

Originally published as:

van Baarle, S., Celik, I.N., Kaval, K.G., Bramkamp, M., Hamoen, L.W., Halbedel, S. Protein-protein interaction domains of Bacillus subtilis DivIVA (2013) Journal of Bacteriology, 195 (5), pp. 1012-1021.

DOI: 10.1128/JB.02171-12

This is an author manuscript. The definitive version is available at: <u>http://jb.asm.org/</u>

1	Protein-protein interaction domains of Bacillus subtilis DivIVA
2	
3	Suey van Baarle ^{2,3} , Ilkay Nazli Celik ² , Karan Gautam Kaval ¹ , Marc Bramkamp ^{3,4} , Leendert
4	W. Hamoen ^{2,5*} , and Sven Halbedel ^{1,2*}
5	
6	¹ Robert Koch Institute, FG11 - Division of Bacterial Infections, Burgstrasse 37, 38855
7	Wernigerode, Germany;
8	² Centre for Bacterial Cell Biology, Newcastle University, Richardson Road, NE2 4AX
9	Newcastle upon Tyne, United Kingdom;
10	³ Institute for Biochemistry, University of Cologne, Zülpicher Strasse 47, 50674 Cologne,
11	Germany;
12	⁴ Department Biology I, Ludwig-Maximilians University Munich, Biozentrum, Großhaderner
13	Str. 2-4, 82152 Martinsried, Germany;
14	⁵ Bacterial Cell Biology, Swammerdam Institute for Life Sciences (SILS) University of
15	Amsterdam, The Netherlands;
16	
17	Key words: cell division, sporulation, coiled coil, protein localization, membrane curvature
18	Running title: DivIVA interaction domains
19	
20	* corresponding authors:
21	halbedels@rki.de, Robert Koch Institute, FG11 - Division of Bacterial Infections, Burgstrasse
22	37, D-38855 Wernigerode, Germany; phone: +49-30-18754-4323; fax: +49-30-18754-4207;
23	l.w.hamoen@uva.nl, Bacterial Cell Biology, Swammerdam Institute for Life Sciences (SILS)
24	University of Amsterdam Science Park 904 (room C3.106), 1098 XH Amsterdam, The
25	Netherlands; phone: +31-205255115 or <u>l.hamoen@ncl.ac.uk</u> , Centre for Bacterial Cell
26	Biology, Newcastle University, Richardson Road, NE2 4AX Newcastle upon Tyne, United
27	Kingdom; phone: +44-191-2083240, fax: +44-191-222-7424
28	

ABSTRACT

2 DivIVA proteins are curvature sensitive membrane binding proteins that recruit other proteins to the poles and the division septum. They consist of a conserved N-terminal lipid binding 3 4 domain fused to a less conserved C-terminal domain. DivIVA homologues interact with 5 different proteins involved in cell division, chromosome segregation, genetic competence, or 6 cell wall synthesis. It is unknown how DivIVA interacts with these proteins, and we used the 7 interaction of Bacillus subtilis DivIVA with MinJ and RacA to investigate this. MinJ is a 8 trans-membrane protein controlling division site selection, and the DNA-binding protein 9 RacA is crucial for chromosome segregation during sporulation. Initial bacterial two-hybrid 10 experiments revealed that the C-terminus of DivIVA appears to be important for recruiting 11 both proteins. However, the interpretation of these results is limited since it appeared that C-12 terminal truncations also interfere with DivIVA oligomerization. Therefore a chimera 13 approach was followed, making use of the fact that Listeria monocytogenes DivIVA shows normal polar localization but is not biologically active when expressed in B. subtilis. 14 Complementation experiments with different chimeras of *B. subtilis* and *L. monocvtogenes* 15 16 DivIVA suggest that MinJ and RacA bind to separate DivIVA domains. Fluorescence 17 microscopy of GFP-tagged RacA and MinJ corroborated this conclusion, and suggests that 18 MinJ recruitment operates via the N-terminal lipid binding domain, whereas RacA interacts 19 with the C-terminal domain. We speculate that this difference is related to the cellular 20 compartments in which MinJ and RacA are active; the cell membrane and the cytoplasm, 21 respectively.

INTRODUCTION

2 DivIVA homologues constitute a group of highly conserved cell division proteins in Grampositive bacteria. They bind to the cytosolic face of the cytoplasmic membrane and 3 4 accumulate at membrane regions with increased negative curvature in rod shaped bacteria (1-5 3). Negatively curved (*i.e.* concave) membrane regions occur at the cell poles and along the 6 cytokinetic ring as soon as it starts to constrict and invaginates the cell membrane. Membrane 7 binding and curvature sensitivity appears to be an intrinsic feature of DivIVA as it was shown 8 that DivIVA of Bacillus subtilis also localises to curved membranes when expressed in other, 9 non-related species, including yeast cells (4). DivIVA is used as scaffold and recruits other 10 proteins that function in cell division, cell wall biosynthesis, secretion, genetic competence, or 11 chromosome segregation (5-13). The proteins that interact with DivIVA are therefore diverse 12 and comprise both trans-membrane and cytosolic proteins (14). The best characterised 13 DivIVA protein is that of *B. subtilis* for which four different interaction partners are known: 14 (i) the trans-membrane protein MinJ which acts as a molecular bridge between DivIVA and 15 the FtsZ inhibiting MinCD complex (11, 12), (ii) the DNA-binding protein RacA that is 16 required for chromosome segregation during spore formation (8, 15), (iii) the competence-17 specific inhibitor of cell division Maf (16), and (iv) the competence regulator ComN (17). 18 Nothing is known about the molecular interaction between DivIVA and its interaction 19 partners. We set out to determine DivIVA interaction domains in more detail and focussed on 20 the binding of *B. subtilis* DivIVA with MinJ and RacA.

The crystal structure of *B. subtilis* DivIVA revealed a two-domain organisation; a highly conserved N-terminal domain that forms a dimeric structure with a characteristic cap structure and a less conserved C-terminal domain that is rich in coiled-coils but varies in length among the different bacterial species (18). These domains are connected by a flexible ~20 amino acid linker (Fig. 1). The N-terminal domain is required for the lipid binding of DivIVA and for localization (1, 18, 19). The dimeric cap structure of this lipid binding

1 domain (LBD) exposes two phenylalanine side chains (F17, one per subunit), and the 2 insertion of these side chains into the hydrophobic core of the phospholipid bilayer is essential 3 for lipid binding (18). This membrane interaction is stabilized by auxiliary electrostatic 4 interactions between positively charged arginine and lysine residues (R18 and K15) in the 5 immediate vicinity of F17 and the negatively charged phospholipid head groups (18). The 6 crystal structure suggested that the central coiled-coil region of the C-terminal domain 7 contributes to DivIVA dimerization (Fig. 1B), and that the end of this domain (amino acids 8 130-153) forms an antiparallel four-helix bundle constituting the tetramerization domain (TD) 9 whereby two DivIVA dimers are linked together in an end-to-end orientation (18) (Fig. 1A-10 B). The C-terminal part of DivIVA is the least conserved domain; it differs in length and can 11 contain large insertions (Fig. 1A). It was therefore speculated that this domain is responsible 12 for the interaction with other proteins (14).

13 To test whether the C-terminus of DivIVA comprises the partner interaction domain, 14 we tested C-terminally truncated variants of B. subtilis DivIVA for their interaction with MinJ 15 and RacA using the bacterial two-hybrid system. These experiments proved inconclusive 16 since removal of the tetramerization domain appeared to affect oligomerization. Therefore we 17 set up a complementation assay with chimeric DivIVA proteins that consist of domains from 18 B. subtilis and Listeria monocytogenes DivIVA. The latter protein localizes normally when 19 expressed in *B. subtilis* but is biologically inactive and is unable to recruit MinJ or RacA to 20 the cell division sites and cell poles. This experiment revealed that the sporulation activity and 21 the cell division activity of DivIVA can be separated. It emerged that the trans-membrane 22 protein MinJ binds to the N-terminal lipid binding domain of DivIVA, whereas the C-terminal 23 domain of DivIVA contains the binding site for the cytosolic protein RacA.

MATERIALS AND METHODS

2 Bacterial strains and growth conditions

All bacterial strains that were used in this study are listed in Table 1. Routinely, *B. subtilis*strains were cultivated in LB broth or on LB agar at 37°C. If necessary, antibiotics were
added at the following concentrations: tetracycline (10 μg/ml), spectinomycin (100 μg/ml),
and chloramphenicol (5 μg/ml). Other supplements were IPTG (1 mM) and xylose (0.5%).
For all cloning procedures *Escherichia coli* TOP10 was used as the standard plasmid host
(20).

9

10 Construction of bacterial two hybrid plasmids

In order to construct C-terminal truncations of *divIVA* for use in the bacterial two-hybrid assay, plasmid p25N-*divIVA* and pUT18-*divIVA* were used templates in a PCR with oligonucleotide 25_N_18_F as the forward and the oligonucleotides *divIVA_*11_B2H_R (Δ 11), *divIVA_*19_B2H_R (Δ 20), *divIVA_*21_R (Δ 21), *divIVA_*26_R (Δ 26), *divIVA_*34_R (Δ 34) as the complementary primers (for all primer sequences see Table 2). The PCR products were KpnI digested, self-ligated and transformed to *E. coli*. The appropriate clones were identified using restriction analysis and DNA sequencing.

