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1. Introduction
With the development of modern analytical techn@sguch as infrared (IR) and Raman spectroscopy
the capabilities of both generating and collectitaga has been tremendously increased. Time-resolved
vibrational spectroscopy, microspectroscopy, aflational hyperspectral imaging for example are now
routinely employed in many areas of industry, tetbgy development and scientific research. The
advancements in IR and Raman instrumentation liatolan explosive growth in stored or transienadat
and has generated an urgent need for new and agihmathods of spectral data analysis.
Spectral data pre-processing is an important $iesp in the workflow of IR and Raman spectra anslys
which involves specific processing procedures paréal on the raw data. Pre-processing has been shown
to be of crucial importance for subsequent datainginasks. In fact, it is now widely recognized ttha
guantitative and classification models developedtlon basis of pre-processed data generally perform
better than models that solely use raw data [1-3].
With this review it is intended to explore the cepts and techniques of pre-processing methodsaand t
discuss the applicability of distinct pre-procegstechniques in the field of biomedical IR and Rama
spectroscopy.
The main goals of data pre-processing can be suiredaas follows:
() Improvement of the robustness and accuracyb$sguent quantitative or classification analyses
(i) Improved interpretability: raw data are tramghed into a format that will be better understdoela
by both humans and machines
(i) Detection and removal of outliers and trends
(iv) Reduction of the dimensionality of the datanmg task. Removal of irrelevant and redundant
information by feature selection.
For systematic reasons it is useful to subdivida gae-processing procedures into at least eidgfarent
categories. These groups can be used to perforfoltbering operations:
1. Exclusion (cleaning) - this class of data pre-processinchoud is used to detect and eliminate spectral
outliers. Tests for spectral quality are importexamples and aim at the detection of outlier spemtior
to further data mining tasks. Removal of outlieecpa can be achieved by labeling them as NaNs &Not
Number), for example as “bad” pixel spectra in hgpectral imaging applications. Another way of
outlier removal in hyperspectral imaging applicaias the interpolation of bad pixel spectra byngsi
spectral data from neighboring locations.
2. Normalization - normalization is used to scale the spectra withisimilar range. In vibrational
spectroscopy this is useful to compensate for ifferences in sample quantity or a different ogdtica
pathlength. In data mining tasks involving spectliastance measurements normalization has been shown
to improve the accuracy and efficiency of the med#&t3].
3. Filtering - in frequency analyses filtering is known as augr of methods that removes unwanted
frequencies from the signals to be analyzed. Examfur high-pass filters widely applied in vibrai#d
spectroscopy are derivative filters. These fileaa be regarded as pre-processing methods thanmeni
broad baseline effects and amplify high-frequenignals (noise) in IR and Raman spectra. Low pass
filters like smoothing filters have the oppositdeet: low frequency components in the spectra are
retained while the high-frequency components (nagse attenuated. Band pass filters are combingtion



Spectral Pre-processing for Vibrational Spectrogcop page 3 12.03.2012

of high and low pass filters. A good example ofaadb pass filter is the Fourier self-deconvolutidieif
which can be used for resolution enhancement aisé meduction at the same time.

4. Detrending - detrending is defined as a statistical or matteral operation that removes underlying
trends from series. Such trends may strongly soqpese, or obscure the changes of interest. In rgphect
time series, for example, detrending is often aapto remove long-term spectral changes. A simpie a
straightforward method of detrending spectral tseges that are non-stationary in mean is the acidn

of the mean values of the spectra. More compleredding routines aim at decomposing the spectral
changes into a slow, or low frequency componem {tend) and the spectral changes of interest {wikic
often represented by the higher frequency compshent

5. Transformations. Within the present review the term “transformatios used to describe a group of
pre-processing methods that are based on a weatllediephysical model. Examples of such pre-procegssin
routines are the ATR correction method, the Krarkemnig transformation, or the conversion routines
between IR absorbance and transmission spectra.

6. Feature selection - feature selection techniques are known as pregssing methods useful for both,
guantitative and classification analyses. Conttarpther dimensionality reduction methods (PCA) the
original representation of the variables is noeraltl [4]. Feature selection thus involves a prodess
which a subset of the original variables is sekbéte a specific purpose (e.g. to train a neuralvoek). In
this way, the original context of the variablespieserved which allows in vibrational spectroscopy
interpretation of the selected spectral featurea bgectroscopy expert [4]. Feature selection naistlaoe,
however, not a subject of this review.

7. Folding/Unfolding: Folding/unfolding is an operation in which an am@ n-dimensional spectral data
matrix is reshaped such that the number of dimessi® modified while the data values and the number
of elements remain constant. An IR or a Raman gp@ctan be considered a 1-way data vector with
spectral variables, usually an absorbance valug ¢iRa Raman intensity value, being dependentran o
argumentA (wavelength), ov (wavenumber) Examples of 2-way data are spectral time serieshich

the variable of interest is measured as a funafomvo arguments andt (time). Hyperspectral imaging
data can be considered 3-way data. IR absorbamhgesya@r Raman intensities, are measured as adanct
of three variables, the spectral coordinatnd two spatial coordinatesandy. Imaging data can be easily
transformed into a 2-way data format. This opemattotermed unfolding; iinvolves rearrangement of the
3-way data matrix into a 2-way matrixhere the originak- andy-modes are encoded by a new mixed
spatial mode.

8. Other methods: This heterogeneous group comprises various preepsing methods that have been
specifically developed for vibrational spectros@oppplications: methods for the removal of spectral
contributions from atmospheric water vapor, buffebtraction routines for the analysis of IR spefrven
proteins in agueous solutions, techniques for cting cosmic ray artifacts and methods for removheg
fluorescence background in Raman spectra are iamoexamples of this group of pre-processing
routines.

In a broader sense, the FT operation which is requb transform an interferogram into an intergiét
spectra format can be also considered a specteaprpcessing method. Parameters of the Fourier
operation, the phase correction method, the apoazéunction and the zero filling factor evidentipve

an impact on the effective spectral resolution d@nel resulting signal-to-noise ratio (SNR). As an
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exhaustive discussion of the expressions and oekttips of operations in Fourier space is, however,
beyond the scope of this review, the reader ignedeor further details to the existing literat(ise 6].

The main purpose of this review is to make spectpg experts aware of the necessity and benefits of
applying pre-processing techniques to their daia.dlear from the listing above that the discossif the
methods cannot be both, complete and compreheri@neepresent article is thus focused on selected pr
processing methods popular in biomedical mid-iefdaMIR) spectroscopy (section 2) and on pre-
processing techniques specifically developed fan&aspectroscopic applications (section 3). Inteafdi

to these sections, the review gives also an owsraieout selected routines for pre-processing 2-way,
multi-way spectral data (section 4). The sectiocamplemented by a short introduction into combined
pre-processing approaches (see section 5). Withptlsent review it is intended to address the main
issues and problems of spectral pre-processing fiioen point of view of a practitioner. Practical
considerations were discussed rather than focuminthe exact mathematics of the given pre-procgssin
method. It is however hoped that the interestederewill find useful information and some guidarioe
more detailed discussions of this important aspespectral data analysis.

2. Data pre-processing in biomedical IR spectroscopy

2.1. Quality tests

Among tests for spectral repeatability and reprdulity, quality tests are important first steps amy

workflow of data analysis in vibrational spectrogicostudies. Quality tests can be considered dgemut

tests; they were introduced to the field of bionsativibrational spectroscopy in the late 1980'inithe
context of a project for FT-IR spectroscopic idiodition and classification of intact microorgansii7].

In this project the quality assessment of the rapedamental spectra was carried out by definingaver

criteria, or thresholds, of specific absorbancei@s) the SNR, intensities of infrared water vapamds,

optical fringes, and more. Since then, qualitysdsive been adapted and expanded for IR and Raman

microspectroscopic imaging and usually comprisealiewing independent quality checks [8]:

1. Test for absorption bands of atmospheric waagowv (MIR only): based on second derivative spectra
in the 1750-1900 crhregion intensities thresholds of water vapor liassdefined.

