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1 | INTRODUCTION

Maria K. Parr* © |

Jan Lisec?

Non-targeted screenings (NTS) are essential tools in different fields, such as
forensics, health and environmental sciences. NTSs often employ mass spectrometry
(MS) methods due to their high throughput and sensitivity in comparison to, for
example, nuclear magnetic resonance-based methods. As the identification of mass
spectral signals, called annotation, is labour intensive, it has been used for developing
supporting tools based on machine learning (ML). However, both the diversity of
mass spectral signals and the sheer quantity of different ML tools developed for
compound annotation present a challenge for researchers in maintaining a
comprehensive overview of the field.

In this work, we illustrate which ML-based methods are available for compound
annotation in non-targeted MS experiments and provide a nuanced comparison of
the ML models used in MS data analysis, unravelling their unique features and
performance metrics. Through this overview we support researchers to judiciously
apply these tools in their daily research. This review also offers a detailed exploration
of methods and datasets to show gaps in current methods, and promising target
areas, offering a starting point for developers intending to improve existing

methodologies.

knowledge. This situation has sparked an interest in the use of machine

learning (ML), a field that explores the use of algorithms capable of

Mass spectrometry (MS) comprises a variety of analytical methods that
ultimately yield ion intensities or mass spectra representing molecules
contained in the processed samples. The assignment of chemical
identity to the mass spectral data, known as annotation, is crucial in
many scientific domains, particularly in environmental and health
sciences. The achievement of such assignments strongly depends on
the type and structure of the mass spectra, including factors such
as resolution and complexity. Except for the most straightforward
cases, annotation is a time-consuming process that requires expert

“learning” from data, making their development more cost effective,
faster and more precise compared to conventional, human-designed
algorithms. However, ML-based approaches require and depend on
training data, which can be quite diverse in the field of spectral
annotation. Throughout this introduction, we, therefore, will present
commonly used MS techniques and methods, focusing on the
properties of the generated data that are relevant for both
conventional and ML-based annotation approaches (Figure 1).
Frequently used data repositories are presented in Table S1.
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FIGURE 1

Graphic overview of relevant components in compound annotation of mass spectrometry data. The data obtained from the

experiment can be highly heterogeneous depending on the preparation (e.g., derivatisation), the type of measurement (direct injection [DI],
coupling with gas chromatography [GC] or high-performance liquid chromatography [HPLC], supercritical fluid chromatography [SFC], capillary
electrophoresis [CE], etc.) and instrumental factors such as the ion source (e.g., electron ionisation [El], electrospray ionisation [ESI] and chemical
ionisation [CI]) and device resolution. Spectral annotation is often attempted by querying a spectral database. However, spectral databases have
limited coverage due to the slow and laborious process of measuring reference spectra. More comprehensive databases are generated using in
silico fragmentation tools, which were steadily improved with the use of machine learning (ML). Alternatively, the molecular ion (if present) can be
used to assign a chemical formula and query a spectral library. The direct querying of compound libraries can return overwhelming quantities of
candidates, thus fuelling the development of fingerprinting methods. Fingerprinting methods are ML-based tools that predict a molecular
fingerprint from a mass spectrum, offering a more specific query for spectral databases. ML-based steps are indicated by blue arrows, and ML
methods discussed in this review are indicated in the upper right panel. [Color figure can be viewed at wileyonlinelibrary.com]

MS experiments can be conducted in either a targeted or non-
targeted fashion. Traditionally, targeted approaches are used to
identify and quantify compounds of interest within a sample. These
approaches require each substance of interest to be known and a
standard to be available for confirming the identity of the compound
and enabling quantitation. As a consequence, only a limited number of
compounds are monitored, even though well more than 100 may be
integrated. However, in fields such as metabolomics or monitoring
of narcotics, where novel compounds are of interest, targeted
approaches are of limited use. In this case, an alternative is offered by
non-targeted methods. The predecessor of modern non-targeted
methods involved gas chromatography coupled with electron
jonisation mass spectrometry (GC-EI-MS). This approach offers
advantages, as EI-MS fragmentation patterns exhibit good
reproducibility, and extensive spectral libraries are available.}?
However, the restriction to volatile compounds and the occurrence of
extensive fragmentation, which can result in the loss of the molecular

ion and ambiguous interpretation, have limited the applications of El

in non-targeted MS. As an alternative, liquid chromatography in
combination with soft ionisation methods, such as electrospray
ionisation (ESI), enables the analysis of a broader range of substances.
Soft ionisation techniques, when combined with high-resolution mass
spectrometry, often allow the deduction of the molecular formula
from the molecular ion and enable querying a compound database
(e.g., PubChem?®) for potential candidates in a successive step.

As previously stated, various MS techniques have been employed
in non-targeted approaches The type of instrument used for data
generation is an important question for ML as it influences mass
spectra and therefore the potential application of ML. Briefly, a
mass spectrometer can be schematically divided into three
components: the ion source, the mass analyser and the detector. The
ion source generates ions from a typically neutral analyte, allowing us
to separate analyte ions based on their mass-to-charge (m/z) ratio.
Concerning the resulting mass spectra, the ion source often
determines which analyte is amenable for analysis and plays an

important role in how intensive the signal of a given analyte
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is. Furthermore, the ionisation process determines whether the
analyte is visible as positive or negative species and determines if
radical cations, protonated or deprotonated molecular ions, alkali or
similar adduct, clusters or only fragments are detected.

Due to their widespread use and the availability of data, El and
ESI have been at the core of ML method development. El sources
ionise analytes in the gas phase, with electrons accelerated at 70 eV.
The energy transferred to the analyte molecule causes fragmentation
of the molecule, resulting in a mass spectrum characterised by
multiple signals representing the fragments of the molecule, with no
guaranteed presence of the ionised intact molecule, that is, the
molecular ion.

In contrast, ESI sources typically produce spectra using a lower
number of signals. The ESI source transfers charged ions from a
solution into the gas phase.* Spectra resulting from ESI sources
usually present signals for protonated or deprotonated analytes,
complexes with ions, adducts and/or multimers. In most cases, the
unfragmented analyte is observed. Although this is an advantage
compared to El, it comes at the cost of losing structural information
that may be deduced from the fragmentation pattern. A solution to
this conundrum is offered by tandem MS (abbreviated as MS/MS or
MS?). In an MS? experiment, an ion of interest, referred to as the
precursor ion, is fragmented into so-called product ions. The most
common method of fragmentation is collision-induced dissociation
(CID), where collision with neutral gas molecules is used to induce
fragmentation of the precursor ion.

After ionisation, the ions are transferred to the mass analyser,
where they are separated based on their m/z ratio. The mass analyser
determines the resolution of the resulting spectrum. The resolution of
the mass spectra ranges from nominal mass (NM) spectra to high-
resolution (HR) spectra (mass accuracy level <5 ppm and mass
resolution >10 000 full width at half maximum).> This diversity of
jonisation methods (El, ESI) and MS techniques (MS, MS?) is reflected
in highly heterogeneous MS data, leading to time-consuming
data evaluation and annotation for non-targeted experiments.
Consequently, various (bio)informatics tools for automated batch
processing have been developed.

Annotation is often achieved through laborious expert evaluation,
making automation approaches particularly intriguing but complex.
Promising strategies for automating and enhancing annotation often
rely on ML. Indeed, applications of ML have surged over the past
decades and become prominent in bioinformatics® and life sciences,”
in general. In ML, mathematical models are estimated (trained) on
observables (training data) to learn patterns, enabling the programme
to make meaningful predictions about new observations.2 With the
recent increase in computational power and the availability of massive
datasets, especially deep learning has gained enormous attention in
the scientific community.