18

19 Construction of plasmids containing divIVA from B. subtilis and L. monocytogenes

For xylose-inducible expression of *B. subtilis divIVA* we constructed plasmid pSH19. This plasmid was obtained by introducing a stop codon between *divIVA* and *gfp* using plasmid pSH3 as the template and the oligonucleotides SV23/SV24 as the primers in a quick-change mutagenesis reaction. In order to express the *L. monocytogenes divIVA* gene in *B. subtilis* cells, plasmid pSH209 was constructed. This plasmid contains the complete *lmo2020* open reading frame of *L. monocytogenes* under control of the P_{xyl} promoter. It was obtained by amplification of the *L. monocytogenes divIVA* DNA fragment with the oligonucleotides

1 SHW109/SHW110 and subsequent cloning of the obtained fragment into plasmid pSG1154 2 using KpnI/XhoI. Plasmid pSH210 was constructed in the same way to allow for the expression of L. monocytogenes DivIVA-GFP in cells of B. subtilis. However, for this 3 4 cloning, the divIVA DNA fragment was amplified with primers SHW109/SHW111 to fuse the 5 divIVA gene in frame to the gfp gene of the vector backbone. The A206K mutation which 6 prevents dimerization of GFP (21, 22) was introduced into the *gfp* part of plasmid pSH210 7 using quickchange mutagenesis with SHW425/SHW426 as the mutagenic primers. The 8 resulting plasmid was sequenced and named pSH354.

9

10 Construction of *divIVA* chimeras

11 For the construction of chimeric divIVA genes consisting of N-terminal parts from L. 12 monocytogenes and C-terminal parts from B. subtilis, a PCR based restriction free cloning 13 strategy was used (23). C-terminal fragments of B. subtilis divIVA gene were amplified from 14 plasmid pSH19 with SHW237 (pSH260), SHW238 (pSH261), SHW247 (pSH267), SHW265 15 (pSH272) and SHW266 (pSH278) as the respective forward and SHW184 as the reverse 16 primer in a first step. All forward primers were identical to the desired fusion sites in the L. 17 monocytogenes divIVA gene in their 5'-regions, whereas the reverse primer SHW184 annealed outside the B. subtilis divIVA gene in the pSH19 plasmid backbone. For the 18 construction of the divIVA^{Bs-57-Lm} chimera, a DNA fragment corresponding to the first 57 19 20 amino acids of the B. subtilis divIVA gene was amplified in a PCR with pSH19 as template 21 and SHW354 and SHW355 as the primers. All PCR products were purified using the PCR 22 purification kit from Qiagen and used as mega primers in a second PCR with plasmid pSH209 23 as template in order to fuse the N- and C-terminal fragments of B. subtilis divIVA to the 24 corresponding portions of the L. monocytogenes divIVA gene. For the construction of the divIVA^{Bs-57-Lm} chimera (pKK13), primer SHW180 was added as a reverse primer to the PCR 25

mixture. The PCR mixtures were then DpnI digested, transformed and the correct clones were
 identified using restriction analysis and DNA sequencing.

3 GFP was fused to all DivIVA chimeras by replacing the stop codon of the chimeric divIVA 4 genes by a glycine codon in a way that the *divIVA* genes was fused to the downstream gfp 5 ORF that was already present in these plasmids. For this purpose we used the 6 oligonucleotides SHW304/SHW305 to replace the *divIVA* stop codons in plasmids pSH260, 7 pSH261, pSH267, pSH272, and pSH278. The replacement of the divIVA stop codon in 8 plasmid pKK13 was performed using the primer pair SHW366/SHW367. The DNA sequence of all plasmid clones was verified and the plasmids were named pSH290 (divIVA^{Lm-71-Bs}-9 gfpA206K), pSH291 (divIVA^{Lm-144-Bs}-gfpA206K), pSH292 (divIVA^{Lm-130-Bs}-gfpA206K), 10 pSH293 (*divIVA*^{Lm-83-Bs}-gfpA206K), pSH294 (*divIVA*^{Lm-104-Bs}-gfpA206K), and pSH326 11 (*divIVA^{Bs-57-Lm}-gfp*). Finally, the *gfpA206K* mutation was also introduced into plasmid pSH326 12 13 as described above to result in plasmid pSH355.

14

15 Construction of a *minJ-gfp* fusion

16 In order to express a *minJ-gfp* fusion in the *divIVA* chimera strains, the *minJ-gfp* allele of 17 strain SB002 was PCR amplified using the oligonucleotides SHW342/SHW343, cut 18 BamHI/Sall, ligated to pAPNC213cat digested with the same enzymes, and the resulting 19 plasmid was named pSH316 after DNA sequencing. However, there was only marginal MinJ-20 GFP fluorescence, when pSH316 was inserted into the *B. subtilis* chromosome under inducing 21 conditions (strain BSN308, data not shown). Therefore, plasmid pSH317 was constructed in 22 which the *lacI* gene of pSH316 was deleted by PCR using the primer pair SHW349/SHW350 23 in order to enhance the fluorescence signal. MinJ-GFP fluorescence was still not sufficient 24 with this allele (strain BSN317, data not shown), so the promoter region of the B. subtilis 25 divIVA gene including the ribosomal binding site was amplified with primers SV98/SHW356, 26 cut with KpnI and XhoI, and ligated to pSH317 which had been cut with the same enzymes.

1 Two clones were isolated that contained a *divIVA* promoter insert of the right size but DNA 2 sequencing revealed single mutations in the RBS (P_{divIVA1} on pSH320). In order to correct this, 3 quick-change mutagenesis with primers SHW357/SHW358 was employed on pSH320 and 4 several plasmid clones were isolated and transformed to B. subtilis. From these 5 transformations, only three plasmid clones conferred the typical fluorescence pattern of MinJ-GFP on cells of B. subtilis. When sequenced, one of these clones had a corrected RBS but 6 7 also an unintended G deletion between the RBS and the MinJ-GFP start codon (P_{divIVA3}). This 8 clone was named pSH328 and used for all further studies.

9

10 Construction of point mutations and C-terminal truncations in *divIVA*

11 For the construction of plasmid pINC12 encoding the divIVAR131A gene under control of the P_{spac} promoter, we made use of plasmid pINC3 which already contained the *divIVAR131A-gfp* 12 13 allele. pINC3 was originally obtained by quick change mutagenesis using the mutagenesis 14 primers R131A fw/R131A rev on plasmid pDG9. divIVAR131A of pINC3 was then 15 amplified using the primers SV123/SV81, the resulting PCR fragment was cut with 16 BamHI/Sall, and ligated to the BamHI/Sall cut vector backbone of plasmid pAPNC213. The 17 DNA sequence of one clone was verified and this clone was named pINC12. The R102K, 18 R102E, and Δ C34 mutations were introduced into plasmid pSH2 by quick-change 19 mutagenesis using the oligonucleotides SHW378/SHW379 (pSH330), SHW380/SHW381 20 (pSH331), and SHW386/SHW387 (pSH334), respectively. In order to exchange the spc 21 marker by a *cat* cassette in these plasmids, the KpnI/SacI P_{spac}-divIVA fragments of pSH2, 22 pSH330, pSH331, and pSH334 were then sub-cloned into the KpnI/SacI cut backbone of 23 pAPNC213cat in a second step. The resulting plasmids were sequenced and named pSH335 24 (wt), pSH336 (R102K), pSH337 (R102E), and pSH340 (ΔC34).

1 Strain construction

Plasmids designed for the expression of *divIVA* alleles in *B. subtilis* were inserted into the *amyE* gene of *B. subtilis* 168 and amylase negative transformants were selected based on
iodine staining of starch containing agar plates. Alternatively, the *aprE* locus was also used
for chromosomal integrations. Insertions at *aprE* were generally confirmed by PCR.
Combinations of alleles were generated by transformation (24).

7

8 Bacterial two-hybrid analysis

9 In order to investigate the interaction of the DivIVA and C-terminally truncated DivIVA 10 proteins with MinJ and RacA, the bacterial two-hybrid system was used (25). Plasmids 11 encoding *divIVA* alleles fused to the T18- or the T25- fragment of the *Bordetella pertussis* 12 adenylate cyclase were co-transformed in *E. coli* BTH101 along with plasmids encoding T25-13 and T18-fusions to RacA and MinJ. Transformants were selected on nutrient agar plates 14 containing ampicillin (100 μ g/ml), kanamycin (50 μ g/ml), X-Gal (0.004%) and IPTG (0.1 15 mM) and photographs were taken after 40 h of growth at 30°C.

16

17 Microscopic techniques

For microscopy of bacterial cells, a small volume (0.3 µl) of an exponentially growing culture was mounted on a microscope slide covered with a thin film of 1.5% agarose (dissolved in distilled water). Membranes were stained using FM5-95. Images were taken with a Nikon Eclipse Ti microscope coupled to a Nikon DS-MBWc CCD camera and processed using the NIS elements AR software package (Nikon).

23

24 Sporulation assays

B. subtilis strains were streaked on Schaeffer's sporulation agar (26) containing 0.5% xylose
or 1 mM IPTG and incubated for up to seven days at 37°C until lysis of the translucent

sporulation-deficient strains could be comfortably discriminated from the optically dense
 appearance of sporulation-proficient strains. Plates were photographed against a black
 background.

