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Abstract

The transmembrane envelope protein gp41 of the human immunodeficiency virus HIV-1 plays an important role during
infection allowing fusion of the viral and cellular membrane. In addition, there is increasing evidence that gp41 may
contribute to the immunodeficiency induced by HIV-1. Recombinant gp41 and a synthetic peptide corresponding to a
highly conserved domain in gp41, the immunosuppressive (isu) domain, have been shown to inhibit mitogen-induced
activation of human peripheral blood mononuclear cells (PBMCs) and to increase release of IL-6 and IL-10 from these cells.
We recently reported that a single mutation in the isu domain of gp41 abrogated the immunosuppressive properties and
that HIV-1 sequences containing such abrogating mutations had never been isolated from infected individuals. Here, we
studied the influence of the isu peptide on the release of 66 cytokines and the expression of 27,000 genes in PBMCs.
Incubation of PBMCs with isu peptide homopolymers increased the expression of 16 cytokines among them IL-6 and IL-10,
and decreased that of IL-2 and CXCL9. Interestingly, the extend of cytokine modulation was donor-dependent. Among the
genes up-regulated were IL-6, IL-8, IL-10 but also MMP-1, TREM-1 and IL-1beta. Most importantly, genes involved in innate
immunity such as FCN1 and SEPP1 were found down-regulated. Many changes in cytokine expression demonstrated in our
experiments were also found in HIV-1 infected individuals. These data indicate that the isu domain of gp41 has a broad
impact on gene expression and cytokine release and therefore may be involved in HIV-1 induced immunopathogenesis.

Citation: Denner J, Eschricht M, Lauck M, Semaan M, Schlaermann P, et al. (2013) Modulation of Cytokine Release and Gene Expression by the
Immunosuppressive Domain of gp41 of HIV-1. PLoS ONE 8(1): e55199. doi:10.1371/journal.pone.0055199

Editor: Alan Landay, Rush University, United States of America

Received September 7, 2012; Accepted December 19, 2012; Published January 30, 2013

Copyright: � 2013 Denner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors thank the German AIDS Foundation (http://www.aids-stiftung.de/) and the Berliner Sparkassenstiftung Medizin (http://www.berliner-
sparkassenstiftung-medizin.de/) for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Denner@rki.de

Introduction

The transmembrane envelope (TM) protein gp41 of the

human immunodeficiency virus type 1 (HIV-1) facilitates - like

the TM proteins of all retroviruses - the fusion of the viral and

the cellular membranes during infection [1]. In addition to this

function a contribution of TM proteins to the induction of the

immunodeficiency was proposed on the basis of numerous

findings: First, all retroviruses including HIV-1 and HIV-2 are

immunosuppressive when present at a critical viral load in the

infected host. This was studied in detail for gammaretroviruses

such as the murine leukaemia virus (MuLV) and the feline

leukaemia virus (FeLV). During these investigations it became

clear that non-infectious virus particles and the corresponding

TM proteins were immunosuppressive in different in vitro and

in vivo assays (for review see [2,3]), indicating that the TM

proteins may contribute to immunosuppression. Second, trans-

fection and expression of different retroviral TM proteins on the

surface of tumour cells growing to tumours in immunocompro-

mised, but not in immunocompetent mice, made these cells to

grow in the immunocompetent animals, thus demonstrating the

immunosuppressive activity of the retroviral TM proteins in vivo

[4,5]. Third, synthetic peptides corresponding to a domain of

the TM proteins localised in the C-terminal part of the N-

helical repeat, the so-called immunosuppressive (isu) domain

(Figure 1a), inhibited the activation of mitogen-triggered PBMCs

[6–10]. The isu domain is highly conserved among retroviruses

[9] including different strains of HIV-1, HIV-2 and the simian

immunodeficiency viruses (SIV) (Supplementary figure S1).

Interestingly, the isu domain is located opposite the 3S domain

when gp41 is present in a so-called six helix bundle

conformation allowing interaction of the C-terminal and N-

terminal helical regions of gp41 (Figure 1b). The 3S region was

shown to bind to the receptor for the globular domain of C1q

(gC1qR), to induce NKp44L expression on CD4+ cells (an

activator ligand of the natural cytotoxicity receptor NKp44) and

it is thought to contribute to the decline of the number of CD4+

cells [11]. Synthetic peptides (17- to 19-mers) corresponding to

the isu domain of gammaretroviruses and HIV-1 were

biologically active only when conjugated to a carrier protein.

They modulated the cytokine release of PBMCs from healthy

donors, for example, they caused an increase of IL-10 and they

had an inhibitory effect on protein kinase C (PKC) [12–16].

Fourth, recombinant gp41 modulated cytokine expression of

normal human PBMCs in the same manner [17–19], suggesting

that the isu domain of gp41 may contribute to the immuno-

deficiency induced by HIV-1 [20]. However, since this gp41

was produced in E.coli, a contamination with endotoxin also

inducing IL-10 could not be excluded.
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Figure 1. Localisation and activity of the immunosuppressive (isu) domain of gp41 of HIV-1. (a) Functional domains in gp41 of HIV-1
(accession-nr. NCBI K03455): FP, fusion peptide; FPPR, fusion peptide proximal region; NHR, N-terminal helical region; ISU, isu domain; S-S, cystein-
cystein loop; CHR, C-terminal helical region; MPER, membrane proximal external region; MSD, membrane spanning domain, 3S, domain binding to
the gC1qR and inducing NKp44L expression. In the amino acid sequence of the isu domain stars (*) indicate NH2-groups, points (.) mark COOH groups
relevant for polymerisation. (b) Localisation of the isu domain after interaction of the NHR with the CHR generating a six helix bundle (only one
molecule of the trimer is shown). (c) Influence of the isu-peptide on the proliferation of PHA stimulated PBMCs from a healthy donor. Cell proliferation
was measured by 3H-thymidine incorporation. 3H-thymidine was added on day zero, one, two or three and cells were then harvested one the next
day and the counts per minute were determined, gray - medium control, dark gray – isu peptide-BSA conjugates, added at day 0. (d) Dose dependent
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In parallel we showed that recombinant gp41 of HIV-1