2. A so-called test for sample thickness: in transmission typari®surements integrated absorbance
values can be considered as rough estimates fquledamckness. The test relies on upper and lower
thresholds for intensities of selected vibratiohahds (e.g. the amide | band), or of large spectral
regions, respectively.

3. The test of the spectral signal-to-noise raB®R): The SNR test allows to obtain the SNR for
individual spectra and to eliminate those spettsa do not fulfill a certain threshold. When anatgy
biomedical samples the signal is usually obtainedthie amide | region (1620-1690 ¢jn The
standard deviation of the absorbance values isithel-free spectral region between 1800-190F cm
is a popular means to assess the spectral noise lev

Other tests like the "test for a specific band'tloe "bad pixel test” [9] allow to automatically rewe

spectra showing contributions from unwanted compsuexample: tissue embedding medium exhibiting

strong absorption features from carbonyl esters)p @liminate spectra acquired by dead pixels elgm

of a focal plane array (FPA) detector.
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2.2. Water vapor correction

Variations of the atmospheric water vapor contaning) the time of sample and background collection

are known to cause intense and sharp water vagorion features in the mid-IR (MIR) spectral wegi

between 1350-1950 ¢h[10]. Water vapor rotational bands are of low imit half-width and their
precise wavenumber position and intensities areemldgnt on parameters like partial pressures, or the
temperature. Spectrum (a) of figure 1 exemplansihates typical water vapor absorption featurethén

MIR spectral region between 1350-1950trThis spectrum, and the corresponding second atares

spectrum (see trace (b) of figure 1) demonstrase #tmospheric water vapor lines may significantly

obscure important spectral details of MIR sampkcsa.

Effective minimization of unwanted spectral contitibns from water vapor can be achieved by two

means [11]. First and foremost, the instrument sahple area should be purged by dry air [12,13].

Secondly, water vapor lines can be computatiorraligoved by subtracting a weighted spectrum of pure

water vapor from a sample spectrum (see figuresaizh numerical routines require to measure a high-

quality water vapor spectrum and to calculate agitéig, or water vapor correction factor. The water
vapor correction routine which is illustrated nemékes use of a specific feature of water vapor $and
their intrinsically low half-width.

1. Firstly, a high-quality absorbance spectrum wkpwater vapor is measured. This spectrum shauld b
obtained by using the same instrument and measuatgraeameters as those for sample measurement.
The spectrum is converted to a second derivatieetagm.

2. A second derivative spectrum is obtained froengample spectrum.

3. At the precise wavenumber positions of waterovdmes, preferably in the spectral region between
1750-1900 cri, second derivative intensities are extracted fathbthe sample and water vapor
spectrum.

4. The correction factor is then calculated by thto between the derivative intensity values & th
water vapor and the sample spectrum. In case tbat than one water vapor line was selected, the
correction factor is determined by averaging th®sa

5. Finally, water vapor correction is carried oytdubtracting the product of the water vapor absach
spectrum and the correction factor from the respestample spectrum.

The routine has been successfully applied to cosgierfor spectral contributions of atmospheric wate

vapor in spectral time series [13, 14] and in FTitRwging measurements of tissues [15, 16]. Thetesu

of water vapor correction is exemplary illustratgdfigure 1 which shows an original absorbanceata)

the corresponding second derivative IR spectrumm filoe human colon mucosa (b). Both spectra exhibit

substantial contributions from atmospheric watgroraFigure 1 illustrates also a spectrum of puatew

vapor (c), the corrected sample spectrum (d) aaddicond derivative spectrum thereof (e).

2.3. Normalization

The use of IR spectra in classification analysibrdty search) typically requires some form of
normalization that allows an effective comparisooroas heterogeneous sets of samples [17].
Normalization has been thus identified as one ef iost important pre-processing method which is
commonly applied to minimize the effects of varywygfical pathlengths on the data, or to comperfsate
intensity variations of the source (example: IRctyntron) to mention one of the possible instrurakent
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causes. The result of normalization is a spectrunthwis scaled and offset corrected at the same.tim
Normalization methods can be subdivided into twoinmgroups. The first group of rather simple
normalization methods requires only the informatfoom the spectrum to be normalized. The second
group comprises normalization methods such as Pidative Scatter Correction (MSC) [18], and
Extended Multiplicative Signal Correction (EMSC)Jlwhich either require the presencesofcalled
collective (2-way, or multi-way) spectral data n@ds, or of reference spectra. As the latter grotip
normalization methods will be presented in largeaiién a separate contribution of this speciatiesshe
description is focused on the first group of noiirelon methods.

Min-Max normalization: Min-Max normalization is by far the most simplermalization method. In Min-
Max normalization, spectra are first offset-coreectby setting the minimum intensity of the whole
spectrum, or of a defined spectral region, to z&mectra are then scaled with the maximum intensity
value equaling one.

1-norm: The second normalization method is sometimesrezfeto as 1-norm normalization. The first
step of this method is mean centering; that is dalkerage spectral intensity is subtracted from the
spectrum. Mean centered spectra are then scalédisaicthe sum of the absolute values of all intess
equals one.

Vector normalization: Another popular normalization method is vectormalization, also called 2-norm.
Mean-centered spectra are divided by the squateofdbe sum of the mean-centered intensities sqliar
In this way a spectrum is obtained in which the sirall intensity values squared equals one.

Sandard normal variate (SNV): SNV normalization is often used in near-infrasggectroscopy. Like in
the case of vector-normalization the proceduretsstarth mean centering. SNV normalization is then
achieved by dividing mean-centered spectra by thedsrd deviation over the spectral intensitied [20
giving the resulting spectra a unit standard dexiadf one.

2.4. Basdline correction

In transmission, or transflection type IR spectops¢ spectral baselines can be distorted as atreful
scattering (i), absorption by the supporting sudtet(ii), changing conditions during data collect{@i),

or the variableness due to instrumental factors @uch baseline distortions are critical, parfaciyl in
guantitative analyses when e.g. absorbance vateesyatematically evaluated. Subtracting the estoma

of a background from the un-processed spectrumsldéada more interpretable signal, allowing to
determine spectral parameters (band positionspsitievalues) more accurately [21]. A large variety
different methods for background estimation andremion has been suggested. Although baseline
correction methods may rely on distinct principéesl algorithms, they have the common objective of
minimizing unwanted spectral offsets, broad basetiistortions, positive or negative slopes, andioth
baseline effects in vibrational spectra.

An illustration of popular baseline correction rioes is given by figure 2. In this figure black-od
curves (a) denote a raw FT-IR absorbance microgpaabbtained from a cytoplasmic region of a human
skin fibroblast. In this spectrum the baseline aisibns are a result of moderate Mie-type scatjerin
[22,23]. Baseline curves (b) obtained by four d#fg methods are shown in the red color. Baseline
correction (traces (c)) is achieved by subtracfoygrom (a).
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Offset correction: This is one of the most simplest baseline coiwacinethods. In offset correction, a
straight horizontal baseline is subtracted from gpectrum (cf. figure 2A). The offset value is atios
such that at least one point of the corrected sp@cequals zero. Spectra are not scaled in thissmod
Piecewise baseline correction: A baseline is obtained by a number of user-defipeints which are
connected by straight lines. Correction is achievgdubtracting the baseline from the sample spectr
(see figure 2B).

Polynomial baseline correction: Instead of connecting user-defined baseline pdigta straight line, &'k
order polynomial function is used to fit the spattiata points (see figure 2C). Low-order polyndsia
should be preferred to avoid baseline correctidifaats. Polynomial baseline correction is exteakiv
used in analysis of Raman spectra to flatten theelvee from contributions of fluorescence (cf. also
section 3.2.).