4

5 Isolation of cellular proteins, PAGE techniques and Western blotting

6 Exponentially growing cells of *B. subtilis* were harvested by centrifugation (13.000 rpm for 1 7 min in an Eppendorf 5415R table top centrifuge) and the cell pellet was washed once in ZAP 8 buffer (10 mM Tris-HCl pH 7.5, 200 mM NaCl). Cells were disrupted by sonication in ZAP 9 buffer containing 1 mM PMSF and cell debris was pelleted in another centrifuge run. 10 Aliquots of the resulting supernatant were either separated by SDS PAGE or by blue native PAGE which was performed using NativePAGETM Novex ® 4-16% Bis-Tris gels (Invitrogen) 11 12 and carried out according to the instructions given by the manufacturer. Subsequently, gels 13 were blotted onto a polyvinylidene difluoride (PVDF) membrane employing a semi-dry 14 electroblotting unit. Proteins of interest were visualised using polyclonal rabbit antisera 15 recognizing DivIVA (5) or GFP (lab stock) as the primary antibodies and an anti-rabbit 16 immunoglobulin G conjugated to horseradish peroxidase as the secondary one. The ECL 17 chemiluminescence detection kit (Thermo Scientific) was then used for the detection of the 18 peroxidase conjugates on the PVDF membranes.

19

RESULTS

2 C-terminal DivIVA truncations interfere with MinJ and RacA binding

The tetramerization domain of B. subtilis DivIVA is followed by 11 non-conserved amino 3 4 acid residues. The atomic structure of this C-terminal stretch could not be solved using 5 crystallography, suggesting that it is a flexible tail. To determine whether this C-terminal tail 6 is involved in the binding of MinJ and/or RacA, we made use of the bacterial two-hybrid 7 assay and cloned two DivIVA truncations in this system: DivIVAA11 lacking the last 11 C-8 terminal amino acids, and DivIVA $\Delta 20$ which lacks the last 20 C-terminal amino acids 9 including a part of the tetramerization domain (Table 3). Both truncations were still able to 10 interact with full-length DivIVA, indicating that both mutants are expressed normally and can 11 form dimers (Table 3, a colored image of the bacterial two-hybrid plate is available in Fig. 12 S1). MinJ interacted strongly with full length DivIVA and with both DivIVA truncations in 13 the bacterial two-hybrid assay, whereas RacA showed a weak interaction with full length 14 DivIVA that was abolished when the last 11 amino acids of DivIVA were removed (Table 3, 15 Fig. S1). It seems that the RacA-DivIVA interaction depends on the 11 C-terminal amino 16 acids of DivIVA, whereas the MinJ contact site is located more to the N-terminus of DivIVA. 17 To test this, additional DivIVA truncations were constructed: DivIVAA21, DivIVAA26, and 18 DivIVA $\Delta 34$, which successively removed the complete tetramerization domain. The latter 19 two truncations, DivIVA $\Delta 26$ and DivIVA $\Delta 34$, were severely impaired in their ability to 20 interact with MinJ (Table 3, Fig. S1), suggesting that the tetramerization domain contains 21 residues required for MinJ binding.

22

23 Importance of the tetramerization domain for DivIVA activity

The bacterial two-hybrid assay also revealed a weakened interaction of the DivIVA $\Delta 26$ (corresponding to DivIVA amino acids 1-138) and DivIVA $\Delta 34$ (1-130) truncations with fulllength DivIVA whereas DivIVA $\Delta 21$ (1-143) still behaved normal (Table 3, Fig. S1). So far

there is no biochemical corroboration that amino acids 130-143 are involved in 1 2 tetramerization in vivo. Own preliminary alanine mutagenesis experiments in this region identified R131 as an essential residue for DivIVA activity (Fig. S3 A-C) suggesting a special 3 4 importance of this region for DivIVA function. Thus, DivIVAAC34 was expressed in a 5 $\Delta divIVA$ mutant (strain BSN360) and phenotypic analysis of this strain clearly demonstrated 6 the inability of the *divIVA* Δ *C34* allele to complement the cell division and the sporulation 7 phenotype of the $\Delta divIVA$ mutation (Fig. 2A-B) even though DivIVA Δ C34 was clearly 8 expressed (Fig. 2C, upper panel). Blue native PAGE of strain BSN356 expressing wild-type 9 DivIVA showed that DivIVA exists in two different oligomeric states since two signals of 10 different molecular weight were detected by the DivIVA antiserum (Fig. 2C, bottom panel). 11 The molecular weight was calculated to be 159 ± 8 kDa for the upper and 41 ± 13 kDa for the 12 lower signal in the wild type cell extract. Given the molecular weight of Bs DivIVA (19.34 13 kDa), these molecular weights correspond to an octamer and a dimer, respectively. Blue 14 native PAGE of strain BSN360 revealed the existence of a dimer signal (Fig. 2C, bottom 15 panel). Previous gel filtration analyses have indicated that purified DivIVA forms octamers 16 and higher-order structures (18, 27). Therefore it seems plausible that the region beyond 17 residue 130 indeed contains the tetramerization domain, and that tetramerization is a 18 prerequisite step for octamerization.

19

20 Domain swapping to identify DivIVA interaction domains

It is possible that C-terminal truncations used in the bacterial two-hybrid system result in misfolded and/or instable DivIVA variants. This complicates the interpretation of the bacterial two-hybrid data. Because of this we changed tactics and explored the possibility to swap domains between *B. subtilis* DivIVA and the closely homologous DivIVA from *L. monocytogenes*. In a previous study, we have shown that *L. monocytogenes* DivIVA displays the same localization pattern as *B. subtilis* DivIVA, and is involved in SecA2-dependent

1 protein secretion (10). L. monocytogenes does not sporulate and does not contain a RacA 2 homologue. It is also unlikely that L. monocytogenes DivIVA interacts with MinJ since 3 deletion of the *divIVA* gene does not result in a mini-cell phenotype in *L. monocytogenes*, 4 indicating that the listerial division site control system is DivIVA-independent (10). This 5 would enable us to separate the DivIVA domains required for localization and for RacA and 6 MinJ interaction. First it was necessary to confirm that L. monocytogenes DivIVA is normally 7 localized when expressed in B. subtilis. Indeed, L. monocytogenes DivIVA fused to GFP and 8 expressed in a *divIVA* knock-out background (strain BSN373) shows a localization pattern 9 that is similar to that of Bs DivIVA (Fig. 3) even though Lm DivIVA predominantely exists as 10 a dimer and just to a minor extent in an oligomeric form when expressed in B. subtilis (Fig. 11 S2). More importantly however, Lm DivIVA does not complement the cell division and 12 sporulation defects of a *B. subtilis* $\Delta divIVA$ mutant (strain BSN238, Fig. 5A-B). Thus, *Lm* 13 DivIVA seems unable to bind MinJ and RacA, and is therefore well suited for domain 14 swapping.

15 The most prominent difference between Lm and Bs DivIVA is found in the C-terminal 16 tail (Fig. 4A), which is 11 amino acids longer in the L. monocytogenes protein, and which has 17 been shown to be important for binding RacA according to the bacterial two-hybrid data. To 18 test this, a DivIVA chimera was constructed by replacing the last 32 amino acids of Lm 19 DivIVA with the last 21 amino acids of Bs DivIVA (Lm-144-Bs), so that the C-terminal tails 20 were exchanged between both proteins whereas the core tetramerization domain (130-143) 21 was left intact (Fig. 4B). Expression of this chimera in a *B. subtilis* $\Delta divIVA$ background 22 (strain BSN274) did neither restore cell division nor sporulation (Fig. 5A,B). Western blotting 23 showed that Lm-144-Bs DivIVA was stably expressed and not degraded (Fig. 4C). The 24 chimeric protein localized normally, as a GFP fusion indicated (strain BSN295, Fig. S4) and 25 formed a stable oligomer (Fig. S2), suggesting that the last 21 amino acids of Bs DivIVA 26 alone are insufficient for binding of MinJ or RacA.

1 Systematic domain swapping

2 Since RacA binding seems to require a larger part of Bs DivIVA we constructed a set of chimeric DivIVA proteins in which the fusion point between the N-terminal L. 3 4 monocytogenes and the C-terminal B. subtilis parts was shifted from the tail region towards 5 the N-terminus of the C-terminal domain in a stepwise fashion, as schematically indicated in 6 Fig. 4B. Position 130 exchanged the complete C-terminus beginning from the TD, positions 7 104 and 83 mark the beginning of short stretches in the coiled coil region at which both 8 proteins differ at three to four consecutive amino acid positions, whereas the domain swap at 9 position 71 exchanged the complete C-terminal domain behind the flexible linker (Fig. 4A-B). 10 Stability and oligomerization of the chimeras was checked by Western blotting indicating that 11 all the chimeric DivIVA proteins were expressed at comparable levels (Fig. 4C) and were 12 oligomeric (Fig. S2). Expression of these chimeras in the *B. subtilis* $\Delta divIVA$ background did 13 not restore normal vegetative cell division (Fig. 5A) suggesting that they were unable to 14 recruit MinJ. Of the different chimera, only the Lm-104-Bs DivIVA chimera was able to 15 restore spore formation. To confirm that the Lm-104-Bs DivIVA chimera was indeed able to 16 recruit RacA and not MinJ, the chimera was expressed in $\Delta divIVA$ mutant strains either containing the GFP-RacA or the MinJ-GFP reporter. As shown in Fig. 6A-B, the Lm-104-Bs 17 18 DivIVA chimera can recruit RacA but not MinJ. In conclusion, the RacA interaction domain 19 resides in the last 60 amino acids of DivIVA and requires residues in the coiled-coiled region 20 beyond amino acid 104.

