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Abstract 

Mathematical models are established tools to assist in outbreak response. They help characterise complex pat‑
terns in disease spread, simulate control options to assist public health authorities in decision-making, and longer-
term operational and financial planning. In the context of vaccine-preventable diseases (VPDs), vaccines are one 
of the most-cost effective outbreak response interventions, with the potential to avert significant morbidity and mor‑
tality through timely delivery. Models can contribute to the design of vaccine response by investigating the impor‑
tance of timeliness, identifying high-risk areas, prioritising the use of limited vaccine supply, highlighting surveillance 
gaps and reporting, and determining the short- and long-term benefits. In this review, we examine how models have 
been used to inform vaccine response for 10 VPDs, and provide additional insights into the challenges of outbreak 
response modelling, such as data gaps, key vaccine-specific considerations, and communication between model‑
lers and stakeholders. We illustrate that while models are key to policy-oriented outbreak vaccine response, they can 
only be as good as the surveillance data that inform them.
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Background
Vaccine-preventable diseases (VPDs) continue to pose 
a significant global health challenge. Often attributed to 
gaps in vaccination coverage, the emergence and spread 
of outbreaks of VPDs are characterised by a dispropor-
tionately high burden in low and middle income countries 
(LMICs) [1]. Almost 103 countries have seen measles 
outbreaks in the last 5 years due to low vaccine coverage, 
demonstrating the urgency of closing such immunisa-
tion gaps and protecting those at-risk [2]. Limited access 
to clean water and sanitation has additionally resulted in 
an acute resurgence in cholera outbreaks across 23 coun-
tries this year, increasing demand for vaccines from the 
emergency global stockpiles [3]. According to the IA2030 
scorecard [4], of the 40 known outbreaks in 2022 that had 
an outbreak response vaccination strategy, only 18% of 
these had a timely detection and response, emphasising 
the need to improve health system responses to decrease 
burden of disease.

Of the several effective outbreak response interven-
tions, vaccines are among the most cost-effective, and 
rapidly aid containment and reduce mortality and mor-
bidity [5–8]. Since 2000, the implementation of outbreak 
response immunisation programs in LMICs has averted 
5.81M cases and saved 327k lives across 210 outbreaks 
of 4 vaccine-preventable diseases [9]. During an out-
break, however, complex patterns in disease spread[10, 
11] and uncertainties in epidemiological and operational 
parameters [10, 12, 13] can hinder the optimal design of 
outbreak response vaccination strategies. Given these 
complexities, the immediate use of mathematical models 
can help project the effect of vaccine deployment strate-
gies [10, 14] and assess their sustainability based on key 
considerations such as vaccine availability, at-risk popula-
tions, competing health system priorities and long-term 
financial and operational implications [15]. Such models 
can be used to rapidly test key hypotheses, estimate avail-
able parameters, evaluate past interventions and project 
the impact of future strategies to inform public health 
policy, [16–18].

The insights from model-based approaches can con-
tribute to national and global policy recommendations 
on the timing and impact of vaccination strategies, while 
accounting for variable input data and assumptions [19]. 
Thus, despite several challenges around the availability of 
suitable data, spatial and social heterogeneity in risk and 
incidence, and communication between modellers and 
policymakers in the event of an outbreak [11, 19], math-
ematical models remain valuable tools in evaluating vac-
cination impact.

Previous studies have examined interactions between 
modelling and policy in defining outbreak response as a 
part of specially commissioned research groups [20–22] 

or for specific diseases or geographies [14, 23–27] . How-
ever, a consolidated overview of how mathematical mod-
elling can assist outbreak response vaccination across 
all vaccine-preventable diseases (VPDs) is lacking. This 
review synthesises study findings and the collective expe-
rience of modellers to demonstrate how mathematical 
models have informed various aspects of an outbreak 
response vaccination strategy and led to their extensive 
use for contextual policy guidance. The focus is spe-
cifically on the modelling of outbreaks across 10 VPDs1 
where a vaccine is currently available for use in outbreak 
response. Recognising data uncertainties, we discuss key 
criteria such as the definition of an outbreak, and the data 
required to arrive at a robust model alongside vaccine-
specific considerations for modelling outbreak response. 
Finally, we touch on the limitations of modelling vaccine 
use during an outbreak and explore key considerations 
for communication.