Savitzky-Golay (SG) baseline correction: This baseline correction technique makes usexténsive
smoothing of spectra. Spectral baseline curves ban obtained by using a zeroth-order SG
smoothing/derivation filter with an extremely highmber of smoothing points [9, 24] (see sectionf@.5
details of the SG smoothing/derivative filter). Timethod allows to exclude spectral regions witbrsgr
signals and is recommended for use only with spextintaining a few sharp bands (see figure 2D).
Spectral baseline distortions can be considereul adslow-frequency components of vibrational sgectr
High pass filters have been successfully appliedmany studies to eliminate spurious baseline
components from vibrational spectra. Two high phler functions, derivatives filters and Fourier
transform methods (see next section) have beeamsgsitally compared with a variety of other baselin
correction methods in an article by Schulze etRair. details of this comparison the reader is retéto
this excellent feature article [25].

2.5. Spectral filtering (smoothing/derivatives, Fourier-self deconvolution)

Spectral filtering techniques are widely employediomedical IR spectroscopy. Popular filters avesa
filters for de-noising and smoothing, SG smoothiegiative filters for smoothing/resolution
enhancement, and various types of frequency fikeh as Fourier self-deconvolution (FSD) employed
in the interferogram, or Fourier domain.

Noise filters: Noise filters can be considered as specific l@gspfilters which are popular means for
smoothing spectra. Such filters can be used toceedandom noise but have the drawback that depgndin
on the type and the amount of smoothing the SNRRdseased at the expenses of distorting the signal.
Among others, popular smoothing filters are theotteorder SG smoothing/derivative filter [24], the
binomial filter [26] and the moving average filtatso known as sliding average filter. These fltean be
applied to 1-way data and do not rely on Fouri@ngformation as the spectral data points are reglby
some kind of local average of the surrounding gatats. The application of noise filters to 2-way,n-
way data will be described separately (see sedtib:.

Derivative filters. Derivative filters are popular means to enhameeresolution of infrared spectra. The
filters are thus routinely employed to resolve adentify overlapping band components in complex
spectral profiles. Another advantage of derivaspectroscopy is that contributions of baselineetéfor
slopes are minimized. In this way the complexitytte# spectra is reduced which facilitates specturate
fitting by reducing the number of fit parameter§][2Unfortunately, derivative spectroscopy requiees
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high SNR. This is sometimes hard to achieve, fangple in cases where IR microspectra are acquired a
a diffraction-limited spatial resolution.

The so-called Savitzky-Golay (SG) smoothing/derivative method][Bpresents one of the most popular
filters. The technique has been suggested in 1982avcel J.E. Golay and Abraham Savitzky and agplie
in its initial version to equally spaced and coatins data. The advantage of the method is that
computation of the derivatives and smoothing isiedrout in one single step. The fundamental concep
of the SG smoothing and derivative method is tleaiof a convolute and of a convolution functio#][2
Convolution functions can be regarded as a vedtoomvolution integers and a normalization faciidre
convolute of a given spectral data poxgtis obtained by computation of the dot product leetw the
vector of convolution integers and a spectral segnoé equal length with the midpoint beixg The
result of this operation is then divided by a ndimadion factor. In SG filtering the length of the
convolution vector is commonly referred to as thember of smoothing points. The operation has to
repeated for each single data point of a spectrum.

Savitzky and Golay have shown in their work thatwabution vectors for smoothing and" rorder
derivatives can be derived from the coefficientsledst square-fit formulas [24]. Furthermore, they
provided numerical tables of these vectors and detnated how convolution vectors can be used to
obtain smoothed n-order derivatives in a singlevoartion operation. Although the original paper
contained a number of typographical errors thatewsrbsequently corrected by Steinier et al. [28] it
became a classic and is now one of the most wiidtgyg papers in the journal Analytical Chemistr9][2
Fourier self-deconvolution: Fourier self-deconvolution (FSD) is an alternatimethod for resolution
enhancement. The FSD method was initially preselbye8tone [30] and has been developed further as a
technique to computationally resolve overlapped#Rds from spectra of condensed phase samples [31-
34]. FSD has been employed in countless studiesdoce the degree of overlap between two adjacent
bands, particularly in the field of secondary stmue analysis of proteins [35-37]. An example ofDFS
application is given by figure 3. Trace (a) of figBA shows an infrared spectrum of the model jpmote
RNAse A between 1500-1800 &mThe protein was measured in a solution of heaayew(30).
Complete H/D exchange was obtained after incubatiothe protein in BO at 80° [14]. Furthermore,
spectral contributions of the buffer were elimibat®y the weighted subtraction method (cf. sectid).2

As mentioned eatrlier, the use of a Savitzky-Gokegosd derivative filter allows analysis of overlagp
bands, such as amide | band components in therapeegion of 1620-1690 cf For example, the
second derivative spectrum of RNAse A exhibits fonportant amide | band components which all of
them attributed to distinct secondary structuremelets (cf. trace (b) of figure 3A). Amide | band
components identified in the second derivative spatcan be in principle detected also by FSDilig

as the alternative resolution enhancement techr{gpesfigure 3B).

Mathematically, FSD can be regarded as a spedii lpass filter operation involving a deconvolution
function as the high pass filter and a smoothincfion as the low pass filter. For FSD, the measure
spectrum is firstly transformed into an interfermgr (Fourier domain spectrum) by an inverse Fourier
transformation (FT). It is known that in the inendgram domain convolution reduces to a multipiocat
and deconvolution to a division. For deconvolutidhe interferogram can be thus divided by the
deconvolution function, (or multiplied by the ingerthereof). For Lorentzian band shapes, the iavers
deconvolution function is an exponential functiavhich is multiplied by a smoothing, or damping
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function. For recovering the FSD spectrum the pebda subsequently processed by a forward FT
operation. This sequence of steps is schematithistrated by figure 3C-F: the interferogram giviey

the solid line of figure 3D is the inverse Foutiemsform of the buffer corrected spectrum of RNAsaf
figure 3C (trace (a)). This signal is subsequemntijtiplied by a specific band pass filter functiffiigure

3D, dotted line) in the interferogram, or Fourienthin (see figure 3E). The forward Fourier transfaf

the product (figure 3E) gives then the FSD filigectrum (figure 3F).

When applying FSD to real data one should be awhthe fact that the actual shape of the FSD filter
function defines the factor by which the deconvdiMeands are narrowed. Furthermore, FSD filter
functions determine the shape of deconvolved bandsthe SNR degradation in the FSD spectra [38].
Inadequate FSD filter parameters may result in unde over-deconvolution, with the latter one
characterized by noise amplification and the appear of large negative side-lobes (see [31,38@9] f
details].

2.6. Other pre-processing methods

In the previous section it was attempted to proadsmprehensive overview on spectral pre-procgssin
techniques that found broad application in bioma&diafrared spectroscopy. Naturally this overview
cannot be both, detailed and comprehensive. Thaiggen was thus restricted to the most common pre
processing routines with the exception of MSC/EM8,19] and the procedure to correct for spectral
contribution of resonant Mie scattering [23,40-8B¢th procedures will be dealt with in separatéeckes

of this special issue.

Spectral subtraction: Contamination of the samples of interest oftesultein additional bands and/or
spectral distortions which can pose a serious prmbfor subsequent multivariate analyses. Spectral
subtraction is applied in cases were infrared samgpectra have to be cleansed from spectral
contributions of unwanted compounds ("contamingnt&Xample for such contaminations are spectral
contributions from the supporting substrate (e@mnfdiamond windows or polymer films), of ingredien

in powder mixtures, from the solvent or buffer flmm atmospheric water vapor and carbon dioxides Th
basic principle of spectral subtraction has beeeadly outlined on the example of the computational
removal of water vapor bands (cf. section 2.2stfia high-quality spectrum (high SNR) of the pure
contaminant is obtained. Then, based on selectedrsp parameters of the contaminant in the sample
spectrum, a weighting factor is determined. Spectaection for the contaminant is then carried loy
subtracting the spectrum of the pure contaminarnitipiied by the weighting factor from the sample
spectrum. The procedure is simple, fast and efficieout has important requirements: The first
precondition is that measurements should be cawigdunder conditions where the detector transfer
function (DTF), a measure of the detector outpuswe the IR intensity (signal input), is linear.igh
criterion involves several sub-criteria such as riieximum value for the product of optical pathléngt
extinction coefficient and the concentration of @bsng species, or the type of the detector (MCT or
DTGS), etc.. The second requirement for applyinecspl subtraction is the independence of sigias.
give an example, computational removal of speétaiures from unwanted compounds will be successful
only in cases where no molecular interaction betwsample constituents and the contaminant takes
places. Thirdly, spectral subtraction requires #iwsence of optical effects other than absorption
(scattering). Spectral subtraction will be validyoin cases were these conditions are fully s&tisfi
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A practical application of spectral subtractiorgigen by figure 4. This example illustrates thensiad
pre-processing workflow in secondary structure ymalof proteins measured in agueous solutiongelra
(a) of figure 4 shows the original un-processedar&d absorbance spectrum of the model protein &Nas
A which was dissolved in a 100 mM cacodylate buftér heavy water (BD). Infrared spectral
measurements have been carried out in MIR trangmissode using a custom designed IR cell (JalF