It is surprising that larger replacements of the C-terminus (as in *Lm*-71-*Bs* and *Lm*-83-*Bs*) are again unable to restore sporulation. A possibility is that these chimeras do not localize properly anymore. To test this, we expressed C-terminal GFP fusions to the chimeric DivIVA constructs, and analysed their localization in *B. subtilis* $\Delta divIVA$ cells. Expression of all DivIVA-GFP proteins gave rise to polar and septal fluorescence signals, however, to different degrees (Fig. S4A). While DivIVA^{*Lm*-144-*Bs*}-GFP and DivIVA^{*Lm*-130-*Bs*}-GFP clearly

accumulated at the division septa, septal fluorescence signals of DivIVA^{Lm-104-Bs}-GFP,
 DivIVA^{Lm-83-Bs}-GFP, and DivIVA^{Lm-71-Bs}-GFP were less intense but still visible (Fig. S4A).
 This suggests that all DivIVA chimeras are functional in terms of lipid binding and membrane
 curvature sensing.

5

6 The lipid binding domain recruits MinJ

7 As none of the chimeras was able to complement the cell division phenotype, it may be that 8 regions in the N-terminal domain are critical for the interaction of Bs DivIVA with MinJ. To 9 test this, we fused the N-terminal 57 amino acids of B. subtilis DivIVA spanning the entire 10 lipid binding domain to the complete C-terminal domain of L. monocytogenes DivIVA (Fig. 11 4B). When this DivIVA chimera was expressed in a $\Delta divIVA$ background (strain BSN321), short cells and no mini-cells were observed (Fig. 5A), indicating that the Bs-57-Lm DivIVA 12 13 protein recruits MinJ. The localization as well as oligomerization of this chimera is 14 comparable to wild type DivIVA (Fig. S4 and Fig. S2, respectively) and indeed restores 15 normal septal and polar localization of GFP-MinJ (Fig. 6A). Strikingly, sporulation was still 16 defective in strain BSN321 (Fig. 5B) and the Bs-57-Lm chimera is unable to recruit RacA (Fig. 6B). In conclusion, the lipid binding N-terminal domain of DivIVA contains the MinJ 17 18 binding site whereas the C-terminal coiled-coil domain contains the binding site for RacA.

DISCUSSION

2 Here we show that two of the DivIVA interaction partners from *B. subtilis*, MinJ and RacA, bind to mutually exclusive surface regions of DivIVA. This was concluded from 3 4 complementation assays with DivIVA chimeras constructed from B. subtilis and L. 5 monocytogenes DivIVA. Analysis of a set of such DivIVA chimeras in complementation 6 experiments surprisingly revealed that the N-terminal lipid binding domain provides the MinJ 7 interaction module whereas RacA binds to the C-terminal domain of DivIVA. This was 8 unexpected since it was assumed that the C-terminal domain would constitute the protein 9 recruitment module for both proteins, with the LBD being important only for dimerization 10 and lipid binding. However, a dual function of the lipid binding domain is in good agreement 11 with the two-domain nature of DivIVA proteins. The lipid binding domain is in close contact 12 to the cytoplasmic membrane and even partially inserts into it, which makes it a good 13 candidate for interacting with trans-membrane proteins like MinJ. Since most sequence 14 differences between the LBDs of Bs and Lm DivIVA cluster between residues E28 and I57 15 (Fig. 4A), this region most likely represents the MinJ binding surface of DivIVA. Support for 16 this assumption comes from the observation that a replacement of region 1-16 of 17 Corynebacterium glutamicum DivIVA by the corresponding region from Bs DivIVA was 18 without effect (19). Lipid binding of DivIVA via its N-terminal domain would in turn leave 19 the C-terminus free to reach into the cytoplasm. Fitting with this, our experiments indicated 20 that the C-terminal domain is the interaction module for RacA which is a soluble cytoplasmic 21 protein. It was recently reported that the interaction of C. glutamicum ParB, which is a 22 chromosome-binding protein like RacA, to its cognate DivIVA requires central regions of the 23 C-terminal domain as well (9). Our results thus confirm earlier speculations that the 24 sporulation and the division functions of DivIVA can be separated. This had been concluded 25 from the observation that a divIVAN99D mutation severely affected sporulation but not 26 division (28). Another classical divIVA point mutation is the divIVA1 mutation in which the

alanine at position 78 is substituted by a threonine. This mutation causes a *div⁻ spo⁻* phenotype
(29) even though it lies outside the RacA and MinJ binding regions. Neither expression nor
oligomerization of DivIVA is impaired by this mutation (30). Thus, the A78T exchange might
possibly affect subcellular localisation of DivIVA or induce structural changes in the protein
that reduce its activity but do not influence formation of oligomers.

6 The question that we cannot answer conclusively is: Why do the two chimeras with the more 7 N-terminally located fusion points (Lm-83-Bs and Lm-71-Bs) not behave similar to the Lm-8 104-Bs DivIVA protein? Initially, this conflicted with the idea that C-terminal domain is the 9 protein recruitment module for RacA, since longer C-terminal exchanges than in Lm-104-Bs 10 should result at least in the same degree of complementation activity. We do not think that 11 this is explained by misfolding of the respective chimeric proteins since they still oligomerize 12 (Fig. S2) and because GFP-tagged versions of these chimeras still localised to the septum in 13 the same degree as the Lm-104-Bs GFP fusion protein (Fig. S4A) and therefore appeared to be 14 folded properly. Moreover, a strain expressing an Lm-57-Bs DivIVA protein showed the same 15 sporulation defect as strains expressing Lm-83-Bs and Lm-71-Bs DivIVA chimeras (data not 16 shown). Possibly, longer C-terminal exchanges do not function in the context of an unrelated 17 lipid binding domain. With regard to this issue, the fact that the arginine 102 residue of Bs 18 DivIVA is phosphorylated might be of special interest here (31). This phosphorylation could 19 be critical for RacA recruitment and may add an extra dimension of activity control on the 20 different DivIVA chimeras. Therefore, we constructed a phospho-ablative (R102K) and a 21 phospho-mimetic (R102E) mutant allele of *divIVA* and tested their activity in our complementation system. Both of these mutations cause a div^+ spo⁻ phenotype (Fig. S5). 22 23 Hence, arginine 102 might indeed have a crucial function in RacA binding but it is not 24 relevant for the interaction with MinJ. Phosphorylations at the C-terminal domains are well 25 described for DivIVA from Mycobacterium tuberculosis (named Wag31 in mycobacteria) and 26 Streptococcus pneumoniae even though they both occurred at threonine side chains (T73 and 1 T201, respectively). Phenotypic analysis of phospho-mimetic and phospho-ablative *divIVA* 2 mutant strains in these organisms also revealed that these phosphorylations are indeed 3 involved in cell shape control (32, 33). In the future it will be interesting to address the 4 regulatory impact of such phosphorylations for DivIVA binding partner recruitment.

- 5
- 6

ACKNOWLEDGEMENTS

The authors thank Ling Juan Wu (Newcastle University) for the kind gift of the *gfp-racA*strain and Henrik Strahl (Newcastle University) for sharing plasmid pAPNC213cat. This
work was financially supported by a DAAD fellowship to K.G.K, a DFG grant (BR-2915/2-1)
to M.B. and a Wellcome Trust Research Career Development Fellowship as well as a
Biological Sciences Research Council Grant to L.W.H.