In the broader context of non-targeted MS, a variety of ML
applications have emerged, successfully addressing various data
processing tasks to automate and refine compound annotation and
interpretation. These include fragment ion identification, prediction of

fragmentation pathways from molecular structures and fingerprinting
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methods to characterise molecules. Algorithms for these tasks range
from conventional ML and statistical methods, such as Markov
processes and kernel methods, to deep neural networks (DNN).
Kernel methods express similarities between data points, with a
kernel function serving as the basis for high-dimensional learning
techniques.” Examples are support vector machines (SVM), which
optimise a linear boundary between training classes in the high-
dimensional feature space, resulting in a nonlinear boundary in the
original feature space by computing only the kernel function.”'®
Nevertheless, kernel methods have fallen out of favour due to the
resource-intensive estimation of kernel parameters. Artificial neural
networks (ANN) are a diverse class of nonlinear statistical models that
can be efficiently estimated on large datasets. ANNs extract a linear
combination of their inputs to model the desired output as a nonlinear
function of the derived feature combinations.” This is accomplished
by stochastic gradient descent (SGD) methods that allow training on
specialised hardware (e.g., graphical processing unit) where only
limited memory is available. Several reviews offer a comprehensive
overview of current computational methods for metabolomics. We
refer to Liebal et al.,'* Nguyen et al.,*? Petrick and Shomron®® and
Pomyen et al.}* Liebal et al.,'? Petrick and Shomron®® and Pomyen

et al.'*

offer broad overviews of the use of ML for various steps of
the metabolomics data processing pipeline, like peak picking,
quantification and data interpretation. On the contrary, Nguyen
et al.!? focuses on structure annotation and ML-based annotation in
particular. The described methods enable the processing of
substantial quantities of non-targeted MS data, reducing the need for
manual evaluation. ML methods provide advantages over more
traditional methods. For instance, predicting mass spectra using ML
models is faster than ab initio quantum mechanical simulations.
Additionally, fingerprinting methods (described in Section 2.1) reduce
dependence on spectral libraries. De novo methods generate new,
previously unreported structures and extend compound libraries more
rapidly than usual.

However, the ML methods and data types used among the
various software are not the focus of aforementioned reviews. Our
contribution to this review is to shed light on various state-of-the-art
ML applications for non-targeted metabolomics, clarifying the
methods utilised for different types of MS and the involved datasets.
We also aim to identify gaps in current software and potential target
areas for the development of future applications. We focus on tools
for in silico fragmentation, the prediction of representations from
mass spectra to query compound libraries (i.e., chemical formulas,
molecular fingerprinting, representation-based methods) and de
novo methods. We would nevertheless like to mention that the use of
ML in MS also includes the prediction of orthogonal properties
(e.g., collision cross section, chromatographical properties) and the
development of scoring functions for querying and networking
(e.g., MS2DeepScore,'® DeepMass,'® MS2Query'”). Neither of these
topics will be treated in this review, and we would refer interested

1.1* and Petrick and Shomron®? instead.

readers to Liebal et a
Following a formal systematic review process, we queried Web of

Science (Clarivate) using the keyword search terms “(‘machine
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learning” OR ML) AND (MS or ‘mass spectrometry’) AND annotation”
and “(‘machine learning” OR ML) AND (MS or ‘mass spectrometry’).”
Additionally, the results were filtered to include entries with the
citation topic “mass spectrometry” and to exclude the topic
“proteomics.” The filtered entries were exported to files, the files
were merged, and duplicate entries were removed. In a first step the
titles were manually evaluated to sort out publications which did not
directly fall in the focus of this manuscript. Finally, we conducted a
full-text analysis of the resulting 54 publications that were re-
evaluated for relevance of the present study. A graphical overview of
their fields and applicability for the two considered ion source types is
shown in Figure 2.

2 | REPRESENTATION-BASED METHODS

Based on the acquired mass spectrum of an unknown compound, the
assignment of the corresponding chemical identity is often archivable
by querying a spectral library. As a result, candidate compounds
are ranked based on a similarity score between the query spectrum
and the library spectrum. However, building spectral libraries by
measuring the spectra of pure substances is a time-consuming and
expensive process, resulting in libraries that grow slowly and often
remain incomplete. The incomplete coverage of spectral libraries has
prompted the search for alternatives in compound identification. Of
particular interest is the use of compound databases, such as
PubChem,® which comprise collections of molecules orders of
magnitude larger than spectral databases. The primary objective
of compound databases, however, lies in the collection of compounds
and their properties, rather than on mass spectra. Therefore,
compound databases require a query other than a mass spectrum,

B Esi-ms
EI-MS
10
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FIGURE 2 Overview of publications categorised by the task they
solve and the type of mass spectrometry (MS) data they can be used
on (electron ionisation [El], electrospray ionisation [ESI]). After review
papers were excluded, we found that most of the publications
analysed were concerned with ESI-MS and only a few with EI-MS.

such as the molecular mass or a chemical formula. Queries with little
specificity, such as molecular mass, can yield a large number of
candidates, requiring additional information for further filtering and
ranking. An approach to tackle this challenge is the use of molecular
fingerprints or an intermediate representation, which can be easily
generated for a given molecule. In their most common form,
molecular fingerprints are vectors of fixed length that encode the
presence or absence of molecular features (i.e., topological, physico-
chemical or electrical properties of a compound®®). The molecular
structure of a compound can be encoded into a molecular fingerprint,
allowing compounds in compound databases to be converted into
molecular fingerprints. ML has been employed to predict molecular
fingerprints from mass spectra. The predicted molecular fingerprints
can be used to query compound databases similar to mass spectral
libraries. This approach offers the advantage of efficiently computing
the similarity between molecular fingerprints, making it advantageous
for querying large databases. Nevertheless, molecular fingerprints
were not designed for the task of identifying compounds from MS
spectra and thus are unspecific and in some case might contain
redundant features.

In the following text, we will discuss methods that predict
molecular fingerprints, substructures and embeddings for querying
and scoring molecules from a database. Two groups of fingerprinting
methods can be distinguished: methods based on supervised learning
and methods based on unsupervised learning. Supervised methods
require a labelled training dataset, that is, a dataset consisting of
inputs and the desired outputs, to train the algorithm. In most cases
considered in this manuscript, algorithms were trained to predict
molecular fingerprints (the label). The training set consists of mass
spectral libraries (the input) and the molecular fingerprints for each
compound in the library. Unsupervised methods, on the contrary, do
not require labelled data; that is, only the input data (without the
desired output) are required. These methods aim to identify patterns
and groupings, such as neutral losses or functional groups, that appear
in a given set of spectra. To be more precise, the unsupervised
methods reported in this work are inspired by natural language
modelling and interpret mass spectra as “documents” containing
“words” (e.g., peaks, mass differences). These methods then model
the relationship between “words” and their respective “distributions,”
allowing the identification of similar compounds based on the co-
occurrence of similar MS patterns or by their “semantic” distance.

The field of supervised fingerprinting is dominated by the
SIRIUSY? suite, which is the most cited tool of all those considered in
this section. The SIRIUS suite and CSl:FingerlD®® not only are
efficient as useful tools but also offer a user-friendly graphical user
interface (GUI) which facilitates operation for users inexperienced
with command line interfaces (CLI) and/or without knowledge of
programming languages.