an optical pathlength of approximately 45 um. Th® buffer spectrum (b) was obtained under identical
experimental conditions (temperature, pH, IR meament parameters) using an IR cell of a slightly
reduced optical pathlength. The first step of m@epssing consisted in subtracting the buffer spect
(b) from the spectrum of the protein solution (a).this difference spectrum (c) the strong absorpti
features of BO such as the OD stretching band at ~2499 and the DOD deformation band ~1210tm
are largely compensated. On the other hand, thatires difference spectrum (c) still exhibits bro@xH
stretching features (~3380 dnand a HOD deformation band (~1450 Ynhidden under the amide II
contour [44]. These bands are due to the presdn@asidual protons in the J® buffer and the formation
of HOD. A spectrum of this rare molecular specias be obtained by a second subtraction involvirg tw
D,O buffer spectra varying slightly by H content (d¢esce (d) of figure 4; a varying H content o
buffers can be attained by exposingODto the open atmosphere for a short time). Caaedor spectral
contributions of HOD in the amide II' region (N-[2rding vibration coupled to C-N stretching) at ~844
cm™) can be achieved by a third subtraction operatiemveen the difference spectra (c) and (d). In this
way, a protein spectrum corrected for spectralrdmnions of O and HOD is obtained (cf. trace (e) of
figure 4) [12]. Prior to structural interpretatitime double difference spectra are usually furtliecgssed
using resolution enhancement techniques such aszl8aGolay second derivatives (see trace (f)) or
Fourier self-deconvolution.

3. Raman spectral pre-processing

Generally, most of the pre-processing methods dgamli in the previous section can be successfully
applied also to pre-process Raman spectra. Althdlugie are a few exceptions to this rule (wateovap
correction, resonant Mie scattering correction) riiggority of pre-processing methods outlined intisec

2 have shown their usefulness also in studiesmpalith Raman spectroscopy as the analytical method
Many studies show no principal differences betwéss applicability of quality tests, normalization
methods, baseline correction or spectral filtetichniques to Raman and IR spectra. However attenti
should be paid to lower SNR frequently found in Ranspectra of biological compounds. The latter fact
is of particular importance when applying frequefittering techniques (smoothing, derivative fiitegy,
FSD).

The following section is thus focused on the dedinn of pre-processing procedures that can be
specifically applied for processing non-resonanmBa spectra. Such routines include methodologies to
remove cosmic ray artifacts and strong fluorescebaekgrounds, and to handle the wavelength
calibration problem in Raman spectroscopy whengudigpersive instruments.

3.1. Removal of cosmic ray artifacts
Raw data from sensitive integrating detectors aglkharged-coupled devices (CCD) commonly used in
dispersive Raman spectrometers may contain adifagginating from high-energy cosmic particles
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hitting CCD detector elements. Cosmic ray artifanenifest themselves as non-reproducible, sharp and
intense features superimposed on the Raman sighalthese events can corrupt important parts of the
Raman spectra and mislead subsequent multivamatgses they are required to be either replaced by
local estimate or flagged as invalid.

A number of methods have been suggested for findimdyeliminating cosmic ray artifacts [45-49]. The
most simple approach of cosmic ray detection makesof the temporal randomness of the artifacts and
is thus based on the comparison of two conseciRa@an sample measurements. For example, cosmic
ray artifacts can be routinely identified basedamal correlations established between two consesyt
measured sample spectra. Such a procedure is adeant even in the case where no cosmic rays are
found as it allows to increase the SNR via signaraging. On the other hand two-, or multi-frame
comparison methods have the shortcoming that treebased on the premise that actual spectral &satur
stay unchanged over time [47].

Purely computational procedures sought to take ratdge of the considerably lower half-widths of
cosmic ray "bands". To give an example Phillipslesuggested a method in which cosmic ray arsfact
are identified by their deviations from the treraighe surrounding data, relative to a robust estienmof

the standard deviation [48]. The authors suggdsitidermoreso-called missing point filters which could

be successfully employed to replace cosmic spikéufes by interpolated data. The method combines
spike correction and smoothing and can be useffdotieely remove cosmic ray artifacts in 1-way alat
The latter concept has been further developed byahid Rogalla [50], which proposed to perform gpik
correction and smoothing separately and extendedltorithm for multiple spike corrections [50].

An example for cosmic spike correction in 1-wayadat given by figure 5. The upper red spectrum (red
color) was obtained from a confocal Raman microspecopic (CRM) imaging data set obtained from
the gray matter of a hamster brain section. In éxample the sharp and intense cosmic ray art#act
approximately 1795 cthhas been identified by comparing two consecutiveBasured (neighboring)
Raman pixel spectra. The lower trace of figurebti)é color) shows the spectrum in which the cogiec
feature has been replaced by interpolated data.

In the last decade, the advent of Raman imagingldthdo the development of dedicated cosmic ray
rejection methods which specifically apply to latggerspectral imaging data sets containing hursdred
or thousands of individual spectra. Because ofitiygortance of this topic a separate section (4s3.)
devoted to the description of cosmic ray rejectio@-way or n-way Raman data matrices.

3.2. Removal of the fluorescence background

Although Raman spectroscopy has been proven todwevarful tool for biomedical and microbiological
applications it has been severely limited in itglegability by fluorescence [51]. Fluorescence is
characterized as a broad band emission that ogtuiine same wavelength interval as the Raman signal
In some cases the fluorescence background can®tE03@mes more intense [52] than Raman scattering
so that the Raman signal may be entirely obscured.

A variety of different methods have been proposedviercome the fluorescence problem. These methods
can be roughly subdivided into three main categormeethods that aim at reducing the fluorescence
signal and/or at enhancing the Raman signal: pledching, fluorescence quenching [53], removahef t
fluorophores e.g. by sample washing, or filtratjbd], the use of UV or near-infrared lasers whichrbt
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stimulate fluorescence [52, 55], and resonantlyaeanbd Raman scattering [56] are examples of popular
methods for improving the Raman-fluorescence intgmatio. The second group of techniques makes use
of different physical properties of the Raman et light and the fluorescence: time resolvedinoe-
gated Raman spectroscopy can be used to sepatateehethe almost instantaneously Raman scattering
light and the fluorescence signal which is a corapaely long lasting effect [57, 58]. The fluoreace
signal can be also separated by using anti-StolesaR spectroscopy [59] or by employing different
polarization properties of fluorescence and Rantattered light [60]. The next option for fluorescen
rejection is known as shifted excitation Ramanedéhce spectroscopy (SERDS) which makes use of the
fact, that the fluorescence background does naigshavhereas the Raman scattering is frequencyedhift
when the laser excitation wavelength is periodycalbdulated [51, 61, 62].

The third group of methods comprises purely mathiealaor chemometric technigues to mitigate the
fluorescence components of Raman spectra. Suchodwiinclude (fluorescence) baseline subtraction
procedures using polynomial fittings [63-65], theeuwof first or second derivative filters [52, 6@je
shifted-spectra technique [52], PCA analysis [6@yelet transformations [68, 69], and the applaabf

FT frequency filters [25, 52,]. Though each of #hesethods has been shown to be useful in certain
situations, they are not without limitations.

