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 30 

Abstract 31 

 32 

Human polyomavirus 9 (HPyV9) was recently discovered in immunocompromised patients and 33 

shown to be genetically closely related to the B-lymphotropic polyomavirus (LPyV). No serological 34 

data are available for HPyV9, but human antibodies against LPyV have been reported previously. To 35 

investigate the seroepidemiology of HPyV9 and the sero-crossreactivity between HPyV9 and LPyV, a 36 

capsomer-based IgG ELISA was established using the major capsid proteins VP1 of HPyV9 and LPyV. 37 

VP1 of an avian polyomavirus was used as control. For HPyV9 a seroprevalence of 47% was 38 

determined in healthy adults and adolescents (n=328) and 20% in a pediatric group of children 39 

(n=101). In both groups, the seroreactivities for LPyV were less frequent and the ELISA titers of LPyV 40 

were lower. Of the HPyV9-reactive sera, 47% reacted also with LPyV, and the titers for both PyVs 41 

correlated. Sera from African green monkeys, the natural hosts of LPyV, reacted also with both 42 

HPyV9 and LPyV, but here the HPyV9 titers were lower. This potential sero-crossreactivity between 43 

HPyV9 and LPyV was confirmed by competition assays and it is hypothesized that the reactivity of 44 

human sera against LPyV may be generally due to crossreactivity between HPyV9 and LPyV. The 45 

HPyV9 seroprevalence of liver transplant recipients and patients with neurological dysfunctions did 46 

not differ from that of age-matched controls, but a significantly higher seroprevalence was 47 

determined in renal and hematopoietic stem cell transplant recipients indicating that certain 48 

immunocompromised patient groups may be at a higher risk for primary infection with or 49 

reactivation of HPyV9. 50 

 51 

 52 

Introduction 53 

 54 

The human polyomavirus 9 (HPyV9) is the most recently identified among the nine human 55 

polyomaviruses (PyVs) known to date, and was first detected in a renal transplant patient (Scuda  et 56 

al., 2011). Later, the same virus was also found in human skin (Sauvage  et al., 2011).  57 

PyVs are small, non-enveloped, circular double-stranded DNA viruses. Primary infection with BK 58 

virus (BKV) and JC virus (JCV) occurs in childhood and is usually asymptomatic (Moens & 59 

Johannessen, 2008). Subsequently, these viruses establish a latent infection. Reactivation can occur 60 

in immunocompromised patients and cause serious disease, such as BKV-associated nephropathy or 61 

hemorrhagic cystitis (Gardner et al., 1971; Jiang et al., 2009), JCV-associated progressive multifocal 62 

leukoencephalopathy (Hou & Major, 2000; Jiang et al., 2009; Padgett et al., 1971) and TSV-associated 63 

Trichodysplasia spinulosa (Matthews et al., 2011; van der Meijden et al., 2010). PyVs have been 64 
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shown to transform cells in vitro and to be tumorigenic in small laboratory rodents (Chen et al., 1989; 65 

Eddy et al., 1962; Gross, 1953; Stewart, 1953). BKV and JCV have been etiologically implicated in a 66 

number of human cancers, but this issue is still controversial (Abend  et al., 2009; Maginnis & 67 

Atwood, 2009; zur Hausen, 2008). The Merkel cell polyomavirus (MCPyV) plays a causative role in 68 

Merkel cell carcinoma, a rare but aggressive skin cancer (Becker et al., 2009; Feng et al., 2008). 69 

PyV serology has been used as an indicator for PyV infection because of the absence of overt 70 

symptoms during primary infection and insufficient knowledge of sites of persistence. Until today, no 71 

commercial sero-assays for the detection of human PyVs are available. Therefore, different assay 72 

formats have been set up in the past by a number of laboratories using a wide variety of antigen 73 

preparations including cultured viruses, virus-like particles (VLPs) formed by the major structural 74 

protein VP1 or PyV capsomers. The serologically best-studied polyomaviruses are BKV and JCV. 75 

