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Abstract 1 

The outcome of encounters between Staphylococcus (S.) aureus and its human host 2 

ranges from life-threatening infection through allergic reactions to symptom-free 3 

colonization. The pan-genome of this bacterial species encodes numerous toxins, known 4 

or strongly suspected to cause specific diseases or symptoms. Three toxin families are in 5 

the focus of this review, namely (i) pore-forming toxins, (ii) exfoliative toxins and (iii) 6 

superantigens. The majority of toxin-encoding genes are located on mobile genetic 7 

elements (MGEs), resulting in a pronounced heterogeneity in the endowment with toxin 8 

genes of individual S. aureus strains. Recent population genomic analysis have provided 9 

a framework for an improved understanding of the temporal and spatial scales of the 10 

motility of MGEs and their associated toxin genes. The distribution of toxin genes among 11 

clonal lineages within the species S. aureus is not random, and phylogenetic (sub-) 12 

lineages within clonal complexes feature characteristic toxin signatures. When studying 13 

pathogenesis, this lineage association, which is caused by the clonal nature of S. aureus 14 

makes it difficult to discriminate effects of specific toxins from contributions of the 15 

genetic background and/or other associated genetic factors. 16 

 17 
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1. Introduction 1 

Staphylococcus (S.) aureus is notorious as the most common causative agent of hospital-2 

acquired infections, and the spread of antibiotic resistant strains, particularly 3 

methicillin-resistant S. aureus (MRSA), in hospitals challenges health care systems 4 

worldwide. Moreover, S. aureus strains of increased virulence, known as community-5 

aquired MRSA (CA-MRSA), can threaten even healthy individuals in the community 6 

(Chambers and Deleo 2009; David and Daum 2010; DeLeo, Otto et al. 2010). In addition, 7 

S. aureus is currently being discussed as the trigger and/or enhancer of allergies of the 8 

respiratory system and the skin (Gould, Takhar et al. 2007; Bachert and Zhang 2012). 9 

Nevertheless up to now, no anti-S. aureus vaccine has been approved for medical 10 

practice (Schaffer and Lee 2008; Spellberg and Daum 2012). In spite of the above, the 11 

most frequent encounter of S. aureus with its human host is peaceful colonization, and 12 

around 20% of adults are persistent carriers of the micro-organisms, while another 60% 13 

are intermittently colonized (Wertheim, Melles et al. 2005; van Belkum, Verkaik et al. 14 

2009). What makes the species S. aureus so immensely successful? 15 

Multiple virulence factors encoded in the pan-genome of S. aureus 16 

A salient feature of S. aureus is its variability. By indexing nucleotide sequence diversity 17 

at seven universally present genetic loci, multilocus-sequence typing (MLST) to date has 18 

revealed about 2,400 'sequence types' (ST) for S. aureus (see www.mlst.net). The vast 19 

majority of these diverse STs, however, are clustered in a remarkably limited number of 20 

clonal complexes (CC), each of which appears to be distributed worldwide (reviewed in 21 

(Nubel, Strommenger et al. 2011)). The predominant S. aureus lineages are CC1, 5, 8, 15, 22 

22, 30, 45, 59, 80, 97 and 121 (Nubel, Strommenger et al. 2011). 23 

About 75% of the S. aureus genes are shared by more than 95% of strains and hence 24 

may be considered the 'core genome' of the species. In addition, two kinds of variably 25 

present genes can be distinguished: (i) the core variable genes (~10% of genes), which 26 

are largely conserved within each of the S. aureus clonal complexes and constitute their 27 

respective “make up”, and (ii) mobile genetic elements (MGEs, ~15% of genes). The core 28 

variable genome includes most surface-associated genes (microbial surface components 29 

recognizing adhesive matrix molecules, MSCRAMMs) and regulator genes. Core variable 30 

genes are encoded on the bacterial chromosome and are, therefore, typically stable and 31 

transferred vertically (Lindsay, Moore et al. 2006). MGEs include bacteriophages, 32 

plasmids, S. aureus pathogenicity islands (SaPI), transposons, and staphylococcal 33 

chromosomal cassettes (SCC) (Feil, Cooper et al. 2003; Lindsay and Holden 2006; 34 

Lindsay, Moore et al. 2006; Lindsay 2010). They mainly encode resistance (e.g. 35 

methicillin resistance genes) and virulence genes (e.g., Panton-Valentine leukocidin 36 

(PVL) genes, superantigen (SAg) genes). MGEs can be distributed either by vertical 37 

transmission to daughter cells or by horizontal transfer (Lindsay and Holden 2006). 38 
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The full complement of all genes (also known as the pan-genome) of S. aureus encodes a 1 

wide array of secreted or cell-surface-associated virulence factors (Foster 2005). These 2 

include proteins that 3 

(1) mediate adherence to damaged tissue, extra-cellular matrix and the surface of host 4 

cells (Foster and Hook 1998),  5 

(2) facilitate tissue destruction and spreading, 6 

(3) promote iron uptake (Skaar and Schneewind 2004), 7 

(4) bind to proteins in the bodily fluids to help evade antibody- and complement-8 

mediated immune responses, including the action of phagocytes,  9 

(5) lyse host cells and 10 

(6) manipulate the innate and adaptive immune responses. 11 

However, a clear association between virulence genes and disease symptoms has been 12 

established or is strongly suspected only for some potent S. aureus toxins causing, for 13 

example, toxic shock syndrome (TSS), staphylococcal scalded skin syndrome (SSSS), 14 

necrotizing pneumonia, or deep-seated skin infections (Jarraud, Cozon et al. 1999; 15 

Dinges, Orwin et al. 2000; Jarraud, Mougel et al. 2002; Ladhani 2003; Holtfreter and 16 

Broker 2005). This review focuses on such toxins, including pore-forming toxins, like 17 

Panton-Valentine leukocidin (PVL) and hemolysin-α (Hla, α-toxin,), exfoliative toxins 18 

