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Abstract

Background: Assessing the mortality impact of the 2009 influenza A H1N1 virus (H1N1pdm09) is essential for optimizing
public health responses to future pandemics. The World Health Organization reported 18,631 laboratory-confirmed
pandemic deaths, but the total pandemic mortality burden was substantially higher. We estimated the 2009 pandemic
mortality burden through statistical modeling of mortality data from multiple countries.

Methods and Findings: We obtained weekly virology and underlying cause-of-death mortality time series for 2005–2009 for
20 countries covering ,35% of the world population. We applied a multivariate linear regression model to estimate
pandemic respiratory mortality in each collaborating country. We then used these results plus ten country indicators in a
multiple imputation model to project the mortality burden in all world countries. Between 123,000 and 203,000 pandemic
respiratory deaths were estimated globally for the last 9 mo of 2009. The majority (62%–85%) were attributed to persons
under 65 y of age. We observed a striking regional heterogeneity, with almost 20-fold higher mortality in some countries in
the Americas than in Europe. The model attributed 148,000–249,000 respiratory deaths to influenza in an average pre-
pandemic season, with only 19% in persons ,65 y. Limitations include lack of representation of low-income countries
among single-country estimates and an inability to study subsequent pandemic waves (2010–2012).

Conclusions: We estimate that 2009 global pandemic respiratory mortality was ,10-fold higher than the World Health
Organization’s laboratory-confirmed mortality count. Although the pandemic mortality estimate was similar in magnitude
to that of seasonal influenza, a marked shift toward mortality among persons ,65 y of age occurred, so that many more
life-years were lost. The burden varied greatly among countries, corroborating early reports of far greater pandemic severity
in the Americas than in Australia, New Zealand, and Europe. A collaborative network to collect and analyze mortality and
hospitalization surveillance data is needed to rapidly establish the severity of future pandemics.
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Introduction

Recurring seasonal influenza epidemics impose a moderate, if

variable, mortality burden every year. But when a new human-

transmissible influenza virus emerges, the ensuing pandemic can

be catastrophic; the 1918 Spanish influenza pandemic, for

example, killed approximately 1%–2% of the global population.

Understanding the global mortality impact of pandemic influen-

za—who died, where, and when—is fundamental to understand-

ing how pandemics emerge and evolve, and will help to guide

responses to future pandemics. And because so few pandemics

have occurred in the modern era, it is essential that each one be

studied thoroughly—even if, as was the case with the 2009

influenza A H1N1 pandemic (H1N1pdm09), the catastrophe

failed to appear.

As of 31 August 2010 the World Health Organization (WHO)

received reports of 18,449 laboratory-confirmed deaths from

H1N1pdm09 infection [1]. This modest number has caused many

to wonder what all the excitement was about, and some to

question whether the pandemic response was excessive [2,3]. But

what is not widely appreciated is that the laboratory-confirmed

total greatly underestimates the mortality burden, because only a

minority of influenza-related deaths are ever definitively diagnosed

as such. Additional influenza deaths result from secondary

bacterial infections and exacerbation of preexisting chronic

conditions, but are not recorded as being in any way related to

influenza infection.

Statistical methods are therefore used to separate the influenza-

attributable fraction of deaths from the background [4,5]. These

methods involve modeling seasonal cyclical patterns in mortality

time series compiled from vital statistics, often coupled with viral

surveillance data to provide information on the timing of influenza

circulation. Vital statistics data usually contain information about

cause of death, allowing researchers to estimate influenza-

attributable ‘‘excess’’ deaths in broad categories such as pneumo-

nia, respiratory, or cardiorespiratory deaths during influenza

periods. The influenza-related excess in respiratory deaths can be

measured with higher precision than the less specific all-cause and

cardiorespiratory categories. However, because some deaths

triggered by influenza are recorded as having been caused by

underlying non-respiratory causes such as heart attack, stroke,

diabetes, or chronic kidney conditions, analysis of the broader

cardiorespiratory and all-cause categories typically captures more

completely the influenza-related burden.

The majority of deaths from seasonal influenza occur among

people aged 65 y or older, but in a pandemic the proportion of

deaths among the young increases [4,6–8]. Single-country studies

of H1N1pdm09 mortality, using various cause-of-death outcomes

and modeling techniques [9–14], have repeatedly documented

such an age shift. For example, a comprehensive hospital-based

sentinel surveillance study by Liang and colleagues found that in

China only 4% of cases, 8% of hospitalizations, and 23% of

pandemic deaths occurred in persons over 50 y of age [15]. On a

global level, Van Kerkhove et al. reported a median age of 46 y

among fatal laboratory-confirmed cases [16]. McCallum et al.

reported that in the Western Pacific region during 2009, only 1%

of laboratory-confirmed cases and 13% of laboratory-confirmed

deaths were among persons 65 y of age or older [17].

The Global Pandemic Mortality (GLaMOR) project aimed to

make a conservative estimate of the global H1N1pdm09 mortality

burden in 2009 using statistical models applied to mortality,

virology, and other available data. The project was funded by

WHO, which requested global and regional estimates of

H1N1pdm09 influenza deaths for the year 2009; thus, all

mentions of pandemic flu mortality refer specifically to deaths

that occurred in the last 9 mo of 2009. We invited global

collaborators to contribute national mortality data detailed by

week, age, and cause of death for 2005 through 2009, at

minimum.

Our novel method was inspired by a study that estimated the

1918–1920 global pandemic mortality burden using a two-stage

statistical approach [18]. In Stage 1, we used detailed time series of

national mortality and virology data from collaborating teams to

estimate the 2009 pandemic respiratory mortality in each

collaborating country/administrative region. Each participating

GLaMOR team included influenza experts with whom the core

GLaMOR team discussed Stage 1 mortality estimates in detail.

The Stage 1 model and results were made available to each

collaborating team to encourage individual country publications of

national burden estimates. In Stage 2, we used a hierarchical

multiple imputation model that used geographical, economic, and

health country indicators to project the Stage 1 single-country

estimates to all world countries, and summed to obtain regional

and world estimates (Figure S2) .

A previous study of global H1N1pdm09 mortality, published in

2012 by Dawood et al. [19], was conducted before 2009 mortality

data became available. To overcome that problem, these authors

implemented a probability model that took into account symp-

tomatic attack rates and case fatality ratios measured in a set of

wealthier countries, then used a ‘‘respiratory mortality multiplier’’

based on pre-2009 data to adjust for differences in respiratory

disease fatality rates in different parts of the world. In contrast, we

used national vital statistics data for 2009 to measure the actual

pandemic mortality and its age patterns in countries representing

,35% of the global population, then estimated the burden in the

remaining countries using a novel projection method. As a result,

while our global burden estimate is comparable to that of Dawood

et al. [19], the regional pattern we found, with the Americas hit

hard and Europe largely spared, corresponds more closely to what

was reported as the pandemic unfolded. In addition, our method

simultaneously generates pre-pandemic global seasonal influenza

mortality estimates that we have presented here for comparison.