The main advantage of software-based methods tmrdscence background correction is that these
techniques do not require additional optical orcetmic components or other complex instrument
hardware modifications. Depending on the intenaityl the spectral range of the fluorescence signal
computational methods for fluorescence rejectiomehbeen proven to be efficient, inexpensive and
relatively easy-to-perform.

Frequency-domain techniques such as FT filterintp@wavelet transform technique [70-75] make udse o
the fact that the fluorescence background is oftemposed of lower frequency components than the
Raman signals. This allows in principle to sepath&efluorescence signal from the Raman scattat (an
noise). The main drawback of FT or wavelet filtgriis under- or over-filtering, for example in cases
when the frequency components of fluorescence amaR scatter are not well separated [64]. Secondly,
the results of FT filtering or wavelet transforneatistrongly depend on a number of complex parameter
which introduces some subijectivity to the analy8#. Because of the complexity of frequency-domain
filtering such methods have not been implementedommercial software packages. The methods have
thus found only limited application in practicatiges.

Differentiation techniques as the next group of hnds can be also effectively used to remove the
fluorescence background. However as some impleri@msarequire extended computer modeling (i.e.
fitting) of each spectral line [52], derivative rhetls often rely on complex mathematical fitting
algorithms [64] and are thus also prone to subjeyti

Among mathematical methods for fluorescence backgtaemoval, polynomial baseline fitting is the
most commonly used [64,65]. This is due to the dpsamplicity and convenience of this technique.
Another principal advantage of polynomial fittingew frequency or derivative filtering is that tradnal
Raman line shapes are preserved which facilitatesgretation of the Raman spectra in terms of otem
composition and structure.

Fluorescence background correction with polynomiabes on the assumption that a fluorescence
background can be modeled by a polynomial. Using #pproach the polynomial coefficients are
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traditionally estimated in a least-square mannemusing a set of baseline points that are either-use
defined or set automatically [9]. It is importaotdefine the polynomial order sufficiently low teduce
the complexity of the fit model and to avoid ovétiig. Meaningful values for polynomial order vary
between 4 and 6 [65, 76].

When evaluating the least-square polynomial basetmrrection method Lieber et al. have pointed out
that the definition of baseline points should itheabnsider spectral regions containing only flismence
background and ignore regions containing Ramaratsgof interest [64]. This criterion, however cahno
be always satisfied when baseline points are défmgomatically. Manual definition of baseline psin
requires on the other hand user intervention amttdee troublesome and time consuming in casesevher
many spectra have to be processed [21]. In thaeotssophisticated methods for automated polynlomia
baseline correction were suggested [21,64,65].  kshniques do not rely on user intervention angh
been shown highly effective in removing the flua@asce background. The modified polyfit function for
fluorescence subtraction [64], for example usestenative polynomial fitting approach to minimize a
classical least square error in which peaks amimdited. Mazet et al. suggested an alternative adeth
that minimizes non-quadratic cost functions speaily designed for optical spectroscopy [21]. lukcb

be demonstrated that asymmetric truncated quadcast functions are insensitivity to large Raman
peaks. Furthermore, the method of Mazet et alwallto consider also the noise level which makes the
technique particularly useful for fluorescence eotion of Raman spectra [21, 76].

3.3. Wavelength calibration in disper sive Raman spectr oscopy

Similarly to FT-IR spectroscopy, the accuracy & thavelength position can be precisely maintaimed i
FT-Raman spectroscopy by internal laser calibrafidns section thus deals with wavelength calilorati
procedures that are required when using non-FIdispersive Raman instrumentation.

Most of the modern dispersive Raman instrumeni&eitgratings in combination with sensitive CCD
detectors for collecting the weak Raman signalse @nthe main problems of such multichannel Raman
spectrometers is the problem of wavelength stgbifi#,78]. Wavelength inaccuracies are often times
inevitable and may occur as a result of instrumdatdors such as source/grating changes, misakghm
of the collection optics, thermal changes, and rofaetors. [79]. These inaccuracies can cause leotab
band shifts in the resulting Raman spectra makidgtailed spectral analysis difficult, if not imgdse.
Wavelength accuracy is of particular importanceRaman difference spectroscopy, that is when a
reference spectrum is subtracted from an experaheample spectrum. It is well known that waveléngt
shifts between sample and reference spectra mait resderivative-like features which can rendee th
Raman difference spectrum unrecognizable [80]. Othetical applications requiring increased
wavelength stability include search-match applaragi (library searches) where Raman spectra of
unknown compounds are systematically compared wphctral data bases by pattern recognition
methodologies.

Many instrument manufacturers address the wavéiestdbility problem by offering menu-driven
software protocols for wavelength calibration inievh either absolute wavelength standards (atomic
emission lines) oso-called Raman shift standards are utilized. While in tingt fapproach one requires
precise measurements of the laser line positiof, B use of a Raman shift standard will produce
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Raman bands with a known shift relative to therds®. Raman shift standards can be therefore used
without knowing the precise laser line position.

Raman shift standards are available from the AraariSociety for Testing and Materials (ASTM) as
ASTM E 1840 shift standards [82]. The choice of ithéividual standard will depend on the number of
Raman bands observed in the wavelength range efestt For accurate wavelength calibration it is
furthermore important that the material of the tskiindard exhibits Raman bands across the futtisgie
range. In this way, wavelength uncertainties caadignated at multiple locations within a spectrum.
Wavelength calibration by Raman shift standardssisally achieved by applying polynomial fit funet®
that aim at establishing a relation between theroal numbers of the CCD detector and the individual
Raman lines [83]. In this context, Carter et alstegnatically compared first, second and third order
polynomials for wavelength calibration of dispeesimstruments. The first conclusion that was dravas

that calibration models require independent, oeml validation. External validation reveals oitérfg

and ideally involves testing of an establishedbration model by a second Raman shift standard. The
authors found furthermore, that the simplest catibn model, the linear model, gave reasonably good
and robust calibration results. For example, lineadels performed comparatively well in situations
where erroneous band positions were purposelydated into the calibration data [83]. Finally, Eme
models were found particularly valuable in caseefrapolation, i.e. when significant parts of the
spectrum to be calibrated lie beyond the initidibcation limits. In such cases the use of secanthind
order polynomials should be avoided [83].

3.4. Other pre-processing methods specific to Raman spectr oscopy

Additional methods employed to pre-process spebtoan dispersive Raman instruments involve
procedures to correct for (i) dark current of tHeOCdetector, (ii) the optical response of the seceter

and (iii) the detector response [76]. Correctionth&f dark current can be easily achieved by suintaa
CCD signal measured without laser light, sample ahde from the Raman sample spectrum. To
compensate for the optical system response itr&g fnandatory to obtain the signal under laser
illumination but with the sample and slide beingett. Similarly to the previous case the corrected
Raman spectrum can be then obtained by subtrattimgignal from the raw data. The detector respons
function is required to correct for the frequenegponse of the CCD. This function can be obtained b
illuminating the CCD by a calibrated polychroma@urce (see ref [76] for further details).

Gobinet et al. suggested furthermore a pre-pracgssiutine for peak width homogenization [76]. The
basic element of this routine is a filter whichdissigned to transform a peak into a version thst fits a
reference peak. For this purpose a convolutiontlemation scheme was proposed that aims at
minimizing the difference between selected refesemed target peaks. The authors noted, howevdr, tha
the suggested algorithm for peak width homogeronatvorks only locally on the recorded spectra [76].
Although other techniques like correlation optintiagarping (COW) or dynamic time warping (DTW)
[84, 85] are considered to be potentially usefuhtmnogenize peaks shapes over the entire datarvecto
they could not be successfully applied in the stid@obinet et al. [76].

4. Specialized spectral pre-processing routinesfor 2-way and n-way data
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Classical data pre-processing techniques emplayeihgle point spectroscopy (1-way data) can be als
applied to process 2-way, or n-way data matricesnidlization, baseline correction, spectral filtgrito
mention a few of the 1-way pre-processing methads,routinely utilized to pre-process spectra from
time series experiments or hyperspectral imagirg daatrices. Aside from these methods there are a
number of specialized pre-processing routines abkl that take advantage of existing correlations
between spectral features in collective 2-way, -wvay data sets. To give an example, PCA-based noise
reduction of 2-way spectral time series is cargatunder the premise that spectra are recordahinaist
identical measurement conditions with only one platsparameter (temperature, pressure, etc.) being
varied over time. It is furthermore assumed thattj of 2-way data matrices have a comparabldrspec
guality (SNR) with spectral outliers being removed.