produced in human 293T cells that is free of endotoxin, that is

glycosylated and in a trimeric conformation also modulated

expression of IL-10, IL-6 and other genes in the same manner as

the synthetic isu peptide [21]. Single mutations in the isu domain

abrogated the ability to cause IL-10 release and to modulate gene

expression. Replication competent virus particles with such

mutations in gp41 did not induce IL-10 release, whereas the

wild-type virus did. Since identical changes in cytokine release

were seen upon exposure of PBMCs to homopolymers of the isu

peptide and to recombinant gp41, the isu domain should be

defined as the biologically active domain in gp41 with regards to

immunosuppression. This is supported by the fact that mutations

in the isu domain of recombinant gp41 abrogated the immuno-

suppressive activity. However, as mutations might have distal

effect acting on an active domain located in another part of gp41

means that the results obtained using the isu mutants are not

sufficient to definitively demonstrate an active role for the isu

domain. The fact that a peptide corresponding to the isu domain

has the same biological activity as recombinant or viral gp41 does,

however, strongly suggest that this is indeed the case.

Here a systematic analysis of the influence of the isu domain of

gp41 of HIV-1 on cytokine release using cytokine arrays and on

gene expression in human PBMCs using a microarray and

confirmative real-time PCR was performed. Significant changes in

cytokine expression were observed which correlated well with the

expression of cytokines in HIV-1 infected individual.

Materials and Methods

Peptides, Peptide Conjugates and Polymers
Synthetic peptides, either 17-mers or 19-mers, corresponding to

the immunosuppressive domain of gp41 of HIV-1 (HXB2, aa574-

592 or aa576-592, access. nr. K03455), (KQ)LQARILAVER-

YLKDQQL (Figure 1), containing a free carboxyl group at the C-

terminus as well as C-terminal amidated peptides and a

randomised peptide QRLIQVAEYRLAKQQLLDK were pur-

chased from Genaxxon BioScience GmbH (Biberach, Germany)

or from JPT, Jerinin (Berlin, Germany) or were synthesized as

described [9]. Peptides were coupled to bovine serum albumin

(BSA) using 1-ethyl-3-(3-dimethylamonopropyl) carbodiimide hy-

drochloride (EDC, Pierce, Rockford, USA) as described [9] or

homopolymers of the peptides were produced by cross-linking with

EDC and Sulfo-NHS (Pierce) as recommended by the supplier.

Isolation of Human PBMCs
Donor PBMCs were isolated from whole blood of healthy

donors by Ficoll-Hypaque (PAA Laboratories, Austria) density

centrifugation using Leucosep tubes (Greiner, Germany). 36105

cells/well were cultivated with and without peptide homopolymers

at 37uC in RPMI 1640 with 10% fetal calf serum (FCS,

Biochrome AG, Berlin, Germany) which had been selected for

very low induction of IL-10 in normal PBMCs.

Proliferation Assays
Proliferation assays were performed by stimulating donor

PBMCs with 80 mg/ml phytohemagglutinin (PHA, Remel) or 10

mg/ml Concanavalin A (ConA, Sigma) in the presence or absence

of peptide conjugates. After addition of 3H-thymidine (1 mCi/well)

on day zero, one, two or three, the cells were incubated for

additional 24 h at 37uC and then harvested. Counts per minute

(cpm) were determined with an Inotech automated filter counting

system.

Enzyme-linked Immunosorbent Assays for IL-6, IL-10,
sTREM-1 and MMP-1

Supernatants from PMBCs (36105 cells/well) either untreated

or treated for 2–24 hrs with the peptide polymers were collected

by centrifugation at 2000 g for 10 min and tested by ELISA. The

ELISAs were performed according to the protocols of the suppliers

of the kits: IL-6, IL-10 – BD Biosciences, San Diego, USA;

sTREM-1 – R&D Systems, Minneapolis, USA, MMP-1 –

Raybiotech, Inc., Norcross, USA.

Cytokine Arrays
Cytokine release from treated or untreated donor PBMCs were

measured by membrane-based cytokine arrays I and VI

(RayBiotech, Inc., maps 1.1. and 6.1.) after 24 hrs. In the case

cells were stimulated with 10 mg/ml Concanavalin A (ConA,

Sigma), supernatants were analysed after 3 days. Kinetic studies

were performed using supernatant from donor PBMCs, incubated

for 6, 8, 16 or 24 hours with isu homopolymer and analysed by the

QuantibodyTM Human Inflammation Array 1 (RayBiotech). In

addition a Multiplex Human Cytokine/Chemokine Magnetic

Bead Panel (Millipore) was used to measure cytokine and

chemokine release.

RNA Isolation from PBMCs
Total RNA was isolated from donor PBMCs (36105/well) using

the RNeasy kit (Qiagen, Germany). The RNA concentration was

measured using a NanoDrop spectrometer ND-100 (PEQLAB),

and RNA specimens were used immediately or kept at 280uC
before use.