CSl:FingerlD®® has emerged from kernel-based fingerprinting
methods and differentiates itself from other similar methods through
the use of fragmentation trees in addition to MS? spectra as input.
The computation of fragmentation trees is time consuming and has

contributed to the interest in alternative methods. ANN-based
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alternatives offer the possibility of predicting all bits of a fingerprint at
once, instead of requiring one estimator per bit (like with SVMs). The
use of ANNs allowed the exploration of novel approaches based on
the use of embeddings. Spec2Vec? and ADAPTIVE both use
embeddings as fingerprints, which should result in fingerprints which
are more specific for the task and faster calculation of similarity
scores. At the moment of writing, Spec2Vec is, together with
MS2LDA,?? one of the most cited tools after CSlI:FingerID and the
SIRIUS'?2324 sujte. The two unsupervised fingerprinting tools,
Spec2Vec and MS2LDA, serve a different use than supervised
fingerprinting tools and use different approaches. Spec2Vec?!
generates a “fingerprint” which can be used similar to supervised
fingerprinting methods, whereas MS2LDA?2 works like a networking
method that uncovers relationships between compounds in a dataset.
When developing a new method, accessibility to the end user should
be considered. Of the four most popular tools, only Spec2Vec is

provided as CLI python package and does not offer a GUI.

21 | Fingerprinting methods

12> used SVMs to predict fingerprints from MS?

Heinonen et a
spectra. The authors examined linear and quadratic integral mass
kernels and HR mass kernels (probability product kernel previously
described by Kondor and Jebara?®) separately or in combination with
mass difference kernels and neutral loss kernels. Three datasets were
used in the study: the triple quadrupole (QqQ) dataset, which
consisted of 514 compound spectra, recorded in ESI positive mode at
NM resolution, using five different collision energies between 10 and
50 eV; the Ltq dataset consisting of 293 compound spectra recorded
in positive mode at HR; and the lipid dataset, consisting of HR
negative-mode spectra of 403 phosphatidylethanolamines. Both
HR datasets were measured on Orbitrap instruments. The authors
found that the HR kernel on all features resulted in the best
performance on average. The performance of FingerlD was compared
with MetFrag?” on 20 spectra randomly removed from the QqQ
dataset and 20 spectra randomly removed from the Ltq dataset. The
two datasets were used to query both PubChem®?® and KEGG
(Kyoto Encyclopedia of Genes and Genomes).?’ =32 The performance
was reported as the top 10 recall rate, indicating how often the
correct molecule was ranked within the first 10 candidates. The
reported top 10 recall rates are summarised in Table S2, where
reported recall rates from all the reviewed manuscripts can be found.
Building on the work by Heinonen et al.?> Brouard et al.®®
developed a method based on input output kernel regression (IOKR)
to map MS? spectra to molecular fingerprints. The method enables
the prediction of a fingerprint for a given ESI-MS?, which was
subsequently used to query a compound database for candidates. The
authors trained a linear combination of input kernels with multiple
kernel learning (MKL) to map the input spectra to an intermediary
representation. Three output kernels were used to map the
intermediary representation to a molecular fingerprint of 4138

compounds. Candidates were queried from PubChem and ranked
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based on the distance from the predicted feature vector.

CSl:FingerID, a state-of-the-art annotation tool within the SIRIUS

suite, was used for comparison with respect to the top n recall rates.

ADAPTIVE®* is a fingerprinting tool developed using ESI-MS?
data, which was proposed to overcome the problem with redundancy
and lack of specificity present in manually curated fingerprints. To
improve the specificity, a custom fingerprint, which the authors refer
to as molecular vector, was generated using a message passing neural
network (MPNN). In a second step, IOKR was used to learn a mapping
from MS spectra to the vector representation. The MPNN was
trained to generate vectors from molecular graphs while maximising
the correlation between the generated molecular vector and the ESI-
MS? spectra. The performance was compared with |OKR33
FingerlD?® and CSl:FingerlD?° on a dataset of 4138 ESI-MS? spectra
from the Global Natural Product Social (GNPS) spectral library
regarding the top n recall rates.

Similarly, MetFID3° uses a DNN to predict the fingerprint of a
compound from ESI-MS? spectra. The DNN that generates the
molecular fingerprint was trained on 11 748 spectra of 5667
compounds from MoNA and 122 481 spectra of 10 731 compounds
from NIST 2017. The training set consisted of only ESI positive-mode
(ESI4+) spectra within a mass range of 100-1010 Da measured on
QqQ, Orbitrap or quadrupole time-of-flight instruments. Furthermore,
only spectra of H" and NH,4* adducts were kept in the training set.
Multiple entries for the same compound were merged, with exception
of the MS? spectra of different collision energies. The spectra were
normalised to relative intensities, scaled between 0 and 100, denoised
by removing peaks with relative intensities lower than 10 and spectra
with less than five peaks with a relative intensity higher than 2%.
Finally, the spectra were binned to NM vectors. The performance of
MetFID was compared to MetFrag and ChemDistiller*® on a test set
of 482 compounds removed from the training data, where it
performed significantly better than the other methods. Additionally,
MetFID was compared with CSl:FingerID,2° which was trained on
data from the NIST library, on the CASMI 20167 dataset. Again,
recall rates are presented in Table S2.

IDSL_MINT®® is a tool developed to allow a simpler use and
development of ML tools for non-targeted ESI-MS2. IDSL_MINT
allows to easily train fingerprinting models based on the transformer
architecture. The models can be trained on a custom library focused
on the end users' needs. To demonstrate the performance of the
pipeline, the authors trained two transformer models, one for
negative-mode and one for positive-mode ESI-MS? spectra. Each
model consisted of four hidden encoder and decoder layers and two
attention heads. The models were trained to predict ECFP2
fingerprints of a subset of the LIPID MAPS library. The subset was
derived from the MoNA and GNPS libraries and was cleaned by
removing in silico spectra and spectra with over 10% of the peaks
outside the m/z range of 50-1000. The resulting training sets for
positive and negative modes contained mass spectra of 2617 unique
lipids and 1722 unique compounds, respectively. The publicly
available metabolomics study ST002044 from the Metabolomics
WorkBench database was used as the test set, containing 3386 and
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1901 unique mass spectra in positive and negative modes,
respectively. When the LIPID MAPS database were queried with
fingerprints generated from the test set, the trained models reached a
top 1 recall rate of 35.4% and 35.1% for positive- and negative-mode
spectra, respectively.

As part of the SIRIUS suite/web service,’” SIRIUS is a state-of-
the-art tool for chemical formula prediction and fragmentation tree
computation of ESI-MS? spectra. To identify the most likely chemical
formula, SIRIUS iterates candidate formulas matching the precursor
peak and computes the fragmentation tree for each, solving the
maximum  colourful subtree problem using integer linear
programming.>? Uncommon elements in the molecular formulas are
detected from isotope patterns using a DNN.2® Unfeasible formulas
are filtered out, and unlikely ones are identified using an SVM.2® Next,
SIRIUS determines the posterior probability for each tree using
Bayesian statistics. This is done by estimating the prior probability
from the size of the tree, neutral losses and fragment formulas and
the likelihood of the MS? spectrum given the fragmentation tree.
Molecular formulas are ranked according to the posterior probability
of their best fragmentation tree. SIRIUS 3.0 was trained and tested on
GNPS and AFT library datasets and reportedly outperformed all
competing methods and previous versions with a top 1 recall rate of
76% and a top 5 recall rate of 91%.