Infection with BKV occurs generally earlier in childhood than with JCV, and the prevalence in healthy 76 

adults is around 50-96% for BKV and 50-70% for JCV (Antonsson et al., 2010; Bodaghi et al., 2009; 77 

Carter et al., 2009; Egli et al., 2009; Kean et al., 2009; Viscidi & Clayman, 2006). High seroprevalences 78 

have also been determined for MCPyV (Tolstov  et al., 2009; Touze et al., 2010; Viscidi et al., 2011), 79 

PyVs discovered in respiratory tract specimens (KIV and WUV) (Kean  et al., 2009; Neske et al., 2010; 80 

Nguyen et al., 2009), and PyVs with skin tropism (HPyV6 and HPyV7) (Schowalter  et al., 2010).  81 

For HPyV9, no seroepidemiological studies are available to date. However, HPyV9 is closely 82 

related (genome identity: 76%) to the B-lymphotropic polyomavirus (LPyV; also named African green 83 

monkey PyV) (Scuda et al., 2011; Takemoto & Segawa, 1983; zur Hausen & Gissmann, 1979). It has 84 

been reported that up to 30% of adult humans have antibodies against LPyV and it has been 85 

speculated that either LPyV is infectious for humans or an unknown human PyV exists that is closely 86 

related to LPyV and induces crossreactive antibodies (Brade et al., 1981; Kean et al., 2009; Takemoto 87 

& Segawa, 1983). The aim of the present study was therefore to study the sero-crossreacitvity 88 

between HPyV9 and LPyV and to determine the seroprevalence of HPyV9 in children and adults using 89 

an ELISA. In addition, we analysed sera of several patient groups. Based on the fact that PyVs are 90 

frequently reactivated in immunocompromised transplant recipients, sera of kidney, liver and 91 

hematopoietic stem cell transplant recipients were tested. Taking into account that JCV has tropism 92 

for the central nervous system and that evidence for the presence of BKV, KIV and WUV in the 93 

central nervous system is accumulating (Lopes da Silva, 2011; Barzon  et al., 2009; White et al., 2005), 94 

we also analysed patients with neurological dysfunctions.  95 

 96 
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Results 97 

 98 

Seroprevalence of HPyV9 and crossreactivity to LPyV  99 

A capsomer-based ELISA was established and used for the detection of HPyV9-VP1 and LPyV-VP1 100 

antibodies. To ensure that the final OD450 values for HPyV9-VP1 and LPyV-VP1 were not in part 101 

derived from antibodies to VP1 epitopes conserved among the PyVs or resulted from antibodies non-102 

specific for PyVs, the reactivity of the sera to the VP1 of an avian PyV (Budgerigar fledging 103 

polyomavirus [BFDPyV]) was measured (Mean OD450=0.06), and the values obtained for each serum 104 

subtracted from the ODs measured for VP1 of HPyV9 and LPyV. Using this approach, a pediatric 105 

population of 101 subjects and 328 healthy adults and adolescents were tested. HPyV9 106 

seroprevalences of 20% (20/101 children) and 47% (154/328 adults and adolescents) were 107 

determined. For LPyV, reactivities of 6% (6/101 children) and 26% (84/328 adults and adolescents) 108 

were obtained (Figure 1A). Of the 429 sera, 22% revealed reactivity to HPyV9-VP1 only (n=92, OD 450 109 

0.08 to 1.0) and 19% exerted reactivity to both HPyV9-VP1 (n=82, OD450 0.08 to 3.2) and LPyV-VP1 110 

(OD450 0.09-3.0), but only 2% had reactivity to LPyV-VP1 only (n=8, OD450 0.09 to 0.8). Of the co-111 

reactive sera, 91% revealed a higher reactivity to HPyV9 than to LPyV (Figure 1B). The HPyV9 and 112 