Microarray
Total RNA was prepared as described above. An RNA integrity

number (RIN) of 9.1 and 9.7 were determined for the RNA from

PBMCs cultured with medium or isu-peptide homopolymers,

respectively (RIN 10 is the highest). The microarray was

performed by IMGM Laboratories, Munich. 0.5 mg of total

RNA were converted into digoxigenin (DIG)-labeled cRNA in a

RT-IVT reaction, 10 mg were fragmented and hybridised using a

Human Genome Survey Microarray V2.0 plate from Applied

Biosystems. After washing, an anti-DIG-AP-conjugate (Roche,

Germany) was applied and signals were detected with an AB1700

Microarray Reader.

One-step Real-time Quantitative PCR
One-step real-time RT-PCRs were established for human IL-6,

IL-10, MMP-1, TREM-1, FCN-1, CXCL-9 and SEPP-1 (Sup-

plementary Table S1, S2) and duplex PCRs were performed using

GAPDH for normalisation (DCt = Ct gene of interest – Ct

GAPDH). Total RNA was isolated as described above. Primers

and probes for PCR were selected using the Sigma Genosys Probe

Design Program and obtained from this company. PCRs were

induction of IL-6 and Il-10 release by the isu peptide homopolymer (triangle) as measured in ELISAs. In contrast, the amidated control peptide
(square) is inactive. (e) Comparative ELISA analysis of IL-10 release from PBMCs of seven donors all treated with the same amount and batch of the
isu-peptide homopolymer, the IL-10 release of their PBMCs incubated with medium alone was zero. The p values were calculated using the Student’s
t-test, n = 3. The p value for the high responder donor 1 was p = 0.001, that of the low responder donor 7 p = 0.03.
doi:10.1371/journal.pone.0055199.g001
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performed in triplicates. Reporter fluorescence was measured

using an Mx4000 Multiplex Quantitative PCR System (Strata-

gene) and evaluated using the 22DDCT method [22].

Determination of Single Nucleotide Polymorphism (SNP)
To determine the SNP in the promotor regions of IL-10 and IL-

6, DNA was isolated from PBMCs of the donors, and using

specific primers (Supplementary Table S3) the corresponding

sequences were amplified, sequenced and classified.

Statistical Analysis
The p values were calculated using the unpaired Student’s t-test.

Ethical Statement
The use of human blood has been approved by the ethical

commission at the Medical Faculty of the Humboldt University

Berlin. Written informed consent was provided by study partic-

ipants.

Results

Synthetic Peptides Corresponding to the Isu Domain of
gp41 of HIV-1 Inhibit Activation of PBMCs and Modulate
Expression of Cytokines

Since peptides corresponding to the isu domain of HIV-1 were

biologically active only when conjugated to a carrier [7,9], we

applied the isu peptide of HIV-1 conjugated to bovine serum

albumin (BSA) and in parallel we used homopolymers of the isu

peptide. Conjugates and polymers were produced by EDC (1-

ethyl-3-(3-dimethylamonopropyl) carbodiimide hydrochloride)

treatment inducing random covalent COOH-NH2 links of defined

amino acids (NH2 groups in 574K, 575Q, 577Q, 579R, 584R,

587K, 589Q, 590Q, COOH groups in 583E and in the C-

terminal 591L, Figure 1a). Both, the isu peptide BSA conjugates

and the isu peptide homopolymers, inhibited the activation of

PBMCs from healthy human blood donors stimulated with

phytohemagglutinin (PHA), a T cell mitogen, in a dose-dependent

manner as measured in a proliferation assay (Figure 1c) and

induced an increased release of IL-6 and IL-10 (Figure 1d). As

control, homopolymers of a peptide with the same sequence but

with an amidated C-terminal amino acid were used, which did not

induce IL-10 release (Figure 1d), indicating that the C-terminal

COOH-group plays a crucial role in the polymerisation process

leading to an immunosuppressive polymer. The amount of

released IL-10 did depend on the dose of the isu peptide polymer

(Figure 1d). When PBMCs of more than 50 donors were treated

with the isu polymer or with medium, in all cases an increased

release of IL-6 and IL-10 was observed (Supplementary Figure

S2a, b). The difference in the IL-10 and IL-6 release by PBMCs

treated with the isu peptide homopolymer and by untreated

PBMCs was in all cases significant (Supplementary Figure S2a, b,

c, d). The IL-10 inducing activity of different batches of isu peptide

homopolymer differed slightly (Supplementary Figure S2a, c,d). In

addition, the amount of released IL-10 was donor-dependent.

When PBMCs from 7 donors were incubated with one and the

same batch of the isu peptide homopolymer (Figure 1e) and 9

donors with another (Supplementary Figure S2b), this result was

confirmed, indicating that genetic factors of the host were

involved. Donor 1 released nearly 700 pg/ml (p = 0.001), donor

7 only 350 pg/ml (p = 0.03) (Figure 1e). The dependence of the

release of IL-10 and IL-6 on the donor is stable over time, giving

the same results when the release of both cytokines was re-tested

28 and 107 days later (Supplementary Figure S3, S4).

Four different methods were used to analyse the release of 66

cytokines from PBMCs after incubation with the isu peptide

homopolymer. First, membrane based cytokine arrays were used

to analyse the cytokine content in the supernatant of PBMCs

24 hrs after exposure to the isu peptide polymer (Figure 2a). An

increase in protein expression of IL-6, IL-10, IL-1beta, MCP-1,

MCP-2, MIP-3alpha and others was observed. In addition,

cytokine release from PBMCs stimulated with Concanavalin A

(ConA), another T cell mitogen, and treated simultaneously with

the isu peptide homopolymer was measured after 3 days

(Figure 2b). This setting allowed to measure decreasing expression

of IL-2 and CXCL9. Second, changes in cytokine release over

time were studied measuring the cytokine content in the

supernatant 6, 8, 12 and 24 hrs after incubation (Figure 2c). In

the case of IL-10 and IFN gamma an increase of release was

observed, the expression of other cytokines was high (e.g., MCP-1)

or low over the whole time. Clear differences were observed when

compared with the untreated PBMC cultures (with exception of

IL-1 alpha and IL-13 which also had a low expression after

incubation of PBMCs with the isu peptide polymer). Third, a

multiplex assay based on magnetic beads (not shown) and fourth,

confirmative ELISAs specific for each single cytokine were

performed (Figure 1d and below).