Main text
Significance of modelling in addressing vaccine policy 
questions
Mathematical models are useful tools to synthesise avail-
able data and influence vaccine policy across different 
phases of an outbreak. To understand the significance of 
iterative policy-oriented modelling, it is helpful for the 
purposes of this review to classify outbreak response dis-
tinctly into the investigative, scale-up and control phases 
[28]. These phases are illustrated below in Fig. 1.

The earliest stage of the outbreak requires surveil-
lance or detection followed by rapid collection of data; 
modelling at this stage can provide early insights into 
transmission dynamics and the immediate impact of 
the outbreak. Vital statistics such as the characteris-
tics of the pathogen, disease burden, transmission rate, 
population at-risk, and demand for healthcare can be 
difficult to obtain in a timely and consistent way and 
may not be directly observable, particularly in the early 
stages of an outbreak. However, it may be possible to 
synthesise evidence from previous outbreaks of the 
same pathogen to better define the parameter space. 
In scaling up an outbreak response, modelling can 
account for heterogeneity in the population to tailor 
vaccine interventions and prioritise accordingly, sub-
ject to data availability Models can also be used to draft 
control strategies, to identify gaps in surveillance and 
reporting, to estimate the actual need for vaccines as 
well as help with the prioritisation and stockpiling for 

1  Typhoid*, Dengue*, MenA*, yellow fever*, Measles*, Cholera*, COVID-
19*, Ebola, Chikungunya, Mpox. Those with an * are modelled in the Vac-
cine Impact Modelling Consortium.
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future use. Modelling can also be of assistance outside 
the outbreak timeline, either identifying at-risk areas 
before an outbreak or reviewing intervention effective-
ness following an outbreak. The impact of an outbreak 
response vaccination program depends on factors such 
as the timeliness of the response at each stage alongside 
the rapid identification of target population, estimat-
ing vaccine availability and optimising health system 
capacity. Table 1 in Appendix shows a summary of the 
mathematical modelling studies included in this review, 
organized by pathogen, outbreak phase and overall 
study objective.

As an example, a real-time modelling exercise by Gra-
ham et al. [29] to respond to a measles outbreak with a 
catch-up vaccination campaign in Guinea amidst the 
Ebola crisis demonstrated the usefulness of model-based 
projections of population risk and future incidence on 
priority setting and planning. Furthermore, modelling 
has been used to estimate critical values such as the 
severity of disease or case fatality ratio which are vital for 
healthcare provision [30–32]. This integration of mathe-
matical modelling into policy design has provided critical 
insights into outbreak dynamics and the effectiveness of 
responses [33].

Outbreak response timeliness
When assessing and responding to an outbreak, swift 
action is required. This applies to both understanding 
the real-time situation and to implementing interven-
tions. Numerous outbreaks have seen models used to 

project real-time incidence and burden, and Ebola is 
a key example. Across different outbreaks, Ebola inci-
dence has been projected given intervention scenarios, 
including the 2014–2016 Guinea epidemic [34], 2018 
Equateur, DRC epidemic [35], and the 2018–2020 out-
break in North Kivu and Ituri Provinces, DRC [36]. 
Similarly, the benefits of rapid outbreak responses 
have been quantified across multiple modelling stud-
ies for a range of diseases in the context of: logisti-
cal and operational constraints [37], alert and action 
thresholds for responding to outbreaks [38–40], and 
alternative scenarios around outbreak response timing 
[41]. Throughout these studies, the same qualitative 
conclusion has appeared- that more rapid outbreak 
response vaccinations provides better results, however, 
modelling allows this conclusion to be quantified for 
the context and outbreak in question. For example, a 
study on the 2015/6 outbreak of yellow fever in Angola 
found that a 60-day delay in vaccine deployment would 
have more than doubled the observed deaths and a 
delay of 180 days would have led to a five-fold increase 
in deaths [41].

Identifying high‑risk areas and/or populations
Effective prevention and control of infectious disease 
outbreaks requires the consideration of heterogeneity 
in disease risk, incidence and effectiveness of vaccine 
interventions. During an outbreak, geostatistical mod-
els can help situate socioeconomic mobilisation and 
public health decision-making through characterising 

Fig. 1  Timeline of outbreak included detection and outbreak response vaccination campaign. Red vertical bars indicate incidence or similar. 
Blue dotted lines indicate vaccination coverage or doses given. Diamonds indicate key points along the timeline and colour indicates phases 
where green = investigative phase, yellow = scale-up phase, blue = control phase. Black text indicates potential modelling outputs at each stage
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spatial dynamics and optimising available interventions 
like vaccines [42–44]. They can estimate burden at dif-
ferent geographical scales and suggest areas of higher 
risk thereby facilitating the effective deployment of 
vaccines or other public health measures. These types 
of models have been utilised for outbreaks of COVID 
[45], Ebola [46–48] and polio [49] to suggest optimised 
vaccination strategies.

