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Abstract

Mathematical models are established tools to assist in outbreak response. They help characterise complex pat-

terns in disease spread, simulate control options to assist public health authorities in decision-making, and longer-
term operational and financial planning. In the context of vaccine-preventable diseases (VPDs), vaccines are one

of the most-cost effective outbreak response interventions, with the potential to avert significant morbidity and mor-
tality through timely delivery. Models can contribute to the design of vaccine response by investigating the impor-
tance of timeliness, identifying high-risk areas, prioritising the use of limited vaccine supply, highlighting surveillance
gaps and reporting, and determining the short- and long-term benefits. In this review, we examine how models have
been used to inform vaccine response for 10 VPDs, and provide additional insights into the challenges of outbreak
response modelling, such as data gaps, key vaccine-specific considerations, and communication between model-
lers and stakeholders. We illustrate that while models are key to policy-oriented outbreak vaccine response, they can
only be as good as the surveillance data that inform them.

Keywords Vaccination, Impact, Outbreak, Immunisation, Mathematical modelling, Vaccine

*Correspondence: 19 Department of Veterinary Medicine and Pathology, University
Manjari Shankar of Cambridge, Cambridge, UK

m.shankar@imperial.ac.uk ' School of Public Health, University of Hong Kong, Hong Kong Special
! Medical Research Council Centre for Global Infectious Disease Analysis, Administrative Region, China

Imperial College London, London, UK

2 Centre for Artificial Intelligence in Public Health Research, Robert Koch
Institute, Wildau, Germany

3 Center for Infectious Disease Dynamics, Pennsylvania State University,
University Park 16802, PA, USA

4 Department of Statistics, Federal University of Technology, Akure,
Nigeria

° Department of Infectious Disease Epidemiology, Faculty

of Epidemiology and Population Health, London School of Hygiene &
Tropical Medicine, London, UK

6 Department of Epidemiology, Public Health, Impact, International
Vaccine Institute, Seoul, South Korea

’ Department of Paediatrics & Child Health, Faculty of Health Sciences,
University of Cape Town, Red Cross War Memorial Children’s Hospital,
Cape Town, South Africa

8 Department of Global Health, Boston University School of Public Health,
Boston, United States

9 Center for Health Decision Science, Harvard TH. Chan School of Public
Health, Boston, United States

©The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit httpy//creativecommons.org/licenses/by/4.0/.


http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-024-10243-0&domain=pdf

Shankar et al. BMC Infectious Diseases (2024) 24:1371

Background

Vaccine-preventable diseases (VPDs) continue to pose
a significant global health challenge. Often attributed to
gaps in vaccination coverage, the emergence and spread
of outbreaks of VPDs are characterised by a dispropor-
tionately high burden in low and middle income countries
(LMICs) [1]. Almost 103 countries have seen measles
outbreaks in the last 5 years due to low vaccine coverage,
demonstrating the urgency of closing such immunisa-
tion gaps and protecting those at-risk [2]. Limited access
to clean water and sanitation has additionally resulted in
an acute resurgence in cholera outbreaks across 23 coun-
tries this year, increasing demand for vaccines from the
emergency global stockpiles [3]. According to the IA2030
scorecard [4], of the 40 known outbreaks in 2022 that had
an outbreak response vaccination strategy, only 18% of
these had a timely detection and response, emphasising
the need to improve health system responses to decrease
burden of disease.

Of the several effective outbreak response interven-
tions, vaccines are among the most cost-effective, and
rapidly aid containment and reduce mortality and mor-
bidity [5-8]. Since 2000, the implementation of outbreak
response immunisation programs in LMICs has averted
5.81M cases and saved 327k lives across 210 outbreaks
of 4 vaccine-preventable diseases [9]. During an out-
break, however, complex patterns in disease spread[10,
11] and uncertainties in epidemiological and operational
parameters [10, 12, 13] can hinder the optimal design of
outbreak response vaccination strategies. Given these
complexities, the immediate use of mathematical models
can help project the effect of vaccine deployment strate-
gies [10, 14] and assess their sustainability based on key
considerations such as vaccine availability, at-risk popula-
tions, competing health system priorities and long-term
financial and operational implications [15]. Such models
can be used to rapidly test key hypotheses, estimate avail-
able parameters, evaluate past interventions and project
the impact of future strategies to inform public health
policy, [16-18].