(ET) and the superantigens (SAgs).They damage the membranes of host cells, degrade 19 

inter-cellular junctions, or modulate the immune response by aberrant activation of 20 

immune cells. Only a few S. aureus toxins, such as Hla and the phenol-soluble modulins 21 

(PSMs), are core genome-encoded, while most of the other toxin genes are localized on 22 

MGEs (Table 1). Hence, the species S. aureus is characterized by extraordinary 23 

heterogeneity regarding the toxin gene equipment of individual clinical isolates.  24 

 25 

2. Pore-forming toxins 26 

S. aureus can produce several toxins that damage the membranes of host cells, which can 27 

ultimately lead to cell lysis. At sublytic concentrations, these pore-forming toxins are 28 

potent cell stressors. In synergy with other danger signals such as lipoproteins that 29 

activate the toll-like receptor 2 the toxins trigger the NALP3-inflammasome response 30 

resulting in release of cytokines IL1, IL18 and IL33 (Franchi, Munoz-Planillo et al. 2012). 31 

Hla, hemolysin-γ (Hlg) and PVL have been shown to exert strong pro-inflammatory 32 

effects in this manner (Munoz-Planillo, Franchi et al. 2009; Holzinger, Gieldon et al. 33 

2012; Kebaier, Chamberland et al. 2012; Perret, Badiou et al. 2012). 34 

 35 
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2.1 Hemolysin-α (Hla, α-toxin) 1 

Hla is released by 95% of S. aureus strains as a water-soluble monomer of 33kDa with 2 

pore-forming and pro-inflammatory properties. The hla gene is not mobile. Its 3 

expression is regulated by at least three global regulatory systems including the 4 

accessory gene regulator (agr) (Xiong, Willard et al. 2006); it is therefore not surprising 5 

that Hla is produced in varying amounts by S. aureus strains. Upon binding to a 6 

membrane receptor, Hla forms heptameric pores, thereby destroying a variety of host 7 

cells, including epithelial cells, erythrocytes, fibroblasts, monocytes, macrophages, and 8 

lymphocytes, but not neutrophils. The Hla receptor has long remained elusive and only 9 

recently ADAM10 (A disintegrin and metalloproteinase 10) has been identified as a 10 

binding partner of Hla (Wilke and Bubeck Wardenburg 2010; Inoshima, Inoshima et al. 11 

2011). Binding of Hla and pore formation activates the enzyme, which degrades E-12 

cadherin in the epithelial adherens junctions (Inoshima, Inoshima et al. 2011). 13 

Moreover, the ADAM10-Hla complex interferes with focal adhesion complexes (Wilke 14 

and Bubeck Wardenburg 2010). Both mechanisms would be able to disrupt the integrity 15 

of the epithelial and endothelial layers, thereby paving the way for S. aureus invasion. 16 

The group of Julie Bubeck-Wardenburg has used murine infection models to 17 

demonstrate that Hla strongly contributes to the pathogenesis of skin infections and 18 

pneumonia induced by S. aureus-USA300, which produces the toxin in abundance 19 

(Bubeck Wardenburg, Bae et al. 2007; Bubeck Wardenburg, Patel et al. 2007; Bubeck 20 

Wardenburg and Schneewind 2008; Inoshima, Inoshima et al. 2011; Wardenburg 2011; 21 

Inoshima, Wang et al. 2012; Powers, Kim et al. 2012). 22 

 23 

2.2 Leukotoxins 24 

The bi-component (hetero-oligomeric) pore-forming leukotoxins can lyse cells of the 25 

myleoid lineage, namely monocytes, macrophages, and neutrophils, which is considered 26 

important for S. aureus immune evasion (Ventura, Malachowa et al. 2010; Dumont, 27 

Nygaard et al. 2011). In different animal infection models, they contribute to disease 28 

progression (not yet demonstrated for  LukM/ LukF´-PV) (Choorit, Kaneko et al. 1995; 29 

Morfeldt, Taylor et al. 1995; Kaneko, Kimura et al. 1997; von Eiff, Friedrich et al. 2004). 30 

Leukotoxins consist of one class S and one class F protein of 32-35 kDa, whose genes are 31 

either core genome- or phage-encoded. The class S and F proteins are non-toxic on their 32 

own, but upon oligomerization, they form a β-barrelled pore-structure (Kaneko and 33 

Kamio 2004). Five class F subunits (HlgB, LukF-PV, LukD, LukF’-PV, and LukG) and six 34 

class S subunits (HlgA, HlgC, LukS-PV, LukE, LukM, and LukH) have been described 35 

(Prevost, Mourey et al. 2001; Morinaga, Kaihou et al. 2003; Kaneko and Kamio 2004; 36 

Ventura, Malachowa et al. 2010; Dumont, Nygaard et al. 2011). Table 2 shows that most 37 

S and F subunits exhibit monogamous pairing, whereas HlgB, the F subunit of the 38 

hemolysin-γ (hlg) gene cluster, can pair with either of two S subunits, HlgA or HlgC.  39 
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2.2.1 Panton-Valentine leukocidin (PVL; lukF-PV + lukS-PV) 1 

Skin and soft tissue infections (SSTIs), such as furunculosis or abscesses, are the most 2 

frequent diseases caused by S. aureus outside the hospital setting. Since Lina et al. 3 

discovered a close epidemiological linkage between PVL and chronic or recurrent SSTIs 4 

as well as necrotizing pneumonia (Gillet, Issartel et al. 2002), its role in these diseases 5 

has remained under discussion. The genes of the F and S subunits are phage-encoded 6 

(Table 2) and can thus be acquired by horizontal gene transfer (Kaneko, Kimura et al. 7 

1998; Masiuk, Kopron et al. 2010). PVL genes are found in most CA-MRSA strains, which 8 

exhibit increased virulence, e.g. in USA300 (Gillet, Issartel et al. 2002; Vandenesch, 9 