LPyV antibody titers were correlated (correlation coefficient: 0.65) (Figure 1B), indicating a possible 113 

sero-crossreactivity between HPyV9 and LPyV.  114 

Because of (i) these observations, (ii) the previously reported presence of LPyV antibodies in 115 

human sera (Brade et al., 1981; Kean et al., 2009) and (iii) the fact that the genomes and encoded 116 

proteins of HPyV9 and LPyV are remarkably similar (genome identity: 76%; VP1 amino acid identity: 117 

87%) (Scuda et al., 2011), the potential crossreactivity between HPyV9 and LPyV was further 118 

analysed. For this purpose, 10 human sera, reactive for both HPyV9-VP1 and LPyV-VP1, were 119 

compared with 10 sera of AGMs, the natural hosts of LPyV, for their reactivities against HPyV9-VP1 120 

and LPyV-VP1. Six of the AGM sera co-reacted with HPyV9 and LPyV (the other 4 were negative for 121 

both antigens). Importantly, in contrast to the human sera, the reactivity of the positive AGM sera 122 

was always higher to LPyV than to HPyV9 (examples shown in Figures 2A and 2B). These data further 123 

indicated sero-crossreactivity between HPyV9 and LPyV, and competition assays were carried out for 124 

confirmation. By pre-incubating HPyV9-reactive human sera with up to 5 µg/ml of soluble HPyV9-125 

VP1, the anti-HPyV9-VP1 ELISA reactivity was reduced to approximately 20%. The reactivity was also 126 

reduced by pre-incubation with LPyV-VP1, but only to approximately 85% (example in Figure 2C). 127 

Conversely, the anti-LPyV-VP1 ELISA reactivity of AGM sera was reduced to approximately 30% by 128 

pre-incubating the AGM sera with up to 5 µg/ml of soluble LPyV-VP1. With HPyV9-VP1, the reactivity 129 

was only reduced to approximately 80% (example in Figure 2D). Pre-incubation of human and AGM 130 

sera with up to 5 µg/ml of soluble BKV-VP1 had no reducing effect (data not shown). 131 
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 132 

Seroprevalence of HPyV9 in age groups 133 

The seroprevalence of HPyV9 was 13% in children of age 2-5 and rose to 38% in the group of age 11-134 

20. In young adults of age 21-30, a maximum prevalence of 53% was measured.  In the older age 135 

groups a steady decline was observed, resulting in a 35% prevalence in subjects of age >60. The age 136 

distribution of LPyV reactivity closely followed the distribution of HPyV9 reactivity, and the number 137 

of LPyV-positive sera was smaller in each age group (Figure 3). In neither age group, a noteworthy 138 

difference in HPyV9 seroprevalence between male and female adults was observed (data not 139 

shown). 140 

  141 

Seroprevalence of HPyV9 in patient panels 142 

Sera from kidney (n=100), hematopoietic stem cell (n=50) and liver (n=50) transplant recipients, as 143 

well as sera from patients with neurological dysfunctions (n=50) were analysed in the HPyV9 ELISA 144 

and compared to age-matched controls. A significantly elevated HPyV9 seroprevalence was seen in 145 

the groups of kidney and hematopoietic stem cell transplant recipients. The liver transplant 146 

recipients and the patients with neurological dysfunctions did not show significant differences to the 147 

controls (Figure 4A). The means of netto absorbances were significantly elevated in all four patient 148 

groups (Figure 4B).  149 

 150 

HPyV9 infection of the index patient 151 

HPyV9 had been discovered in an immunocompromised patient 837 days after kidney/pancreas 152 

transplantation (Scuda et al., 2011). Sera taken at day 837 and at different time points thereafter 153 

were tested here for HPyV9 IgM antibodies, IgG antibodies and avidity of IgG antibodies (sera from 154 

earlier time points were not available for antibody testing). At day 837 after transplantation, only a 155 

weak IgM absorbance was measured. During the following 2 weeks, IgM increased and, with delay 156 

and more slowly, also IgG. From day 852, the IgG titer further increased and remained constant after 157 