To summarise, 16 cytokines were found up-regulated, 2

cytokines (CXCL9 and IL-2) were found down-regulated and 48

remained unchanged under these experimental conditions

(Table 1, Supplementary Table S4), indicating for the first time

that the isu domain modulates the expression of a wide range of

human cytokines and chemokines.

Synthetic Peptides Corresponding to the Isu Domain of
gp41 Modulate Gene Expression

In order to study the influence of the isu peptide on gene

expression in human PBMCs, a genome wide microarray analysis

was performed using RNA isolated from the PBMCs of a healthy

blood donor 24 hrs after incubation with the isu peptide polymer

in medium. For comparison RNA of PBMCs incubated with

medium alone was used. In this analysis 384 genes were found up-

regulated and 360 genes were found down-regulated upon the

incubation with the isu peptide. The top ten genes of each group

with the highest fold change (up or down) are shown in Figure 2d,

the top 50 genes with the highest change in expression are shown

in Supplementary tables S5 (up) and S6 (down). The highest up-

regulation was shown for the IL-6 gene (Figure 2d, position 1),

confirming the results on the protein level (Figure 1d, 2a, c). The

genes with higher expression are predominantly involved in

processes belonging to ‘‘Immunity and defense’’ and ‘‘Signal

transduction’’.

Among the genes up-regulated at the mRNA level were MMP-

1, coding for matrix metalloproteinase 1, a zinc-dependent

protease essential for the breakdown of extracellular matrix

expressed on monocytes and macrophages [23] (Figure 2d,

position 2), and TREM-1 (triggering receptor expressed on

myeloid cells 1) (Figure 2d, position 9). TREM-1 has a role as a

regulator of innate and adaptive immunity [24,25]. Among the

down-regulated genes were FCN1 (ficolin, position 1 in Figure 2d),

CXCL-9/MIG (monokine induced by IFNc) (position 21, not

shown in Figure 2d, position 25 in Supplementary Table S6) and

SEPP1 (selenoprotein P, plasma 1, position 3 in Figure 2d).

CXCL9 is a chemokine, binding like CXCL10 und CXCL11 to

the common receptor CXCR3. FCN1, CXCL9 and SEPP1 play

an important role in innate immune responses [26–28]. CXCL9

had also been found down-regulated at the protein level in one of

the cytokine arrays (Figure 2b).

Immunomodulation by gp41 of HIV-1
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Kinetic Studies on Cytokine Release and Gene Expression
Surprisingly, no increase in IL-10 mRNA was found in the

RNA microarray assay, although expression of IL-10 protein as

measured by ELISA (Figure 1d, Supplementary Figure S2) and

cytokine array (Figure 2a, c) was significantly increased at the same

time (24 hrs) of incubation. To examine this discrepancy, IL-

10 mRNA was measured at different time points using a duplex

Figure 2. Influence of the isu peptide on cytokine release and gene expression. (a) PBMCs were incubated for 24 hrs with or without the
isu peptide homopolymer. The cytokine array VI (see Material and Methods) was used. The up-regulated cytokines are circled. (b) PBMCs were treated
with Con A and incubated with and without the isu peptide homopolymer for three days and the cytokine array I was used. The down-regulated
cytokines are circled. Similar results were obtained with PBMCs from ten other donors. (c) Cytokine array measuring simultaneous release of ten
different cytokines after incubation of PBMCs from one donor with and without the isu peptide homopolymer at different time points (6 to 24 hrs),
confirming and extenting the results shown in Figure 2a. Control PBMCs were incubated with medium. Compare the increase in IL-10 expression with
that in Figure 3a. (d) Genes with the highest up-regulation (upper part) and down-regulation (lower part) of expression in PBMC of one donor in
response to the isu peptide treatment. Using specific real-time PCRs for the up- and down-regulated genes, the changes were confirmed in PBMCs of
other donors (Figure 3, 4, Supplementary Figure S2). Fold changes (Fc) indicates gene expression compared to control cells incubated in medium. The
full names of the genes are given in Supplementary Table S4.
doi:10.1371/journal.pone.0055199.g002
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real-time PCR. The level of IL-10 mRNA increased over a period

of 10 hrs and decreased nearly to zero at 24 hrs (Figure 3a), thus

confirming the low and unchanged expression found in the

microarray assay (24 hrs). When we studied the kinetics of IL-6

expression (position 1 among the up-regulated genes in the RNA

microarray, Figure 2d), we found that the release of IL-6 protein

into the supernatant increased steadily, whereas the expression of

IL-6 mRNA showed two peaks of expression at 8 and at 18 hrs

(Figure 3a).

Expression of TREM-1 mRNA in cells treated with the isu

peptide homopolymer remained unchanged at a high level,

whereas the amount of TREM-specific mRNA in the control

cells in medium decreased (Figure 3b). This explains the elevated

expression of TREM-1 seen in the microarray assay after 24 hrs

(Figure 2d). At the same time, using an ELISA, an increase of the

amount of a soluble form of TREM-1 without membrane

spanning and cytoplasmic domains, sTREM-1, was found in the

supernatant of cells treated with the isu peptide homopolymer in

comparison with untreated PBMCs (Figure 3b). sTREM is either a

splice variant of TREM-1 or, more likely, it is shedded from the

plasma membrane [29].