CSI-FingerlD,2° which is available as part of the SIRIUS suite, is a
fingerprinting tool that uses the MS? spectra and the fragmentation
trees generated by SIRIUS as input to predict molecular fingerprints.
In the training phase a library of 4138 compounds from the GNPS*©
library and 2120 compounds from the AFT library were used as the
training dataset. Multiple fragmentation tree kernels and multiple
spectrum kernels were used to compute the similarities for each pair
of compounds in the training dataset. SVMs, one for each bit in the
target fingerprint, are trained on the kernel similarities to discriminate
between compounds that exhibit a given bit of the fingerprint and
those that do not. CSl:FingerlD was compared with FingerlD?°
(retrained on the same training data as CSl:FingerID), CFM-ID,
MAGMa, MIDAS and MetFrag.?” For comparison, PubChem was
queried with 3868 compounds from GNPS and 2055 from the AFT
library. The top 1 recall rate of the three best-performing methods
was reported for both libraries individually and for a mixed library of
both. An overview of the reported top 1 recall rates is presented in
Table S2, and recall rates up to 20 for all tools can be found in the
figures of the original publication.®>

MIST is a fingerprint tool developed by Goldman et al.*? Inspired
by CSI:FingerID,20 MIST uses chemical formulae (C, H, N, O, P, S, F,
Cl, Br, 1, Si, B, Se, Fe, Co and As) for each peak and calculates the
pairwise distance for all peaks. The chemical formulae and
the respective intensities of the peaks are encoded using an
multilayer perceptron (MLP). The embedded chemical formulae, the
intensities and the pairwise formula differences between peaks are
used as input for a chemical formula transformer. The pairwise
difference is used to model the relationship between peaks and is
featurised in the modified attention mechanism developed by the

authors. The final representation of the transformer is used to predict

the molecular fingerprint. The prediction of the fingerprint is
performed by stepwise unfolding. The unfolding is achieved by a
model trained to reverse stepwise halving in size of the molecular
fingerprint. Furthermore, a custom distance metric was learned by
fine-tuning MIST with a contrastive learning objective. MIST was
trained on 31145 positive-mode ESI-MS? spectra of 27 797
compounds from the NIST, MoNA and GNPS spectral libraries. The
resulting dataset was augmented with a purpose-built in silico
fragmentation ANN. During training a sub-module to predict MAGMa
substructures was used as an additional signal. The substructure
annotation module used the final representation of the transformer to
predict the 512-bit Morgan fingerprint for each sub-fragment while
using a clipped cosine as loss function. The unfolding module is
trained with the binary cross-entropy loss function calculated at each
unfolding step. The loss function for training MIST was the sum of the
binary cross-entropy of the final fingerprint, the sum of the losses at
each unfolding step and the loss function of the substructure
annotation module. Both the unfolding loss and the substructure
annotation module were weighted with factors determined during
hyperparameter tuning. For fine-tuning, the model weights were used
as a contrastive space. For each compound, the 256 closest isomers
by Tanimoto score were retrieved from PubChem as decoys and
sampled in each batch proportionally to their Tanimoto similarity. A
single-layer projection to map the fingerprints to the contrastive
space was learned. The training objective was to minimise the
distance of the true fingerprint to the Ilatent transformer
representation, while maximising the distance to the decoys. MIST
was compared with CSI:FingerID on three separate splits of 20% data
holdouts. Using an ensemble of five separately trained models with
different random initialisation, MIST fingerprints reached higher
cosine similarity to the ground truth spectra than CSI:FingerID in
11 994 of 18 700 predictions. Interestingly, the top 1 recall rate is
higher for CSl:FingerID, whereas MIST has higher recall rates for
k > 20.

In regard to EI-MS, Ljoncheva et al.*? developed a tool, which
they call CSIIIOKR, to identify trimethylsilyl (TMS) derivatives of
contaminants of emerging concern (CEC) using GC-EI-MS. CSI:IOKR
consists of a product kernel as input kernel and a linear kernel as
output kernel. The training data consisted of 4648 TMS derivative
NM EI-MS spectra from the NIST 2017 mainlib and replib libraries.
The fingerprint to be predicted was the combination of four
fingerprints, with features being always present or duplicate removed.
The test set consisted of GC-EI-MS spectra measured by the authors.
For the test set 100 CECs were selected, derivatised and measured,
resulting in spectra for 104 derivatives, and recall rates, compared
with MetExpert,*® are reported. On the test set CSI-IOKR
demonstrates the viability of kernel methods for GC-EI-MS, which
might see further development for a more general-use scenario or the
use on HR-EI-MS spectra.

An alternative approach is offered by DeepEl, a deep-
learning-based approach to fingerprinting using an ANN to extract the
fingerprint from EI-MS spectra. The predicted fingerprint was
obtained by concatenating six different fingerprints and removing bits
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except those coding for features present in 10%-90% of compounds.
For each bit of the fingerprint, an ANN was trained on NM EI-MS
spectra from the NIST 2017. Compounds with molecular weight over
2000 Da and containing elements other than C, H, N, O, P, S, F, Cl, Br
and Si were removed from the dataset, resulting in a training set of
184 874 spectra, making it more useful for general-purpose analysis
of EI-MS data. A test set consisting of spectra from the MassBank
database was cleaned like the NIST set, resulting in 13 000 spectra, of
which 5619 were also present in the training set. Additionally, the
performance was measured by querying the NIST 2017 database
using the MassBank test set. Candidates were queried using a 5-Da
mass window from an augmented NIST library; that is, spectra
for compounds not present in the NIST library were generated
using Neural Electron-lonization Mass Spectrometry (NEIMS).**
Furthermore, a synthetic library entirely simulated using NEIMS was
used as the reference library, and the observed recall rates were
reported.

Supervised fingerprinting methods (an overview of which is
available in Table 1) are a developed research field. The first methods
used fragmentation spectra as input for kernel-based methods to
predict binary fingerprints. From this research CSl:FingerID and the
SIRIUS suite emerged as widely used tools with a user-friendly GUI
and useful documentation. However, CSl:FingerID has long
computation times, a reason why alternative approaches are still
being investigated.

Research in the field of fingerprinting is vibrant and competitive.
The development of tools which offer faster computation and of tools
that work with El spectra are two main topics of research.

Furthermore, the development of novel strategies based on the

TABLE 1
with structured information is provided as Table S3.

Reference (year) Method/tool ML method Highlights
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possibilities offered by ANNs, like the use of embeddings as
fingerprints, as seen with ADAPTIVE and Spec2Vec, is an interesting
development. Another important consideration during the
development of new tools to ensure its success is user friendliness,
because the final user might not be interested in CLI or packages and
might expect a more familiar GUI, which is reflected in the citation

numbers of the individual tools.

2.2 | Substructure-prediction and embedding-
based methods

Spec2Vec is a method adopted from natural language processing.
Here, Huber et al. implemented the Word2Vec algorithm by treating
MS? spectra as text documents. Peaks and neutral losses are
interpreted as words. By training a neural network to predict the
context of each word (peak or neutral loss) and the word from its
context, latent embeddings are learned for all peaks. Each spectrum is
then represented as the weighted average of its peak embeddings,
and spectral similarity scores are computed in the embedding space.
Spec2Vec was trained and evaluated on a large GNPS* dataset,
where it achieved a higher correlation to structural similarity
(Tanimoto score) when compared with standard cosine scores. The
authors also demonstrate Spec2Vec's application to query spectra of
unknown compounds (not present in the library), being able to
identify structurally similar candidates in 60% of cases. Although
the two available Spec2Vec models were trained on positive-mode
ESI-MS? spectra, the authors note that it is possible to train the model

on specific datasets and, due to the higher computational efficiency

Overview of supervised fingerprinting methods discussed in this manuscript. The full set of publications evaluated for this review

Heinonen et al.?® FingerID SVM First use of high-resolution mass kernel in fingerprinting. Three models trained on in-house
(2012) datasets with at most 528 compounds.

Duhrkop et al.° CSl:FingerlD  SVM Uses both the ESI-MS? spectra and the fragmentation tree from SIRIUS for fingerprinting.
(2015)

Baygi and Barupal®®  IDSL_MINT Transformer First use of transformer model for fingerprinting, trained on two sets from MoNA and
(2024) GNPS.