Naimi et al. 2003; Diep, Gill et al. 2006; Badiou, Dumitrescu et al. 2008; Diep and Otto 10 

2008; del Giudice, Blanc et al. 2009; Carpaij, Willems et al. 2011). CA-MRSA cause typical 11 

diseases, namely skin and soft tissue infections (SSTIs), as well as necrotizing 12 

pneumonia. However, PVL is not restricted to CA-MRSA, but the toxin is also found in the 13 

majority of MSSA strains isolated from patients with community-acquired SSTIs 14 

(Monecke, Slickers et al. 2007; Masiuk, Kopron et al. 2010). In contrast, the genes are 15 

rare in other S. aureus strain collections such as nasal commensals or clinical isolates 16 

from blood-stream infection (0-5%) (von Eiff, Friedrich et al. 2004; Holtfreter, Grumann 17 

et al. 2007; Masiuk, Kopron et al. 2010). Thus, epidemiological evidence for a pathogenic 18 

role of PVL is very strong, but the correlation is not absolute, and PVL-negative CA-19 

MRSA strains as well as MSSA strains associated with SSTI-patients have been isolated 20 

(Diep and Otto 2008; Masiuk, Kopron et al. 2010; Otto 2010; Monecke, Coombs et al. 21 

2011). Animal infection models have yielded conflicting results, which has been 22 

attributed to differences between models, inoculum sizes, and, very importantly, the 23 

host species (Labandeira-Rey, Couzon et al. 2007; Bubeck Wardenburg, Palazzolo-24 

Ballance et al. 2008; Brown, Dumitrescu et al. 2009; Montgomery and Daum 2009; 25 

Tseng, Kyme et al. 2009; Villaruz, Bubeck Wardenburg et al. 2009; Olsen, Kobayashi et 26 

al. 2010). In fact, the leukotoxic activity of PVL differs dramatically between species: 27 

human and rabbit neutrophils are lysed by very low toxin concentrations (> 40 ng/ml), 28 

whereas 1000-fold higher amounts are required for the lysis of mouse or java monkey 29 

neutrophils (Loffler, Hussain et al. 2010). 30 

2.2.2 Other Leukotoxins (Hemolysin-γ, Hemolysin-γ2, LukDE, LukF’M, LukGH)  31 

The hlg gene cluster giving rise to hemolysin-γ (Hlg) and hemolysin-γ2 (Hlg2) is 32 

encoded in the core genome; it is present in 99% of S. aureus strains. The toxins appear 33 

to contribute to septic arthritis and weight loss in mice (Nilsson, Hartford et al. 1999) 34 

and to endophthalmitis in rabbits (Supersac, Piemont et al. 1998). Recently, attention 35 

has been focussed on LukDE and LukGH, which, similar to PVL, are expressed by the 36 

majority of CA-MRSA strains. LukDE binds to CCR5 on immune cells, the chemokine 37 

receptor which is also involved in immune cell targeting by the human 38 

immunodeficiency virus (Alonzo, Kozhaya et al. 2013). Both leukotoxins contribute to 39 

the virulence of S. aureus in murine sepsis and renal abscess models (Dumont, Nygaard 40 
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et al. 2011; Alonzo, Benson et al. 2012). LukGH exhibits potent cytolytic activity towards 1 

neutrophils acting in synergy with PVL in vitro (Ventura, Malachowa et al. 2010; Rigby 2 

and DeLeo 2012). The relative contribution of PVL, LukDE and LukGH to community-3 

acquired SSTI and necrotizing pneumonia remains to be determined. Finally, a PVL-4 

variant, the prophage-encoded LukF’M, has been identified in S. aureus strain P83 of 5 

bovine origin (Zou, Kaneko et al. 2000). This toxin lyses bovine polymorphonuclear 6 

leukocytes (PMNs) and has been implicated in bovine mastitis (Schlotter, Ehricht et al. 7 

2012). 8 

2.2.3 Phenol-soluble modulins (PSMs) 9 

PSMs are a family of small, α-helical amphipathic peptides with cytolytic and pro-10 

inflammatory properties. Two subfamilies are described: the PSMα peptides, including 11 

the long-known hemolysin-δ (Hld) (Yoshida 1963), are 20 to 26 amino acids long, and 12 

the PSMβ peptides are 43 to 44 amino acids in length (Wang, Braughton et al. 2007). 13 

Most PSMs are core genome-encoded. All S. aureus strains contain the hld gene and the 14 

two loci with the operons coding for the psmα and psmβ genes (Wang, Braughton et al. 15 

2007). In addition, a psm-mec gene is located on a chromosomal cassette, which is 16 

restricted to hospital-acquiredMRSA (HA-MRSA) strains carrying SCCmec types II, III, 17 

and VIII (Chatterjee, Chen et al. 2011). The agr is involved in the expression of PSMs 18 

(Wang, Braughton et al. 2007; Queck, Jameson-Lee et al. 2008).  The production of PSMs 19 

is closely correlated with the capacity of staphylococcal species to cause invasive 20 

infections (Rautenberg, Joo et al. 2011). CA-MRSA isolates show an increased production 21 

of PSMs in comparison to HA-MRSA (Wang, Braughton et al. 2007). The group of Michael 22 

Otto has described multiple functions of PSMs in pathogenesis. Firstly, PSMα peptides 23 

effectively lyse white and red blood cells (Wang, Braughton et al. 2007; Cheung, Rigby et 24 

al. 2010). PSMα-deletion in CA-MRSA strains resulted in lower mortality and decreased 25 

ability to cause skin lesions in mice (Wang, Braughton et al. 2007). Secondly, PSMs have 26 

proinflammatory properties, and they induce chemotaxis and activation of human 27 

neutrophils, as well as cytokine expression (Wang, Braughton et al. 2007; Queck, Khan et 28 

al. 2009; Cheung, Rigby et al. 2010). This response is mediated by activation of the 29 

human formyl peptide receptor 2 (FPR2) (Kretschmer, Gleske et al. 2010). Thirdly, 30 

proteolytically processed PSMα1 and PSMα2 peptides show antimicrobial activity and 31 

interfere with competing colonizing pathogens (Joo, Cheung et al. 2011). Finally, they 32 

appear to contribute to the structuring of biofilms during S. aureus infection (Periasamy, 33 