The focus of the following section will be theredasn pre-processing methods that aim at the séparat
of physical and chemical/structural informatior2iwvay or n-way sample spectra.

4.1. De-noising of 2-way data

PCA-based noise reduction: The PCA noise filtering technique is based on macgal component
transform of a 2-way spectral data matrix. Unlikavi&ky-Golay smoothing, binomial, or moving
average filtering, PCA based noise reduction catweoapplied to 1-way data and is thus employed for
noise rejection in spectra from time series or imggneasurements. The PCA method itself is defased

a orthogonal linear transformation that can be usedecompose 2-way data into orthogonal vectars, o
principal components (PCs). The number of PCs isalketp the number of spectral data points. The
principal components describe the variance betwleespectra and are ordered by the amount of \@&ian
they explain. PCA thus reorders data in decreasiigr of variance, i.e. the first PC describes the
majority of the spread of the data, the second Bilams the (independent) second-largest variamtled
data, and so on. In consequence, low-order PCegept most of the signal, whereas high-order PEs ar
supposed to contain mostly unexplained variancenangk. As each spectrum of a 2-way data matrix can
be reconstructed by a linear combination of PGs,kihsic principle of PCA-based noise reductiorois t
omit the noise content contained in the high-orB€rs. This is usually achieved by neglecting or
smoothing high-order PCs when reconstructing tlveag-data matrices. The details of the PCA-based
noise-filtering process, including the determinataf the number of PCs that are used for recortstgic
the spectra has been reported by others [86-88].

Minimum noise fraction (MNF) transform: An alternative approach for noise rejection of &wlata
matrices has been introduced by Green et al. [®8n analyzing remotely sensed multispectral ingagin
data, these authors found that the trend of ddagagynals/increasing noise with increasing PG

not always obeyed [89]. To overcome this problenee@ret al suggested a two-step cascaded method
termed minimum noise fraction (MNF) transform. Tihesic idea of MNF is to introduce a noise-based
ordering to the data. Instead of maximizing theiarare (as in PCA), MNF attempts to order the data
according to the SNR. The first step of MNF transfation thus involves normalization and de-
correlation of the noise by using an estimatedeno®/ariance matrix. This step is followed by andtad
PCA of the noise-normalized data. The applicatibthe MNF transformation requires knowledge of or
an estimate of the true signal and the noise digpematrices [90]. The result of a MNF transforiomt

is a partitioning of the data into a part represdrity large eigenvalues and coherent eigenvectdreo
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signals, and a second "noise" part of near-unggreralues and noise-dominated eigenvectors [9%1]. Fo
reconstructing the spectra noise can be then sagadrom the data similarly to the PCA approach by
using only the first (coherent) portions of theadat

Examples for the application of the MNF based noesiuction in hyperspectral IR imaging have been
published by Bhargava an co-workers [92,93]. Irhbstudies a modified version of the MNF approach
[94] was utilized.

Other methods for noise cancellation: Wavelet transformation [70-75] has been reporedra effective
alternative for noise cancellation in 2-way, or aywvibrational spectroscopic data which clearly
improved the accuracy of subsequent classificamadysis [95,96]. Compared with other noise reduncti
techniques the wavelet-based approach was foungrdduce visually more appealing results in the
neighborhood of peak patterns [96]. In this wayititerpretation of the vibrational spectra is faated.

4.2. Pixel binningin vibrational spectral imaging

In statistics binning describes an operation inclwhihe number of intervals or classes in a frequenc
distribution of continuous variables (histogram)reduced. During the binning process the original
variable values are replaced by new values reptasenfor the binned intervals. Such variablesaiten
obtained by interpolation, summation or by averggifithe original data values.

The term binning is also used in digital imagindpene pixels from a given detector array are grouptd
larger "bins", or super-pixel units. Pixel binning routinely carried out in a number of technical
applications. For example, commercial digital caangnd video systems offer options for combining the
charge from adjacent pixels of a CCD on-chip dureadout. In this way the signal intensity is irsed
and the SNR is improved. Furthermore, binning a@fitdl images is applied to reduce the number of
signals which are required to be processed. Thawval higher frame rates, albeit at the expense of
reduced spatial resolution [97].

The aggregation of pixels is usually achieved bylsiming quadratic pixel patterns. Ix2 binning, for
example, an array of 4 neighboring pixels is form@ther binning patterns include3 and 4«4 arrays,
but alternative irregular patterns of pixel clustare also possible.

Another common application of binning is spectrggcdn modern Raman spectrometers, for example,
dispersive elements, usually gratings, and dedicaten-quadratic CCDs (e.g. with 162428 pixel
elements) are employed. In such instruments theelwagth-separated light is dispersed along thediong
dimension of the CCD array. The larger horizontmhehsion of the CCD array defines the spectral
resolution (1024 wavelength channels in this exajnpDn-chip vertical binning 128 binning: full
vertical binning) of the Raman signals improves$iNR without any deterioration in spectral resaolnti
Although on-chip pixel binning generally resultsanbetter SNR compared with off-chip pixel binning,
the latter pre-processing routine enjoys increagpogularity in infrared and Raman hyperspectral
imaging. Reasons for this are three-fold: first &m@most off-chip pixel binning is purely softwabased
and therefore relatively easy to perform. Whileabip analog pixel binning always requires a specifi
hardware design of the CCD, or the FPA, off-chigitdi binning offers much more flexibility in terncs
size and shape of the binning patterns, and ofutiderlying binning algorithm. Secondly, software
binning is like on-chip binning, a popular means ifmproving the SNR. A third important reason for
performing binning is that the resulting data matontains a smaller number of pixel spectra. Htet
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fact is of particular importance in many practiegiplications; binning has been thus identified as a
important pre-processing method in vibrational #s@scopic imaging that helps to reduce time and
efforts of computation, particularly in cases whereltivariate cluster imaging methods are empldiged
image segmentation [98,99].

Software-based aggregation of neighboring pixelnag can be easily achieved by averaging or
summation of pixel spectra. An alternative methad pixel binning includes 2-dimensionak,y)
interpolation of the chemical maps. Two-dimensian&rpolations of the Raman, or IR chemical maps
allow in principle to produce 3D hyperspectral dad@es of anyxy) size andXy) aspect ratio. [9].

4.3. Cosmic ray removal in Raman hyper spectral imaging

Cosmic ray rejection in hyperspectral imaging carrdgarded as a specific adaptation of the muatiné

comparison method for outlier detection. The badea of such comparison methods is that the local

similarity (correlations, spectral distances) betweaeighboring pixel spectra can be used as a meefsu
the presence of cosmic spike artifacts. For exampéhrend and co-workers suggested a despiking

method which works in the following way [100]:

1. Firstly, the Raman hyperspectral data matripriiminary de-spiked by smoothing with a median
filter.

2. Correlations between an original un-smoothedtrakrpixel spectrum and the smoothea33
neighborhood spectra are established.

3. The most highly correlated spectrum of the I&& neighborhood is then used to locate cosmic ray
artifacts in the central pixel spectrum.

4. Finally, spectral regions showing cosmic rayfacts are replaced by using the results of a pmtyial
interpolation.

This spike removal method can be used to succdgsiogect all pixel spectra of a Raman hypersgctr

imaging measurement. As pointed out by the authwsalgorithm does not require sequential spectra

acquisition and shows its strength at sharp boueslaetween regions of high chemical contrast [100]

An alternative method for cosmic spike removal ypdrspectral imaging data also uses initial smogthi

[9].