The expression of FCN1 mRNA decreased over time in PBMCs

upon incubation with the isu peptide polymer, whereas the

expression in control PBMCs did not change significantly

(Figure 3c). The expression of the mRNA of CXCL9 decreased

in the PBMCs treated with the isu peptide polymer and stayed at a

high level in PBMCs in the control medium. The expression of the

SEPP1 mRNA decreased in the cells of the culture treated with isu

peptide polymer (Figure 3c).

The release of IL-10 and IL-6 upon incubation of PBMCs with

the isu peptide polymers was found to be donor-dependent (more

than 100 donors were tested for IL-10 and 12 donors for IL-6,

examples were shown in Figure 1e, Supplementary Figure S2).

When comparing the expression of IL-10 in PBMCs from seven

blood donors, treated with one and the same batch of the isu

peptide homopolymer, PBMCs from some donors reacted with a

high IL-10 release, others with a lower (e.g., donor 1:690 pg/ml

IL-10, donor 3:383 pg/ml; Figure 1e, 4a, Supplementary figures 3

and 4). At the same time a donor-dependent difference was also

found for other cytokines such as TREM-1 and MMP-1, both

measured at the mRNA level (Figure 4a). The decrease of TREM-

1 expression was stronger in PBMCs from donor 3 compared with

donor 1 (not shown) and the increase of MMP-1 expression was

highest in PBMCs of donor 3 compared with that of donor 1

(Figure 4a).

Kinetic studies showed that the differences in IL-10 expression

between the donors were not due to a time shift of the peak of

release. After incubation of the same batch of the isu peptide

homopolymer with PBMCs from two different blood donors, the

IL-10 protein release increased over a period of 24 hours in the

case of donor 3, whereas the release in the case of donor 1 was

much lower at all time-points (Figure 4b). Furthermore, measuring

IL-10 release after incubation with the isu peptide polymer four

weeks later showed a nearly identical result (634 pg/ml and

626 pg/ml). Therefore in these experiments blood donors reacting

with a high and others with a low release of cytokines including IL-

10 in response to the isu peptide homopolymer were identified

(high and low responders).

To summarise, the changes in the expression of different genes

detected in an RNA microarray were confirmed using real-time

PCR specific for each gene and in different donors.

Absence of a Correlation between IL-10 and IL-6 Release
and Single Nucleotide Polymorphisms in their Promoter
Regions

Since single nucleotide polymorphisms (SNP) in the promoter

regions of IL-10 and IL-6 are well studied [30–32], we investigated

whether the donor-dependent expression of both cytokines

(Supplementary Figure S2, Figure 1e) correlated with the SNP

in the promoter sequence. We sequenced the IL-10 promoter

regions from the DNA of seven donors and in parallel IL-10

release by their PBMCs was measured upon incubation with the

same batch of the isu peptide homopolymer. No correlation

between the expression of IL-10 and the described SNP was

observed. Repeating the measurement of the IL-10 release by

PBMCs from these seven donors three times on day 1, day 28 and

day 107 confirmed the results (Supplementary Figure S3). This

experiment also showed that the amount of the released IL-10 was

similar for each donor over time. Only one donor, C, suffering

from a common cold on day 28 produced only 20% of the amount

released on day 1 or 107 (Supplementary Figure S3).

Similarly, no correlation between the SNP in the IL-6 promoter

and the release of IL-6 upon the interaction with the isu peptide

polymer was observed (Supplementary Figure S4). Interestingly

these data also show that high expression of IL-10 does not

automatically correlate with high expression of IL-6.

Discussion

The isu domain of gp41 of HIV-1 was found to have a broad

influence on gene expression and cytokine release by human

PBMCs. Since IL-10 and IL-6 showed the highest increase in

release among the 16 up-regulated cytokines (Figure 1, 2), we

focused on these cytokines. IL-6 showed the highest expression at

the mRNA level after 24 hrs (result of the microarray, Supple-

mentary Table S5), whereas IL-10 mRNA showed a peak at

10 hrs and nearly no expression at 24 hrs (Figure 3a). Further-

more, expression of cytokines such as IL-1beta, GM-CSF, MCP-1,

MCP-2, MDC, MIP-3alpha, RANTES (CCRL5), and TNF-alpha

and of other genes such as MMP-1 was found elevated by the isu

Table 1. Summary of the changes in cytokine expression.

Up-regulated IL-1beta, IL-6, IL-8, IL-10, IL-13, GM-CSF, MCP-1 MCP -2, MDC, MIP-1alpha, MIP-1beta, MIP-3alpha, RANTES (CCL5), TNF alpha, IFN
gamma, Gro

Down-regulated IL-2, MIG (CXCL9)

Unchanged ANG, BDNF, BLC, BMP-4, BMP-6, CKbeta 8-1, CNTF, EGF, Eotaxin, Eotaxin-2, Eotaxin-3, FGF-6, FGF-7, Flt-3 ligand, FKN, GCP-2, GCSF,
GDNF, Gro alpha, I-309, IGFBP-1, IGFBP-2, IGFBP-4, IGF-1, IL-1 alpha, IL-1ralpha, IL-3, IL-4, IL-5, IL-7, IL-8, IL-15, IL-16, Leptin, LIGHT,
MCP-3, MCP-4, M-CSF, MIP-1delta, NAP-2, NT-3, PARC, PDGF-BB, SCF, SDF-1, TARC, TGF-beta1, TGF-beta3, TNF beta

Cytokine release was measured 24 hrs or 3 days after incubation of normal PBMCs with isu-peptide homopolymers alone or in the presence of a mitogen, respectively.
The full name of the abbreviated molecules is given in Supplementary Table S4.
doi:10.1371/journal.pone.0055199.t001
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peptide polymers. On the other hand, expression of some genes

was found down-regulated, among them CXCL-9, FCN1 and

SEPP1, which play an important role in innate immunity.