Joo et al. 2012). Recently, Periasamy et al. have proposed that these functions in 34 

virulence are indicative of a primary role for PSMs in the commensal colonization of 35 

mammalian epithelia (Periasamy, Chatterjee et al. 2012). 36 

 37 

3. Exfoliative toxins (ETs) 38 
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The three known S. aureus exfoliative toxins ETA, ETB and ETD are encoded on different 1 

genetic elements (Table 1): eta is localized in the genome on a temperate phage, 2 

whereas etb is found on plasmids and etd on a genomic island. The prevalence of eta 3 

and/or etb ranges from 0.5 to 3% in MSSA (Becker, Friedrich et al. 2003; Sila, Sauer et al. 4 

2009; Nhan, Leclercq et al. 2011), whereas around 10% of MRSA are eta positive (Sila, 5 

Sauer et al. 2009). Holtfreter et al. observed a strong association of etd with invasive 6 

CC25 isolates (spa type t078 and relatives) (Holtfreter, Grumann et al. 2007). The 7 

expression of the ETs is agr-regulated (Sheehan, Foster et al. 1992). Functionally, ETs 8 

are isoforms of enzymes with high species-specificity. They have glutamate-specific 9 

serine protease activity and selectively cleave a single peptide bond in the extracellular 10 

region of human and mouse desmoglein 1 (Dsg1; desmosomal intercellular adhesion 11 

molecule), a keratinocyte cell-cell adhesion molecule. In this way, the ETs act as 12 

“molecular scissors” facilitating bacterial skin invasion (Nishifuji, Sugai et al. 2008). By 13 

loosening the keratinocyte junctions they cause blistering diseases known as bullous 14 

impetigo and staphylococcal scalded-skin syndrome.  15 

 16 

4. Superantigens (SAgs) 17 

The staphylococcal SAgs belong to the most potent T-cell mitogens known. Some of 18 

these toxins stimulate human T-cells at femtomolar concentrations. Originally, the SAgs 19 

of S. aureus were termed staphylococcal enterotoxins (SEs) because they elicit vomiting 20 

and diarrhea after oral uptake, the hallmarks of S. aureus food poisoning. This feature is 21 

different from their superantigenicity, however, because some of the recently identified 22 

SAgs apparently lack emetic properties. Therefore, the International Nomenclature 23 

Committee for Staphylococcal Superantigens introduced a new nomenclature in 2004 to 24 

distinguish SAgs with proven emetic activity in primates (staphylococcal enterotoxins; 25 

SEs) from those whose emetic properties remain unconfirmed (staphylococcal 26 

enterotoxin-like toxins; SEls) and toxic shock-syndrome toxin 1(TSST-1) (Lina, Bohach 27 

et al. 2004). So far, 23 different staphylococcal SAgs have been described: the 28 

staphylococcal enterotoxins A-E, G-J, and R-T (SEA-SEE, SEG-SEJ, SER-SET),the 29 

staphylococcal enterotoxin-like toxins K-Q and U-X (SElK-SElQ, SElU-SElX) and TSST-1 30 

(Proft and Fraser 2003; Lina, Bohach et al. 2004; Holtfreter and Broker 2005; Thomas, 31 

Chou et al. 2007; Ono, Omoe et al. 2008; Wilson, Seo et al. 2011).  32 

Genetic analysis of S. aureus clinical isolates, including whole genome sequencing, has 33 

shown that ~80% of S. aureus clinical isolates harbor an average of five to six SAg genes. 34 

There is extensive heterogeneity of SAg gene patterns between S. aureus strains 35 

(Jarraud, Peyrat et al. 2001; Baba, Takeuchi et al. 2002; Becker, Friedrich et al. 2003; 36 

Holtfreter, Bauer et al. 2004). In addition, the S. aureus strains that harbor SAg genes 37 

produce varying levels of the toxins. This can been attributed to the involvement of at 38 

least four global regulators, agr, sarA, σB and saeRS (Tseng, Zhang et al. 2004; Andrey, 39 

Renzoni et al. 2010; Kusch, Hanke et al. 2011). Most SAgs are encoded on MGEs, such as 40 
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bacteriophages, plasmids, SaPIs, and genomic islands (Johns and Khan 1988; Fitzgerald, 1 

Monday et al. 2001; Lindsay and Holden 2006; Ono, Omoe et al. 2008), whereas the 2 

recently described SElX is core genome-encoded (Wilson, Seo et al. 2011) (Table 1).  3 

The mechanism of action of SAgs was discovered by Bernhard Fleischer and Hubert 4 

Schrezenmeier and first described in 1988 (Fleischer and Schrezenmeier 1988). In 5 

contrast to conventional peptide antigens, SAgs activate a large fraction of T 6 

lymphocytes simultaneously. Conventional antigens are taken up by antigen-presenting 7 

cells (APCs) and processed by protease digestion. The resulting antigenic peptides are 8 

bound to major histocompatibility complex (MHC) molecules and displayed on the APC 9 

surface as MHC/peptide complexes. These are recognized by T-cells via the 10 

hypervariable loops of their T-cell receptor (TCR) α and β chains. SAgs can bypass this 11 

highly specific antigen-driven interaction between T-cells and APCs. They directly cross-12 

link certain TCR Vβ domains with conserved structures on MHC class II (MHC II) 13 

molecules expressed on professional APCs. They interact with MHC II by binding to the 14 