day 1093 at OD450 2.8 for approximately 1.5 years, while the IgM titer decreased. The IgG avidity 158 

index (AI) rose from AI=0.35 at day 839 to AI=0.70, 0.99 and 0.97 at days 852, 1093 and 1552, 159 

respectively (Figure 5, lower part). 160 

To detect the genome of HPyV9, DNA samples extracted from the patient sera were analysed 161 

with HPyV9-specific nested PCR. PCR was positive for HPyV9 with sera taken at days 837 and 839 162 

after transplantation. Other sera taken at earlier or later time points were PCR-negative (Figure 5, 163 

upper part).  Additional analysis of the samples with generic PyV PCR (Scuda  et al., 2011) did not 164 

reveal the presence of LPyV or human PyVs other than HPyV9. 165 

 166 
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 167 

Discussion 168 

We have determined the seroprevalence of the recently identified HPyV9 with an ELISA using VP1 169 

capsomers as antigen. Beside hemagglutinin inhibition test (Bodaghi et al., 2009; Knowles et al., 170 

2003) and VLP-based assays (Egli et al., 2009; Faust et al., 2011), capsomer-based ELISA formats have 171 

been successfully used in several studies on polyomavirus serology (Carter  et al., 2009; Kean et al., 172 

2009; Schowalter et al., 2010; van der Meijden et al., 2011). In the present study we also tested the 173 

reactivity of all sera against the VP1 of BFDPyV. We presumed that the analysed human sera do not 174 

contain specific antibodies against BFDPyV and therefore used the reactivities against BFDPyV-VP1 as 175 

a measure for either unspecific binding to VP1 proteins or reactions against common PyV epitopes.  176 

By subtraction of the BFDPyV reactivities from the HPyV9 reactivities we enhanced the specificity of 177 

the ELISA for HPyV9 antibodies. A similar approach was carried out previously using murine PyV as 178 

the control virus for evaluating the reactivity of human sera against MCPyV,  HPyV6 and HPyV7 179 

(Schowalter et al., 2010). 180 

A pediatric and a healthy adult population were used to determine the age of primary infection 181 

with HPyV9 and overall prevalence. The results indicate that infection with HPyV9 occurs in children 182 

and young adults and that healthy adults are frequently infected, similar to other human 183 

polyomaviruses (Carter et al., 2009; Kean et al., 2009). Seroprevalence of HPyV9 has its maximum 184 

(53%) in early adulthood (age 21-30) and slightly declines towards older age (Figure 3) resembling 185 

that of BKV (Egli et al., 2009; Kean et al., 2009; Knowles et al., 2003). This age distribution suggests 186 

that re-exposure to or reactivation of persisting HPyV9 may not occur frequently in 187 

immunocompetent, healthy adults. However, in immunocompromised patients undergoing kidney 188 

transplantation, significantly higher levels of seroprevalence and IgG titers were observed. This is in 189 

line with earlier observations on BKV in kidney transplant recipients (Bodaghi  et al., 2009; Brade et 190 

al., 1981; Egli et al., 2009; van der Meijden et al., 2011), and may indicate that these patients have an 191 

elevated risk of primary infection or reactivation of persistent HPyV9. One example is the patient, in 192 

whom HPyV9 was first identified. The IgM, IgG and PCR data, shown in Figure 5, indicate that a 193 

primary HPyV9 infection had likely occurred around day 837 after kidney/pancreas transplantation.  194 

We also observed higher levels of seroprevalence and IgG titers in patients undergoing 195 

hematopoietic stem cell transplantation which might be a consequence of the passive transfer of 196 

immunoglobulins from blood donors seropositive for HPyV9. While the application of blood products 197 

in the group of our kidney transplant recipients was rather rare, almost all stem cell transplant 198 

recipients received multiple blood donations during the hospitalisation period. Furthermore, the 199 

administration of polyvalent immunoglobulins to few transplanted patients may have contributed to 200 
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a higher HPyV9 seroprevalence in this patient group. However, HPyV9 reactivation or infection may 201 

have played an additional role. 202 

It has been reported that approximately 30% of adult humans have LPyV-neutralizing antibodies 203 