Noteworthy, a similar modulation of cytokine release as shown

in vitro upon incubation of PBMCs from healthy donors with the

isu peptide polymer was found when PBMCs were incubated with

gp41 produced in human cells or purified HIV-1 particles [21] as

well as in HIV-1 infected individuals [33–35]. Therefore these

changes may be partially explained by the interaction of the isu

domain of gp41 with the immune system. Especially the amount of

IL-10 and IL-6 were found significantly increased in HIV-1

infected individuals. Among the cytokines up-regulated in our

experiments, also TFN-alpha and IFNgamma were up-regulated

in HIV-1 infected individuals [34,35]. In SIV-infected rhesus

macaques, IL-10 production in lymph nodes is already detected at

day 7 and increases further by day 28 post-infection [36].

Why the changes in the expression of cytokines and other genes

shown in Table 1 and Supplementary tables S5 and S6 will lead to

immunodeficiency? First of all, down-regulation of FCN1,

CXCL9 and SEPP1 may prevent early local innate immune

responses against the virus allowing infection and replication. This

is supported by the fact that no HIV-1 sequences with mutations in

the isu domain abrogating the immunosuppressive activity were

found in patients [21]. Later IL-10 and other cytokines will be

induced. IL-10 is a strong immunosuppressive cytokine which is

also used by herpes viruses. Some of the induced cytokines may

interact with immune cells triggering the expression of MMP-1

and TREM-1 (Figure 3b). MMP-1 may contribute by cutting

Figure 3. Kinetics of the modulation of cytokine release and gene expression induced by the isu peptide. a, Kinetics of the IL-10 and IL-
6 release and expression of IL-10 and IL-6 mRNA. PBMCs were incubated with (gray) or without (light gray) isu peptide homopolymers and
supernatants as well as mRNA were collected at different time points between 0–24 hours. The p values were calculated using the Student’s t-test,
n = 3. When comparing the IL-10 release induced by the isu peptide homopolymer and that by medium alone, the p value at the peak release (15 hrs)
is p = 2.16E-05, the p value for IL-10 RNA at 24 hrs is p = 0.09. All other values were accordingly. b, c, Kinetics of the expression of MMP-1, TREM-1,
FCN1, CXCL9 and SEPP-1 in PBMCs incubated with (dotted line) or without (straight line) isu-peptide homopolymers. The figures show a
representative result obtained with PBMCs from more than five donors. The p values were calculated using the Student’s t-test, n = 3, the p-value of
sTREM-1 release at 24 hrs is p = 0.02.
doi:10.1371/journal.pone.0055199.g003
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surface TREM-1 into soluble TREM-1. TREM-1 was shown to

induce IL-8, MCP-1 and TNF-alpha and this was also observed in

the experiments with the isu peptide (Figure 2a). The increasing

amount of replicating virus and the high concentration of IL-10

will inhibit the immune system further, allowing further virus

replication, further increase in gp41 and further increase in IL-10

amplifying the immunosuppression.

We were surprised to detect that a matrix metalloproteinase,

MMP-1, was up-regulated by the isu peptide polymer. However,

MMP-1 expression has been reported to be increased following

HIV-1 infection of monocytes/macrophages with cell free virus

[37] and expression of MMP-1 at the mRNA and protein level was

found increased in infected brain tissues in patients with HIV-1

associated dementia [38]. Like for many other MMPs, expression

of MMP-1 is usually low in normal resting tissues and it is

transcriptionally regulated by growth factors, hormones and

cytokines [39]. Cytokine inducers of MMP-1 include IL-1, -4,

-5, -6, -8, -10, and TGF-alpha [39,40]. As shown in Table 1 the

expression of some of them was elevated in our experiments with

the isu peptide, so it is likely that changes in cytokine expression

increase the expression of MMP-1 also in the HIV-1 infected

individual. In this context the function of the MMP-9 is of great

interest. MMP-9 expressed on the tumour cell surface cleaves the

IL-2 receptors of approaching cytotoxic lymphocytes, so prevent-

ing killing of the tumour cell [40]. MMPs have been shown to shed

TREM-1 from stimulated human monocytes [41]. The increased

expression of MMP-1 in our experiment correlated with the

increased shedding of sTREM-1 (Figure 3), suggesting that the

induced IL-10 increased the expression of MMP-1 and that

increased the release of sTREM.

TREM-1 expression was found on monocytes and neutrophils

and upon cross-linking (the ligand is still unknown) TREM-1

induces IL-8 secretion in neutrophils and abundant release of IL-8,

TNF-alpha, and MCP-1 in monocytes [42]. An increased

expression of sTREM-1, IL-8, TNF-alpha and MCP-1 was also

observed after incubation of PBMCs with the isu peptide polymers

(Figure 2a, c, 3b). In addition to IL-10 and IL-6, elevated levels of

TNF-alpha were also found in HIV-1 infected individuals [34,42].

The monocyte chemoattractant protein-1(MCP-1/CCL2) is

also up-regulated in HIV-1 infected individuals; its plasma level

correlates with virus (gp41) load in HIV-1 infection and expression

level were diminished after antiviral therapy (for review see [43]).

Monocyte-derived macrophages infected with HIV-1 are known

to produce TNF-a, IL-1, IL-6, RANTES, MIP-1a, and MIP-1b
[44], expression of all these cytokines was also increased upon

incubation of normal PBMCs with the isu peptide polymer

(Table 1).