The insights from model-based approaches can con-
tribute to national and global policy recommendations
on the timing and impact of vaccination strategies, while
accounting for variable input data and assumptions [19].
Thus, despite several challenges around the availability of
suitable data, spatial and social heterogeneity in risk and
incidence, and communication between modellers and
policymakers in the event of an outbreak [11, 19], math-
ematical models remain valuable tools in evaluating vac-
cination impact.

Previous studies have examined interactions between
modelling and policy in defining outbreak response as a
part of specially commissioned research groups [20-22]
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or for specific diseases or geographies [14, 23-27] . How-
ever, a consolidated overview of how mathematical mod-
elling can assist outbreak response vaccination across
all vaccine-preventable diseases (VPDs) is lacking. This
review synthesises study findings and the collective expe-
rience of modellers to demonstrate how mathematical
models have informed various aspects of an outbreak
response vaccination strategy and led to their extensive
use for contextual policy guidance. The focus is spe-
cifically on the modelling of outbreaks across 10 VPDs'
where a vaccine is currently available for use in outbreak
response. Recognising data uncertainties, we discuss key
criteria such as the definition of an outbreak, and the data
required to arrive at a robust model alongside vaccine-
specific considerations for modelling outbreak response.
Finally, we touch on the limitations of modelling vaccine
use during an outbreak and explore key considerations
for communication.

Main text

Significance of modelling in addressing vaccine policy
questions

Mathematical models are useful tools to synthesise avail-
able data and influence vaccine policy across different
phases of an outbreak. To understand the significance of
iterative policy-oriented modelling, it is helpful for the
purposes of this review to classify outbreak response dis-
tinctly into the investigative, scale-up and control phases
[28]. These phases are illustrated below in Fig. 1.

The earliest stage of the outbreak requires surveil-
lance or detection followed by rapid collection of data;
modelling at this stage can provide early insights into
transmission dynamics and the immediate impact of
the outbreak. Vital statistics such as the characteris-
tics of the pathogen, disease burden, transmission rate,
population at-risk, and demand for healthcare can be
difficult to obtain in a timely and consistent way and
may not be directly observable, particularly in the early
stages of an outbreak. However, it may be possible to
synthesise evidence from previous outbreaks of the
same pathogen to better define the parameter space.
In scaling up an outbreak response, modelling can
account for heterogeneity in the population to tailor
vaccine interventions and prioritise accordingly, sub-
ject to data availability Models can also be used to draft
control strategies, to identify gaps in surveillance and
reporting, to estimate the actual need for vaccines as
well as help with the prioritisation and stockpiling for

! Typhoid* Dengue*, MenA* yellow fever*, Measles* Cholera* COVID-
19% Ebola, Chikungunya, Mpox. Those with an * are modelled in the Vac-
cine Impact Modelling Consortium.
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Fig. 1 Timeline of outbreak included detection and outbreak response vaccination campaign. Red vertical bars indicate incidence or similar.
Blue dotted lines indicate vaccination coverage or doses given. Diamonds indicate key points along the timeline and colour indicates phases
where green = investigative phase, yellow = scale-up phase, blue = control phase. Black text indicates potential modelling outputs at each stage

future use. Modelling can also be of assistance outside
the outbreak timeline, either identifying at-risk areas
before an outbreak or reviewing intervention effective-
ness following an outbreak. The impact of an outbreak
response vaccination program depends on factors such
as the timeliness of the response at each stage alongside
the rapid identification of target population, estimat-
ing vaccine availability and optimising health system
capacity. Table 1 in Appendix shows a summary of the
mathematical modelling studies included in this review,
organized by pathogen, outbreak phase and overall
study objective.