1		REFERENCES
2 3	1.	Lenarcic R, Halbedel S, Visser L, Shaw M, Wu LJ, Errington J, Marenduzzo D, Hamoen LW. 2009. Localisation of DivIVA by targeting to negatively curved
4 5 6	2.	membranes. EMBO J. 28:2272-2282. Ramamurthi KS, Losick R. 2009. Negative membrane curvature as a cue for subcellular localization of a bacterial protein. Proc. Natl. Acad. Sci. U S A 106:13541-
7	_	13545.
8 9 10	3.	Eswaramoorthy P, Erb ML, Gregory JA, Silverman J, Pogliano K, Pogliano J, Ramamurthi KS. 2011. Cellular architecture mediates DivIVA ultrastructure and regulates Min activity in <i>Bacillus subtilis</i> . MBio 2: e00257-11. 10.1128/mBio.00257-
11		11.
12 13 14	4.	Edwards DH, Thomaides HB, Errington J. 2000. Promiscuous targeting of <i>Bacillus subtilis</i> cell division protein DivIVA to division sites in <i>Escherichia coli</i> and fission yeast. EMBO J. 19:2719-2727.
15 16 17	5.	Marston AL, Thomaides HB, Edwards DH, Sharpe ME, Errington J. 1998. Polar localization of the MinD protein of <i>Bacillus subtilis</i> and its role in selection of the mid-cell division site. Genes Dev 12:3419-3430
18 19 20	6.	Letek M, Ordonez E, Vaquera J, Margolin W, Flärdh K, Mateos LM, Gil JA. 2008. DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corpuschastarium glutamicum. L. Bacteriol. 190:3283-3292
20 21 22 23	7.	Xu H, Chater KF, Deng Z, Tao M. 2008. A cellulose synthase-like protein involved in hyphal tip growth and morphological differentiation in <i>Streptomyces</i> . J. Bacteriol. 190.4971-4978
24 25 26	8.	Wu LJ, Errington J. 2003. RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating <i>Bacillus subtilis</i> . Mol. Microbiol. 49 :1463-1475
27 27 28 29	9.	Donovan C, Sieger B, Krämer R, Bramkamp M. 2012. A synthetic <i>Escherichia coli</i> system identifies a conserved origin tethering factor in <i>Actinobacteria</i> . Mol. Microbiol. 84: 105-116.
30 31	10.	Halbedel S, Hahn B, Daniel RA, Flieger A. 2012. DivIVA affects secretion of virulence-related autolysins in <i>Listeria monocytogenes</i> . Mol. Microbiol. 83 :821-839.
32 33 34	11.	Bramkamp M, Emmins R, Weston L, Donovan C, Daniel RA, Errington J. 2008. A novel component of the division-site selection system of <i>Bacillus subtilis</i> and a new mode of action for the division inhibitor MinCD. Mol. Microbiol. 70: 1556-1569.
35 36 27	12.	Patrick JE, Kearns DB. 2008. MinJ (YvjD) is a topological determinant of cell division in <i>Bacillus subtilis</i> . Mol. Microbiol. 70 :1166-1179.
37 38	13.	Flardn K. 2003. Essential role of DivivA in polar growth and morphogenesis in Streptomyces coelicolor A3(2) Mol Microbiol 49: 1523-1536
39 40	14.	Kaval KG, Halbedel S. 2012. Architecturally the same, but playing a different game: The diverse species-specific roles of DivIVA proteins. Virulence 3 :406-407.
41 42	15.	Ben-Yehuda S, Rudner DZ, Losick R. 2003. RacA, a bacterial protein that anchors chromosomes to the cell poles. Science 299: 532-536.
43 44 45	16.	Briley K, Jr., Prepiak P, Dias MJ, Hahn J, Dubnau D. 2011. Maf acts downstream of ComGA to arrest cell division in competent cells of <i>B. subtilis</i> . Mol. Microbiol. 81 :23-39.
46 47 48	17.	Dos Santos VT, Bisson-Filho AW, Gueiros-Filho FJ. 2012. DivIVA-mediated polar localization of ComN, a post-transcriptional regulator of <i>B. subtilis</i> . J. Bacteriol. 194: 3661-3669.

- 18. Oliva MA, Halbedel S, Freund SM, Dutow P, Leonard TA, Veprintsev DB, Hamoen LW, Löwe J. 2010. Features critical for membrane binding revealed by DivIVA crystal structure. EMBO J. 29:1988-2001.
- 4 19. Letek M, Fiuza M, Ordonez E, Villadangos AF, Flärdh K, Mateos LM, Gil JA.
 2009. DivIVA uses an N-terminal conserved region and two coiled-coil domains to
 localize and sustain the polar growth in *Corynebacterium glutamicum*. FEMS
 Microbiol. Lett. 297:110-116.
- 8 20. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual,
 9 20. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
- 21. Zacharias DA, Violin JD, Newton AC, Tsien RY. 2002. Partitioning of lipid modified monomeric GFPs into membrane microdomains of live cells. Science
 296:913-916.
- Landgraf D, Okumus B, Chien P, Baker TA, Paulsson J. 2012. Segregation of
 molecules at cell division reveals native protein localization. Nat. Methods 9:480-482.
- van den Ent F, Löwe J. 2006. RF cloning: a restriction-free method for inserting target genes into plasmids. J. Biochem. Biophys. Methods 67:67-74.
- Hamoen LW, Smits WK, de Jong A, Holsappel S, Kuipers OP. 2002. Improving
 the predictive value of the competence transcription factor (ComK) binding site in
 Bacillus subtilis using a genomic approach. Nucleic Acids Res. 30:5517-5528.
- 20 25. Karimova G, Pidoux J, Ullmann A, Ladant D. 1998. A bacterial two-hybrid system
 21 based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. U S A
 22 95:5752-5756.
- 23 26. Harwood CR, Coxon RD, Hancock IC. 1990. Molecular biological methods for
 24 Bacillus. John Wiley and Sons, Chichester.
- 25 27. Stahlberg H, Kutejova E, Muchová K, Gregorini M, Lustig A, Müller SA,
 26 Olivieri V, Engel A, Wilkinson AJ, Barák I. 2004. Oligomeric structure of the
 27 Bacillus subtilis cell division protein DivIVA determined by transmission electron
 28 microscopy. Mol. Microbiol. 52:1281-1290.
- 28. Thomaides HB, Freeman M, El Karoui M, Errington J. 2001. Division site
 30 selection protein DivIVA of *Bacillus subtilis* has a second distinct function in
 31 chromosome segregation during sporulation. Genes Dev. 15:1662-1673.
- 32 29. Cha JH, Stewart GC. 1997. The *divIVA* minicell locus of *Bacillus subtilis*. J.
 33 Bacteriol. 179:1671-1683.
- 34 30. Muchová K, Kutejova E, Scott DJ, Brannigan JA, Lewis RJ, Wilkinson AJ,
 35 Barák I. 2002. Oligomerization of the *Bacillus subtilis* division protein DivIVA.
 36 Microbiology 148:807-813.
- 31. Elsholz AK, Turgay K, Michalik S, Hessling B, Gronau K, Oertel D, Mäder U,
 Bernhardt J, Becher D, Hecker M, Gerth U. 2012. Global impact of protein
 arginine phosphorylation on the physiology of *Bacillus subtilis*. Proc. Natl. Acad. Sci.
 U S A 109:7451-7456.
- 41 32. Kang CM, Abbott DW, Park ST, Dascher CC, Cantley LC, Husson RN. 2005.
 42 The *Mycobacterium tuberculosis* serine/threonine kinases PknA and PknB: substrate
 43 identification and regulation of cell shape. Genes Dev. 19:1692-1704.
- Fleurie A, Cluzel C, Guiral S, Freton C, Galisson F, Zanella-Cleon I, Di Guilmi
 AM, Grangeasse C. 2012. Mutational dissection of the S/T-kinase StkP reveals
 crucial roles in cell division of *Streptococcus pneumoniae*. Mol. Microbiol. 83:746758.
- 48 34. Barák I, Prepiak P, Schmeisser F. 1998. MinCD proteins control the septation process during sporulation of *Bacillus subtilis*. J. Bacteriol. 180:5327-5333.

- Morimoto T, Loh PC, Hirai T, Asai K, Kobayashi K, Moriya S, Ogasawara N. 1 35. 2 3 4 5 6 7 2002. Six GTP-binding proteins of the Era/Obg family are essential for cell growth in Bacillus subtilis. Microbiology 148:3539-3552.
- Lewis PJ, Marston AL. 1999. GFP vectors for controlled expression and dual 36. labelling of protein fusions in Bacillus subtilis. Gene 227:101-110.
- van Baarle S, Bramkamp M. 2010. The MinCDJ system in Bacillus subtilis prevents 37. minicell formation by promoting divisome disassembly. PLoS One 5:e9850.
- 8 9

FIGURE LEGENDS

3 Figure 1: Domain arrangement of *B. subtilis* DivIVA. (A) Schematic sequence alignment of DivIVA proteins of different phylogenetic origin. Abbreviations above the alignment label the 4 5 individual protein regions: LBD - lipid binding domain, CTD - C-terminal domain, TD -6 tetramerization domain, tail – C-terminal tail region. Amino acid numbering is according to B. 7 subtilis DivIVA. (B) Model of the crystal structure of the full-length B. subtilis DivIVA 8 tetramer which has been assembled from the individual crystal structures of the N- and the C-9 terminal domains (18). Crystallographic data for the linker between both domains are not 10 available (residues 53-70). Amino acid positions at the beginning and the end of the lipid 11 binding domain as well as the C-terminal domain are indicated for one molecule. Truncation sites of DivIVA Δ C26 and DivIVA Δ C34 at positions 138 and 130, respectively, are also 12 13 shown (compare Table 3).

14

15 Figure 2: Complementation activity and oligomerization of a C-terminally truncated DivIVA 16 protein devoid of the tetramerization domain. (A) Phase contrast micrographs showing 17 cellular morphology of strain BSN360 expressing the DivIVA Δ C34 protein. Cultures of strain 18 168 (wt), strain 4041 ($\Delta divIVA$) and the complemented $\Delta divIVA$ mutant strain BSN356 19 (+*divIVA*) were included for control. Cells were cultivated in LB broth (containing 1 mM 20 IPTG where necessary) to mid-logarithmic growth phase at 37°C before images were taken. 21 Scale bar is 5 µm. (B) Sporulation of the same set of strains on Schaeffers sporulation agar 22 containing 1 mM IPTG. Cells were kept for 3 days at 37°C until lysis of the spo⁻ strains 23 became apparent. (C) Western blots after SDS-PAGE and blue native PAGE to analyse 24 expression and oligomerization of DivIVA Δ C34. Strains BSN356 (+*divIVA*) and BSN360 25 $(+\Delta C34)$ were cultivated as described above and cellular protein extracts were subjected to 26 SDS-PAGE (upper panel) or blue native PAGE (bottom panel) and subsequent Western 27 blotting. DivIVA was detected using the polyclonal anti-DivIVA antiserum. The

NativeMarkTM standard (Invitrogen) was used as a molecular weight marker for blue native
 PAGE.

