l ycer olipid metabolism at both MT and MP le v els, as indicated
nd discussed in detail in the original study. 

When AS data wer e integr ated using Module 6, gNOMO2 con-
tructed a proteogenomic database comprising 4,959,677 pro-
eins, incor por ating 859,729 nonr edundant pr oteins deriv ed fr om
he top 10 most abundant genera identified in the AS analysis, in
ddition to the 4,025,111 proteins obtained from MG and MT anal-
ses. Inter estingl y, this integr ation r esulted in a slight decr ease in
he number of detected unique peptides ( ∼2%), indicating the im-
ortance of database size optimization in the multi-omics studies,

ncluding MP. The inclusion of AS data did not alter the other out-
omes derived from the MP data analysis. 

Our findings highlight that read-based and MAG-based tax-
nomic composition analysis approaches can lead to div er gent
esults and interpretations. Since neither approach is inher-
ntl y wr ong, this disparity underscor es the significance and ad-
 anta ge of thor oughl y examining meta-omics datasets using
arious methodologies . Hence , we underscore that employing
iv erse a ppr oac hes and perspectiv es in complex m ulti-omics
atasets may r e v eal nov el insights extending beyond the original
ypothesis. 

iscussion 

NOMO2 stands as a versatile and modular bioinformatic pipeline
esigned for integrated multi-omics analyses of AS, MG, MT, and
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MP data in a r epr oducible fashion. Our open-source tool efficiently 
employs techniques that process raw data and generates sum- 
mary tables and figures with just a single, straightforw ar d com- 
mand. gNOMO2 encompasses pr epr ocessing, genome ma pping,
assembl y, pr otein pr edictions, taxonomic and functional annota- 
tions, pr oteogenomic database gener ation, and differ ential abun- 
dance analysis steps for each omics la yer. Furthermore , gNOMO2 
offers a holistic perspective through integrated visualization of 
omics layers and facilitates pathway-le v el integr ativ e anal ysis.
In addition, it includes a dedicated module for AS data process- 
ing and the automatic protein database generation for MP stud- 
ies. gNOMO2 generates results that can serve as inputs for sub- 
sequent micr obiome anal yses using v arious bioinformatics tools,
enhancing user flexibility throughout the pr ocess. Demonstr ated 

efficacy of gNOMO2 with real datasets underscores it as an in- 
valuable tool across various multi-omics combinations in micro- 
biome r esearc h. Finall y, the emphasis on r epr oducibility is a cor- 
nerstone of gNOMO2, as it not onl y str eamlines the anal ytical pr o- 
cess but also ensures the reliability of results by providing users 
with fully documented and executable w orkflo ws, enhancing the 
tr anspar ency and r e plicability in omics-dri v en micr obiome r e- 
search. 

Despite its usefulness and effectiveness in multi-omics based 

micr obiome r esearc h, gNOMO2 still has certain limitations. First,
its performance may be influenced by the quality and depth of 
input data, thereby necessitating potential parameter optimiza- 
tions by the user. Second, gNOMO2 relies on existing databases 
for taxonomic and functional annotations , which ma y restrict 
the detection of features not cataloged within these databases.
Mor eov er, gNOMO2’s efficacy may also be influenced by the com- 
plexity of microbial communities, particularly in cases of high di- 
versity or rare taxa, where accurate profiling may be challeng- 
ing. Lastly, users should be aware that gNOMO2 assumes a cer- 
tain le v el of computational pr oficiency, and while efforts hav e 
been made to enhance user-friendliness, beginners may still face 
a learning curve because there is no graphical user interface 
provided. 

Futur e v ersions of gNOMO2 could addr ess these limitations 
through continuous updates , impro ved algorithmic approaches, 
and increased flexibility in handling diverse omics types , datasets ,
and microbial community structures. 

Availability of Source Code and 

Requirements 

Project name: gNOMO2 
Pr oject homepa ge: https:// github.com/ m uzaffer arikan/gNOMO2 
Oper a ting system(s): GNU/Linux 
Pr ogramming langua ge: Python, R, Shell, and Perl 
Other requirements: Conda and Snak emak e are required for im- 
plementation. At least 1 TB hard drive space and 200 GB memory 
ar e r ecommended to run the pipeline, dependent on databases 
and input file sizes used. 
License: MIT 

Restrictions to use by nonacademics: No 
RRID: SCR_025293 
BioTools ID: gnomo2 

Additional Files 

Supplementary Fig S1. The w orkflo w changes betw een gNOMO 

and gNOMO2 pipelines . T he original gNOMO accepts MG, MT and 
P data as input and generates results for differential abundance
nal ysis for eac h omics layer. gNOMO2 pipeline comprises six
odules (shown enclosed in tr a pezoids or rectangles) that al-

ow analysis of various omics combinations. A ste p-by-ste p com-
arison between Module 5 of gNOMO2 and the original gNOMO
ipeline is also shown (gNOMO & 5) 
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S: amplicon sequencing; ASV: amplicon sequence variant; EC: 
nzyme commission; ENA: European Nucleotide Arc hiv e; KEGG: 
y oto Enc yclopedia of Genes and Genomes; MG: metagenomics; 
IT: Massachusetts Institute of Technology; MP: metaproteomics; 
T: metatranscriptomics; NCBI: National Center for Biotechnol- 

gy Information; rRNA: ribosomal RNA; SRA: Sequence Read 
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