α-chain (antigen peptide-dependent or independent) or to a conserved histidine in the 15 

β-domain via a zinc complex (peptide-dependent) (Fraser and Proft 2008).. 16 

Furthermore, each SAg interacts with a defined TCR repertoire determined by the TCR 17 

Vβ sequences. As the human genome encodes approximately 50 TCR Vβ elements, which 18 

are unevenly represented in the T-cell pool of an individual, up to 20% of T cells can be 19 

activated by a given SAg (Proft and Fraser 2003). In contrast, conventional peptide 20 

antigens stimulate only 1 out of 105 to 106 naïve T-cells (Fraser, Arcus et al. 2000). The 21 

Vβ-restricted T-cell expansion is thus the hallmark of SAgs (Kappler, Kotzin et al. 1989; 22 

White, Herman et al. 1989; Choi, Lafferty et al. 1990) with two exceptions: (i) the SAg 23 

SEH also contacts TCR Vα chains (Petersson, Pettersson et al. 2003; Thomas, Dauwalder 24 

et al. 2009) and (ii) the staphylococcal protein A, which is universally expressed by 25 

S. aureus, acts as a B cell SAg targeting B-cell receptors (membrane-anchored 26 

antibodies) which use the immunoglobulin-VH3 gene element (Silverman and Goodyear 27 

2006). In addition, many T-cell SAgs also trigger cytokine release by the APCs, which are 28 

activated via MHC-II engagement (Proft and Fraser 2003). 29 

 30 

4.1 Role of SAgs in staphylococcal virulence 31 

SAgs have been implicated in a broad range of diseases. SEs are the causative agents of 32 

staphylococcal food poisoning resulting from ingestion of contaminated food. Due to 33 

their extraordinary stability in denaturing conditions, such as heat and low pH, SEs are 34 

not completely destroyed by mild cooking or digestion of food in the stomach. Nausea, 35 

emesis, abdominal pain or cramping and diarrhea ensue after a short incubation time. 36 

The disease is usually self-limiting (Thomas, Chou et al. 2007). 37 

Staphylococcal toxic shock syndrome (TSS) is characterized by high fever, rash, 38 

desquamation, vomiting, diarrhea and hypotension, frequently resulting in multiple 39 
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organ failure. In TSS, S. aureus is usually localized, either at mucosal sites (vagina or 1 

nasophryx) or in abscesses (Fraser and Proft 2008), but the released SAgs act 2 

systemically, triggering large numbers of T-cells to produce massive amounts of pro-3 

inflammatory cytokines, such as IL-2, IFN-γ and TNF. This cytokine storm causes the 4 

symptoms (Bergdoll, Crass et al. 1981; McCormick, Yarwood et al. 2001). This is 5 

followed by a state of profound T-cell unresponsiveness or anergy, where the T-cells fail 6 

to proliferate or secrete IL-2 (Rellahan, Jones et al. 1990), or they even undergo cell 7 

death (Alderson, Tough et al. 1995). It has, therefore, been proposed that SAgs might 8 

confer an evolutionary advantage to S. aureus by deleting T-cells that help B-cells to 9 

mount an effective antibody response against the bacteria (Fraser, Arcus et al. 2000). 10 

This view has been challenged by the observation that SAgs themselves are potent 11 

immunogens eliciting an effective and highly specific neutralizing antibody response 12 

(Holtfreter, Roschack et al. 2006; Grumann, Ruotsalainen et al. 2011). 13 

The role of SAgs in other forms of sepsis is less well defined. In animal models, SAgs and 14 

LPS, a major component of the outer membrane of Gram-negative bacteria and highly 15 

potent stimulator of the innate immune system, most effectively synergize in the 16 

induction of lethal shock (Schlievert 1982; Blank, Luz et al. 1997). This observation 17 

prompted the development of the two-hit model of septic shock (Bannan, Visvanathan et 18 

al. 1999), which was later generalized by Holtfreter and Bröker: A first hit by SAgs or 19 

other potent T cell stimuli is potentiated by a second hit by pathogen-associated 20 

molecular patterns (PAMPs), which activate the innate immune system. This sequence of 21 

events culminates in a dramatic, often lethal activation of the whole immune system 22 

(Holtfreter and Broker 2005). The sequence of events varies in the different accounts. 23 

Kawasaki disease is an acute febrile disease in children that resembles TSS. A role for 24 

SAgs has been suggested (Yarwood, Leung et al. 2000). Intravenous immunoglobulin 25 

therapy is highly effective when given early, suggesting that the agent is a toxin that is 26 

neutralized by anti-toxin antibodies contained in pooled human serum. 27 

Finally, a prominent role for SAgs is being discussed in skin and airway allergies. For 28 

atopic dermatitis, a correlation between clinical severity and colonization with SEA- and 29 

SEB-producing S. aureus as well as with IgE specific for SEA and SEB was documented in 30 

one study, but not confirmed in others (Bunikowski, Mielke et al. 1999; Zollner, 31 

Wichelhaus et al. 2000). Bronchial asthma afflicts around 300 million people worldwide, 32 

thus belonging to the most common diseases. In allergic asthma, the triggers are known 33 

inhalative allergens (= allergy-driving antigens), while the causative agents of non-34 

allergic or intrinsic asthma, around 10% of cases, are not known. Intrinsic asthma is 35 

often of late onset (3rd-4th decade of life) and takes a severe disease course, which is 36 

refractory to established treatment strategies. Chronic rhinosinusitis, a pronounced 37 

inflammation of the mucosal tissue of the nose and sinuses, with or without the 38 

development of polyps, is also very frequent and often accompanied by intrinsic asthma. 39 

Since many patients possess high titres of SAg-specific IgE in their serum or locally in 40 
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the polyps, several research groups promote the opinion that allergic reactions to 1 