Methods

Data Sources and Preparation
We obtained weekly virology data from the WHO FluNet [20]

to identify influenza active periods (some collaborators provided

more detailed virology data). We created 3-wk moving averages of

these data with a lag of 1 wk, to achieve the clinically observed lag

of 1 wk from disease onset to death. We inspected the data for

weeks in which the reported count dropped dramatically

coincident with a major holiday; in three cases (Spain, Mexico,

and Japan) we replaced the reported number with the average of

positive counts in the two surrounding weeks. In most cases we

encountered insufficient subtyping of influenza A viruses. Age-

specific virology data were not available.

We requested weekly national mortality time series based on the

‘‘underlying’’ cause-of-death determination from 1 January 2005

to 31 December 2009, stratified by at least two age groups (,65

and $65 y) and by four International Classification of Diseases–10

(ICD-10)–coded outcomes: all causes, cardiorespiratory (J and I

codes), respiratory (J codes), and pneumonia and influenza (codes

J10–J18) (Table 1). Contributing countries/administrative zones

represented ,35% of the global population. To prepare the time

series mortality data for modeling, we created 3-wk moving

2009 H1N1pdm Global Influenza Pandemic Mortality
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averages after removing data in affected countries from summer

weeks with a documented heat wave or armed conflict with

significant mortality. We de-trended the time series using a spline

factor modeled from summer periods. The exclusions and summer

periods are given in Table 2. We obtained age distribution data for

H1N1pdm09 laboratory-confirmed deaths from collaborators in a

subset of GLaMOR countries. Because of concerns about sharing

data, collaborators in the UK and China ran the GLaMOR SAS

code on their own data. As only aggregate (de-identified) national

summary mortality data were used in this study, it was exempt

from human subjects regulations.

When choosing which outcome to use as our primary estimate

of mortality, we had to make a trade-off between sensitivity and

specificity while maintaining sufficient precision. Modeling all-

cause mortality data would by definition ensure that all deaths are

captured (100% sensitivity), but would sacrifice specificity and

therefore precision. At the other extreme, pneumonia and

influenza (P&I) is a specific influenza outcome but captures only

a fraction of total pandemic deaths.

After much deliberation and advice from the Ad Hoc Advisory

Committee on H1N1pdm09 Mortality Estimates [21], we focused

on respiratory deaths in order to provide a minimum estimate of

pandemic mortality burden with reasonable confidence limits.

This was necessary as we had found that it was difficult to tease out

any influenza-attributable increase in all-cause mortality in most

countries.

Table 1. Participating countries for which GLaMOR estimated all-cause, cardiorespiratory, or respiratory pandemic-associated
mortality (Stage 1) or which were used to evaluate performance of global projection methods (Stage 2).

WHO Region (Number of
Countries) Country Income Levela Data Years Outcomeb Detailc Virology Source

Percent World
Population

Countries for which GLaMOR made all-cause, cardiorespiratory, or respiratory Stage 1 estimates

Africa (1) South Africa Upper middle 2003–2009 AC,CR,R Monthly FluNet 0.7

Eastern Mediterranean (0)

Europe (9) Denmark High 1998–2009 AC Weekly FluNet 0.1

Israel High 2004–2009 AC,CR,Rd Weekly Israel 0.1

France High 1998–2009 AC,CR,R Weekly FluNet 0.9

Germany High 1998–2009 AC,CR,R Weekly Germany 1.3

Poland Upper middle 2003–2009 AC,CR,R Weekly FluNet 0.4

Romania Upper middle 2005–2009 AC,CR,R Weekly EuroFlu 0.3

Slovenia High 2003–2009 AC,CR,R Weekly FluNet 0.1

Spain High 2000–2009 AC,CR,R Weekly Spain 0.7

UK High 2000–2009 AC,CR,R Weekly UK 0.9

Americas (4) Argentina Upper middle 2001–2009 AC,CR,R Monthly FluNet 0.6

Chile Upper middle 2002–2009 AC,CR,R Weekly FluNet 0.2

Mexico Upper middle 2000–2009 AC,CR,R Weekly FluNet 1.6

US High 2000–2009 AC,CR,R Weekly FluNet 4.6

South-East Asia (0)

Western Pacific (7) Australia High 2003–2009 AC,CR,R Weekly FluNet 0.3

Chinae Lower middle 2004–2009 AC,CR,R Weekly China 19.5

Hong Kong High 1999–2009 AC,CR,R Weekly Hong Kong 0.1

Japan High 1998–2009 AC,CR,R Weekly FluNet 1.9

New Zealand High 2000–2009 AC,CR,R Weekly FluNet 0.1

Republic of Korea High 2003–2009 CR,R Weekly FluNet 0.7

Singapore High 2007–2009 CR,R Weekly Singapore, FluNet 0.1

Validation countries to evaluate performance of Stage 2 projection methods

Americas (3) Brazil Upper middle NA R Weekly NA 2.8

Canada High NA R Weekly Canada 0.5

Peru Upper middle NA R Monthly Peru 0.4

Europe (1) Netherlandsf High NA R Weekly Netherlands 0.2

South-East Asia (1) Bangladeshg Low NA R NA Bangladesh 2.1

aIncome level in 2009 [28].
bUnderlying cause of mortality: AC, all cause; CR, cardiorespiratory (ICD-10 I and J codes); R, respiratory (ICD-10 J codes).
cStandard request was for age groupings: 0–4, 5–14, 15–44, 45–64, 65–84, and $85 y of age.
dDid not include influenza with pneumonia.
eData from multiple surveillance settings representing rural and urban areas across China [14].
fRespiratory mortality estimated by Netherlands team based on estimated all-cause pandemic mortality [13].
gRespiratory mortality estimated by Bangladesh team using a novel method combining virology surveillance and verbal autopsy data [45].
NA, not available.
doi:10.1371/journal.pmed.1001558.t001
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Stage 1: Single-Country Pandemic Mortality Estimates
We developed a multivariate linear regression model of influenza

burden based on correlations between laboratory surveillance and

national mortality data [22–25]. The model included virology

surveillance time series data, as well as terms for linear, square,

cubic, and cyclical secular trends. We applied the same model form

to each country. Where possible, the analysis was performed for four

different mortality outcomes: all-cause deaths, respiratory and

cardiovascular deaths, respiratory deaths, and deaths due to

pneumonia and influenza. Data collection was carried out between

1 July 2011 and 31 March 2012. Stage 1 estimates were comparable

in that we used standard ICD-10 definitions of mortality outcomes

for each cause and applied the same multivariable linear regression

model. We made estimates of respiratory and cardiorespiratory

mortality for 20 countries, and estimates of all-cause mortality for 19

countries. Only estimates made with the GLaMOR model were

used in the Stage 2 projections.