Several genes involved in innate immunity such as FCN1,

CXCL9 and SEPP1 were found down-regulated by the isu peptide

homopolymer. FCN1 has been shown to be involved in the

clearance of dying host cells and cellular debris, it is primarily

expressed by monocytes, granulocytes and myeloid progenitor

cells in the bone marrow but also in the spleen and lung, it is

secreted and circulating in the plasma [45]. Down-regulation of

FCN1 as shown in our experiments may be useful for the virus

in vivo, preventing clearance of virus particles. SEPP1, which was

also down-regulated in our experiments, is important for the

selenium metabolism. 55% of selenium (Se) in the human serum is

bound by SEPP1 and people infected with HIV-1 have been

reported to be deficient in selenium [46,47]. A deficiency in Se was

strongly associated with decreased survival in HIV-1 disease and

application of Se was reported to have a beneficial effect in the

treatment of HIV-1 [48,49]. Daily Se supplementation was shown

to suppress the progression of HIV-1 and provide indirect

improvement of CD4 count [50]. Taken together, this is the first

report showing down-regulation of cytokines involved in innate

immunity by the gp41-derived isu domain, suggesting that HIV-1

may use this domain in the very early phase of virus infection to

inhibit innate immunity.

In contrast to IL-10 which showed a single peak of mRNA

expression at 10 hrs after incubation of human PBMCs with isu

peptide polymers, the amount of IL-6 mRNA increased before

and after this peak (Figure 3a). When the monocytic cell line THP-

1 was incubated with HIV particles or recombinant gp41, release

of Il-6 and IL-10 was observed and addition of recombinant IL-10

inhibited IL-6 release [51]. Our and these results suggest an

autoregulatory mechanism of cytokine expression.

Changes in cytokine release had been also described for the isu

peptide of gammaretroviruses, designated CKS-17 [11,52]. It was

shown that CKS-17 inhibits mitogen-triggered activation of

PBMCs and increases IL-10 release [6,8]. The same was observed

for the TM protein of the human endogenous retrovirus HERV-K

(our unpublished data). It is important to note here, that in a

microarray study, using PBMCs from the one donor, the

homopolymers of the isu peptide of HIV-1 (Figure 2d), and the

Figure 4. Donor-dependence of IL-10 and MMP-1 release. a,
PBMCs from three donors were incubated with the same batch of the
isu peptide polymer or medium and IL-10 release and MMP-1 mRNA
expression were measured simultaneously. The donor-dependence of
IL-10 release was shown using PBMCs from more than 50 donors some
are shown in Supplementary Figure S2. b, Kinetic date of IL-10 release
from PBMCs from a high responder donor A (column 1, dark grey) and
low responder donor B (column 3, dark grey), both treated with the isu
peptide homopopymer. Untreated medium control cells from both
donors (Colum 2 and 4, light grey) did not release IL-10. The p values
were calculated using the Student’s t-test, n = 3, p = 0.00015 in the case
of a high responder and p = 0.03 in the case of a low responder.
doi:10.1371/journal.pone.0055199.g004
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TM protein of HERV-K (unpublished data) induced a nearly

identical modulation of the gene expression. Since the isu peptide

homopolymer of HIV-1 consists of synthetic peptides and the TM

protein of HERV-K was produced in yeast cells, a common

contamination in each preparation can be excluded.

The mechanism of the immunosuppressive activity of the isu

domain and the corresponding signal transduction is still unclear.

In preliminary experiments we showed that - in contrast to the

measles virus [53] - the Akt kinase seems not to be involved and

siRNA specific for IL-10 reduced the expression of IL-10 but also

of other cytokines such as MMP-1, suggesting a key role of IL-10

(unpublished).

The conformation of the isu domain seems to be critical.

Soluble peptides were inactive, but isu peptide-BSA conjugates

[7,9] and homopolymeres of isu peptides (Figure 2 and 3) were

effective. Since a peptide containing the same amino acid

sequence as the isu peptide but containing an amidated C-

terminus (-CONH2) was ineffective in inducing IL-10 and other

cytokines (Figure 2), the involvement of the C-terminal -COOH

group in the interaction between -NH2 and -COOH groups

during polymerisation seems to be crucial. The probability to

produce during polymerisation the right conformation able to

induce cytokine modulation in the target cell seems to be low. This

explains the high amount of polymers which has to be added in

order to induce IL-10 or other cytokines. In our parallel study

using recombinant gp41 released from transfected human cells or

virus released from infected human cells, a 700 fold lower

concentration of gp41 was needed to induce the same amount of

IL-10 [21]. Most importantly, single mutations in the isu domain

of gp41 abrogated the release of IL-10 [21].

The mechanism of interaction between the isu peptide polymers

and the target cell is still unknown. The isu peptide polymers

might interact with proteins on the cell surface (receptors) as

suggested previously [54–56]. We recently reported that certain

mutations in the isu domain were crucial to abrogate cytokine

release whereas others were donor-dependent [21] suggesting a

polymorphic receptor.

Viruses developed numerous, often multiple, mechanisms

allowing suppression of the innate and adaptive immunity in

order to infect the host successfully. There are two principal ways

to induce immunosuppression. The first approach uses analogues

of cellular cytokines or decoys of cellular receptors, as shown for

herpes and pox viruses [57,58]. The second approach is based on

a direct interaction of viral proteins with the immune system as

shown for the measles [59,60] and the Ebola virus [61].

Retroviruses including HIV-1 seem to belong to this group using

their TM protein to contribute to the immunodeficiency.