Brouard et al.®® IOKR IOKR Reportedly faster than CSI:FingerID, trained on spectra from GNPS.

(2016)

Nguyen et al.3* ADAPTIVE MPNN + IOKR  Uses a custom fingerprint from the MPNN for increased specificity. The fingerprint is
(2019) predicted from the spectra using IOKR.

Fan et al.®® MetFID ANN Uses an ANN to predict the fingerprint from ESI-MS? spectra, trained on MoNA and NIST
(2020) 2017.

Ljoncheva et al.? CSI:IOKR IOKR Fingerprinting of EI-MS spectra of silylated compounds, trained on small in-house library.
(2022)

Goldman et al.** MIST Transformer Uses annotated spectra and peak differences, fingerprint reconstructed through “unfolding.”
(2023)

Jietal® DeepEl ANN Uses an ANN for fingerprinting of EI-MS spectra, trained on NIST 2017.

(2020)

Abbreviations: ANN, artificial neural network; El, electron ionisation; ESI, electrospray ionisation; IOKR, input output kernel regression; ML, machine
learning; MPNN, message passing neural network; MS, mass spectrometry; SVM, support vector machine.
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when compared to cosine scores, would allow to search large libraries
with all-against-all matching. This is particularly interesting in the case
of GC-MS where filtering by precursor m/z is not a reliable method to
reduce the number of scores to calculate.

Another tool inspired by a text-mining algorithm is MS2LDA*
which can recognise biochemically relevant substructures, from MS?
data and group spectra based on shared structural patterns. The
algorithm is based on latent Dirichlet allocation and decomposes
fragmentation spectra into blocks of co-occurring peaks and losses,
which the authors call “Mass2Motifs” (similar to assigning topics in
text documents). MS2LDA learns these substructure motifs in an
unsupervised manner (without the need for metabolite annotations)
and enables grouping of spectra of structurally similar metabolites,
regardless of their spectral similarity. Doing so aids structural de novo
annotation and functional classification of unidentified compounds.
Furthermore, “Mass2Motifs” can be annotated by querying
MotifDB,?2 a database of annotated “Mass2Motifs,” which can
further increase the speed of analysis by reducing the need for
manual annotation.

Similar to MS2LDA, MESSAR*” is an ML tool for substructure
annotation. Instead of decomposing spectra into mass to motives,
MESSAR consists of 8378 rules that map ESI-MS? features to
substructures. The substructures were mined from the target and
decoy GNPS libraries as built by Scheubert et al.*® Mass spectra for
the same structure were merged, and duplicated fragments were
removed, resulting in a training dataset of 3146 spectra. Target
substructures were identified from the fingerprint of CSI:FingerID by
taking all bits except the ECFP4 bits and by iteratively breaking bonds
of the compounds in the training dataset and keeping all CHNO
substructures with more than five carbon and oxygen atoms.
MESSAR was tested on two MoNA test sets, “MASSBANK” and
“MASSBANK_CASMI,” with structures present in the training set
removed. In total, 4743 rules which had at least five true positives in
the MASSBANK test set were evaluated, and 2364 of the evaluated
rules had a recall over 0.6, whereas only 463 had a recall lower than
0.2. Additionally, MESSAR was compared to CSl:FingerID on the
MASSBANK_CASMI test set. Although MESSAR correctly annotated
fewer structures correctly under the top three candidates,
concatenating the results of both CSI:FingerID and MESSAR and
removing duplicates produced more correct annotations than
either tool.

The methods described in this section are quite dissimilar.
Spec2Vec uses unsupervised methods to generate a “fingerprint,”
which is more specific to the task of finding compounds in spectral
libraries and results more in a stronger correlation of fingerprint
similarity score with the structural similarity of compounds.
Nevertheless, like supervised fingerprinting methods it might require
retraining for compounds that are too dissimilar or are absent from
the training dataset. Retraining is not necessary for MS2LDA, which
finds correlation inside a given dataset. Nevertheless, MS2LDA is
considerably slower than supervised methods and does not offer a
fingerprint for searching compound databases, instead identifying

relationships between compounds in the dataset. Both tools are fairly

popular in regard to the number of papers citing them, with MS2LDA
being by far the most cited tool of the two. Furthermore,
MS2LDA and MESSAR are available as a web server, whereas

Spec2Vec is available only as a Python package.

3 | INSILICO FRAGMENTATION

In silico fragmentation methods are methods which computationally
predict a mass spectrum of a specific type for a given compound,
which subsequently can be used for library-based annotation. Four
approaches to generate in silico spectra are rule-based methods,
combinatorial methods, ML-based methods and ab initio methods.*?
Rule-based methods rely on expert knowledge to curate a collection
of rules which are used to predict fragments. Combinatorial methods
generate fragments by iteratively splitting bonds in the molecule.
Ab initio methods use quantum mechanical simulations to generate
a mass spectrum but are constrained by their low throughput.
ML-based methods, which are covered in this review, are diverse in
their approaches; some try to apply ML to a part of the problem, for
example, predicting the bond dissociation probability, whereas others
try to directly predict a mass spectrum from an input. The considered
methods have different strengths and weaknesses. The direct
prediction methods require huge quantities of high-quality
homogenous data for training. The trained models are fast but can
predict spectra only with the resolution of the training dataset and are
less interpretable. These disadvantages can be addressed by models
that simulate the fragmentation events, thus resulting in easily
interpretable spectra which allow arbitrary precision. Nevertheless,
models that simulate fragmentation tend to be conceptually more
complicated and might include time-consuming fragmentation steps,
like CFM-ID.*9>3

In silico identification software (ISIS)>* is a fragmentation tool
designed to predict ESI-MS? spectra of lipids. ISIS simulates the
fragmentation processes in a linear ion trap through a kinetic Monte
Carlo approach. The algorithm was trained on a set of 22 lipids
measured in positive mode using a normalised collision energy of
30%. Under the same experimental conditions, a test set of 45 lipids
was measured. A genetic algorithm, with the similarity between the
simulated spectrum and the measured one as fitness function, was
used to find the optimal weights of the ANN used to predict the
bond-cleaving energies for CID. The ISIS algorithm was tested on a
subset of 18 399 lipids from the LIPID MAPS>>~>7 database (mass
<1100 Da, only CHNOPS atoms). ISIS was used to generate an
artificial library with 300 replicates of each lipid in the LIPID MAPS
subset. The recall rates are presented in Table S2. A general-purpose
tool is CFM-ID,**752%8 available as a web server, developed for the
annotation of MS? spectra of compounds not present in spectral
databases. Since its initial release, the web server has offered three
functionalities: predicting spectra, assigning fragments and identifying
compounds. In the case of spectral prediction, the input (a SMILES
string, an InChlKey or a list of SMILES strings) is used to generate the
10, 20 and 40-eV ESI-CID-MS spectra in both positive and negative
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modes. The fragment assignment functionality uses a given SMILES or
InChlKey structure and an input spectrum to annotate peaks with
possible fragments ranked by their computed probabilities. The
compound identification functionality allows putative identification of
MS? spectra (ideally CID spectra acquired at 10, 20 and 40-eV
collision energy) used as input. The scoring is based on the Jaccard
score. Central to the function of CFM-ID is its ability to predict mass
spectra. The spectral prediction is achieved by systematically breaking
bonds, generating possible fragments and assigning a probability to
each fragmentation event.

More precisely, the fragmentation process is simulated by a
homogeneous Markov-chain process. A vector of features that
characterise each fragmentation is used as input to a linear function
to predict fragmentation events. The computed fragmentation
probability is used to estimate the intensity of a signal in the
spectrum. The weights of the linear function were learned on ESI-MS?
data from the Metlin database®® obtained using an Agilent 6520
Q-TOF spectrometer.