The GLaMOR Stage 1 model form was:

Outcome tð Þ~b0zb1tzb2t2zb3t3zb4sin 2pt=52ð Þ

zb5cos 2pt=52ð Þzb6sin 2pt=26ð Þ

zb7cos 2pt=26ð Þzb8 influenza B t½ �ð Þ

zb9 pH1N1 t½ �ð Þzb s1ð Þ influenza A s1½ � t½ �ð Þ

z . . . zb snð Þ influenza A sn½ � t½ �ð Þzet

ð1Þ

where t is the running week variable, and the linear and

polynomial terms track remaining secular trends. The cyclical

terms (as whole- and half-year cycles) tracked seasonal mortality

patterns from other respiratory pathogens and factors such as

temperature and relative humidity. Each influenza A season had

its own variable, which we set to 0 in all other seasons. This way,

case fatality in individual seasons is allowed to vary. Models of this

type usually use separate terms for influenza A subtypes because

the mortality burden of H3N2 is known to be far greater than that

of seasonal H1N1; however, because adequate subtyped labora-

tory surveillance data were not available from many Stage 1

countries, we instead introduced into the model separate influenza

A terms for each season. Collaborators supplied data for a variable

number of seasons (s1 to sn), with b(s1) to b(sn) the respective

coefficients. Most collaborators supplied five seasons; thus, the

model had ,14 explanatory factors and ,250 observed data

points for most countries. The H1N1pdm09 season was defined as

the weeks beginning 5 April through 27 December 2009, inclusive.

For Hong Kong, Japan, and South Africa, where H3N2 co-

circulated with the pandemic virus, we included separate time

series of H1N1pdm09 and H3N2 samples during the pandemic

period. We did not remove nonsignificant terms from the model.

Because of a lack of respiratory syncytial virus virology data, we

did not control for respiratory syncytial virus co-circulation.

We computed the pandemic attributions as the sums of the

products of the pandemic model parameter b9 multiplied by the

H1N1pdm09 positive count. When negative parameter values

were obtained, mortality burden estimates were set to zero (as

negative burden is not biologically meaningful). The confidence

intervals were derived from uncertainty on the pandemic model

parameter estimate b9. We determined the Stage 1 95%

Table 2. Stage 1 customizations and all-ages model fit for 20 GLaMOR participating countries.

Country Exclusions
Summer Definition (Week
Numbers)

Secular Model
Fit (R2) Full Model Fit (R2)

Pandemic
Parameter p-Value

Argentina None 1–10,45–52 0.8290 0.9301 ,0.0001

Australia None 1–18,46–52 0.8657 0.9098 0.1206

Chile None 1–17,42–52 0.7032 0.9128 ,0.0001

China None — — — ,0.0001

France Heat wavess May–Sep 0.6989 0.8830 0.3836

Germany Heat wavess 19–45 0.6684 0.9196 0.2918

Hong Kong None None 0.6098 0.7266 ,0.0001

Israel 2006 Lebanese war 15–42 0.6832 0.9246 0.2718

Japan None 27–40 0.7926 0.8813 0.0527

Mexico None Jun–Aug 0.7497 0.8500 ,0.0001

New Zealand None 1–19,43–52 0.7122 0.8320 0.0176

Poland None 18–41 0.7096 0.8660 0.1634

Republic of Korea None 23–43 0.6739 0.8320 0.0749

Romania None 19–45 0.8047 0.8738 0.0054

Singapore None None 0.5306 0.6676 0.3705

Slovenia None 17–44 0.5101 0.7270 0.4362

South Africa None 1–14,39–52 0.8193 0.9254 ,0.0001

Spain Heat wavesa 21–39 0.6640 0.8973 0.8243

UK None NA 0.7190 0.8756 0.1505

US None 23–39 0.8086 0.9408 ,0.0001

aEurope experienced severe heat waves in 2003 and 2006; hence, summer weeks with elevated mortality were excluded.
NA, not available.
doi:10.1371/journal.pmed.1001558.t002
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confidence intervals from the standard error on the H1N1pdm09

parameter estimate. We did not address autocorrelation in the

residuals, and therefore the confidence intervals are narrow. We

evaluated the model fit by three criteria: (1) the adjusted R2 for

the full model, (2) the ‘‘lift’’ achieved by adding the virology terms

to a base model of only secular and cyclical terms, and (3) the

significance of the pandemic term b9 in the model. We used SAS

9.2 for all Stage 1 analyses.

Choosing among Four Stage 2 Global Projection
Strategies

We explored four strategies to project our single-country

estimates to the rest of the world before settling on multiple

imputation, a Monte Carlo method that imputes values to missing

data points and is often used to supply missing values in survey and

census data [26].

1. Survey method. The survey method was a direct

extrapolation of the average Stage 1 pandemic mortality rates

using bootstrapping, in which the average excess mortality rate

and upper and lower 95% confidence levels were used to calculate

the global numbers and rates of pandemic deaths by age group

and WHO region.

The limitation of this method is that it assumes that the average

pandemic mortality experience in the Stage 1 countries is

representative of the experience in all countries, and gives only a

global estimate (no country- or region-specific estimates).

2. Gross national income/latitude method. The gross

national income (GNI)/latitude method was derived from the

method Murray et al. employed to estimate the 1918 global

pandemic burden [18]. Influenza-attributable mortality was based

on the relationship between measured pandemic mortality and per

capita GNI and geographical latitude. Ordinary least squares

regression models were used to relate the Stage 1 estimates to GNI

and absolute latitude after natural logarithmic transformation of

GNI and the dependent variable. The relationship was then used

to estimate mortality in all world countries.

The limitation of this method is that the model assumes that

GNI and latitude are sufficient proxies for the many variables that

influence influenza mortality, and that mortality and the reasons

for its variability in Stage 1 countries are representative for all

countries. Importantly, there was an assumption that the

relationship between GNI and excess mortality is exponential, so

that the method yields very high mortality rates for low-income

countries (e.g., countries in Africa).

3. Matching method. The matching method was devised by

the GLaMOR team. It obtains the missing data points by

matching (as closely as possible) Stage 1 countries to non–Stage 1

countries based on a set of country indicators. It involves two steps:

(1) a data creation step using the matching approach, and (2) a

data analysis step where a hierarchical linear random effects model

is used to provide a single estimate for each country.