3

Figure 3: Localization of *L. monocytogenes* DivIVA-GFP in a *B. subtilis* $\Delta divIVA$ background. Strain BSN373 (expressing *Lm* DivIVA-GFPA206K) was grown in LB supplemented with 0.5% xylose. The localization pattern of *Lm* DivIVA-GFP was analysed by epifluorescence microscopy (right image), and for orientation, a FM5-95 stained image (left panel) was taken in parallel. Scale bar is 5 µm, several septal DivIVA-GFP signals are indicated by arrows.

10

Figure 4: Expression of *Lm/Bs* DivIVA chimeras in *B. subtilis*. (A) Sequence alignment of 11 the DivIVA proteins from B. subtilis (Bs) and L. monocytogenes (Lm). Identical amino acid 12 13 positions are indicated by a black, similar amino acid positions by a grey background. The 14 exchange sites in the different chimeras are labelled by asterisks. (B) Schematic illustration of 15 the domain organisation of the Bs and Lm DivIVA proteins and composition of all Lm/Bs 16 DivIVA chimeras. Abbreviations are as in Fig. 1A. The complementation activity of the 17 DivIVA chimeras in the complementation assays for division (div) and sporulation (spo) is 18 indicated in the table on the right side (compare Fig. 5). (C) Western blot showing expression 19 of the DivIVA chimeras in a *B. subtilis* $\Delta divIVA$ background. The wild type strain 168 and the 20 $\Delta divIVA$ mutant (4041) as well as strains expressing *B. subtilis divIVA* (BSN51) or *L.* 21 monocytogenes divIVA (BSN238) were included as controls and the DivIVA proteins were 22 detected with an antiserum that had been raised against B. subtilis DivIVA (5).

23

Figure 5: Complementation activity of Lm/Bs DivIVA chimeras in the *B. subtilis* $\Delta divIVA$ background. (A) Phase contrast micrographs showing the ability of the tested Lm/Bs DivIVA chimeras to complement the filamentous $\Delta divIVA$ phenotype. Cells were cultivated in LB

1 broth containing 0.5% xylose until mid-log growth phase at 37°C before cell morphology was 2 assessed microscopically. Scale bar is 5 µm. (B) Sporulation plate assay to test the activity of 3 the Lm/Bs DivIVA chimeras to complement the sporulation defect of the B. subtilis $\Delta divIVA$ 4 mutant. Strains expressing the DivIVA chimeras were streaked on Schaeffer's sporulation 5 agar containing 0.5% xylose and kept at 37°C until lysis of non-sporulating strains was comfortably distinguishable from the brownish spo^+ strains. The wild type, the $\Delta divIVA$ 6 7 mutant and strains complemented either with the B. subtilis (BSN51) or the L. monocytogenes 8 divIVA gene (BSN238) were used as controls. 1 - strain 168 (wt), 2 - strain 4041 (\(\Delta divIVA\), 3 9 - strain BSN51 (+Bs divIVA), 4 - strain BSN238 (+Lm divIVA), 5 - strain BSN274 (+Lm-10 144-Bs divIVA), 6 - strain BSN278 (+Lm-130-Bs divIVA), 7 - strain BSN288 (+Lm-104-Bs 11 divIVA), 8 - strain BSN287 (+Lm-83-Bs divIVA), 9 - strain BSN316 (+Lm-71-Bs divIVA), 10 12 - strain BSN321 (+Bs-57-Lm divIVA). Please note that sporulation of strain strain BSN288 13 (+Lm-104-Bs divIVA) did not reach wild type level. This might be explained by the lack of 14 MinCD activity in this strain which is required for full sporulation (34).

15

16 Figure 6: Localization of MinJ and RacA in B. subtilis strains expressing selected Lm/Bs 17 divIVA chimeras. (A) Fluorescence micrographs showing the subcellular localization of MinJ-18 GFP in Lm/Bs divIVA chimera strains during mid-logarithmic growth in LB broth 19 supplemented with 0.5% xylose at 37°C (top row). MinJ-GFP was imaged in strains 20 expressing Lm-104-Bs DivIVA (strain BSN336) and the Bs-57-Lm DivIVA chimera (strain 21 BSN338). For control, MinJ-GFP was also visualised in $\Delta divIVA$ strains which express Bs 22 divIVA (strain BSN334) or Lm divIVA (strain BSN335). Phase contrast images were included 23 for better orientation (bottom row). (B) Localization of RacA in B. subtilis strains expressing 24 the same *Lm/Bs divIVA* chimeras as in panel A. Fluorescence images were obtained on cells during growth in LB broth containing 0.5% xylose at 37°C (top row). GFP-RacA was 25 26 visualized in strains expressing the Lm-104-Bs DivIVA (strain BSN342) and Bs-57-Lm

1	DivIVA (strain BSN344). As controls, GFP-RacA was also imaged in strain BSN340
2	expressing Bs divIVA and in strain BSN341 which expresses Lm divIVA. Phase contrast
3	images were included for better orientation (bottom row). Scale bar is 5 μ m.

1 **Table 1:** Plasmids and strains used in this study

Name	relevant characteristics	source*/
		reference
Plasmids		
pAPNC213	bla $aprE5'$ spc lacI P_{spac} $aprE3'$	(35)
pAPNC213cat	bla aprE5' cat lacI P _{spac} aprE3'	H. Strahl
pDG9	bla amyE3' spc P_{yyl} -divIVA-gfp amyE5'	(18)
pSG1154	bla amyE3' spc P_{xyl} -`gfp amyE5'	(36)
pSH2	bla aprE5' spc lacI P_{spac} -divIVA ^{Bs} aprE3'	(18)
pSH3	bla amyE3' spc P_{xvl} -divIVA ^{Bs} -gfpA206K amyE5'	(18)
pKT25-racA	$kan P_{lac}$ - $cya(T25)$ - $racA$	(1)
pUT18- <i>divIVA</i>	bla P _{lac} -cya(T18)-divIVA	(1)
pUT18C-divIVA	bla P _{lac} -cya(T18)-divIVA	(11)
pUT18C-minJ	$bla P_{lac}$ - $cya(T18)$ - $minJ$	(11)
pUT18C-racA	bla P _{lac} -cya(T18)-racA	(1)
p25-N-divIVA	kan P _{lac} -divIVA-cya(T25)	(1)
p25-N-minJ	$kan P_{lac}$ -minJ-cya(T25)	(11)
pINC3	bla amyE3' spc P _{xvl} -divIVAR131A-gfp amyE5'	this work
pINC12	bla aprE5' spc lacI P _{spac} -divIVA R131A aprE3'	this work
pKK13	bla amyE3' spc P_{xvl} - divIVA ^{Bs-57-Lm} amyE5'	this work
pSBLH001	bla P_{lac} -divIVA ¹⁻⁴³⁹ ($\Delta 11$)-cya(T18)	this work
pSBLH004	kan P_{lac} -divIVA ¹⁻⁴⁵⁹ ($\Delta 11$)-cya(T25)	this work
pSBLH005	bla P_{lac} -divIVA ¹⁻⁴³² ($\Delta 20$)-cya(T18)	this work
pSBLH008	kan P_{lac} -divIVA ¹⁻⁴³² ($\Delta 20$)-cya(T25)	this work
pSBLH036	bla P_{lac} -divIVA ¹⁻⁴²⁹ ($\Delta 21$)-cya(T18)	this work
pSBLH037	bla P_{lac} -divIVA ¹⁻⁴¹⁴ ($\Delta 26$)-cya(T18)	this work
pSBLH038	bla P_{lac} -divIVA ¹⁻³⁹⁰ ($\Delta 34$)-cya(T18)	this work
pSBLH039	kan P_{lac} -divIVA ¹⁻⁴²⁹ ($\Delta 21$)-cya(T25)	this work
pSBLH040	kan P_{lac} -divIVA ¹⁻⁴¹⁴ ($\Delta 26$)-cya(T25)	this work
pSBLH041	kan P_{lac} -divIVA ¹⁻³⁹⁰ ($\Delta 34$)-cya(T25)	this work
pSH19	bla amyE3' spc P_{xvl} -divIVA ^{Bs} amyE5'	this work
pSH209	bla amyE3' spc P_{xvl} - divIVA ^{Lm} amyE5'	this work
pSH210	bla amyE3' spc P _{xvl} - divIVA ^{Lm} -gfp amyE5'	this work
pSH260	bla amyE3' spc P_{xyl} - divIVA ^{Lm-71-Bs} amyE5'	this work
pSH261	bla amyE3' spc P _{xvl} - divIVA ^{Lm-144-Bs} amyE5'	this work
pSH267	bla amyE3' spc P _{xvl} - divIVA ^{Lm-130-Bs} amyE5'	this work
pSH272	bla amyE3' spc P_{xyl} - divIVA ^{Lm-83-Bs} amyE5'	this work
pSH278	bla amyE3' spc P _{xvl} - divIVA ^{Lm-104-Bs} amyE5'	this work
pSH290	bla amyE3' spc P _{xvl} - divIVA ^{Lm-71-Bs} -gfpA206K amyE5'	this work
pSH291	bla amyE3' spc P _{xvl} - divIVA ^{Lm-144-Bs} -gfpA206K amyE5'	this work
pSH292	bla amyE3' spc P _{xvl} - divIVA ^{Lm-130-Bu} -gfpA206K amyE5'	this work
pSH293	bla amyE3' spc P _{xvl} - divIVA ^{Lm-83-Bs} -gfpA206K amyE5'	this work
pSH294	bla amyE3' spc P _{xvl} - divIVA ^{Lm-104-Bs} -gfpA206K amyE5'	this work
pSH316	bla aprE5' cat lacI P _{spac} -minJ-gfp aprE3'	this work
pSH317	bla aprE5' cat P _{spac} -minJ-gfp aprE3'	this work
pSH320	bla aprE5' cat P _{divIVA1} -minJ-gfp aprE3'	this work
pSH326	bla amyE3' spc P _{xvl} - divIVA ^{Bs-57-lm} -gfp amyE5'	this work
pSH328	bla aprE5' cat P _{divIVA3} -minJ-gfp aprE3'	this work
pSH330	bla aprE5' spc lacI P _{spac} -divIVA ^{Bs} R102K aprE3'	this work
pSH331	bla aprE5' spc lacI P _{spac} -divIVA ^{Bs} R102E aprE3'	this work
pSH334	bla aprE5' spc lacI P_{spac} -divIVA ^{Bs} $\Delta C34$ aprE3'	this work
pSH335	bla aprE5' cat lacI P_{spac} -divIVA ^{Bs} aprE3'	this work
pSH336	bla aprE5' cat lacI P _{spac} -divIVA ^{Bs} R102K aprE3'	this work
pSH337	bla aprE5' cat lacI P _{spac} -divIVA ^{Bs} R102E aprE3'	this work
pSH340	bla aprE5' cat lacI P_{spac} -divIVA ^{Bs} $\Delta C34$ aprE3'	this work
pSH354	bla amyE3' spc P _{xyl} - divIVA ^{Lm} -gfpA206K amyE5'	this work
pSH355	bla amyE3' spc P _{xyl} - divIVA ^{Bs-5/-Im} -gfpA206K amyE5'	this work