As an example, a real-time modelling exercise by Gra-
ham et al. [29] to respond to a measles outbreak with a
catch-up vaccination campaign in Guinea amidst the
Ebola crisis demonstrated the usefulness of model-based
projections of population risk and future incidence on
priority setting and planning. Furthermore, modelling
has been used to estimate critical values such as the
severity of disease or case fatality ratio which are vital for
healthcare provision [30-32]. This integration of mathe-
matical modelling into policy design has provided critical
insights into outbreak dynamics and the effectiveness of
responses [33].

Outbreak response timeliness

When assessing and responding to an outbreak, swift
action is required. This applies to both understanding
the real-time situation and to implementing interven-
tions. Numerous outbreaks have seen models used to

project real-time incidence and burden, and Ebola is
a key example. Across different outbreaks, Ebola inci-
dence has been projected given intervention scenarios,
including the 2014-2016 Guinea epidemic [34], 2018
Equateur, DRC epidemic [35], and the 2018-2020 out-
break in North Kivu and Ituri Provinces, DRC [36].
Similarly, the benefits of rapid outbreak responses
have been quantified across multiple modelling stud-
ies for a range of diseases in the context of: logisti-
cal and operational constraints [37], alert and action
thresholds for responding to outbreaks [38-40], and
alternative scenarios around outbreak response timing
[41]. Throughout these studies, the same qualitative
conclusion has appeared- that more rapid outbreak
response vaccinations provides better results, however,
modelling allows this conclusion to be quantified for
the context and outbreak in question. For example, a
study on the 2015/6 outbreak of yellow fever in Angola
found that a 60-day delay in vaccine deployment would
have more than doubled the observed deaths and a
delay of 180 days would have led to a five-fold increase
in deaths [41].

Identifying high-risk areas and/or populations

Effective prevention and control of infectious disease
outbreaks requires the consideration of heterogeneity
in disease risk, incidence and effectiveness of vaccine
interventions. During an outbreak, geostatistical mod-
els can help situate socioeconomic mobilisation and
public health decision-making through characterising
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spatial dynamics and optimising available interventions
like vaccines [42—44]. They can estimate burden at dif-
ferent geographical scales and suggest areas of higher
risk thereby facilitating the effective deployment of
vaccines or other public health measures. These types
of models have been utilised for outbreaks of COVID
[45], Ebola [46—-48] and polio [49] to suggest optimised
vaccination strategies.

The risk of outbreaks may be spatially heterogene-
ous and influenced by environmental, climatic or land-
scape-related factors [50, 51]. This is evident in YF as
well as chikungunya and dengue amongst others [52—
54]. Understanding these factors can aid in preventa-
tive measures and help with ensuring surveillance is
available in at-risk locations, therefore informing the
investigative phase of outbreak response. For example,
multiple studies have examined the potential of spread
of YF from endemic areas to vulnerable populations,
in part prompted by the exportation of cases from an
outbreak in Angola in 2016 to China [55-60] and more
recently focused on Djibouti, Somalia and Yemen [61]
to inform surveillance in potential and moderate risk
countries.

Furthermore, disease risk and outcomes are influ-
enced by heterogeneities in the host populations and
the host behavioural responses. These may be due to
socioeconomic factors leading to differences in health-
care access, pre-existing vaccination and intervention
coverage, or population susceptibility [62, 63]. There
has been an increasing focus on including social and
other vulnerabilities in mathematical models of infec-
tious diseases and particularly outbreaks [64, 65].
Similarly, modelling has been utilised to project the
distribution of vulnerabilities such as poverty [63]
which can inform the distribution of interventions or
planning of service provision as well as projecting the
future severity of an ongoing outbreak. The inclusion
of behavioural change into epidemiological models
has grown in recent years from a primarily theoretical
influenza-like-illness perspective, to the use of mobility
and social distancing data in the COVID-19 pandemic
[65—-67]. However, there were still calls for further inte-
gration of behavioural components into epidemiologi-
cal models and for more data collection, e.g. through
surveys, to empirically inform the models [65, 67].