The data creation step involves calculation of multiple estimates

per country based on the indicators listed in Table 3. We chose

these indicators because they could reasonably be expected to

affect pandemic mortality and were available for all countries in

the world from public domain sources [27–30]. WHO region and

latitude reflect the differing epidemiology of seasonal influenza in

the differing regions of the world. Age group all-cause mortality

rates, population density, physician density, and rural population

percent reflect both the access to health care and the likelihood of

influenza transmission. Population age structure reflects the

documented age-related impact of influenza virus infections. The

prevalence of comorbidities (i.e., obesity, HIV, and tuberculosis) is

likely to be correlated with a greater probability of a severe

outcome of influenza infection. The mortality estimates in the

Stage 1 countries were examined and matched, for each indicator,

to countries in which the mortality was not known.

Figure 1 illustrates the matching procedure for an example

country (Country Y) and three example indicators.

The data analysis step of the matching method is similar to that

of the multiple imputation method (below), with the same

hierarchical linear random effects model but with the imputed

datasets replaced by the matched datasets.

4. Multiple imputation method. We chose this method to

make our Stage 2 extrapolations. Like the matching method, the

multiple imputation method involves two steps, a data creation

step followed by a hierarchical regression modeling step to project

the burden in all world countries.

In the data creation step, we used statistical correlations

between the same set of country indicators that we used in the

matching method (Table 3) and all the Stage 1 mortality estimates

to create a distribution of possible mortality values for each

unknown country in the world. We then chose a random sample of

20 possible values from each country’s distribution for further

analysis. Because each Stage 1 point estimate was associated with

uncertainty, we repeated the data creation step for each of the

Stage 1 lower and upper 95% CI bounds. Thus, the final analysis

dataset contained 60 estimates per country.

In the analysis step, we applied a hierarchical linear random

effects regression model [31] to the final dataset to generate a point

estimate (with standard error) for each country [32,33]. We

calculated the Stage 2 mortality rates (and their confidence intervals)

simultaneously (i.e., in one model) for each country, each region,

and the entire globe. The procedure was undertaken for persons of

all ages and separately for persons ,65 y. The model used was

Yij~b0z
X6

r~1

brXz
Xn

f ~1

bf Xzmjz
Xn

f ~1

ef ð2Þ

where

Y = imputed individual rate

i = individual measurement

j = country (1 … 197)

mj = between-country variance; mj,N(0, t2
j )

ef = error variance for factor/imputed dataset, normally distrib-

uted; mf,N(0, t2
f )

r = WHO region (1 … 7); coding (r = 1…6), ([0,1]21)/6; r = 7,

countries not belonging to a region (1 if r = 7, else 0)

f = imputed datasets (1 … 20); coding ([0,1]21)/n; n = number

of factors or datasets

Estimated rates were then given by:

World = b0

WHO region = b0+br

Country = b0+br+mj

Statistical 95% confidence intervals for these estimates were

calculated using standard methods. We performed the imputation

procedures with the Amelia II software package [34], and used the

MLwiN version 2.1 package for the analysis model [35].

We evaluated the performance of each of the four candidate

Stage 2 methods. We rejected the survey method because the

results could not show regional variation, a major disadvantage

given that the Stage 1 results showed considerable variation

among the regions. We rejected the GNI/latitude method for two

reasons. First, the estimates for our validation countries did not

match the validation estimates the method produced (Table 4).

Second, GNI and latitude did not result in statistically significant

coefficients.

2009 H1N1pdm Global Influenza Pandemic Mortality
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Choosing between Matching and Multiple Imputation
After eliminating the first two methods, only the matching and

the multiple imputation methods remained. We first compared the

multiple imputation and matching data creation steps for a single

country in each WHO region. The results (Figure 2) demonstrate

that each method produces a range of values and provides an

indication of the uncertainty of the actual value. We then applied

the following validation criteria to choose between the two.
1. Reliability coefficients. Reliability, or internal consis-

tency, is an important consideration. The reliability coefficient

ranges from 0 to 1 (zero indicates no systematic effect) [36]. A

value of 0.8 or higher indicates good (high) reliability. For the

multiple imputation method the reliability coefficient for

respiratory mortality was 0.78 for all ages and 0.87 for people

,65 y. For the matching method the corresponding values were

0.94 and 0.96, respectively. It is important to realize, however,

that this indicates only that both models had sufficient

information to capture the country differences in a statistically

reliable way, with no indication that one method performed

better than the other.

2. Stage 1 versus Stage 2 estimates. We assessed the

difference between the Stage 2 single-country estimates obtained

with the matching and multiple imputation methods and the

original Stage 1 estimates. The differences, expressed as standard

deviations, were smaller for the multiple imputation method.

3. Lab-confirmed deaths as a minimum ground

truth. We compared the Stage 2 estimates to country reports

of the number of laboratory-confirmed H1N1pdm09 deaths

(Table S1; data available for 67 countries until 31 December

2009). The GLaMOR estimates should logically be higher than

the total number of laboratory-confirmed deaths in each country.

Both models performed well, and the test indicated that both

models had sufficient information to capture differences between

countries in a statistically reliable way.

Figure 1. Schematic illustration of the matching method based on country indicators. BMI, body mass index; Resp. disease, respiratory
disease.
doi:10.1371/journal.pmed.1001558.g001
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4. Distribution of the predicted Stage 2 estimates. We

compared the highest and lowest 20% of national estimates (both

for all ages and for persons ,65 y of age) derived from the

multiple imputation and matching methods. For all ages, the

matching method distributes the highest burden over Africa and

the Americas, with 88% of the countries in the highest quintile in

the Americas and 18% in Africa. The multiple imputation method

distributes the highest burden not only over the Americas and

Africa, but also over South-East Asia. As we have no Stage 1

estimates for South-East-Asia and only one for Africa, we cannot

be sure which method is better, and this test was inconclusive.

5. Comparison to five GLaMOR validation estimates. Five

of the 26 Stage 1 countries (Bangladesh, Brazil, Canada, Peru, and

the Netherlands) could not be analyzed with the GLaMOR Stage 1

model for various reasons. Country collaborators in Bangladesh and

Canada had each generated estimates using their own methods, as

national vital statistics could not be provided. For Brazil and Peru the

virological data did not align with pneumonia pandemic mortality

spikes (see also Schuck-Paim et al. [12]); instead we applied a classical

Serfling model to regional data, which does not require virology data

(similar to the approach used by Charu et al. [9]). For the

Netherlands, the GLaMOR H1N1pdm09 estimates were substan-

tially lower than those generated by the country collaborators [13].

We ran both their and our model on respiratory mortality data and

found that the GLaMOR estimates were negative for the elderly, and

that the upper 95% confidence interval on the all-age estimate

excluded the number of laboratory-confirmed deaths. However, the

Dutch model placed most H1N1pdm09 deaths in seniors ($65 y),

which was in disagreement with the age distribution in the Dutch

laboratory-confirmed mortality data. Unable to reconcile these

discrepancies, we accepted the country collaborators’ preference for

their own model results. These five country estimates (based on

alternative modeling strategies) were used only to validate the Stage 2

projections. The multiple imputation method estimates were more

often closer to the independent national estimates than the matching

method estimates were (Table 4).