(Takemoto & Segawa, 1983). In line with this, an LPyV seroprevalence of 10-18% was reported using 204 

ELISA or reporter-vector assays (Brade et al., 1981; Kean et al., 2009; Pastrana et al., 2009; Viscidi & 205 

Clayman, 2006). These observations were taken as evidence that LPyV may be infectious for humans 206 

but it was also speculated that an unknown human PyV closely similar to and crossreacting with LPyV 207 

might exist. Short LPyV-like sequences have been detected by PCR in peripheral blood from 208 

immunocompromised and healthy subjects (Delbue  et al., 2008; Delbue et al., 2010), but in other 209 

PCR-based studies no evidence for the presence of LPyV in humans was obtained (Costa  et al., 2011; 210 

Focosi et al., 2009; Scuda et al., 2011; this study). Importantly, the newly identified HPyV9 is on the 211 

nucleic acid and protein level closely related to LPyV and therefore is the likely candidate for the 212 

previously postulated LPyV-like unknown human PyV. HPyV9 was identified by PCR in serum, plasma 213 

and urine of immunocompromised subjects (Scuda et al., 2011), later also in human skin (Sauvage et 214 

al., 2011). 215 

In the serological study presented here many human sera ELISA-positive for HPyV9 reacted also 216 

with LPyV (n=82), but to a lesser extent. A comparable number of sera (n=92) reacted with HPyV9 217 

only, but 74/92 sera had an OD450 <0.3. Therefore we suppose that in these 74 sera the reactivity 218 

with LPyV was too low to be measured, i.e., below the cut-off value (COV). 18/92 HPyV9-positive sera 219 

had an OD450 between 0.3 and 1. Their sole reactivity with HPyV9-VP1 may be due to the fact that the 220 

majority of their reactive antibodies may have specificity for HPyV9 only. Alternatively, the HPyV9-221 

reactive antibodies of these sera may in fact be antibodies against an unknown human PyV which 222 

crossreacts with HPyV9 but not with LPyV. 223 

Based on (i) the correlation of HPyV9 and LPyV antibody titers (Figure 1B), (ii) the near complete 224 

absence of sera specifically reacting with LPyV only (Figure 1B) and (iii) the reciprocal reactivities of 225 

human and AGM sera with HPyV9 and LPyV, respectively (Figure 2A,B), our study clearly indicates 226 

that HPyV9 and LPyV serologically crossreact. Taken together we put forward the hypothesis that the 227 

reactivity of human sera against LPyV may be generally due to crossreactivity between HPyV9 and 228 

LPyV. Whether LPyV is infectious for humans remains to be clarified. Furthermore, it can be generally 229 

concluded that both nucleic acid-based and antibody-based detection methods are necessary to 230 

prove the infection with a certain polyomavirus.  231 

 232 

Methods 233 

 234 

Collection of human and AGM serum samples 235 
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Human serum samples were collected from healthy adolescents and adults (blood donors) (n=328; 236 

age range: 16–72 years; median: 34.5 years) at the Charité University Hospital, Berlin, Germany. 237 

Pediatric samples (n=101; range: <1month to 11 years; median 6 years) were randomly selected from 238 

a larger panel of serum samples collected for routine virus diagnostics at the university hospital of 239 

Munster, Germany. Sera from kidney (n=100; range: 5–77 years; median 52 years), hematopoietic 240 

stem cell (n=50; range: 1–77 years; median: 30 years) and liver (n=50; range: 7–78 years; median 57 241 

years) transplant recipients, as well as sera from patients with different neurological symptoms 242 

(n=50; range: 27–86 years; median: 57.5 years) were collected for routine diagnostics at the Charité, 243 