Prioritisation of limited vaccines and optimising stockpiles

Vaccination is one tool in the suite of outbreak response
activities and, depending on the pathogen, it may be
the primary form of response, such as for yellow fever.
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However, ensuring that sufficient doses are available at
the right time, in the right place, requires careful plan-
ning ahead of time. As a result, stockpiles are devel-
oped that can be deployed to tackle outbreaks at short
notice. The size, location and timing of production for
vaccine stockpiles, as well as the optimal deployment
approach vary by context. Mathematical modelling is
one way of optimising the size and deployment of vac-
cine dose stockpiles. For example, the stockpile of yel-
low fever (YF) vaccines is limited and new doses take
one year to produce [68]. But, mathematical models
have been used to show fractional dosing can be safely
utilised to stretch supplies when necessary and prevent
outbreaks as the population-wide benefits of higher
coverage overshadow the potential loss in efficacy for
an individual [69, 70].

Modelling as a tool for highlighting surveillance gaps

and reporting

By synthesising data and evidence, mathematical mod-
els can be used to identify areas of greater uncertainty
or influence. They can also estimate the under-reporting
of incidence in an outbreak; epidemics of meningitis
have occurred in the African meningitis belt for more
than 100 years but, whilst the largest reported epidemic
occurred in 1996, it is likely the true incidence was
almost double that reported as routine reporting systems
faltered and families avoided seeking healthcare [71, 72].
Similarly, YF has a non-specific symptom set and this can
affect reporting. Modelling has been used to estimate the
severity spectrum based on historic outbreaks [30, 56],
the probability that a case may be reported [73], or to
project burden in areas where surveillance data is absent
(73, 74].

Considering multiple vaccines and interventions

Mathematical modelling can be used to assess relative
benefits of interventions and approaches and this can
include, although less commonly, multiple vaccines or
interventions. Often further outcomes are examined such
as cost-effectiveness or healthcare burden rather than the
more common indicators of mortality such as reported
deaths. For example, in the case of Ebola, some studies
have moved away from purely epidemiological model-
ling to understand the cost-effectiveness and pricing of
vaccines [15, 75, 76]. Examining multiple pathogens and
interventions in the same modelling framework can lead
to informative results on which interventions are uni-
versally optimal, vs just effective for one pathogen. For
example, when chikungunya, dengue, Zika and yellow
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fever were considered together, the usage of insecticide
and insecticide-treated bed-nets was found to be optimal
irrespective of which diseases were included [77]. Simi-
larly, weighing the relative benefits of interventions for
the same disease has been discussed, for example includ-
ing YF in the Expanded Program on Immunization (EPI)
for Nigeria was found to be more cost-effective than
emergency response [78].

Key model inputs

At each phase of the outbreak, there are key data that can
inform modelling and/or decision making; this includes
information on the outbreak response itself. Figure 1
illustrates an example outbreak timeline with key notifi-
cation points as well as the potential modelling that can
take place at different phases.

Defining an outbreak

The definition of an outbreak varies by context and path-
ogen, and in some cases, over time. Understanding the
criteria for the beginning and end of an outbreak allows
modellers and public health officials to assess the out-
break magnitude, duration, and severity, thus informing
a proportionate response. Modelling has been used to
assess the confidence that an outbreak is over based on
time since final reported case [79].

Classifying the beginning and end of an outbreak,
as well as whether reported incidence is endemic or
epidemic, is critical for producing realistic and action-
able model outputs. Brady and colleagues [80] test
approximately 102 variable outbreak definitions on
a dataset of reported dengue cases in Brazil to show
that inconsistency in these can hinder an effective out-
break response and establish the need for clear quan-
titative definitions to support modelling exercises. In
the case of yellow fever, one reported case constitutes
an outbreak, so understanding the under-reporting
and reporting delays are key to understanding when
transmission may have occurred [81]. In some cases,
an outbreak is defined by a period where the effective
reproductive number is above 1, the epidemic thresh-
old [82-85]. In such cases, it may be possible to define
an automated threshold for detection to improve
response timeliness [86—90].