Multiple Imputation Method Chosen
The validation tests for the most part yielded only small differences

between the multiple imputation and matching methods. We selected

the multiple imputation method because it produced estimates that

were more consistent with those generated by country collaborators

in the five GLaMOR validation countries than the estimates

produced by the matching method, and because multiple imputation

is an established method while the matching method was one we

developed. The choice of multiple imputation had two important

consequences: it resulted in systematically higher country mortality

rates compared to the matching method, and it placed a higher

burden in people aged 65 y and over, especially in Asia and Africa.

Global Seasonal Burden Estimates
We computed the average global seasonal influenza burden

(type A plus type B) for the years immediately prior to the

pandemic. Specifically, we calculated the average pre-pandemic

seasonal influenza mortality for each Stage 1 country using model

parameter values from each pre-pandemic season, then projected

these estimates to global and regional values using our Stage 2

multiple imputation procedure (Table S4). The number of pre-

pandemic seasons available to us from each country was variable,

and we made no attempt to control for differences in influenza

type or subtype dominance.

Calculating All-Age Mortality
Because of large background mortality in the elderly, it was

difficult to measure all-age influenza-related mortality with

precision in lower-burden countries. For example, in some

European countries the H1N1pdm09 mortality impact was so

subtle that the model applied to all-age time series produced a

Figure 2. Output of the data creation phase for multiple
imputation and matching for one randomly selected country
per region. Eastern Med, Eastern Mediterranean; Imp, multiple
imputation method; Match, matching method.
doi:10.1371/journal.pmed.1001558.g002

Table 3. Country indicators used as factors in the Stage 2 model that projects the measured Stage 1 pandemic and seasonal
influenza mortality estimates to global and regional estimates.

Indicator Number Indicator

1 WHO region (Africa, the Americas, Eastern Mediterranean, Europe, South-East Asia, Western Pacific)

2 Age group all-cause mortality rates (0–14, 15–59, 60+ y) [29]

3 Physician density (per 10,000 population) [27]

4 Obesity (percent with body mass index .30 kg/m2) [27]

5 Population density (per km2) [28]

6 Major infectious diseases (percent HIV and percent tuberculosis prevalence) [28]

7 GNI per capita (US dollars) [27]

8 Rural population (percent) [28]

9 Population age structure: percent ,15 y and .60 y [29]

10 Latitude (absolute value) [30]

doi:10.1371/journal.pmed.1001558.t003
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negative point estimate for the H1N1pdm09 burden, with

confidence intervals that at times excluded the ‘‘ground truth’’

minimum of the reported number of laboratory-confirmed

H1N1pdm09 deaths from that country. Modeling the data for

the ,65-y age group, however, almost always resulted in estimated

H1N1pdm09 mortality rates that were comparable to, or far

higher than, the laboratory-confirmed mortality count.

We therefore elected to generate Stage 2 all-age burden

projections in two ways: one based on Stage 2 all-age estimates,

and the other based on the ,65-y Stage 2 estimates, which we

proportionally projected to all ages using data from laboratory

surveillance indicating that 85% of confirmed H1N1pdm09 deaths

occurred in the younger group (Table S1).

Sensitivity Analysis
We investigated the sensitivity of our global Stage 2 burden

estimates to changes in the Stage 1 sample by successively

removing one Stage 1 country from the Stage 2 input dataset and

rerunning the Stage 2 model. Because the range from this analysis

was always wider than the 95% confidence intervals derived from

the Stage 1 and 2 statistical procedures, we chose to report this

range as a more realistic view of the uncertainty (see Table 5; the

statistical 95% CIs can be found in Tables S2 and S3).

Results

Stage 1 Findings
The GLaMOR Stage 1 countries experienced one to three

pandemic waves during 2009. Most H1N1pdm09 deaths occurred

in winter months: November–December in the northern hemi-

sphere and July–August in the southern hemisphere. Several Asian

countries experienced an H3N2 epidemic in the months imme-

diately before their major H1N1pdm09 wave.

Figure 3 shows Stage 1 country H1N1pdm09 mortality rates per

100,000 population with 95% confidence intervals. The model fit

(adjusted R2) for Stage 1 respiratory mortality estimates among

people ,65 y was generally excellent (80%–90%), and the ‘‘lift’’

upon introducing the influenza virus explanatory components into

the base secular model was substantial (Table 2). The pandemic

burden varied considerably between countries. For countries

where the burden was high, the Stage 1 model could easily

separate the pandemic signal from the background noise. But

where the burden was low, the H1N1pdm09 mortality point

estimates became unreliable.

The various outcomes and age stratifications each provided a

different balance between sensitivity and specificity. In high-

burden countries such as Mexico and Argentina, the pandemic

impact could be modeled with precision even for all-age time series

of all-cause and cardiorespiratory mortality outcomes, as evi-

denced by tight 95% confidence intervals and agreement with a

published Mexico study using a different Serfling regression

modeling approach [9]. But in lower-burden countries, such as

France and Germany, we could estimate a significant

H1N1pdm09 mortality attribution only in persons ,65 y and

for respiratory deaths; Figure 4 illustrates the burdens in Mexico

and France. Furthermore, for multiple countries we could not

obtain a good model fit for finer age groups (e.g., ,5, 5–14, 15–

44, and 45–64 y) because of the small and fluctuating numbers of

weekly deaths. We therefore chose to focus the global analysis on

respiratory mortality among persons ,65 y and $65 y, summing

these point estimates to arrive at the all-age estimates.

Overall, Stage 1 respiratory mortality rates were consistently

higher in the Americas, with the highest measurements in Central

and South American countries. South Africa’s pandemic burden

was moderate and on par with that of the US and China,

suggesting that Africa may have experienced a lower pandemic

burden than Central and South America. In Europe, the

pandemic burden was generally low and on par with national

numbers of laboratory-confirmed H1N1pdm09 deaths. Spain,

France, and Germany averaged a rate of just 0.3/100,000, while

Romania, the lowest-income European country included in this

study, felt an approximately 6-fold greater impact. In South and

Table 4. External validation of GLaMOR Stage 2 projections for pandemic respiratory deaths, comparing GLaMOR Stage 2
projections for each projection method to five single-entity estimates made by collaborators using methods other than the
GLaMOR regression model.