What are the implications of this finding? In the infected

individual gp41 will be found in virus particles after shedding of

the surface envelope protein gp120, in immune complexes with

antibodies reactive against gp41 as well as on the surface of

infected cells. The largest amount of gp41 will certainly be found

on the surface of cells in the lymph nodes and other lymphoid

organs where gp41 may interact directly with neighbouring

uninfected cells and contribute significantly to the immunosup-

pression in HIV-1 infected individuals inhibiting the innate and

adaptive immunity. This gp41 induced immunosuppression may

promote replication of the virus and decrease immune protection

against opportunistic infections. In the course of infection and

progression to AIDS the immunosuppressive effect will increase as

a consequence of the increase of virus/gp41 load. The clinical

picture of AIDS is composed of the immune responses against

HIV-1 and to other microorganisms, leading to an activation of

the immune system, and simultaneously a severe immunosuppres-

sion, which when untreated, is fatal. The TM protein gp41 of

HIV-1 contribute to this severe immunosuppression. Since we had

shown that antibodies against the immunosuppressive domain

inhibited the immunosuppressive effect [10], such antibodies or

antibodies against the putative receptor or specific inhibitors may

be used as antiviral agents.

Supporting Information

Figure S1 Evolutionary conservation of the sequence of
the isu domain. Human and simian immunodeficiency viruses

were analysed, (.) marks identical amino acids, (*) marks deletions.

Hatched amino acids represent conservative exchanges (A = S = T,

I = L = M = V, R = K).

(TIF)

Figure S2 Dependence of the Il-10 and IL-6 release on
the donor PBMCs and the isu peptide polymer. A, PBMCs

from one donor (A) was treated with 25 mg each of 3 different isu

homopolymers (HP1-HP3), b, PBMCs from 9 donors (B to J) were

treated with one and the same batch of an isu peptide

homopolymer (HP4), c, PBMCs from one donor (L) was treated

with 5 different isu peptide homopolymers (HP5-HP9) d, PBMCs

from one donor (M) was treated with 3 different isu peptide

homopolymer (HP10– HP12). The cytokine release by PBMCs

after treatment with the isu peptide homopolymer was compared

with the cytokine release after the treatment with medium alone

and the p values were determined using the Student9s t test. The

IL-10 release by PBMCs treated with medium alone was nearly

zero in all cases.

(TIF)

Figure S3 Absence of a correlation between the IL-10
release by PBMCs from 7 different donors and their SNP
in the IL-10 promotor. The PBMCs were incubated with the

isu peptide homopolymer for 24 hrs at three different time points,

the sequence of the relevant promoter region of each donor was

determined and genetically expected IL-10 production is indicat-

ed. Donor B was not available at day 107, donor C had a cold on

day 28.

(TIF)

Figure S4 Absence of a correlation between the IL-6
release by PBMCs from 7 different donors and their SNP
in the IL-10 promotor. Their PBMCs were incubated with the

isu peptide homopolymer for 24 hrs at two different time point,

the promoter of each donor was sequenced and the genetically

expected IL-6 release is indicated. Donor B was not available at

day 107.

(TIF)

Table S1 Primers for the real-time RT-PCR analysis.

(DOC)

Table S2 Probes for the real-time RT-PCR analysis.

(DOC)

Table S3 Primers used for sequencing.

(DOC)

Table S4 Abbreviation and full names of the cytokines
studied in the microarrays (Table 1).

(DOCX)

Table S5 Fifty cytokines with the highest increase in
expression upon incubation of PBMCs with isu peptide
polymers. The order is the result of a microarray comparing

RNA from PBMCs incubated with the isu peptide homopolymer
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and from PBMCs incubated with medium. The expression of

27,000 genes was analysed.

(DOCX)

Table S6 Fifty cytokines with the highest reduction in
expression upon incubation of PBMCs with isu peptide
polymers. The order is the result of a microarray comparing

RNA from PBMCs incubated with the isu peptide homopolymer

and from PBMCs incubated with medium. The expression of

27,000 genes was analysed.

(DOCX)
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45. Honoré C, Rørvig S, Munthe-Fog L, Hummelshøj T, Madsen HO, et al. (2008)

The innate pattern recognition molecule Ficolin-1 is secreted by monocytes/
macrophages and is circulating in human plasma. Mol Immunol 45: 2782–2789.

46. Dworkin BM (1994) Selenium deficiency in HIV infection and the acquired

immunodeficiency syndrome (AIDS). Chem Biol Interact 91: 181–186.
47. Allavena C, Dousset B, May T, Dubois F, Canton P, et al. (1995) Relationship of

trace element, immunological markers, and HIV1 infection progression. Biol
Trace Elem Res 47: 133–8.

48. Baum MK, Shor-Posner G, Lai S, Zhang G, Lai H, et al. (1997) High risk of

HIV-related mortality is associated with selenium deficiency. J Acquir Immune
Defic Syndr Hum Retrovirol 15: 370–374.

49. Stone CA, Kawai K, Kupka R, Fawzi WW (2010) Role of selenium in HIV
infection. Nutr Rev 68: 671–681.

50. Hurwitz BE, Klaus JR, Llabre MM, Gonzalez A, Lawrence PJ, et al. (2007)
Suppression of human immunodeficiency virus type 1 viral load with selenium

supplementation: a randomized controlled trial. Arch Intern Med 167: 148–154.

51. Takeshita S, Breen EC, Ivashchenko M, Nishanian PG, Kishimoto T, et al.
(1995) Induction of IL-6 and IL-10 production by recombinant HIV-1 envelope

glycoprotein 41 (gp41) in the THP-1 human monocytic cell line. Cell Immunol.
165(2): 234–242.

52. Haraguchi S, Good RA, Day-Good NK (2008) A potent immunosuppressive

retroviral peptide: cytokine patterns and signaling pathways. Immunol Res 41:
46–55.

53. Avota E, Avots A, Niewiesk S, Kane LP, Bommhardt U, et al. (2001) Disruption
of Akt kinase activation is important for immunosuppression induced by measles

virus. Nat Med 7: 725–731.
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