Pathway to outbreak detection

In practice, it is often not possible to observe the trans-
mission of infection events that lead to an outbreak, only
the change in the reported burden [90]. This highlights
the importance of capturing uncertainty at each stage
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of the outbreak modelling. For example, the speed and
accuracy of diagnostic tests (if they are available) should
be considered when developing alerts or thresholds for
outbreak detection, as well as background-noise infec-
tions (non-target diseases that present with clinically
similar symptoms). Médecins Sans Frontiéres use dif-
ferent measles outbreak definitions based on whether
there is IgM confirmation, as well as the recency and
coverage of vaccination campaigns [91]. Model simula-
tions of the underlying dynamics and testing compo-
nents can be used to explore the interaction between
diagnostic test uncertainty, levels of background noise,
testing rates, and outbreak and alert definitions provid-
ing insight into appropriate outbreak thresholds and
response triggers [92, 93]. Further, modelling methods
to account for delayed and reduced reporting rates have
been developed, but due to their computational complex-
ity they may not be feasible to deploy in real-time and/
or resource-constrained environments that are typical of
outbreak settings [94].

Data requirements for modelling

As seen during the recent COVID-19 pandemic, chal-
lenges in finding and accessing data and its varying
quality and coverage has underscored the need for
a better data ecosystem for modelling needs in the
future [95]. Despite this, modellers and the COVID-
19 response benefited from analytical and visuali-
sation capabilities and collective efforts to improve
models [96]. Using locally available, granular data
alongside country-owned modelling has formed the
basis of user-friendly tools for outbreak response
[97]. This approach improves both the socialisation
of model outputs as well as the quality of the model
itself through the integration of relevant data. Key data
sources for epidemiological modelling of outbreak
response vaccination include aspects such as case
counts, disease occurrence, seroprevalence surveys
and historical outbreak response timing [52, 54]. Other
information such as demography, mobility and historic
immunisation coverage are also critical to establish the
epidemiological state of the population at the time of
the outbreak. As noted later, the quality of modelled
outputs is contingent on the quality of input data and
assumptions.

Vaccine-specific considerations in modelling outbreaks
Common and unique vaccine questions
Vaccine-preventable disease outbreaks can present
unique, disease-specific questions, but there are often
common analysis needs that are relevant for many
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epidemics- particularly around healthcare demand
forecasting or timing of interventions. For yellow fever,
vaccine-specific considerations often include the time
required to manufacture the vaccine due to frequent
supply shortages; similarly, this often results in the
need for fractional dosing during outbreaks [70]. For
yellow fever, Dengue, Ebola, and Mpox, there are chal-
lenges in our understanding of immune correlates of
protection [15, 19, 98, 99]; ongoing discussions for yel-
low fever consider whether booster-doses are needed
or if assumptions of lifelong protection are appropri-
ate [70]. For Dengue, there are differences in the vari-
ations of efficacies in endemic settings and across
different serotypes [19]. Additionally, differences have
been seen in efficacies between naive individuals and
individuals with dengue antibodies [19]. For Mpox,
there are large uncertainties on effectiveness that must
be taken into account, as current research assumes it
confers similar protection to smallpox [100]. For Ebola
and measles, the duration of vaccine-induced protec-
tion is unknown, though for the latter the timescale is
greater than a single outbreak [15, 99]. The vaccines
for Ebola Virus Disease also have additional consid-
erations, as supply constraints often mean there is a
trade-off between priority geographies, policy aims,
and feasibility; strategies like ring vaccination may not
always be possible [15, 99, 101]. Recent studies have
focused on assessing the use cases of the novel vac-
cines in a variety of settings with varying model struc-
tures [101-107]. And as seen with COVID-19, future
vaccine considerations may need to consider the pos-
sibility of immune escape, as this could jeopardise vac-
cine-induced herd immunity [108].