S. aureus SAgs drive or at least amplify chronic airway inflammation (Gevaert, 2 

Holtappels et al. 2005; Bachert, Zhang et al. 2008; Barnes 2009; Bachert, Zhang et al. 3 

2010; Zhang, Holtappels et al. 2011). 4 

 5 

5. The evolution of the S. aureus toxin gene families 6 

Toxin gene clustering and sequence homologies imply evolution from ancestral genes by 7 

gene duplication and variation. These features are prominent in the families of 8 

leukotoxins, ETs, and SAgs. The enterotoxin gene cluster (egc), discovered on a 9 

staphylococcal genomic island (νSaβ) by the group of Jarraud, is given here as an 10 

example (Jarraud, Peyrat et al. 2001; Letertre, Perelle et al. 2003). Egc SAgs are the most 11 

prevalent SAg genes in commensal and invasive S. aureus isolates, with frequencies 12 

ranging between 46% and 66% in different strain collections (Becker, Friedrich et al. 13 

2004; Fueyo, Mendoza et al. 2005; Holtfreter, Grumann et al. 2007; Monecke, Luedicke 14 

et al. 2009). Most egc-positive S. aureus strains harbor five SAg genes (seg, sei, selm, seln, 15 

and selo) and the pseudogenes ψent1 and ψent2 (Jarraud, Peyrat et al. 2001). The egc is 16 

unusually variable. The S. aureus clonal cluster CC30, for example, harbors an additional 17 

SAg gene, designated selu, a fusion product of ψent1 and ψent2 (Letertre, Perelle et al. 18 

2003; Thomas, Jarraud et al. 2006; Holtfreter, Grumann et al. 2007). Given that the 19 

members of the egc display considerable sequence differences and each of the egc SAgs 20 

shows closest similarity to SAgs encoded outside the egc, Jarraud et al. proposed that the 21 

egc functions as an “enterotoxin gene nursery” (Jarraud, Peyrat et al. 2001).  22 

 23 

6. The phylogenetic distribution and motility of S. aureus toxin genes  24 

MGEs and toxin genes they carry can be disseminated either by vertical transmission to 25 

daughter cells upon cell replication or by horizontal gene transfer. Transduction through 26 

bacteriophages commonly is considered the predominant mechanism for acquisition of 27 

genetic material in S. aureus, whereas DNA transformation (Morikawa, Takemura et al. 28 

2012) and conjugation are assumed to be less relevant (Lindsay and Holden 2006).  29 

Over the past decade, studies based on sequencing a limited number of representative 30 

S. aureus genomes (Lindsay and Holden 2006), comparative genomic hybridization to 31 

microarrays (Monecke, Slickers et al. 2008; McCarthy and Lindsay 2012; McCarthy, 32 

Witney et al. 2012; Shore, Brennan et al. 2012), or dedicated PCR assays (Holtfreter, 33 

Grumann et al. 2007; Masiuk, Kopron et al. 2010) have provided an overview of the 34 

distribution of MGEs and their associated toxin genes in the S. aureus population. An 35 

overwhelming feature of the resulting data is that there exists remarkable variation in 36 

the endowment with MGEs, both within and among clonal complexes (Holtfreter, 37 

Grumann et al. 2007; Monecke, Luedicke et al. 2009; Masiuk, Kopron et al. 2010). It 38 
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further appeared that MGEs and hence the toxin genes they carried were not randomly 1 

distributed between lineages, suggesting restrictions to horizontal transfer (Holtfreter, 2 

Grumann et al. 2007; Monecke, Slickers et al. 2008; Monecke, Luedicke et al. 2009; 3 

Masiuk, Kopron et al. 2010; Shore, Brennan et al. 2012).  4 

Due to their location on different genetic elements (Table 1), individual S. aureus toxin 5 

genes differ greatly in their distribution and horizontal genetic mobility. Some by 6 

definition belong to the core genome because they are present in almost all strains: hla, 7 

the hlg gene cluster, and the psm loci. Most are much more variably distributed, but, 8 

importantly, all are more or less closely linked to the genetic background of S. aureus. 9 

One extreme example is the egc-encoding genomic island νSAβ. Among the dominant 10 

clonal clusters, egc is found in all strains of CC5, CC22, and CC45 as well as in CC25. CC30 11 

and CC121 isolates are characterized by a variant of νSAβ harboring an egc with a 12 

functional selu gene. On the other hand, CC1, CC8, CC15 and CC395 appear to lack egc 13 

completely (Holtfreter, Grumann et al. 2007; Masiuk, Kopron et al. 2010; Grumann, 14 

Ruotsalainen et al. 2011). Other SAgs with strong clonal complex linkage are the SaPI-15 

encoded tst and sec-sell (CC45), or the plasmid-encoded sed, sej andser (CC8). SAg genes 16 

with a broader distribution are the phage-encoded sea, and the SaPI-encoded seb 17 

(Peacock, Moore et al. 2002; Fueyo, Mendoza et al. 2005; Diep, Gill et al. 2006; Lindsay 18 

and Holden 2006; Lindsay, Moore et al. 2006; Holtfreter, Grumann et al. 2007; Monecke, 19 

Berger-Bachi et al. 2007; Monecke, Slickers et al. 2007; Masiuk, Kopron et al. 2010; 20 

Monecke, Coombs et al. 2011). The pore-forming toxin lukFS-PV genes are broadly 21 

distributed among S. aureus clonal lineages with the notable exception of CC45 22 

(Monecke, Slickers et al. 2007; Goerke, Pantucek et al. 2009; Masiuk, Kopron et al. 2010) 23 

and a subclade of CC121, which in turn is associated with eta and/or etb (Masiuk, 24 

Kopron et al. 2010) (our unpublished data). In contrast, etd is rare and characterizes 25 

CC80 MRSA isolates as well as some CC25 strains (Holtfreter, Grumann et al. 2007; 26 