The risk of outbreaks may be spatially heterogene-
ous and influenced by environmental, climatic or land-
scape-related factors [50, 51]. This is evident in YF as 
well as chikungunya and dengue amongst others [52–
54]. Understanding these factors can aid in preventa-
tive measures and help with ensuring surveillance is 
available in at-risk locations, therefore informing the 
investigative phase of outbreak response. For example, 
multiple studies have examined the potential of spread 
of YF from endemic areas to vulnerable populations, 
in part prompted by the exportation of cases from an 
outbreak in Angola in 2016 to China [55–60] and more 
recently focused on Djibouti, Somalia and Yemen [61] 
to inform surveillance in potential and moderate risk 
countries.

Furthermore, disease risk and outcomes are influ-
enced by heterogeneities in the host populations and 
the host behavioural responses. These may be due to 
socioeconomic factors leading to differences in health-
care access, pre-existing vaccination and intervention 
coverage, or population susceptibility [62, 63]. There 
has been an increasing focus on including social and 
other vulnerabilities in mathematical models of infec-
tious diseases and particularly outbreaks [64, 65]. 
Similarly, modelling has been utilised to project the 
distribution of vulnerabilities such as poverty [63] 
which can inform the distribution of interventions or 
planning of service provision as well as projecting the 
future severity of an ongoing outbreak. The inclusion 
of behavioural change into epidemiological models 
has grown in recent years from a primarily theoretical 
influenza-like-illness perspective, to the use of mobility 
and social distancing data in the COVID-19 pandemic 
[65–67]. However, there were still calls for further inte-
gration of behavioural components into epidemiologi-
cal models and for more data collection, e.g. through 
surveys, to empirically inform the models [65, 67].

Prioritisation of limited vaccines and optimising stockpiles
Vaccination is one tool in the suite of outbreak response 
activities and, depending on the pathogen, it may be 
the primary form of response, such as for yellow fever. 

However, ensuring that sufficient doses are available at 
the right time, in the right place, requires careful plan-
ning ahead of time. As a result, stockpiles are devel-
oped that can be deployed to tackle outbreaks at short 
notice. The size, location and timing of production for 
vaccine stockpiles, as well as the optimal deployment 
approach vary by context. Mathematical modelling is 
one way of optimising the size and deployment of vac-
cine dose stockpiles. For example, the stockpile of yel-
low fever (YF) vaccines is limited and new doses take 
one year to produce [68]. But, mathematical models 
have been used to show fractional dosing can be safely 
utilised to stretch supplies when necessary and prevent 
outbreaks as the population-wide benefits of higher 
coverage overshadow the potential loss in efficacy for 
an individual [69, 70].

Modelling as a tool for highlighting surveillance gaps 
and reporting
By synthesising data and evidence, mathematical mod-
els can be used to identify areas of greater uncertainty 
or influence. They can also estimate the under-reporting 
of incidence in an outbreak; epidemics of meningitis 
have occurred in the African meningitis belt for more 
than 100 years but, whilst the largest reported epidemic 
occurred in 1996, it is likely the true incidence was 
almost double that reported as routine reporting systems 
faltered and families avoided seeking healthcare [71, 72]. 
Similarly, YF has a non-specific symptom set and this can 
affect reporting. Modelling has been used to estimate the 
severity spectrum based on historic outbreaks [30, 56], 
the probability that a case may be reported [73], or to 
project burden in areas where surveillance data is absent 
[73, 74].