Evaluating long and short-term benefits

During outbreaks, policymakers often rely on mod-
elling estimates for both short and long-term deci-
sion making. Short-term timelines often focus on the
emergency aspects of the response - guiding policy
and potential actions [109]. Later in an outbreak, long-
term decision making may involve dealing with com-
peting objectives or other social and economic costs
[109]. Vaccination activities, whether they are outbreak
response campaigns or routine immunisation, can
also have both immediate and longer-term benefits.
During an outbreak-response, the aim of the vaccina-
tion activity is usually to stop the spread of an out-
break thus reducing the burden of severe disease and
deaths. However, depending on the pathogen and vac-
cine, such activities can have benefits over the lifetimes
of vaccinees that should not be overlooked in impact
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assessments. This can be captured by different views
of vaccine impact such as by calendar year, for more
immediate effects, or by vaccinated birth cohort, to
capture longer-term benefits [110]. However, it is also
important to consider the time window that an inter-
vention is evaluated over which can be linked to how
the end of an outbreak is declared [79].

Key considerations for communication

Ideally, local, within-country, and context-specific
capacity for modelling and relationships between
stakeholders and modellers should already be estab-
lished in advance of an outbreak; this ensures decision
science can move at the pace required to prevent dis-
ease transmission and deal with ongoing uncertainty
[109]. Currently, however, several countries lack the
technical capacity, relationships, or communication
skills for modelling evidence to be used effectively
in outbreak situations [111, 112]. The barriers to the
use of modelling evidence by policymakers are varied.
Most frequently, policymakers cite a lack of relevant
research, i.e. models do not address the concerns or
situations policymakers face to be useful in decision
making [112-116]. In situations where models do not
yet exist, policymakers note there is no time or oppor-
tunity to use the research evidence [111-113, 117] or
find barriers to the cost of model development [112,
113]. Further, policymakers and other users have
stated that they are unable to understand and interpret
the evidence modellers provide [111-113, 115, 116],
and often additionally shared in formats that are dif-
ficult to decipher [112, 116]. The value of the model
evidence may also not be well understood [111, 112].
Overall, these barriers are confounded by a lack of col-
laboration or trust between the research and political
world [111, 112].

The greatest facilitators in overcoming these barriers,
included contact, collaboration, and strong relationships
between policymakers and modellers [109, 113, 115, 118,
119], additionally noting the importance of trust and
mutual respect [109, 112, 113, 115]. Importantly, to pro-
mote the use of modelling evidence in decision science,
policymakers noted that there should be frequent inter-
disciplinary exchange between the two groups, alongside
early involvement [109, 112, 118-120].

Importantly, poor understanding or communica-
tion of modelling results to stakeholders can lead to
significant consequences, including intentional or
unintentional “misinformation, disinformation, and
censorship, or, rather, public perceptions of such” [114].
This may further lead to an eroding of trust in public
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health, institutions, or interventions [114, 117]. During
outbreaks, it is crucial to uphold accountability to sci-
entific standards, consider appropriate evidence when
making decisions, and remain open and transparent in
communication while implementing evidence-based
interventions [114, 117, 120].

In order to promote the use of modelled evidence
by policymakers, modellers should ensure results are
presented with consistent messaging, utilising sim-
ple, clear language, noting uncertainties, and in a light-
weight format [111, 112, 114, 119, 121]. Results should
be interpreted for a specific policy, using health-system
generated data for models within the appropriate con-
text [111, 112, 117, 119, 121], and researchers should be
trained in their ability to communicate to a policy audi-
ence [112]. More crucially, stakeholders and modellers
should be brought together in advance of outbreaks to
build effective relationships and trust [112, 114, 119].

The interdisciplinary nature of modelling

Prior to the COVID-19 pandemic, half of all the collab-
orative work on vaccine-preventable disease outbreak
response was between academic institutions; with a
further 31.7% between academic institutions and gov-
ernments or NGOs [122]. However, many lessons from
the COVID-19 pandemic highlighted the bidirectional
nature of communication and collaboration, emphasiz-
ing the need to “oster knowledge and skills exchange”
etween various groups, including public health staff,
such as physicians and field epidemiologists, and poli-
cymakers [123, 124]. Future efforts to maintain rela-
tionships built during COVID-19 and lessons learned
will be crucial to improving modelling for outbreak
responses.