Masiuk, Kopron et al. 2010; Monecke, Coombs et al. 2011). All the studies cited above 27 

were limited, however, by the typing techniques applied (i. e., MLST or spa typing), and 28 

their associated discriminatory power. Because substantial variation of MGE 29 

endowment was observed within the phylogenetic groupings resolved (clonal 30 

complexes, mostly), the dynamics of MGE motility could not be investigated. In contrast, 31 

more recent work has provided novel, quantitative insights into the frequency of MGE 32 

acquisition and loss in S. aureus, based on extended MLST (analysing variation at >100 33 

genetic loci; (Nubel, Roumagnac et al. 2008; Lowder, Guinane et al. 2009; Nubel, Dordel 34 

et al. 2010)) or whole-genome sequencing, respectively (Lindsay and Holden 2006; 35 

Harris, Feil et al. 2010; McAdam, Templeton et al. 2012; Holden, Hsu et al. 2013), applied 36 

to globally representative population samples. In these studies, abundant 37 

polymorphisms were ascertained in the S. aureus core genome, which provided robust, 38 

high-resolution phylogenetic frameworks for each of the populations investigated. One 39 

important discovery borne from these investigations was that S. aureus constitutes 40 

'measurably evolving populations', accumulating detectable genetic variation over 41 
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epidemiological timescales that can be directly observed. Importantly, this feature 1 

enabled the application of coalescence-based methods for dating evolutionary events 2 

and tracking staphylococcal spatial spread on the basis of temporally structured 3 

population samples. Furthermore, the motility of variably present genomic components 4 

could be evaluated in relation to the evolutionary history of the S. aureus core 5 

genome.By mapping the presence of motile genomic components onto core-genome 6 

based phylogenetic trees, multiple events of gene acquisition or loss were identified. 7 

Using the accumulation of SNPs in the core genome for calibration, these genetic events 8 

could be dated and pinpointed to geographic areas in which they likely had 9 

occurredEven though genomic plasticity was not the main focus of any of these recent 10 

studies, warranting further in-depth analyses of the available data, a deepened 11 

understanding of the temporal and spatial scales of MGE motility in S. aureus currently 12 

emerges.  13 

Each of the clonal complexes forms a radiation of multiple phylogenetic sub-lineages 14 

that had not been resolved by MLST, spa typing, or DNA macrorestriction (Nubel, 15 

Roumagnac et al. 2008; Harris, Feil et al. 2010; McAdam, Templeton et al. 2012; Holden, 16 

Hsu et al. 2013). These sub-lineages evolve mostly clonally, as homologous 17 

recombination is extremely rare (Nubel, Roumagnac et al. 2008; Holden, Hsu et al. 2013) 18 

[Castillo-Ramirez 2012; PMID: 23270620]. The most recent common ancestors of 19 

individual sub-lineages date back only few decades (Lowder, Guinane et al. 2009; Harris, 20 

Feil et al. 2010; Nubel, Dordel et al. 2010; McAdam, Templeton et al. 2012; Holden, Hsu 21 

et al. 2013). Notably, sub-lineages are equipped with specific MGEs (and associated 22 

toxin genes). Within a given clonal complex, sub-lineages commonly share several of 23 

their MGEs (e. g., SaPIs and prophages, which may have been acquired prior to the sub-24 

lineage split), but they also show multiple differences (typically, additional prophages, 25 

SCCmec elements, transposons, plasmids) (Nubel, Roumagnac et al. 2008; Holden, Hsu et 26 

al. 2013) (our unpublished work). 27 

A recently published study compared comprehensive accessory genomes derived from 28 

de-novo assemblies of Illumina sequencing reads from 193 S. aureus isolates from CC22 29 

and mapped their components onto a high-resolution phylogeny (Holden, Hsu et al. 30 

2013). This analysis demonstrated the accumulation over time of genetic determinants 31 

for antimicrobial resistance in a hospital-associated sub-lineage of CC22, in response to 32 

selective pressure experienced in a clinical environment. There was also evidence of 33 

occasional loss of resistance genes, prophages, and even entire SaPIs, and one example 34 

of a replacement of an SCCmec element through another, structurally different SCCmec 35 

element. Such events were rare, however, each affecting a small minority of isolates in 36 

the sample, whereas the majority of MGE appeared fully conserved within the sub-37 

lineage (Holden, Hsu et al. 2013). Thus, once acquired, MGE presence in the genome 38 

commonly remained stably maintained throughout sub-lineage evolution (i. e., over 39 

decades), even though some minor structural variation was acquired through 40 

recombination.  41 
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In summary, the acquisition and loss of MGE appears to be a rare event, and horizontal 1 

gene transfer is not as rampant as perhaps may have been anticipated. Differences 2 

between phylogenetic sub-lineages sufficiently explain the gene content variation within 3 

clonal complexes that had been observed in previous studies. After all, the association of 4 

genetic traits with phylogenetic (sub-)lineages is to be expected from a highly clonal 5 

population, provided the genotyping procedure provides sufficient discriminatory 6 

power to resolve such lineages (Turner and Feil 2007)[Kurt et al, PLOS One 2013, in 7 

press]. 8 

The linkage of toxin genes with the genomic background has practical implications for 9 

the epidemiological investigation of S. aureus virulence. In most cases, the contribution 10 

of individual toxin genes to a phenotype of interest cannot be clearly separated from 11 

that of the genomic background at the species level. In order to avoid the erroneous 12 

attribution of pathophysiological effects to S. aureus toxins, these should be studied by 13 

comparing toxin-positive and toxin-negative isolates within a given clonal cluster or 14 

subclade and/or by using multi-factorial approaches. This will optimize the power of 15 

genetic investigations into the mechanisms of S. aureus pathogenesis. 16 

 17 

3. Outlook: Toxins as vaccination targets 18 

Toxins are interesting vaccine candidates because (i) they are dangerous and 19 

significantly contribute to pathogenesis and (ii) their toxic functions can be neutralized 20 

by specific antibodies. In fact, antibody-mediated protection from the effects of S. aureus 21 

toxins has been convincingly demonstrated in humans and in animal models (Holtfreter, 22 