Functionality of CFM-ID was extended in version 3.0°! adding a
rule-based fragmentation module for lipids, which improves
computational time and predictive performance for in silico
fragmentation of lipids. Furthermore, a chemical class classification
tool, an improved scoring function and the inclusion of metadata and
experimental spectra for annotation were implemented. Version 4.0°?
further improved the rule-based fragmentation module, covering
additional molecule classes and changing the ring fragmentation
modelling, which simplified the feature vector describing the
fragmentation event. The changes resulted in an improvement in
CFM-ID 2.0/3.0 of on average 26.7% better dot product when
predicting [M + H]" spectra and of 20.6% when predicting [M-H]~
spectra. The performance of CFM-ID was compared with SIRIUS 4 on
the CASMI 2016 dataset. CFM-EI*? was implemented in CFM-ID 2.0
to predict EI-MS spectra from SMILES or InChl string. CFM-EI
simulates the fragmentation of the input compound using a fixed-
length stochastic Markov chain, with the transition between discrete
fragment states sampled from a set containing all possible fragments.
Additionally, the simulation function was adjusted to handle isotope
peaks and odd electron peaks. Furthermore, an ANN with a
20-neuron and a 4-neuron hidden layer with ReLU activation function
was implemented in the CFM transition function. The CFM transition
function was trained on 70-eV EI-MS spectra from the NIST/EPA/
NIH mass spectral library.

An in silico method specifically developed for EI-MS is NEIMS. 44
NEIMS is an ANN that predicts El mass spectra of small molecules.
Precisely, NEIMS uses an ANN to predict NM El mass spectra from
extended circular fingerprints (ECFP). The ANN was trained on
240 942 NM EI mass spectra from the mainlib of the NIST 2017. The
ANN was adjusted with reverse prediction to improve the prediction
performance in the high-mass region, which has a greater impact on
the match score than the lower-mass region. To evaluate the
performance of the trained ANN, the replib of the NIST 2017 spectral
library was used. An augmented library was constructed by removing

the spectra contained in the replib from the mainlib and replacing it
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with artificial spectra generated by the NEIMS ANN. The augmented
library was queried using the spectra from the replib, and a top
10 recall rate of 85.5% was observed, which further increased to
91.7% when prefiltered using a 5-Da mass filter. Nevertheless, the
performance is inferior to the use of the not-augmented NIST 2017
spectral library, which was shown to achieve a top 10 recall rate of
98.8% and a vastly superior performance at top 1 and top 5 recall
rates. Additionally, the authors compared the performance of NEIMS
to CFM-EI. To make it more comparable, NEIMS was retrained on the
NIST 2014 spectra database, and an augmented library containing
only predicted spectra was queried using the NIST 2014 replib to
obtain top n recall rates. The use of ANNs to directly predict mass
spectra has the considerable advantage of being faster than CFM-ID,
consequently allowing the generation of vast synthetic NM EI-MS
libraries.

Further exploration in the direct prediction of El mass spectra
was conducted by Zhang et al.,”>’ who examined the possibility of
using graph neural networks (GNN). A significant difference compared
to NEIMS is that, instead of coding the molecular structure into an
ECFP, a molecular graph is used as input for the graph convolutional
network (GCN). In the molecular graph, non-hydrogen atoms are
encoded as nodes, whereas the chemical bonds are represented as
edges. Unlike ECFPs, which are designed for general use, the GCN
learns an intermediate molecular representation specific for predicting
EI-MS spectra. Additionally, this avoids the problem of different
features having the same value in the fingerprint due to bit overflow
or the loss of relevant information. The generated molecular graphs
were used as input for the GCN, consisting of a feature extraction
module, which extracts structural features from the molecular graphs.
The extracted molecular features are successively used in the spectral
prediction module to predict the EI-MS spectrum. The GCN was
trained on 143 989 spectra from the NIST 2005 mainlib, with spectra
of compounds contained in the replib removed. A test of 22 316
spectra from the NIST 2005 replib was used for testing, together with
7462 spectra from the MassBank database. As previously done by
Wei et al, the recall rate was measured by querying augmented
libraries. The augmented libraries were generated by removing the
spectra of compounds in the test set and replacing them with spectra
generated by the GCN.

Another approach to in silico fragmentation is presented by
Goldman et al.?° in the form of ICEBERG, a tool which predicts ESI-
MS? spectra in a two-step process. In the first step the most probable
fragments are predicted by the ICEBERG Generate model, and in the
second step the fragments are assigned an intensity by the ICEBERG
Score module. Unlike CFM-ID, which generates fragments by
removing bonds from the molecular graph, ICEBERG, like MAGMa,!
generates fragments by removing atoms. The fragmentation is
simulated through the ICEBERG Generate module. The ICEBERG
Generate module assigns each atom a fragmentation probability and
retains only the most probable fragments. The fragmentation is
repeated until the third generation of fragments. At each iteration, a
GNN is used to encode the graph of the root molecule and the graph
of the current fragment. The graph embedding of the root molecule,
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the atom embeddings of the current fragment and a context vector
containing metadata are concatenated and used as an input for an
MLP that calculates the fragmentation probability for each atom. The
resulting fragments are assigned intensities by the second model
called ICEBERG Score. ICEBERG Score is a set transformer that
predicts the intensities of the fragments. Isotope patterns and
hydrogen shifts are modelled by predicting multiple intensities. For
each fragment, the intensity of the fragment and the intensity of the
fragment with the addition and loss of up to six hydrogen masses are
predicted.

ICEBERG was trained on the NIST 20 MS? library and the NPLIB1
dataset (a subset of the GNPS library used to train CANOPUS®?).
Consensus spectra were used for training, which means it cannot
predict spectra for different collision energies (unlike tools like CFM-
ID and FIORA®3). The consensus spectra were generated by merging
all spectra at different collision energies, merging peaks within
0.1 mDa. The resulting spectra were normalised and filtered to keep
up to the 50 most intense peaks with normalised intensity over 3%o.
Furthermore, the mass of the adduct ion was subtracted from all MS?2
spectra. The resulting test sets were split into structurally disjoint
90/10% train-test splits and used to compare ICEBERG with
SCARF,%* CFM-ID, NEIMS and the GNN proposed by Zhang et al.>®
To train the ICEBERG Generate module, MAGMa was used to
enumerate fragments up to a fragmentation depth of three and
filtered to retain only fragments present in the mass spectra. The
authors found ICBERG to outperform the closest contender (SCARF)
on average cosine similarity between simulated and real spectra for
the NPLIB1 test set. ICEBERG was outperformed by SCARF on the
NIST 20 MS? test set. Nevertheless, when comparing the top n recall
rates, ICEBERG clearly outperforms all competing tools on both
test sets.
is RASSP,

a model to predict EI-MS spectra. Two versions of the prediction

An alternative method, developed by Zhu and Jonas,®®

model were developed, a version based on the prediction of sub-
formulae (RASSP:FN) and one based on the prediction of atom

subsets (RASSP:SN). Both models comprise an enumeration step
followed by the prediction of the probability distribution over the
enumerated sub-formulae/subsets. RASSP:FN enumerates the sub-
formulae by recursively taking the set-wise Cartesian product of the
possible sub-formulae of one element with the sub-formulae over
the rest of the molecule. To estimate the probability of a sub-formula,
a GNN is used to encode the molecular information into a per-atom
feature matrix. The per-atom feature matrix and the sub-formula are
used to calculate a context vector, which is concatenated to the sub-
formula and used as input to an ANN to obtain the sub-formula
probabilities. The probabilities are further scaled with weights derived
from the per-atom feature matrix.