Berlin, Germany.  Approval of the local Ethics Committee was obtained. AGM sera were collected 244 

from 10 animals housed at the Paul-Ehrlich-Institute (Langen, Germany).  245 

 246 

Expression and purification of recombinant proteins 247 

The sequences of the major capsid proteins VP1 of HPyV9, LPyV, BKV and BFDPyV (Genbank 248 

accession numbers: HQ696595, M30540, NC001538, AB453159) were codon-optimized, 249 

commercially synthesized (MrGene GmbH, Regensburg, Germany) and inserted into a pTriEx-1.1 250 

plasmid modified to generate VP1 constructs tagged with 6xhistidine at the C-terminus. For VP1 251 

expression, the recombinant vectors were transformed in E. coli Rosetta(DE3)pLacITM cells (Novagen, 252 

San Diego, USA). After induction of expression insoluble recombinant proteins were obtained in 253 

inclusion bodies and purified with BugBuster Protein Extraction Reagent (Novagen) after lysis of cells 254 

and inclusion bodies with 1000 U Lysozym (Novagen). Separation of VP1 from other E. coli proteins 255 

was done under denaturing conditions with 8M urea that was finally removed by dialysis. Purity of 256 

proteins was analysed with SDS–Page and Western Blot using an anti-His monoclonal antibody 257 

(Sigma-Aldrich, St. Louis, USA). Protein concentration was determined by measuring with a Pierce 258 

BCA Protein Assay Kit (Thermo Scientific, Rockford, USA). Additionally, the assembly of expressed 259 

VP1 to capsomers was confirmed by electron microscopy (data not shown). 260 

 261 

ELISA and statistical analysis 262 

An ELISA was developed by coating F96 polysorp micro wellTM Plates (Nunc, Thermo Scientific, 263 

Roskilde, Denmark) with purified VP1 (50 ng per well) in PBS (pH 7.2) for 1 h at 37 °C. Plates were 264 

washed 3x with 800 µl PBS / 0.05 % Tween (PBS-T). To inhibit non-specific binding 200 µl blocking 265 

buffer (PBS-T with 5 % casein) per well was added for 2 h at 37°C. Human sera were diluted 1:200 266 

and allowed to react with the antigen-coated wells for 1 h at 37°C. Plates were washed 3x with 800 µl 267 

PBS-T and a HRPO-conjugated, secondary rabbit anti-human IgG antibody (Dianova, Hamburg, 268 

Germany) diluted 1:10,000, was added for detection of IgG antibody. A POD-conjugated, secondary 269 

sheep anti-human IgM antibody (Seramun, Heidesee, Germany) diluted 1:20,000, was added for 270 
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detection of IgM antibody. After an additional washing step (3x with 800 µl PBS-T) peroxidase 271 

substrate TMB (tetramethylbenzidene, Taastrup, Denmark) was added for 10 min at room 272 

temperature in the dark. The reactions were stopped with 2N H2SO4. Optical density (OD450) was 273 

measured on a microplate spectrometer (BMG Labtech, Offenburg, Germany) at λ=450 nm. All blank 274 

wells had adsorbance values < 0.1. The optimal concentration of the antigen used to coat the 275 

microtiter plates and the optimal dilution of sera and conjugate was determined by checkerboard 276 

titration.  277 

The data were analysed with the Χ2-test to estimate significance of differences among 278 

independent groups of individuals. Correlation analysis between HPyV9 and LPyV reactivities was 279 

performed with the Spearman rank correlation test. 280 

For competition assays, serum samples were pre-incubated for 1 h at 37°C with 0 to 5 µg/ml of 281 