Country Source Estimate 95% CI Projection Method

Matching
Multiple
Imputation GNI/Latitude Survey

All ages

Bangladesh Verbal autopsy [45] 4.0 NA 2.1 4.0* 0.4 2.0

Brazil GLaMOR; Serfling 4.3 NA 2.8 3.5* 0.1 2.0

Canada Lab-confirmed deaths [53] 2.1 1.6–2.6 1.8* 3.1 1.0 2.0

Netherlands Poisson regression [13] 0.9 0.3–1.5 0.9* 0.9* 0.7 2.0

Peru GLaMOR; Serfling 6.8 NA 2.5 3.6* 0.1 2.0

Under 65 y

Bangladesh Verbal autopsy [45] 3.0 1.6–3 1.2 1.8* 2.6 1.2

Brazil GLaMOR; Serfling 3.1 NA 2.0 2.5* 0.6 1.2

Canada Lab-confirmed deaths [53] 1.1 0.9–1.3 1.1* 2.0 0.7 1.2

Netherlands Poisson regression [13] 0.2 0.2–0.4 0.5* 0.9 0.6 1.2

Peru GLaMOR; Serfling 5.2 NA 1.4 2.5* 0.5 1.2

The asterisk indicates for each country and category which of the four tested Stage 2 methods was in best agreement.
NA, not available.
doi:10.1371/journal.pmed.1001558.t004
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Central America, however, we did not find a consistent

relationship between H1N1pdm09 mortality and country income

group: Argentina and Mexico had particularly high pandemic

death rates (,5/100,000), whereas Chile, a country with a similar

economy, had a pandemic death rate that was more than 3-fold

lower.

Across all Stage 1 countries, the model placed an average of

66% of respiratory pandemic deaths in persons ,65 y. However,

that proportion varied widely, from 100% in several European

countries, to 70%–90% in Argentina and Mexico, to less than

10% in Hong Kong and Japan. Our Stage 1 estimates for seniors

($65 y) were considerably more uncertain than those for the ,65-

y age group; this was due in part to the difficulty in precisely

measuring the small H1N1pdm09 burden in seniors against their

high background mortality, and partly because Hong Kong and

Japan were outliers with a far higher burden among seniors than

all the other countries.

In the few high-burden countries where we could measure Stage

1 all-cause mortality with confidence (e.g., Argentina and Mexico),

the ratio of all-cause to respiratory mortality ranged from 1.6 to 2.3.

Stage 2 Global Projections
Using the Stage 1 model results for all ages (sum of ,65-y and

$65-y age group estimates) as input, the Stage 2 model projected a

global pandemic respiratory mortality during 2009 of 189,000

(range, 175,000–203,000) deaths. These estimates correspond to an

incidence rate of 2.77 (range, 2.57–2.98) per 100,000 population.

Globally, 62% of these deaths were estimated to occur in persons

,65 y, varying from 41% to 75% among WHO regions.

Because the pandemic virus caused considerable excess mortality

in the ,65-y age group, Stage 1 estimates for this age group were

more reliable. To take advantage of that greater reliability, we

computed the Stage 2 global and regional projections based on

these estimates alone, by adjusting the ,65-y estimates to all ages.

To accomplish this we compiled data on the age distribution of

laboratory-confirmed H1N1pdm09 deaths from mortality surveil-

lance efforts in seven countries; these data indicated that an average

of 85% of all pandemic deaths occurred in persons ,65 y (Table

S1). This alternative approach yielded a lower global pandemic

respiratory mortality of 138,000 deaths (range, 123,000–155,000).

Table 5 shows the estimated numbers of global and regional deaths

obtained by both methods; mortality rates and 95% confidence

intervals are given in Tables S2 and S3.

We found substantial regional heterogeneity in H1N1pdm09

mortality rates (Figure 5). The regional patterns observed among

Stage 1 countries were borne out in the Stage 2 estimates, with

high rates in the Americas and low rates in Europe.

In the sensitivity analysis in which one Stage 1 country at a time

was removed from the Stage 2 analysis, the global H1N1pdm09

mortality estimates were stable, with all-age point estimates

ranging from 2.6 to 3.0 per 100,000 population from all-ages

data (Figure 6A) and 1.7 to 2.1 per 100,000 from ,65-y age group

data (Figure 6B). However, regional estimates were more sensitive

to the removal of individual countries, reflecting the importance of

inclusion or exclusion of countries with ‘‘outlier’’ Stage 1

measurements such as Mexico and Chile in the Americas and

Hong Kong in the South-East Asia region.

Seasonal Influenza Mortality Estimates
We generated an estimate of the average global seasonal

influenza mortality burden, based on Stage 1 average seasonal

Table 5. Global and regional GLaMOR Stage 2 projections of pandemic respiratory mortality, where all age estimates were derived
both from Stage 1 all-age estimates and from the ,65-y age group results adjust to 100% using the laboratory-confirmed mortality
surveillance age distribution.

Region ,65 y, Stage 1 All Ages, Stage 1 All Ages (from Stage 1 ,65 y)a

Estimate Rangeb Estimate Rangeb Estimate Rangeb

World 117,130 104,450–132,080 188,660 175,280–203,250 137,800 122,882–155,388

Africa 17,922 15,408–21,172 25,476 22,431–28,447 21,085 18,127–24,908

Eastern Mediterranean 11,108 10,092–12,564 14,911 13,592–17,718 13,068 11,873–14,781

Europe 8,463 6,686–8,894 11,223 10,557–13,883 9,956 7,866–10,464

Americas 22,975 20,768–28,328 35,298 29,107–38,461 27,029 24,433–33,327

South-East Asia 30,412 25,829–36,861 73,449 50,012–83,346 35,779 30,387–43,366

Western Pacific 20,179 17,023–25,259 30,554 28,427–41,862 23,740 20,027–29,716

aCalculated assuming 85% of all deaths occurred among persons ,65 y, as was the case with laboratory-confirmed pandemic deaths identified in seven countries; see
Table S1.
bThe confidence range was derived from a sensitivity analysis in which we successively removed one Stage 1 county at a time from the Stage 2 input set and
recalculated the global and regional burden.
doi:10.1371/journal.pmed.1001558.t005

Figure 3. Pandemic excess mortality estimates for Stage 1
countries, by age and outcome (respiratory, cardiorespiratory,
and all cause). Data are grouped into four geographical regions.
doi:10.1371/journal.pmed.1001558.g003
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influenza attributions across the pre-pandemic period. The Stage 2

multiple imputation method projected a global seasonal influenza

burden of 210,000 influenza-related respiratory deaths per

influenza season; of these only 19% occurred in persons ,65 y

of age. The range of seasonal influenza mortality estimates in the

sensitivity analysis (148,000 to 249,000 deaths per year) was again

wider than the 95% confidence intervals; thus we believe the range

to be a better measure of uncertainty. The effect of removing

individual Stage 1 countries on the seasonal influenza mortality

estimates was more pronounced than for the pandemic estimates

(Figure S1). Figure 7 shows the marked age shift in global and

regional pandemic mortality burden toward persons aged ,65 y.