1. Raman spectra of the hypercuBeare initially smoothed by employing a zeroth ordepoint
Savitzky-Golay smoothing/derivative filter yieldinlge smoothed data matrik

2. The difference matri® is calculated as the difference between the aigtaman intensitied and
smoothed hyperspectral data

3. Then, the mean standard deviationDpfin each image plangd(D;) is calculated and utilized for
normalizationDporm; = Di/stdD;) with i being the wavenumber index.

4. To identify cosmic spikes, each of the plabgesn; is systematically screened for outliers. For this
purpose, a thresholl is defined and spatiak,{) indices of elements dDnorm; With Dpormi = S are
determined. In the CytoSpec [9] implementation, theesholdS is obtained by the equation S =
10/sens with sens being a variable called sensitivity.

5. The final step is an operation in the spectaahdin. Cosmic spike artifacts are excised and cepla
by linearly interpolated Raman intensity values.
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4.4. Deconvolution in vibrational hyperspectral imaging

This group of computationally intensive pre-proaegsmethods aims at increasing the quality of the
imaging data: deconvolution is useful to removeemerse blurring and to increase spatial resoludiach
image contrast. From the literature of conventitmaifocal microscopy and image processing it id-wel
known that the resolution can be computationalbreased using a variety of deconvolution algorithms
The first class of algorithms is represented byldering methods. De-blurring methods apply to 2rwa
data (&y) chemical images); each chemical image of a hpeetsal data matrix is treated separately. In
contrast, image restoration techniques involve deglution operations on 3-way,Y, V) data matrices.
Similar to Fourier self-deconvolution of 1-way dafsee section 2.5.), deconvolution in vibrational
hyperspectral imaging relies on the applicatio2bDf or 3D band pass functions that can be usett¢o f
unwanted spatial and/or spectral frequencies. Ssb@deapplication of deconvolution methods requires
certain degree of SNR and an adequate samplingcatgding to the Nyquist-Shannon sampling theorem
[101]. Furthermore, the design and properties ef bland pass filter is of crucial importance to the
performance of the deconvolution algorithm. In castere the response function of the optical system

a point source, the point spread function (PSExa&ctly known one can utilize the product of thé-R&d

a noise filter as the band pass filter functiondeconvolution.

Nasse at al. recently presented a de-blurring ndetbo FT-IR hyperspectral imaging matrices in which
deconvolution was carried out by the help of thetriment-specific PSF [102]. The suggested
deconvolution technique relied on the knowledgehef wavelength-dependent PSF: this function was
determined experimentally by MIR transmittance measients of a 2 um pinhole [102]. To avoid the
introduction of additional noise, the pinhole dateere fitted using the diffraction pattern of a
Schwarzschild objective as the fit model [102,1@3¢convolution first involved a series of 2D Fourie
transforms (FT) of both, experimental image datd e PSF fits. Then, the FTs of the chemical image
were divided by the corresponding FTs of the P8€& RT of the PSF is called optical transfer functior
OTF). To these ratios a frequency-dependent Hanfilteg was applied for noise suppression. The 2D
inverse Fourier transforms of the filtered dataevéren computed. The final step of the deconvahutio
procedure consisted in rescaling (normalization}tm basis of the integrated intensities of thgioal
chemical maps. Nasse at al. could show that dedathwmo resulted in an increased image contrast and
improved spatial resolution. The deconvolution athon was tested on several different test samples
(tissue, polystyrene beads). These tests confirthatthe spatially deconvolved spectra preserved th
original spectral features [102].

In cases where the PSF is only poorly determine@ntrely unknown deconvolution can be performed
also using an estimate of the point spread funcfidethods based on such approaches are called blind
deconvolution techniques. Blind deconvolution carpbrformed in an iterative, or non-iterative way.

The so-called 3D-Fourier self-deconvolution (3D-FSD) techniqueggested by Lasch et al. [99]
represents an application of non-iterative blindaerolution image restoration to FT-IR hyperspédctra
imaging data. This computational approach is aeresibn of the Fourier self-deconvolution technique
developed by Kauppinen et al. [31-33] to 3-way datd assumes Lorentzian band profiles in the sgectr
and the spatial domains (see ref. [99] for details)

An example of the application of the blind decomn@n technique to a MIR hyperspectral data matrix
(cryosection of the human colon mucosa) is givefigiyre 7. Figure 7A shows for comparison purposes
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the Nomarski contrast image of a cross-sectiondibioiual crypt from the mucosa. In the crypts mucin
producing goblet cells (G) are clustered arouncemtral lumen (L) of these tubular glands. IR sample
spectra were measured in transmission mode at #tierdl Synchrotron Light Source in Brookhaven
utilizing a confocal IR microscopy setup [99]. Imtmeasurement the total sample area was< 141D
un? and 36x 36 point spectra were collected using a microscsipge step size of 4 pm ia andy-
direction, respectively. A rectangular apertureaosize of 8«8 pnf was used which gave a spatial
oversampling factor of about 2. Figure 7B illustsatthe chemical image produced on the basis of
integrated absorbance values of the amide | ba6B0(1680 cr). In figure 7B the main morphologic
structures such as the crypts in total, or therakhtmen of the crypts can be visually identifiwtereas
individual goblet cells are unresolved. As seerthgymorphologic patterns of the individual goblelis

in the corresponding deconvolved map (see figurg Biidd deconvolution was helpful in increasing
contrast and resolution in MIR hyperspectral imggiata.

The main disadvantage of the 3D-FSD approach isahaavelength dependence of the deconvolution
function is not considered. Furthermore, the suggeslgorithm requires to define 6 independent
deconvolution parameters which makes the resulBDeFSD subjective and the results of the procedure
strongly dependent on the experience of the inyaisir.

4.5, Correction of chromatic aberration artifactsin confocal Raman microspectr oscopy (CRM)

Due to the advent of a new generation of confocam& microspectrometers equipped with
ultrasensitive CCD detectors the field of Ramanrascopy could be extended to applications requiaing
lateral and axial spatial resolution better thae aricron. The high level of spatial resolution acfaible
with modern CRM technology allowed, for examplee tRaman spectroscopic characterization of
microorganisms on a single cell basis [104] andbktato establish a rapid identification technidoe
clinically and technically relevant pathogens [106ther applications of CRM of single microbiallsel
include the characterization of the phenotypic togieneity in genetically homogeneous microbial
cultures [106].

The technological advancements that allowed to avgpthe spatial resolution led on the other hand to
type of artifacts that were new to the field of Remmicrospectroscopy. Examples of such artifacts ar
chromatic aberrations.

Recently, Lasch et al. suggested a simple pre-psaug algorithm to correct for the axial componeht
the chromatic aberration in confocal Raman microgpecopy. This study involved the acquisition ef 4
dimensional X,y,z,v) Raman intensities from single bacterial endosp§t@7]. The correction method is
based on measuring a vertical series of confocahdRaimages by a high numerical aperture Raman
microscope. Raman data were corrected by rearrgngi@asured Raman intensities according to the
known characteristics of the wavelength-dependecdlfshift function of the optical system [107].€lh
results of the study suggested that correction hobroatic aberration distortions is mandatory for a
comprehensive understanding of the information @oetl in the spectra. As uncritical interpretatan
uncorrected spectral data would lead to wrong cmnchs, the improved spatial resolution in CRM
nowadays requires to address optical artifacthendame way as it has been done for a long time in
multicolor confocal fluorescence microscopy [107].
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5. The combination of pre-processing methods

In a practical application, the data analysis workfusually involves more than only one pre-prooess
step. In fact, in most of the biomedical IR- or Ramspectroscopic studies, pre-processing condigls o
specific combination of two or more sequentiallyeexted pre-processing steps [7,16]. The main
advantage of such an approach is that many differequirements of successive analyses can be
addressed simultaneously. To give an example, &cdypsequence of pre-processings in MIR
spectroscopy starts with an outlier, or spectralligputest which is followed by spectral filteringG
smoothing/derivative filter), normalization (2-normand some kind of data reduction and/or feature
selection [108]. This sequence can be complemeoyeprocedures specific to MIR spectroscopy like
water vapor correction, transmission-absorbancevearsion, or ATR correction. In this way, pre-
processing ensures at the same time outlier remamlensionality reduction, interpretability and
improvements of robustness and/or accuracy of suiese data mining applications.