Kolata et al. 2010; Cheung and Otto 2012; Daum and Spellberg 2012; Spellberg and 23 

Daum 2012). However, the extra-ordinary variability of toxins in the pan-genome of 24 

S. aureus constitutes an enormous challenge for the development of broad-spectrum 25 

anti-toxin vaccines. It is highly unlikely that a “one fits all”-strategy can solve the 26 

problem; an effective anti-S. aureus vaccine will contain multiple toxins or toxoids. 27 

Selection criteria should include their role in pathogenesis, their distribution among 28 

S. aureus strains and the degree of natural immunization in the human host population. 29 

In view of the pronounced heterogeneity, even within toxin families, it appears 30 

mandatory to establish in each case where the natural (or induced) human antibody 31 

response is located on a scale ranging from exquisite antigen specificity to broad cross-32 

reactivity with a whole toxin family. Generally, immune selection may drive antigenic 33 

variation, but the impact this could have on toxin gene evolution and diversity in S. 34 

aureus has not been assessed systematically, considering recently accumulated, 35 

abundant genome sequence data.  36 

 37 
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Finally, it must be borne in mind that besides antibodies, T lymphocytes are also 1 

necessary for clinical protection against S. aureus. Hence, any anti-toxin vaccine 2 

approach should be complemented with a strategy to elicit a powerful S. aureus-specific 3 

T cell response (Spellberg and Daum 2012). 4 

 5 

6 
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Table 1: Toxin genes in the S. aureus pan-genome.             

 Toxin genes  References 
Core Genome  
 hla (Bhakdi and Tranum-Jensen 1991) 
 hld (Janzon, Lofdahl et al. 1989) 
 hlg gene cluster (Kaneko and Kamio 2004) 
 psmα, psmβ (Wang, Braughton et al. 2007) 
 selx (Wilson, Seo et al. 2011) 
   
Genomic Islands   
νSaβ  enterotoxin gene cluster (egc): seg, sei, selm, seln, selo, 

(selu, selu2, selv) 
(Baba, Takeuchi et al. 2002; Letertre, Perelle et al. 2003; Thomas, Jarraud et al. 
2006) 

 lukDE  (Baba, Takeuchi et al. 2002; Barrio, Rainard et al. 2006; Lindsay and Holden 
2006) 

νSaγ  etd (Yamaguchi, Nishifuji et al. 2002; Highlander, Hulten et al. 2007) 
   
Plasmids   
pIB485 sed, sej, ser (Bayles and Iandolo 1989; Zhang, Iandolo et al. 1998; Omoe, Hu et al. 2003) 
pF5  sej, ser, ses, set (Omoe, Hu et al. 2003; Ono, Omoe et al. 2008) 
pGSA18 rep32 (pETB) etb (Yamaguchi, Hayashi et al. 2001; McCarthy and Lindsay 2012) 
pGSA11 rep22 (SAP057A) etb (McCarthy and Lindsay 2012) 
   
Staphylococcal Cassette Chromosomes  
SSCmec types II, III, VIII psm-mec (Queck, Khan et al. 2009; Chatterjee, Chen et al. 2011) 
   
Pathogenicity Islands   
SaPIn1 (N315)/ SaPIm1 
(Mu50) (νSa4 type I)   

sell, sec, tst (Novick and Subedi 2007) 

SaPI3 (COL νSa1)  seb, selk, selq (Novick and Subedi 2007) 
SaPImw2  sell, sec (Baba, Takeuchi et al. 2002; Lindsay and Holden 2006) 
   
Bacteriophages    
ɸSa1  lukFM (φPV83) (Choorit, Kaneko et al. 1995; Zou, Kaneko et al. 2000; Kaneko and Kamio 2004; 

McCarthy, Witney et al. 2012) 
 eta (φETA) (Yamaguchi, Hayashi et al. 2000; Kuroda, Ohta et al. 2001; McCarthy, Witney et al. 

2012) 
ɸSa2 lukFS-PV  (Kaneko, Kimura et al. 1998; Narita, Kaneko et al. 2001; Baba, Takeuchi et al. 
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2002) 
ɸSa3 sea; selp; sea, selq, selk (Baba, Takeuchi et al. 2002; McCarthy, Witney et al. 2012)  

 
 
 

Table 2: Leukotoxins. 

Leukotoxins 
Componentsa 

Localisation Prevalenceb Cell specificity 
Class F subunit Class S subunit 

Hemolysin-γ (Hlg) HlgB (Hlg1, LukF) HlgA (Hlg2) 
hlg gene cluster; 
genome 

~99% 

erythrocytes from humans and other mammalian 
species 

Hemolysing-γ2 (Hlg2)/ 
Leukocidin (Luk) 

HlgB (Hlg1, LukF) HlgC (LukS) human and rabbit PMN and rabbit erythrocytes 

Panton-Valentine 
Leukocidin (PVL) 

LukF-PV LukS-PV pvl locus; phage 0-5% human and rabbit PMN 

LukDE LukD LukE 
pathogenicity 
island 

30-87% murine and rabbit PMN 

LukF’M  LukF’-PV LukM phage 0% bovine PMN 
LukGH (LukAB) LukG (LukB) LukH (LukA) n.d. n.d. human PMN 
aSynonyms are indicated in brackets. 
bPrevalence in clinical S.  aureus isolates from humans. 
References: (Choorit, Kaneko et al. 1995; Gravet, Couppie et al. 2001; Kaneko and Kamio 2004; von Eiff, Friedrich et al. 2004; Ventura, Malachowa et al. 2010; Dumont, 
Nygaard et al. 2011; Alonzo, Benson et al. 2012; Rigby and DeLeo 2012; Vandenesch, Lina et al. 2012) 
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