Discussion

Our analysis suggests that between 123,000 and 203,000

H1N1pdm09 respiratory deaths occurred globally in 2009. This

range is derived from the all-age burden computed in two different

ways: the higher figure is the upper bound of the all-age Stage 2

projection as given by the sensitivity analysis, while the lower

estimate is the lower sensitivity analysis bound of the more reliable

,65-y age group estimate projected to all ages.

That range places H1N1pdm09 mortality below that of

previous influenza pandemics, which varied from ,1 million

deaths in 1968 to ,50 million deaths in 1918 [37]. But the

majority (62%–85%) of the H1N1pdm09 deaths occurred among

persons under 65 y of age, compared to only 19% of the 148,000

to 249,000 seasonal influenza respiratory deaths per season. It is

this ‘‘signature age shift’’ that sets pandemic influenza apart from

seasonal influenza [4,6,38,39]. The severity of the 2009 pandemic

would therefore be better measured with more complex metrics,

such as life-years lost [8], when the necessary age- and risk-

stratified mortality data become available.

When the H1N1pdm09 virus first emerged, early assessments of

the threat level were mixed. Events in Mexico and Argentina in

April and May 2009 suggested a severe pandemic on par with the

1957 pandemic or worse [40,41], while data from New Zealand

during June through August (their winter season) revealed a mild

mortality impact [42]. By applying the same Stage 1 model form

to comparable mortality data across countries, we documented

that large regional variability did in fact occur: the GLaMOR

Stage 1 estimates revealed an almost 20-fold higher mortality

impact for several countries in the Americas than for New

Zealand, Australia, and most countries in Europe.

Many factors might have contributed to the regional differences

in H1N1pdm09 mortality impact, including the previous influenza

exposure history of the population, use of antiviral drugs, the

number and duration of pandemic waves during 2009, influenza

vaccination coverage in preceding seasons, access to intensive care,

and use of public health mitigation strategies. Use of pandemic

vaccine is not on the list as it became available too late to play a

role in 2009 [43]. One intriguing possibility is that H1N1pdm09

severity might have been exacerbated by recent circulation of

H1N1 viruses distantly related to the pandemic virus. This is

consistent with H1N1 having predominated in the Americas and

H3N2 in Europe in the 2008–2009 season. It is also supported by

a recent study demonstrating enhanced H1N1pdm09 disease in

piglets recently immunized with a genetically distant seasonal

H1N1 vaccine [44].

Our global estimates were in reasonable agreement with those of

Dawood et al. [19], to our knowledge the only other published study

of global mortality from the 2009 pandemic. The GLaMOR

respiratory estimate range fell within Dawood’s ranges of global

respiratory deaths (25th to 75th percentile, 105,700 to 395,600; 5th

to 95th percentile, 39,000 to 1,315,800). However, the two studies

used very different modeling strategies. Dawood et al. collected

Figure 4. Examples of regional heterogeneity in pandemic mortality impact: Mexico (high burden) and France (low burden). In
Mexico, a substantial H1N1pdm09 respiratory mortality burden (red areas above gray background mortality) occurred among children, young adults,
and middle-aged persons (,65 y) of age but not among seniors ($65 y). In France, however, there was a far less dramatic pandemic impact that,
despite the similar population size, was captured only in the ,65-y age group model. Seasonal influenza burden (blue areas) was also generated by
the Stage 1 model. The vertical black line represents the start of the pandemic.
doi:10.1371/journal.pmed.1001558.g004
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symptomatic attack rates and case fatality rates from a set of high-

income countries, then applied a country-specific ‘‘respiratory

mortality multiplier’’ proportional to the underlying risk of dying

from respiratory diseases in pre-pandemic years.

But at the regional level, the two approaches produced entirely

different patterns (Figure 8). For example, we measured the

highest H1N1pdm09 mortality rates in the Americas, while

Dawood et al. projected low mortality rates there, having set the

‘‘respiratory mortality multiplier’’ to 1 for that region. Further-

more, Dawood et al. projected the highest mortality in Africa,

while our Stage 1 pandemic respiratory estimate for South

Africa—based on actual mortality data from South Africa—was

manyfold lower than Dawood et al.’s. Their projection for India

and South Asia was also high, although a Bangladesh study team

measured a pandemic burden that was not particularly high [45].

Finally, surveillance data indicate that H1N1pdm09 virus activity

was delayed in African countries, so that most H1N1pdm09 deaths

occurred in subsequent years in those countries [46].

Neither Dawood et al. nor our study had many data from Africa

and South-East Asia, however, so what actually happened in these

largely tropical regions remains unclear. However, a recent study

demonstrated that the H1N1pdm09 mortality impact was far greater

in temperate and wealthy southern regions of Brazil than in tropical

and less-wealthy northern regions [12]. This unique insight from one

large country that straddles climate zones suggests that the burden in

the tropics was not necessarily higher than in temperate climates.

Figure 5. Pandemic respiratory mortality rates projected to all world countries with the Stage 2 multiple imputation model,
stratified by age. (A) Under 65 y and (B) all ages. Numbers in map legend are pandemic mortality rates per 100,000 persons.
doi:10.1371/journal.pmed.1001558.g005

2009 H1N1pdm Global Influenza Pandemic Mortality

PLOS Medicine | www.plosmedicine.org 11 November 2013 | Volume 10 | Issue 11 | e1001558



Figure 6. Sensitivity analysis of global and regional pandemic respiratory mortality rates. The Stage 2 model was run multiple times,
each time removing one Stage 1 country, for (A) all ages and (B) ,65 y. The global estimates (black diamonds) were relatively stable, but some
regions were sensitive to the removal of individual countries. Figure S1 depicts the corresponding sensitivity analysis results for seasonal estimates.
Eastern Med, Eastern Mediterranean; SEAR, South-East Asia; Western Pac, Western Pacific.
doi:10.1371/journal.pmed.1001558.g006
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The H1N1pdm09 burden estimates from a few GLaMOR

participating countries have been published. As shown in Figures 9

and 10, the GLaMOR Stage 2 projections for persons ,65 y are

in good agreement with published estimates for Mexico, China,

Australia, US, and France, despite substantial differences in

modeling approaches. In contrast, the senior ($65 y) estimates are

quite variable, as were the GLaMOR all-age results.