It is one of the main data analysis tasks to adagdtoptimize the pre-processing workflow to thectjue
needs of subsequent quantitative or classificaimalysis procedures. Even though there are a igiest
available in which the effectiveness of differerays of pre-processing was systematically investyjat
[1,109-113,], the definition and optimization oétpre-processing workflow is still more an art eatthan

a science. It is the observation of the authot, e design and compilation of an efficient preqassing
workflow, and the optimization of the parametermsréof, is often based on experience and intuitidhe®
investigator rather than on objective criteria.

The latter statement will be illustrated by an epenin a study on classification and identificatiof
bacteria using MIR spectroscopy [114] (in which tathors used mainly hierarchical clustering for
classification) the pre-processing workflow coressin the following procedures: bacterial spectexen
first checked by some quality tests (SNR, waterovaetc.) and then subjected to first or second
derivative SG smoothing/derivative filtering. Afténat, a pre-selection of five spectral windows was
carried out considering the specific informatiomtamt and discrimination power [114]. In additidret
spectral information of individual spectral windowss rated by weighting factors which were intended
to account for the specific contributions of cellucompounds such as fatty acids of the membrane or
polysaccharides of the cell wall [114]. The chdietween first or second derivatives, of spectraldows
boundaries and of the weighting factors can beidensd a subjective process in which the experience
and the spectroscopic expertise of the investigatys an decisive role.

The pre-processing workflow developed for an appionn of MIR microspectroscopic imaging on
colorectal adenocarcinoma cyrosections [16] willilhestrated as a second example (see figure l@&. T
main goal of the study was to build up a databdsspatially resolved point spectra which was used t
teach and validate supervised neural network d¢leason models. In this way the spectral inforroati
contained in the database of point spectra wasiated by a neural network and served at a latge $ta
segmentation of 3-way MIR data from tissue sectmfrean unknown pathohistological status.

The first step of preprocessing consisted in theaeion of point spectra from the 3-way FT-IR inrap
data sets (see figure 8, step). Selection and alEsEgnment of point spectra was carried out orb#sts

of a precise pathohistological assessment of th@nzana tissue sections under study. The totafitthe
extracted spectra was in the following subjectedjuality tests in which the integrated intensityaof
broad spectral region, the intensity of specifictewavapor lines, and the SNR were systematically
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investigated (figure 8, step 2). Point spectraf tieve successfully passed the quality tests wetber
processed by means of a 7-poifitderivative SG smoothing/derivative filter (cf. dige 8, step 3). After
vector-normalization in the spectral range of 988d cm' the amount of data was reduced by extracting
the spectroscopically relevant information betw868-1800 crit and 2800-3100 cth(see figure 8, steps

4 and 5; the regions of 1800-2800 tamd 3100-4000 cthcontain spectral information of only secondary
importance). The final pre-processing step corgigtefeature selection. For spectral feature sielect
defined number of discriminative spectral featu @& or 85) was selected on the basis of the caveg
between features from labeled spectral subsetsdted16,114] for details).

6. Conclusions

In biomedical IR and Raman spectroscopy data pregssing has been identified as an essential
component in an effective data analysis workflows purposes include outlier rejection, reducing
dimensionality, removal of irrelevant or redundamformation and improvements of interpretability,
robustness and accuracy of subsequent quantitatisfassification analysis tasks. With this reviasticle

it was intended to explore the concepts and teciasicpf a large variety of individual pre-processing
methods and to discuss the applicability of diffénere-processing techniques in the context oftjmalc
applications of biomedical vibrational spectroscoftyis hoped that this article not only servesaas
starting point for beginners in the field, but alas a source of reference for more experienced
spectroscopists.
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8. Legendsto thefigures

Figurel

Example of water vapor correction of FT-IR samplectra.

(a) - Raw FT-IR absorbance spectrum from the huoodon mucosa showing spectral contaminations due
to atmospheric water vapor in the spectral regfat360-1950 cri.

(b) - Second derivative spectrum of (a). Spectedtdres of the tissue are strongly superimposed by
features of water vapor.

(c) - FT-IR absorbance spectrum of pure water vapor

(d) - Corrected sample spectrum. Spectral coniohatof water vapor have been minimized by weighted

subtraction with (d) = (a)ef x (c) with cf being the correction factor.

(e) - Second derivative spectrum of (d), spectesshifted along the y-axis for clarity

Figure 2

Baseline correction of FT-IR spectra collected fribva cytoplasm region of a human skin fibroblast.

A - offset correction, (a) - raw absorbance speair(b) - baseline curve; (c) - corrected spectrum

B - piecewise baseline correction (7 user-definesebne points)

C - polynomial baseline correction (order of thdypomial: 6; number of user-defined baseline points
10)

D - Savitzky-Golay (SG) baseline correction (zerotder SG smoothing/derivative filter with 199
smoothing points, the spectral region of 1462-1at80 has been linearily interpolated).

Figure3

Resolution enhancement by Fourier self-deconvatuii€sD) and second derivatives

A - Infrared spectrum of RNAse A in heavy watertreoted for spectral contributions of the@buffer
and HOD (a) and the corresponding second derivapeetrum (b).

B - The FSD-spectrum of trace (a)

C-F - lllustration of the FSD technique (see textdetails)

Figure4

Pre-processing of FT-IR protein spectra as an éasenerequisite for secondary structure analysis.
(&) The infrared spectrum of RNAse A (25 mg/mL)sdised in a cacodylat J® buffer (100 mM Na-
cacodylat at pH 7.0). Optical pathlength of thec#R: 45 um.

(b) FT-IR spectrum of the I® buffer measured at the same conditions in arelRot a slightly smaller
optical pathlength.

(c) Difference spectrum between (a) and (b) magdiby a factor of 24 2).

(d) HOD spectrum obtained by subtracting two cataady,O buffer spectra of varying H-contet 2).

(e) Double difference MIR spectrum of RNase A ccied for spectral contributions of the® buffer
and for residual HOD: (e) = (cwf x (d), wf - weighting factor, X 2).

(f) Second derivative spectrum of RNase A in thecsl region of 1500-1750 ¢m(water vapor
corrected, SG second derivative filter with 9 snhaag points).
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Spectra are shifted along the y-axis.

Figure5

Example of cosmic ray correction of Raman spectra.

Red trace - Raman spectrum obtained from the chuwebef a Syrian hamster showing a strong cosmic
ray feature around 1795 ¢imBlue: the corrected Raman spectrum (spectrahdftecs along the y-axis for
clarity)

Figure 6

Removal of the fluorescence background in confB@ahan microspectroscopy

(a) - raw Raman spectrum; (b) - polynomial basel{e) - fluorescence corrected spectrum. Ordehef
polynomial: 7; number of user-defined baseline mith0.

Figure7

Example of resolution enhancement by 3D-Fouridrdgatonvolution (3D-FSD).

Panel A: Nomarski contrast image of a thin secfiamm the colon mucosa. The upper-central area
displays a cross sectioned crypt with a centraklurfi) and individual goblet cells (G).

Panel B: chemical image assembled on the basisaséline corrected absorbance spectra using the
integrated absorbance of the amide | band (1620-t68).

Panel C: chemical image assembled after applyinggrSD. Imaging parameter: baseline correction, area
of the amide | band (1620-1680 ¢jn

Panel D: Comparison of intensity profiles obtaifienin original data (black curve) and 3D-FSD datal(r
curve).

(reprinted from Lasch et al. [99] with permission)

Figure 8

Combination of pre-processing steps: the pre-psiegsworkflow in a FT-IR microspectroscopic
imaging study on colorectal adenocarcinoma diagnd$i]. The raw spectral data, 3-way imaging data,
were processed using the following sequence obpreessing steps: (i) extraction of point spediiig,;
quality tests; (iii) SG smoothing/derivative filbeg; (iv) normalization; (v) spectral window selien;

(vi) feature selection (spectra may be shifted glibve y-axis, see also text for details)
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FT-IR imaging:
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imaging data
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