Limitations of modelling in outbreaks

Modelling is no replacement for accurate surveillance,
or the timely collection of data, and it is subject to vari-
ous limitations. Whilst modelling can assist in synthe-
sising disparate, and sometimes biased, data sources,
the contrasting input information can lead to uncer-
tain and potentially confusing results. Conversely,
modelling studies that do not appropriately propagate
uncertainty from their inputs and assumptions can pro-
vide a false sense of security in their estimates. This is
particularly the case for outbreak modelling which is
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more vulnerable to under-reporting in the data, and
sparse data in general. Ultimately, models can only be
as good as the data that inform them and are a prod-
uct of their structure and assumptions. They can also
suffer from being a ‘black-box’ in terms interpretation
and reproducibility which can be a barrier to effective
collaboration between modelling consumers and mod-
elling producers. For the best defined and most robust
results, modelling limitations must be understood and
communicated effectively to public health practitioners
and policymakers [125, 126]. With appropriate context
and a pragmatic discussion of limitations, modelling
can contribute as one among a suite of tools for public
health action.

Conclusions

Mathematical modelling is one facet of a multi-
pronged scientific response to an outbreak of a
vaccine-preventable disease. In this review, we the-
matically outline the important role of modelled esti-
mates in informing outbreak response vaccination
strategies and in guiding policy worldwide. We dem-
onstrate that mathematical models can be employed
to successfully quantify the impact of response timeli-
ness, spatio-temporal heterogeneity, vaccine availabil-
ity and surveillance gaps on outbreak size and in doing
so, influence the design of an optimal immunisation
response. While data uncertainties can be plenty, the
definition of an outbreak and the pathway to outbreak
detection are important factors to consider in any pol-
icy-oriented modelling exercise to measure vaccine
impact. As we continue to face the threat of infectious
disease outbreaks, this review emphasises that models
can be used to evaluate the impact of vaccines beyond
the timeline of the outbreak to help policymakers plan
for population-wide healthcare needs based on avail-
able resources in the future.

Future efforts at designing a rapid yet effective out-
break response vaccination strategy will require a holis-
tic approach where modelling efforts are accompanied
by strengthened surveillance systems, improved collabo-
ration and communication between modellers and pol-
icy-makers as well as a contextual understanding of the
pathogen, disease and demography.
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Appendix

Table 1 Summary of studies by pathogen, outbreak phase, & study objective

_ , (iii) do both . Studies were included if: they were cited in this review, used
mathematical modelling & focused on a specific pathogen [12, 15, 20-22, 24, 27, 29, 31, 32, 34-36, 38-41, 43, 45-49, 52, 53, 55, 56, 59-61, 70,
73-75,78-80,82,98-107

[

Pathogen/Phase Scale-up Control & Preparedness

Ebola Ajelli et al. [34]
Bellan et al. [48]
Guttieres et al. [15]
Wells et al. [46,47]
Kelly et al. [35] _
Lietal. [12] _
Potluri et al. [104] Kucharski et al. [107]

Obeng-Kusi et al. [75]

COVID-19 Ferguson et al. [20] Grauer et al. [45]

Jombart et al. [82]

Yellow Fever Gaythorpe et al. [73]

Zhao et al. [41]

Wu et al. [70]

Monath and Nasidi [78]
Shearer et al. [74]

Codeco et al. [S5]
Cracknell Daniels et al. [60]

Domingo et al. [98]

Investigative

Dengue _ Cattarino et al. [53]

Meningitis Trotter et al. [38] Ferrari et al. [39]
Hadley et al. [27]
Cooper et al. [40]

Measles Graham et al. [29] Lessler et al. [24]

Mo ot 100]

Chikungunya _
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