Considering multiple vaccines and interventions
Mathematical modelling can be used to assess relative 
benefits of interventions and approaches and this can 
include, although less commonly, multiple vaccines or 
interventions. Often further outcomes are examined such 
as cost-effectiveness or healthcare burden rather than the 
more common indicators of mortality such as reported 
deaths. For example, in the case of Ebola, some studies 
have moved away from purely epidemiological model-
ling to understand the cost-effectiveness and pricing of 
vaccines [15, 75, 76]. Examining multiple pathogens and 
interventions in the same modelling framework can lead 
to informative results on which interventions are uni-
versally optimal, vs just effective for one pathogen. For 
example, when chikungunya, dengue, Zika and yellow 
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fever were considered together, the usage of insecticide 
and insecticide-treated bed-nets was found to be optimal 
irrespective of which diseases were included [77]. Simi-
larly, weighing the relative benefits of interventions for 
the same disease has been discussed, for example includ-
ing YF in the Expanded Program on Immunization (EPI) 
for Nigeria was found to be more cost-effective than 
emergency response [78].

Key model inputs
At each phase of the outbreak, there are key data that can 
inform modelling and/or decision making; this includes 
information on the outbreak response itself. Figure  1 
illustrates an example outbreak timeline with key notifi-
cation points as well as the potential modelling that can 
take place at different phases.

Defining an outbreak
The definition of an outbreak varies by context and path-
ogen, and in some cases, over time. Understanding the 
criteria for the beginning and end of an outbreak allows 
modellers and public health officials to assess the out-
break magnitude, duration, and severity, thus informing 
a proportionate response. Modelling has been used to 
assess the confidence that an outbreak is over based on 
time since final reported case [79].

Classifying the beginning and end of an outbreak, 
as well as whether reported incidence is endemic or 
epidemic, is critical for producing realistic and action-
able model outputs. Brady and colleagues [80] test 
approximately 102 variable outbreak definitions on 
a dataset of reported dengue cases in Brazil to show 
that inconsistency in these can hinder an effective out-
break response and establish the need for clear quan-
titative definitions to support modelling exercises. In 
the case of yellow fever, one reported case constitutes 
an outbreak, so understanding the under-reporting 
and reporting delays are key to understanding when 
transmission may have occurred [81]. In some cases, 
an outbreak is defined by a period where the effective 
reproductive number is above 1, the epidemic thresh-
old [82–85]. In such cases, it may be possible to define 
an automated threshold for detection to improve 
response timeliness [86–90].

Pathway to outbreak detection
In practice, it is often not possible to observe the trans-
mission of infection events that lead to an outbreak, only 
the change in the reported burden [90]. This highlights 
the importance of capturing uncertainty at each stage 

of the outbreak modelling. For example, the speed and 
accuracy of diagnostic tests (if they are available) should 
be considered when developing alerts or thresholds for 
outbreak detection, as well as background-noise infec-
tions (non-target diseases that present with clinically 
similar symptoms). Médecins Sans Frontières use dif-
ferent measles outbreak definitions based on whether 
there is IgM confirmation, as well as the recency and 
coverage of vaccination campaigns [91]. Model simula-
tions of the underlying dynamics and testing compo-
nents can be used to explore the interaction between 
diagnostic test uncertainty, levels of background noise, 
testing rates, and outbreak and alert definitions provid-
ing insight into appropriate outbreak thresholds and 
response triggers [92, 93]. Further, modelling methods 
to account for delayed and reduced reporting rates have 
been developed, but due to their computational complex-
ity they may not be feasible to deploy in real-time and/
or resource-constrained environments that are typical of 
outbreak settings [94].

Data requirements for modelling
As seen during the recent COVID-19 pandemic, chal-
lenges in finding and accessing data and its varying 
quality and coverage has underscored the need for 
a better data ecosystem for modelling needs in the 
future [95]. Despite this, modellers and the COVID-
19 response benefited from analytical and visuali-
sation capabilities and collective efforts to improve 
models [96]. Using locally available, granular data 
alongside country-owned modelling has formed the 
basis of user-friendly tools for outbreak response 
[97]. This approach improves both the socialisation 
of model outputs as well as the quality of the model 
itself through the integration of relevant data. Key data 
sources for epidemiological modelling of outbreak 
response vaccination include aspects such as case 
counts, disease occurrence, seroprevalence surveys 
and historical outbreak response timing [52, 54]. Other 
information such as demography, mobility and historic 
immunisation coverage are also critical to establish the 
epidemiological state of the population at the time of 
the outbreak. As noted later, the quality of modelled 
outputs is contingent on the quality of input data and 
assumptions.