The RASSP:SN version, instead, enumerates subsets by iteratively
breaking chemical bonds up to a depth of three. The enumerated sub-
formulae are supplemented by considering hydrogen rearrangements.
For a given subset, it calculates an embedding by calculating the
average of the per-atom feature of atoms present in the subset.
The embedding is used instead of the context vector to calculate the
probability of a sub-formula. The models were trained with minibatch
SGD and L2 loss function on spectra with 100 438 EI-MS spectra
from the NIST 2017 library (<48 atoms, <4096 maximum unique sub-
formulae, <12 288 subsets). The performance was evaluated by
querying an augmented NIST 2017 mainlib with the NIST 2017 replib.

In silico fragmentation tools (an overview is presented in Table 2)
have developed rapidly due to the evolution of ML methods. ML
methods can predict intensities, instead of barcode spectra, in a
fraction of the time required by ab initio methods. These ML-based in
silico fragmentation methods can be useful to expand existing MS
libraries, as an alternative to fingerprints to rank candidate annotation
and, in the case of methods that predict fragments, to help elucidate
the fragmentation mechanism.

The available ML-based in silico tools serve different purposes.
Direct prediction tools like NEIMS or the GNN reported by Zhang
et al.>? can predict vast libraries of NM EI-MS spectra but are less

useful in cases where annotation of the fragments is required or for

TABLE 2 Overview of in silico fragmentation methods described in this manuscript. The full set of publications evaluated for this review with

structured information is provided as Table S3.

Monte Carlo simulation of fragmentation of lipids; trained on a small in-house lipid library (22

Modelling of CID-MS? fragmentation as stochastic Markov-chain process; trained on Metlin

database; available as web server and Docker container.

Reference Tool name ML method Highlights
Kangas et al.>* ISIS ANN
lipids).
Wang et al.>? CFM-ID ANN
Wang et al.>? CFM-EI ANN
NEIMS ANN
Zhang et al.>® GCN GNN

Goldman et al.® ICEBERG  GNN

RASSP:SN  GNN

CFM-ID model for El spectra; trained on NIST 2014, available as CLI.
ANN-based direct prediction of NM-EI-MS spectra; trained on NIST 2014.
Use of a GNN to predict NM-EI-MS spectra from the molecular graph; trained on NIST 2005.

Models ESI-MS? in two steps: one model predicts most probable fragments; the second model
+ transformer  predicts the intensities.

Use of GNN to predict fragments of EI-MS trained on NIST 2017.

Abbreviations: ANN, artificial neural network; CID, collision-induced dissociation; CLI, command line interface; El, electron ionisation; ESI, electrospray
ionisation; GCN, graph convolutional network; GNN, graph neural network; ISIS, in silico identification software; ML, machine learning; MS, mass

spectrometry; NM, nominal mass.
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the prediction of ESI-MS spectra, where CFM-ID is de facto without
an alternative. The development of alternative methods has great
potential, as is seen with EI-MS spectra, where RASSP is capable of
producing easily interpretable spectra with annotated fragments, like
CFM-ID, at much higher speeds.

4 | DENOVO METHODS

Previously described methods are of limited use in the identification
of unknown unknowns, that is, mass spectra of compounds that are not
present in any public databases. Due to the necessity of an input for
in silico methods and the dependence on compound databases of
fingerprinting methods, both methods will fail to identify a genuinely
unknown compound. A possible workaround is the de novo
generation of candidate structures. The field of de novo molecular
generation has been of particular interest for novel drug development,
where they allow exploring a targeted chemical space by generating
molecules with desired properties on demand. These methods are
based on models used in linguistics, for example, long-short-term
memory (LSTM) networks that learn an intermediate representation
from which the novel molecule is generated via perturbation. Two
methods will be described, both addressing different problems. The
first paper treats compound library expansion and training with
augmented datasets. The second publication handles inverse spectral
prediction by dividing it into two sub-problems.

TABLE 3 Overview of selected ML-based annotation tools.

Method Typology Input

Heinonen et al.?’ FP ESI-MS? spectra

Brouard et al.33 FP ESI-MS? spectra

ADAPTIVE®* FP ESI-MS? spectra

CANOPUS®? FP ESI-MS? spectra

SIRIUS®® AS ESI-MS? spectra

MIST FP ESI-MS? spectra with annotated peaks
Ljoncheva et al.*? FP ESI-MS?2 spectra of TMS derivatives
MetFID3>7¢ FP ESI-MS? spectra

DeepEl*® FP ESI-MS? spectra

Spec2Vec?t FP ESI-MS?, EI-MS? spectra
MS2LDA-MotifDB?24¢ FP ESI-MS? spectra

ISIS>* ISF Molecular structure
CFM-|D*#%:50:52:53 ISF Molecular structure

NEIMS** ISF Molecular structure

Zhang et al.>® ISF Molecular structure

DarkNPS®” DCG Training set

MSNovelist®” DCG ESI-MS? spectrum
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Building upon their previous study,®® Skinnider et al.®” developed
DarkNPS, a method of de novo structure generation for the purpose
of identifying novel psychoactive substances (NPS). The chemical
space of NPS is peculiar because it is characterised by a small number
of structural motifs and a limited number of chemical transformations
used to synthesise NPS. Based on their previous work, the authors
trained a gated recurrent unit model and an LSTM model with
augmented SMILES datasets with different degrees of augmentation.
The augmentation of the datasets was achieved by including non-
canonical SMILES, that is, SMILES obtained by varying the path by
which the molecule is traversed to generate the SMILES string. The
non-augmented training data consisted of 1753 unique NPS
structures contained within the HighResNPS® dataset, with another
194 used as the test set. An LSTM model with an augmentation of
factor 100 of the training set was selected based on the higher
percentage of valid SMILES generated and the five metrics described

in their previous work.®®

An artificial compound library was generated
by sampling SMILES from the trained model and removing invalid
SMILES and known NPS, resulting in an artificial library of 62 354
novel NPS. It was observed that some NPS appeared multiple times,
which was hypothesised to correlate with the probability of the
compound appearing on the grey market. Out of the molecules in
the training set, 90.7% appeared at least once in the artificial library,
with the 18 molecules not present showing a significantly lower
similarity to any compound in the training set. After the 18 dissimilar

entries were removed from the test set, 93.1% of compounds in the

Output

Binary fingerprint

Binary fingerprint

Molecular fingerprint

Classy fire classes

Molecular formula, molecular fingerprint, predicted structure
Molecular fingerprint

Molecular fingerprint

Molecular fingerprint

Molecular fingerprint

Embedding

Annotated and unannotated mass spectral patterns
ESI-MS? spectrum

HR-CID-MS?2, HR-EI-MS spectrum

Nominal mass EI-MS spectrum

Nominal mass EI-MS spectrum

Library of novel compounds

Candidate structure

Abbreviations: AS, annotation suite; CID, collision-induced dissociation; DCG, de novo compound generation; El, electron ionisation; ESI, electrospray
ionisation; FP, fingerprinting; HR, high resolution; ISF, in silico fragmentation; ISIS, in silico identification software; ML, machine learning; MS, mass

spectrometry; TMS, trimethylsilyl.