B. subtilis strains 168 trpC2

108	trpC2	
168 (pSG4916)	168 <i>racA</i> ::pSG4916(P _{xyl} -gfp-racA'	cat)

(8)

Name	relevant characteristics	source*/
		reference
4041	168 divIVA::tet	(18)
BSN5	168 aprE::P _{spac} -divIVA spc lacI divIVA::tet	(18)
SB002	168 amyE::P _{xyt} -minJ-gfp spc minJ::tet	(37)
BSN51	168 amyE::P _{xyt} -divIVA ^{Bs} spc divIVA::tet	this work
BSN238	168 amyE::P _{xyl} - divIVA ^{Lm} spc divIVA::tet	this work
BSN274	168 <i>amyE</i> ::P _{xyl} - <i>divIVA</i> ^{Lm-144-Bs} spc <i>divIVA</i> ::tet	this work
BSN278	168 amyE::P _{xyt} - divIVA ^{Lm-130-Bs} spc divIVA::tet	this work
BSN287	168 <i>amyE</i> ::P _{xyl} - <i>divIVA</i> ^{Lm-83-Bs} spc <i>divIVA</i> ::tet	this work
BSN288	168 amyE::P _{xyl} - divIVA ^{Lm-104-Bs} spc divIVA::tet	this work
BSN294	168 amyE::P _{xyl} - divIVA ^{Lm-71-Bs} -gfpA206K spc divIVA::tet	this work
BSN295	168 amyE::P _{xyl} - divIVA ^{Lm-144-Bs} -gfpA206K spc divIVA::tet	this work
BSN296	168 amyE::P _{xyl} - divIVA ^{Lm-130-Bs} -gfpA206K spc divIVA::tet	this work
BSN297	168 amyE::P _{xyl} - divIVA ^{Lm-83-Bs} -gfpA206K spc divIVA::tet	this work
BSN298	168 amyE::P _{xyl} - divIVA ^{Lm-104-Bs} -gfpA206K spc divIVA::tet	this work
BSN308	168 aprE::P _{spac} -minJ-gfp cat lacI	this work
BSN313	168 aprE::P _{spac} -divIVA R131A spc lacI divIVA::tet	this work
BSN316	168 amyE::P _{xyl} - divIVA ^{Lm-71-Bs} spc divIVA::tet	this work
BSN317	168 aprE::P _{spac} -minJ-gfp cat	this work
BSN321	168 amyE::P _{xyl} - divIVA ^{Bs-57-Lm} spc divIVA::tet	this work
BSN332	168 aprE::P _{divIVA3} -minJ-gfp cat	this work
BSN333	168 aprE::P _{divIVA3} -minJ-gfp cat divIVA::tet	this work
BSN334	168 aprE::P _{divIVA3} -minJ-gfp cat amyE::P _{xyl} -divIVA ^{Bs} spc divIVA::tet	this work
BSN335	168 aprE::P _{divIVA3} -minJ-gfp cat amyE::P _{xyl} -divIVA ^{Lm} spc divIVA::tet	this work
BSN336	168 $aprE::P_{divIVA3}$ -minJ-gfp cat $amyE::P_{xyl}$ - $divIVA^{Lm-104-Bs}$ spc $divIVA::tet$	this work
BSN338	168 aprE::P _{divIVA3} -minJ-gfp cat amyE::P _{xyl} -divIVA ^{Bs-57-Lm} spc divIVA::tet	this work
BSN340	168 racA::pSG4916(P _{xyl} -gfp-racA'cat) amyE::P _{xyl} -divIVA ^{Bs} spc divIVA::tet	this work
BSN341	168 racA::pSG4916(P _{xyl} -gfp-racA'cat) amyE::P _{xyl} -divIVA ^{Lm} spc divIVA::tet	this work
BSN342	168 $racA$::pSG4916(P _{xyl} -gfp-racA'cat) amyE::P _{xyl} -divIVA ^{Lm-104-Bs} spc divIVA::tet	this work
BSN344	168 racA::pSG4916(P _{xyl} -gfp-racA'cat) amyE::P _{xyl} -divIVA ^{Bs-5/-Lm} spc divIVA::tet	this work
BSN356	168 aprE::P _{spac} -divIVA ^{Bs} cat lacI divIVA::tet	this work
BSN357	168 aprE::P _{spac} -divIVA ^{Bs} R102K cat lacI divIVA::tet	this work
BSN358	168 aprE::P _{spac} -divIVA ^{Bs} R102E cat lacI divIVA::tet	this work
BSN360	168 $aprE:: P_{spac}$ -divIVA ^{Bs} $\Delta C34$ cat lacI divIVA::tet	this work
BNS372	168 amyE::P _{xyl} - divIVA ^{Bs-57-Lm} -gfpA206K spc divIVA::tet	this work
BSN373	168 amyE::P _{xvl} - divIVA ^{Lm} -gfpA206K spc divIVA::tet	this work

Table 2: Oligonucleotides used in this study.

Name	sequence $(5' \rightarrow 3')$
25 N 18 F	CCGGGTACCGAGCTCGAATTCA
divIVA 11 B2H R	GCGGGTACCTCAAGGAGATGATCCCA
divIVA 19 B2H R	GCGGGTACCAATTTCAGAAGATCAAG
divIVA 21 R	GCGGGTACCAGAAGATCAAGCTGAGCT
divIVA 26 R	GCGGGTACCGCTTCAATCAGCATTTGG
divIVA_34_R	GCGGGTACCGTTCTGAACACTTTAGAC
SHW109	CTTAGGTACCAAGCTAGTAACTATGGTAGAATG
SHW110	GCGCTCGAGTTAACGTTCTTCAGATTCAGCTG
SHW111	GCGCTCGAGACGTTCTTCAGATTCAGCTG
SHW180	CGAAGTAAATGACTTCCTCGATC
SHW184	CTTAACTAGTTTTGTATAGTTCATCCATGCC
SHW237	GAACGTTTAGGTCATTTTACAAACATTGAGGAGACATTGAATAAATC
SHW238	GTGGAAGCACAAATGGATTTAATTAAAAATGACGATTGGGATCATC
SHW247	CGTCAATCCAAAGTATTCCGTACACGTTTCCAAATGCTGATTG
SHW265	CAAACAGCTGCCGAAGAAGTGAAACGCAATTCTCAAAAAGAAGCAAAG
SHW266	GCAGAAAAAATGCTGACCGAATTATCAACGAATCGTTATCAAAATC
SHW304	AAAGGAAGGACTTGATATCGAATTCC
SHW305	TATCAAGTCCTTCCTTTTCCTCAAATAC
SHW342	ATATGTCGACACATAAAATGCATCTAGAAAGGAG
SHW343	GCGCGGATCCTTATTTGTATAGTTCATCCATGCC
SHW349	TTGCGCTCACATCAAATCGTCTCCCTCCG
SHW350	GATTTGATGTGAGCGCAACGCAAGCTTC
SHW354	GTCGTATGGAGGTGCTAGATATGCCATTAACGCCAAATGATATTC
SHW355	GTTTCTTCAATGTTTGTAAAATGACCGATTCTTTCATCAAGCTCATTG
SHW356	GACACCTCGAGCATGATGCCACCTCCATTTTTAC
SHW357	TGATGCCACCTCCATTTTACATTTC
SHW358	AAATGGAGGTGGCATCATGCTCGAGG
SHW366	GAAGAACGTGGACTCGAGGTCGACGGTATC
SHW367	GACCTCGAGTCCACGTTCTTCAGATTCAGCTG
SHW378	CGCTGATAAAATTATCAACGAATCG
SHW379	GATAATTTTATCAGCGTTTTTCTCC
SHW380	CGCTGATGAAATTATCAACGAATC
SHW381	GATAATTTCATCAGCGTTTTTCTCC
SHW386	TCAGAACATAATTCCAAATGCTGATTGAAG
SHW387	ATTTGGAATTATGTTCTGAACACTTTAGAC
SHW425	CACAATCTAAACTTTCCAAAGATCCCAACG
SHW426	GGAAAGTTTAGATTGTGTGGACAGGTAATG
SV23	GAAAAGGAATAACTTGATATCGAATTC
SV24	GATATCAAGTTATTCCTTTTCCTCAAATAC
SV81	CGCGCGAGCICITATICCITITCCICAAATACAGC
SV98	
SV123	CGGGATCCAAAATGGAGGTGGCATCATGCCATTAACGCCAAATG
RI3IA_tw	
RI3IA_rev	TTIGGAAAGCIGTICIGAACACITTAG