Vaccine‑specific considerations in modelling outbreaks
Common and unique vaccine questions
Vaccine-preventable disease outbreaks can present 
unique, disease-specific questions, but there are often 
common analysis needs that are relevant for many 
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epidemics- particularly around healthcare demand 
forecasting or timing of interventions. For yellow fever, 
vaccine-specific considerations often include the time 
required to manufacture the vaccine due to frequent 
supply shortages; similarly, this often results in the 
need for fractional dosing during outbreaks [70]. For 
yellow fever, Dengue, Ebola, and Mpox, there are chal-
lenges in our understanding of immune correlates of 
protection [15, 19, 98, 99]; ongoing discussions for yel-
low fever consider whether booster-doses are needed 
or if assumptions of lifelong protection are appropri-
ate [70]. For Dengue, there are differences in the vari-
ations of efficacies in endemic settings and across 
different serotypes [19]. Additionally, differences have 
been seen in efficacies between naive individuals and 
individuals with dengue antibodies [19]. For Mpox, 
there are large uncertainties on effectiveness that must 
be taken into account, as current research assumes it 
confers similar protection to smallpox [100]. For Ebola 
and measles, the duration of vaccine-induced protec-
tion is unknown, though for the latter the timescale is 
greater than a single outbreak [15, 99]. The vaccines 
for Ebola Virus Disease also have additional consid-
erations, as supply constraints often mean there is a 
trade-off between priority geographies, policy aims, 
and feasibility; strategies like ring vaccination may not 
always be possible [15, 99, 101]. Recent studies have 
focused on assessing the use cases of the novel vac-
cines in a variety of settings with varying model struc-
tures [101–107]. And as seen with COVID-19, future 
vaccine considerations may need to consider the pos-
sibility of immune escape, as this could jeopardise vac-
cine-induced herd immunity [108].

Evaluating long and short‑term benefits
During outbreaks, policymakers often rely on mod-
elling estimates for both short and long-term deci-
sion making. Short-term timelines often focus on the 
emergency aspects of the response - guiding policy 
and potential actions [109]. Later in an outbreak, long-
term decision making may involve dealing with com-
peting objectives or other social and economic costs 
[109]. Vaccination activities, whether they are outbreak 
response campaigns or routine immunisation, can 
also have both immediate and longer-term benefits. 
During an outbreak-response, the aim of the vaccina-
tion activity is usually to stop the spread of an out-
break thus reducing the burden of severe disease and 
deaths. However, depending on the pathogen and vac-
cine, such activities can have benefits over the lifetimes 
of vaccinees that should not be overlooked in impact 

assessments. This can be captured by different views 
of vaccine impact such as by calendar year, for more 
immediate effects, or by vaccinated birth cohort, to 
capture longer-term benefits [110]. However, it is also 
important to consider the time window that an inter-
vention is evaluated over which can be linked to how 
the end of an outbreak is declared [79].

Key considerations for communication
Ideally, local, within-country, and context-specific 
capacity for modelling and relationships between 
stakeholders and modellers should already be estab-
lished in advance of an outbreak; this ensures decision 
science can move at the pace required to prevent dis-
ease transmission and deal with ongoing uncertainty 
[109]. Currently, however, several countries lack the 
technical capacity, relationships, or communication 
skills for modelling evidence to be used effectively 
in outbreak situations [111, 112]. The barriers to the 
use of modelling evidence by policymakers are varied. 
Most frequently, policymakers cite a lack of relevant 
research, i.e. models do not address the concerns or 
situations policymakers face to be useful in decision 
making [112–116]. In  situations where models do not 
yet exist, policymakers note there is no time or oppor-
tunity to use the research evidence [111–113, 117] or 
find barriers to the cost of model development [112, 
113]. Further, policymakers and other users have 
stated that they are unable to understand and interpret 
the evidence modellers provide [111–113, 115, 116], 
and often additionally shared in formats that are dif-
ficult to decipher [112, 116]. The value of the model 
evidence may also not be well understood [111, 112]. 
Overall, these barriers are confounded by a lack of col-
laboration or trust between the research and political 
world [111, 112].

The greatest facilitators in overcoming these barriers, 
included contact, collaboration, and strong relationships 
between policymakers and modellers [109, 113, 115, 118, 
119], additionally noting the importance of trust and 
mutual respect [109, 112, 113, 115]. Importantly, to pro-
mote the use of modelling evidence in decision science, 
policymakers noted that there should be frequent inter-
disciplinary exchange between the two groups, alongside 
early involvement [109, 112, 118–120].