The column “method” provides references and the name of the published tool when available.
@Although advantages of Spec2Vec for El were mentioned in the manuscript, the user would need to retrain the model to use it on EI-MS spectra.
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FIGURE 3 Graphical timeline of ML (machine learning) methods used in compound annotation. Fingerprinting methods are colour coded in
blue, in silico fragmentation methods in red and de novo methods in green. The trend towards the adoption of artificial neural networks (ANN)
can be observed for both in silico fragmentation and fingerprinting methods. The more recent de novo methods use recurrent neural networks
(RNN). ANNs have been repeatedly investigated for in silico fragmentation tools, where in recent years new architectures, such as graph neural
networks (GNN) and message passing neural networks (MPNN), have been implemented. In contrast, fingerprinting methods are dominated by
kernel methods, for example, support vector machines (SVM) and input output kernel regression (IOKR), which still show competitive
performance, even though methods based on ANN have been investigated in recent times. [Color figure can be viewed at wileyonlinelibrary.com]

test set were predicted by the model. Using only the accurate mass
with a search window of +10 ppm, a top 1 recall of 33%, a top 3 recall
of 48% and a top 10 recall of 72% were observed. Furthermore,
based on the results obtained on a subset of 79 compounds with MS?
data, the combination of CFM-ID°° and DarkNPS with the sampling
frequency of a molecule as ranking was analysed. A top 3 recall rate
of 53% for the model alone, 1% for CFM-ID and 70% for the
combination of CFM-ID and DarkNPS were observed.

Another de novo approach is the direct prediction of the
molecular structure from mass spectra, as done by MSNovelist.®”
The method breaks the inverse spectral problem into two parts: the
prediction of a fingerprint and the prediction of a SMILE from a
fingerprint. The fingerprint is predicted using SIRIUS.Y? The
fingerprint and the molecular formula, predicted using CSI:FingerlD?°
or manually given by the user, are used as input for an LSTM model
to predict the SMILES of the compound. The ANN was trained on
1 232 184 compounds collected from HMDB,”®~74 COCONUT and
DSSTox.”®> The trained model was tested on a test set of 3863
compounds from the GNPS database. For each spectrum in the test
set, the 128 highest-scoring SMILES were retrieved with a top
128 recall rate of 45% and a top 1 recall rate of 25%—for
comparison, CSl:FingerID reaches a top 1 recall rate of 39% when
searching against a database. The performance on the GNPS dataset
was compared with a naive generation model, which lacked the
fingerprint input. The naive model had a top 1 recall rate of 17% and
retrieved 31% of all correct structures. Additionally, MSNovelist was
tested on 127 positive ion mode spectra from the CASMI 2016
challenge, reaching a top 1 recall rate of 26% and a total correct
recall rate of 57% (compared to, respectively, 24% and 52% for the
naive model).

Of the discussed methods, de novo methods are the newest and
as such the less investigated and less mature. The novelty of the
models is only in part responsible for the low number of publications;
more importantly the requirement of high quantities of data limits the
development of de novo annotation methods. To overcome
the limited data availability, data augmentation and breaking down

into multiple more manageable sub-problems have been deployed. In
both cases it was shown that using adequate strategies, it is possible
to utilise de novo methods to augment compound libraries and
to predict the identity of a compound from MS? spectra. The relative
novelty of the methods might limit their application right now, but the
potential of expanding compound libraries and predicting molecular
formulae directly from mass spectra will ensure further interest in the
scientific community.

5 | CONCLUSION AND OUTLOOK

In recent years, significant progress has been made in using ML to
annotate MS data in metabolomics. Multiple annotation approaches
have been proposed (an overview is presented in Table 3).

The approaches studied in this article were grouped into three
categories: fingerprinting, in silico fragmentation and de novo
methods. Fingerprinting and in silico fragmentation can be considered
as more developed fields and are, as such, dominated by several
well-established tools, for example, the SIRIUS suite or CFM-ID,
which are subject to steady improvement. The evolution of applied
algorithms over time, as seen in Figure 3, shows trends similar to the
general development of ML based approaches. Initially, methods were
based on more traditional ML approaches, which in the case of
fingerprinting are still highly relevant, followed by the adoption
of ANNSs and, especially in recent years, of novel specialised ANN
architectures. More recently, GNNs were adopted in both,
fingerprinting and in silico fragmentation approaches, and RNNs for
de novo methods.

Fingerprinting methods have seen a broad use of classical ML
methods and recently some utilisation of ANNSs, which are capable of
predicting whole fingerprints, resulting in fast inference. The problem
with using ANNSs is the requirement of considerable quantities of data
for training and the quality of the mass spectra. Furthermore, the
similarity of the training data to the application data determines how

reliable the results are.
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A similar scenario emerges for in silico fragmentation that has
seen the emergence of ML-based direct prediction methods, which
can generate huge synthetic spectral libraries due to their
computational speed. Direct in silico fragmentation methods are
based on ANNs, which require high quantities of data and strongly
profit from homogeneous standardised datasets. The availability of
vast, standardised NM libraries (NIST, Wiley) has resulted in promising
algorithms for NM EI-MS. Although vast MS libraries are also
available for ESI-MS, the high data heterogeneity has inhibited the
development of direct in silico fragmentation algorithms so far. More
complex physics-inspired algorithms like CFM-ID and RASSP, which
predict molecular fragments, have shown the possibility to be trained
with less data (CFM-ID) and the ability to predict spectra at arbitrary
resolution. However, it is still necessary to use computationally
intensive methods such as CFM-ID or quantum mechanics-based
methods to simulate HR MS spectra, ESI-MS? spectra or compound
spectra too dissimilar from the training set. Additionally, ML methods
can facilitate the identification of “unknown unknowns,” that is,
compounds that have not been previously described in the literature
and are therefore absent from databases. This is possible either by
identifying similar compounds in databases or by generating possible
structures from the spectral data. More precisely, ANNs open novel
possibilities such as de novo methods which can complement already-
established tools by expanding their area of application to compounds
not contained in compound libraries. The adoption of these methods
is limited by their resource-intensive nature and the need for further
fine-tuning to better fit the compounds of interest. Nonetheless, the
continuous improvement in computer hardware and cloud computing,
the availability of good-quality training data and the integration of ML
methods into existing user-friendly packages might result in the
popularisation of de novo methods for non-targeted MS annotation.

In summary, ML approaches are already substantially benefitting
non-targeted MS analyses, and a variety of well-established tools exist
and are being constantly improved. Naturally, a single universally
applicable tool does not exist. Depending on the task and question
being investigated, different tools are viable. Weaknesses of state-of-
the-art tools and novel possibilities offered by ML approaches like
ANNs are the main drivers of development. We observed that
incorporating chemical knowledge into the architecture of a tool leads
to improved performance, in addition to making models more
interpretable for users. An additional contribution to the popularity of a
tool is the ease of use, where a tendency of more popular tools offering
a GUI can be observed. There is reason for some optimism as the
accuracy, capabilities and accessibility of the methods are continuously
improving. Simplifying and automating the annotation of non-targeted
MS data is of great interest due to the potential of increased
throughput, reproducibility and reduced costs. ML might catalyse a
wider diffusion of non-targeted MS by suppressing costs and reducing
the high time consumption of highly qualified labour. Beneficial for the
development of the field are, on the one hand, the availability of high-
quality training data, that is, annotated spectra with well-curated
metadata, and, on the other hand, the use of well-defined test sets that

allow a fair comparison between the different methods. Benchmarking
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and comparison with existing methods is non-trivial and has been
discussed by multiple authors (e.g., de Jonge et al.”” and Hoffmann
et al.”®). For a good comparison the test set needs to be representative
of the tool use case. When multiple tools are compared, the test set
should be structure disjoint from the training set. The lack of
standardised, publicly available test sets can result in metrics which are
comparable only within a single study. We are optimistic about the
development of the field, as we observe an increased effort of authors
to ensure fair and representative benchmarking.

Furthermore, we observe a steady growth of open-access mass
spectral libraries, which hopefully will accelerate the progress and
development in the field. ML approaches for compound annotation
are already performing well. More competitive, dynamic approaches,
as well as fruitful collaborative efforts, may result in the establishment
of standard testing procedures, methods and datasets, which in turn

will further improve ML-based approaches.
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