VP1 antigens before evaluation in the ELISA. For each ELISA plate, a fixed set of sera was used to 282 

control for interserial variations.  283 

Antibody avidity was measured with a modified ELISA by adding to each well after the serum 284 

incubation step either PBS only or 6 M urea in PBS. The avidity index was determined by calculating 285 

the ratio of serum incubated with PBS only to serum incubated with 6 M urea. 286 

 287 

Cut-off value  288 

The COV for the ELISA was determined experimentally. The background reactivities detected in wells 289 

without antigen coating and those without both antigen and serum (blanks) were subtracted from 290 

the ODs measured in VP1-coated wells. The COV defining a positive serologic response was defined 291 

as the mean of all negative ODs plus standard deviation (COVHPyV9: OD450 0.08; COVLPyV: OD450 0.09).  292 

 293 

DNA extraction and PCR. 294 

DNA extraction from sera and nested PCR with primers specific for HPyV9-VP1 as well as generic PyV 295 

PCR was carried out as described previously (Scuda et al., 2011). 296 

 297 
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 306 

Figure 1 Reactivity of human sera to VP1 of HPyV9 and LPyV. (A) The percentage of seroreactivity of 307 

pediatric sera (n=101; age: <1month to 11 years) and sera of healthy adults and adolescents (n=328; 308 

age: 16 – 72 years) against VP1 of HPyV9 (black bars) and LPyV (grey bars) in capsomer-based ELISA is 309 

shown. (B) Correlation of antibody reactivity against VP1 of HPyV9 and LPyV (correlation coefficient = 310 

0.65) in the 429 sera analysed. Cut-off values for the detection of HPyV9 (0.08, vertical line) and LPyV 311 

(0.091, horizontal line) are indicated by dashed lines. Upper left area shows LPyV reactivity only (2%), 312 

upper right area HPyV9 and LPyV co-reactivity (19%), bottom left area seronegative samples (57%) 313 

and bottom right area HPyV9 reactivity only (22%). Magnified and highlighted by grey color is the 314 

part of (B) which includes only sera of OD450 <0.5. 315 

 316 

Figure 2 Crossreactivity of HPyV9 and LPyV antibodies. The seroreactivity of human sera (A) and 317 

AGM sera (B) to HPyV9-VP1 (black bars) and LPyV-VP1 (grey bars) was measured with ELISA. The 318 

influence of pre-incubation of a human serum (C) and an AGM serum (D) with 0.1-5µg/ml soluble 319 

VP1 of HPyV9 (closed squares) or LPyV (closed circles) as competing antigens before ELISA with 320 

HPyV9-VP1 (C) and LPyV-VP1 (D) as bound antigen is shown. The values were normalized to those 321 

obtained with 0.1-5µg/ml of BKV-VP1. This antigen was used as negative control and defined as 100% 322 

(dashed lines). 323 

 324 

Figure 3 HPyV9 und LPyV seroreactivities in age groups. For HPyV9 (black bars) and LPyV (grey bars), 325 

percentages of VP1-specific IgG reactivities of sera from pediatric individuals and healthy adults and 326 

adolescents stratified by age are shown. In the youngest group, sera of toddlers under one year were 327 

omitted because of the likely presence of maternal antibodies. 328 

 329 

Figure 4 HPyV9 seroprevalence in patients. (A) Percentages of IgG reactivities, specific for HPyV9-330 

VP1, of sera from kidney-transplant recipients (KTx), hematopoietic stem cell transplant recipients 331 

(HSCTx), liver transplant recipients (LTx) and patients with neurological symptoms (NS) in comparison 332 

to age-matched healthy control groups (AC). * = p> 0.05 and ** = p> 0.01, as calculated by Χ2-test. (B) 333 

Means of HPyV9 IgG reactivities in each patient group compared to those of AC. 334 

 335 

Figure 5 Identification of a primary HPyV9 infection in a kidney/pancreas-transplant recipient. In 336 

the upper part of the figure, positive (+) and negative (Ø) results of HPyV9-specific PCR with serum 337 

samples are shown. In the bottom part of the figure, HPyV9-specific IgG reactivities (closed circles) 338 

and IgM reactivities (open squares) are shown. Avidity of IgG antibodies is indicated as avidity index 339 

(AI, max. 1.0). 340 
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