Importantly, poor understanding or communica-
tion of modelling results to stakeholders can lead to 
significant consequences, including intentional or 
unintentional “misinformation, disinformation, and 
censorship, or, rather, public perceptions of such” [114]. 
This may further lead to an eroding of trust in public 
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health, institutions, or interventions [114, 117]. During 
outbreaks, it is crucial to uphold accountability to sci-
entific standards, consider appropriate evidence when 
making decisions, and remain open and transparent in 
communication while implementing evidence-based 
interventions [114, 117, 120].

In order to promote the use of modelled evidence 
by policymakers, modellers should ensure results are 
presented with consistent messaging, utilising sim-
ple, clear language, noting uncertainties, and in a light-
weight format [111, 112, 114, 119, 121]. Results should 
be interpreted for a specific policy, using health-system 
generated data for models within the appropriate con-
text [111, 112, 117, 119, 121], and researchers should be 
trained in their ability to communicate to a policy audi-
ence [112]. More crucially, stakeholders and modellers 
should be brought together in advance of outbreaks to 
build effective relationships and trust [112, 114, 119].

The interdisciplinary nature of modelling
Prior to the COVID-19 pandemic, half of all the collab-
orative work on vaccine-preventable disease outbreak 
response was between academic institutions; with a 
further 31.7% between academic institutions and gov-
ernments or NGOs [122]. However, many lessons from 
the COVID-19 pandemic highlighted the bidirectional 
nature of communication and collaboration, emphasiz-
ing the need to “oster knowledge and skills exchange” 
etween various groups, including public health staff, 
such as physicians and field epidemiologists, and poli-
cymakers [123, 124]. Future efforts to maintain rela-
tionships built during COVID-19 and lessons learned 
will be crucial to improving modelling for outbreak 
responses.

Limitations of modelling in outbreaks
Modelling is no replacement for accurate surveillance, 
or the timely collection of data, and it is subject to vari-
ous limitations. Whilst modelling can assist in synthe-
sising disparate, and sometimes biased, data sources, 
the contrasting input information can lead to uncer-
tain and potentially confusing results. Conversely, 
modelling studies that do not appropriately propagate 
uncertainty from their inputs and assumptions can pro-
vide a false sense of security in their estimates. This is 
particularly the case for outbreak modelling which is 

more vulnerable to under-reporting in the data, and 
sparse data in general. Ultimately, models can only be 
as good as the data that inform them and are a prod-
uct of their structure and assumptions. They can also 
suffer from being a ‘black-box’ in terms interpretation 
and reproducibility which can be a barrier to effective 
collaboration between modelling consumers and mod-
elling producers. For the best defined and most robust 
results, modelling limitations must be understood and 
communicated effectively to public health practitioners 
and policymakers [125, 126]. With appropriate context 
and a pragmatic discussion of limitations, modelling 
can contribute as one among a suite of tools for public 
health action.

Conclusions
Mathematical modelling is one facet of a multi-
pronged scientific response to an outbreak of a 
vaccine-preventable disease. In this review, we the-
matically outline the important role of modelled esti-
mates in informing outbreak response vaccination 
strategies and in guiding policy worldwide. We dem-
onstrate that mathematical models can be employed 
to successfully quantify the impact of response timeli-
ness, spatio-temporal heterogeneity, vaccine availabil-
ity and surveillance gaps on outbreak size and in doing 
so, influence the design of an optimal immunisation 
response. While data uncertainties can be plenty, the 
definition of an outbreak and the pathway to outbreak 
detection are important factors to consider in any pol-
icy-oriented modelling exercise to measure vaccine 
impact. As we continue to face the threat of infectious 
disease outbreaks, this review emphasises that models 
can be used to evaluate the impact of vaccines beyond 
the timeline of the outbreak to help policymakers plan 
for population-wide healthcare needs based on avail-
able resources in the future.

Future efforts at designing a rapid yet effective out-
break response vaccination strategy will require a holis-
tic approach where modelling efforts are accompanied 
by strengthened surveillance systems, improved collabo-
ration and communication between modellers and pol-
icy-makers as well as a contextual understanding of the 
pathogen, disease and demography.
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Appendix

Table 1  Summary of studies by pathogen, outbreak phase, & study objective:  

,  ,  . Studies were included if: they were cited in this review, used 

mathematical modelling & focused on a specific pathogen [12, 15, 20–22, 24, 27, 29, 31, 32, 34–36, 38–41, 43, 45–49, 52, 53, 55, 56, 59–61, 70, 
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