- 1 Table 3: Bacterial two-hybrid analysis of C-terminal DivIVA truncation mutants regarding
- 2 their ability to interact with full-length DivIVA, MinJ, and RacA.

DivIVA	C-terminal protein sequence*	DivIVA	MinJ	RacA
wt	LKKQSKVFRTRFQMLIEAQLDLLKNDDWDHLLEYEVDAVFEEKE-164	+	+	+/-
Δ11	LKKQSKVFRTRFQMLIEAQLDLLKNDDWDHLLE-153	+	+	-
Δ20	LKKQSKVFRTRFQMLIEAQLDLLK-144	+	+	-
Δ21	LKKQSKVFRTRFQMLIEAQLDLL-143	+	+	-
Δ26	LKKQSKVFRTRFQMLIEA-138	+/-	+/-	-
Δ34	LKKQSKVFRT-130	+/-	+/-	-

3 4 5 * Starting from position 121. The shadowed sequence stretch corresponds to the DivIVA tetramerization domain. The position of the last amino acid in the truncated DivIVA proteins is given at the end of the sequence

Symbols: + = dark blue, +/- = light blue, - = white. For comparison see Fig. S1.

van Baarle et al., Figure 1

van Baarle et al., Figure 6

Fig. S1: Bacterial two hybrid analysis of the DivIVA interaction to MinJ and RacA. (A) The T25 plasmids p25-N*divIVA* (full length DivIVA), pSBLH004 (DivIVAΔ11), pSBLH008 (DivIVAΔ20), pSBLH039 (DivIVAΔ21), pSBLH040 (DivIVAΔ26), and pSBLH041 (DivIVAΔ34), were co-transformed with the T18 plasmids pUT18C*divIVA*, pUT18C-*racA*, and pUT18C-*minJ* in the *E. coli* strain BTH101 and aliquots of the transformation mixture were spotted onto nutrient agar plates containing ampicillin, kanamycin, IPTG and X-Gal (for details see materials and methods section). Images were taken after 40 h of incubation at 30°C. The T25 plasmids pKT25*racA* and p25-N-*minJ* were used as self-interaction controls. (B) Reciprocal bacterial two hybrid experiment (taken from the same plate) in which the T25 plasmids p25-N-*divIVA*, pKT25-*racA*, and p25-N-*minJ* were cotransformed into BTH101 along with pUT18 plasmids containing the DivIVA truncation series. This experiment confirmed the reduced interaction of DivIVAΔ26 and DivIVAΔ34 with full-length DivIVA. However, T25 fusions of RacA and MinJ did not reveal any interactions with DivIVA in this orientation.

Fig. S2: Western blot after blue native PAGE to analyze oligomerization of chimeric DivIVA proteins. Strains expressing chimeric DivIVA proteins (BSN274: +*Lm*-144-*Bs divIVA*; BSN278: +*Lm*-130-*Bs divIVA*; BSN288: +*Lm*-104-*Bs divIVA*; BSN287: +*Lm*-83-*Bs divIVA*; BSN316: +*Lm*-71-*Bs divIVA*; BSN321: +*Bs*-57-*Lm divIVA*) were grown in LB broth supplemented with 0.5% xylose at 37°C and harvested in mid-logarithmic growth phase. Cell extracts were subjected to blue native PAGE, blotted onto a PVDF membrane and DivIVA proteins were immunostained using the anti-DivIVA antiserum. Strains 168 (wt), 4041 ($\Delta divIVA$) and strains expressing the *B. subtilis* (BSN51) or the *L. monocytogenes divIVA* gene (BSN238) were used as controls. Please note that differences in the apparent molecular weight of the different DivIVA oligomers are explained by pl differences between *Bs* (pl 5.03) and *Lm* DivIVA (pl 4.77).During electrophoresis, which was performed at pH7.5, *Lm* DivIVA is more negatively charged as compared to *Bs* DivIVA and therefore runs faster through the gel even though its monomer has the higher theoretical molecular weight. Moreover, the pl values of the C-terminal domains of both proteins are nearly identical (*Bs* CTD: 4.93; *Lm* CTD: 4.80) whereas those of the N-terminal lipid binding domains are rather different (*Bs* LBD: 5.27; *Lm* LBD: 4.72). This explains why all chimeras containing the *Lm* LBD reveal the same apparent oligomer molecular weight as *Lm* DivIVA, whereas the *Bs*-57-*Lm* oligomer runs at the same position as *Bs* DivIVA.

Fig. S3: A mutation in the tetramerisation domain (R131A) that causes an inactive *Bs* DivIVA protein. (A) Phase contrast micrographs obtained on cultures that were cultivated in LB broth containing 1 mM IPTG at 37°C during mid-logarithmic growth. Strains used were 168 (wt), 4041 ($\Delta divIVA$), BSN5 (+*divIVA*) and BSN313 (+R131A). Scale bar is 5 µm. (B) Western blot on cell extracts of the same set of strains. DivIVA was visualised using the polyclonal rabbit anti-DivIVA antiserum. (C) The *divIVAR131A* mutant (strain BSN313) reveals a sporulation defect. Sporulation was assayed in a plate assay as described in the legend of Fig. 3B.

Fig. S4: Subcellular localisation of chimeric DivIVA proteins in a *B. subtilis* $\Delta divIVA$ background. Strains BSN294 (DivIVA^{Lm-71-Bs}-GFP), BSN295 (DivIVA^{Lm-144-Bs}-GFP), BSN296 (DivIVA^{Lm-130-Bs}-GFP), BSN297 (DivIVA^{Lm-83-Bs}-GFP), BSN298 (DivIVA^{Lm-104-Bs}-GFP), and strain BSN372 (DivIVA^{Bs-57-Lm}-GFP) were grown in LB supplemented with 0.5% xylose. DivIVA localisation patterns were analysed by epifluorescence microscopy (right images), and for orientation, FM5-95 stained images (left panels) were taken in parallel. Scale bar is 5 µm, septal DivIVA-GFP signals are indicated by arrows. All DivIVA-GFP fusions contain the *gfpA206K* mutation preventing GFP dimerization. (B) Western blot to demonstrate full-length expression of chimeric DivIVA-GFP proteins. Strains expressing chimeric DivIVA-GFP fusions were grown in LB broth containing or not containing 0.5% xylose to mid-logarithmic growth phase, total cellular proteins were isolated and subjected to SDS-PAGE and subsequent Western blotting. DivIVA-GFP fusion proteins were visualised using the polyclonal anti-GFP antiserum. Strains were as in panel A, but BSN373 (expressing *Lm* DivIVA-GFP) was also included. For convenience the names of the respective DivIVA chimeras are indicated above the blot. Please not that DivIVA^{Bs-57-Lm}-GFP shows some proteolytic degradation.

Fig. S5: Mutations of R102 in *Bs div/VA* cause a *div*⁺ *spo*⁻ phenotype. (A) Phase contrast micrographs obtained on cultures that were cultivated in LB broth containing 1 mM IPTG (where necessary) at 37°C during midlogarithmic growth. Strains used for this experiment were 168 (wt), 4041 ($\Delta div/VA$), BSN356 (+*div/VA*), BSN357 (+R102K), and BSN358 (+R102E). Scale bar is 5 µm. (B) Western blot on cell extracts of the same set of strains. Div/VA was visualised using the polyclonal rabbit anti-Div/VA antiserum. (C) Sporulation activity of the R102 mutants. Sporulation was assayed in a plate assay as described in the legend of Fig. 3. Please note that the sporulation defect of the phospho-ablative R102K mutant was less pronounced than that of the phospho-mimetic R102E allele.