Although our conservative range of global respiratory mortality

estimates is an order of magnitude greater than the reported global

number of WHO laboratory-confirmed deaths, it likely substan-

tially understated the total H1N1pdm09 mortality burden. First,

our study missed deaths that occurred late in the 2009–2010

winter as well as those occurring in later pandemic waves. For

example, one-third of Germany’s laboratory-confirmed first-wave

deaths occurred in early 2010, while substantial waves of

H1N1pmd09 mortality were observed later in the UK in 2010–

2011 [47] and in Mexico in 2011–2012 [48,49]. Second, many

H1N1pdm09 deaths may not have been recorded as respiratory

deaths. Furthermore, we were forced to model ‘‘underlying cause

of death’’ data, which may be biased towards underlying chronic

disease and thus undercount respiratory deaths. Moreover, we

refrained from generating a global estimate based on all-cause or

cardiorespiratory deaths (the latter a preferred outcome for

measuring seasonal influenza burden), since we were unable to

detect significant pandemic excess mortality for these outcomes in

most Stage 1 countries. We agree with Lemaitre et al. [10] that all-

cause mortality is not a useful outcome for assessing H1N1pdm09

mortality in mild impact countries. However, in the few high-

burden countries where we could measure all-cause mortality with

confidence (e.g., Argentina and Mexico), the ratio of all-cause to

respiratory mortality was ,2:1; Charu et al. reported a similar

ratio for Mexico [9]. If this 2:1 ratio pertained globally, the global

pandemic all-cause mortality burden would have been about

300,000–400,000 deaths, approximately double our range of

respiratory estimates.

Our approach had several strengths. Because the analysis was

based on the pandemic ‘‘excess’’ mortality that actually occurred

in 20 Stage 1 countries in 2009, we were able to map large and

important regional differences in the H1N1pdm09 mortality

burden that had not been captured in a previous study [19].

Because our collaborators contributed several years of data, we

also were able to generate a global estimate of average seasonal

influenza mortality, to which we could compare the pandemic

burden. And because our single-country Stage 1 estimates were

based on widely used analytical methods, our H1N1pdm09

mortality burden estimates are comparable to estimates made

for historic influenza pandemics.

We recognize several caveats of our study, however. First, we

lacked good representation of low-income countries and countries

in South-East Asia, the Eastern Mediterranean, and Africa. Second,

we were unable to explain the substantial pandemic mortality

attributions among seniors that we and others measured in Hong

Kong [50] and Japan, a pattern very unlike that documented by

laboratory-confirmed mortality surveillance efforts in multiple

countries globally (Table S1). Our Hong Kong collaborators

maintained that seniors could have been missed in the laboratory-

confirmed surveillance effort, while our Japanese collaborators

argued that their pandemic mortality surveillance system was not

age biased. Thus, the high measured burden among seniors may be

real, or a mis-measurement due to an inability of statistical models

to fully control for H3N2 co-circulation in 2009 in some Asian

settings. In any event, we could not resolve the issue. We therefore

also generated global and regional estimates based on the less

contentious ,65-y age group results. Third, we might not have

accounted sufficiently for spatial dependency between countries and

the likely spillover effect of influenza. And finally, the seasonal

estimates were not ideal because Stage 1 countries contributed data

from a variable number of seasons, and not all modeling issues were

fully resolved (e.g., we noted some degree of misalignment between

influenza virology and seasonal pneumonia mortality peaks in some

countries).

Health care policy decisions depend on reliable and timely data

whereby the risks and cost-effectiveness of interventions can be

evaluated. In the GLaMOR study we developed methods whereby

we can make robust and comparable mortality estimates in any

future pandemic. But the lack of timeliness of such reports must be

remedied. Ideally, a set of sentinel countries with timely hospital-

ization and/or mortality data could form a global sentinel system

measuring severity, provided a common protocol was in place to

allow comparisons across settings. EuroMOMO (European

Monitoring of Excess Mortality for Public Health Action), which

collects timely age-specific all-cause mortality data in European

countries, is a big step in the right direction [51]. Also Mexico,

Hong Kong, and New Zealand should be lauded for timely

surveillance systems that captured hospitalization, case fatality, and

Figure 7. Age distribution of projected global and regional
respiratory mortality, for both pandemic and seasonal influ-
enza mortality estimates. East.Med, Eastern Mediterranean.
doi:10.1371/journal.pmed.1001558.g007

Figure 8. Comparison of GLaMOR mortality estimates to those
of Dawood et al. GLaMOR all-age respiratory mortality estimated
directly from all-age multiple imputation (open circles) and by
proportional extrapolation of the ,65-y age group estimate to all
ages using the age distribution of laboratory-confirmed mortality
surveillance (black circles), compared to estimates by Dawood et al. [19]
(black plus signs). Eastern Med, Eastern Mediterranean.
doi:10.1371/journal.pmed.1001558.g008
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mortality impact in a large segment of their populations in near real

time [42,49,52] and Canada for its timely investigations into

unexpected effects of seasonal vaccines on the pandemic [55].

Going forward, these and other countries and existing networks

should partner to collaboratively and rapidly assess the severity of

future pandemic threats.

Figure 9. Comparison of Stage 1 modeled pandemic respiratory mortality rates, by age, to published estimates for Mexico,
Australia, US, China, and France by authors using various modeling strategies. Asterisks indicate significance at the p,0.05 level.
doi:10.1371/journal.pmed.1001558.g009

Figure 10. Comparison of Stage 1 modeled pandemic all-age mortality rates, by cause, to published estimates for Mexico,
Australia, US, China, and France by authors using various modeling strategies. Asterisks indicate significance at the p,0.05 level.
doi:10.1371/journal.pmed.1001558.g010
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Supporting Information

Figure S1 Sensitivity analysis of the multiple imputa-
tion method seasonal estimates. We carried out the same

sensitivity analysis on the seasonal estimates—leaving one country

out at a time—that we had done on the pandemic estimate. The

seasonal estimates were much more sensitive to the exclusion of a

country than the pandemic estimates (Figure 6). The exclusion of

China had a particularly large impact on the all-age seasonal

excess respiratory mortality estimate.

(TIF)

Figure S2 A map showing WHO regions.
(TIF)

Table S1 Age distribution of laboratory-confirmed
H1N1pdm09 deaths from surveillance efforts in seven
countries.
(DOCX)

Table S2 Global and regional GLaMOR Stage 2 projec-
tions of pandemic respiratory mortality (numbers of
deaths) with 95% CIs and sensitivity analysis ranges.
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Editors’ Summary

Background. Every winter, millions of people catch
influenza—a viral infection of the airways—and hundreds
of thousands of people (mainly elderly individuals) die as a
result. These seasonal epidemics occur because small but
frequent changes in the influenza virus mean that the
immune response produced by infection with one year’s
virus provides only partial protection against the next year’s
virus. Influenza viruses also occasionally emerge that are very
different. Human populations have virtually no immunity to
these new viruses, which can start global epidemics
(pandemics) that kill millions of people. The most recent
influenza pandemic, which was first recognized in Mexico in
March 2009, was caused by the 2009 influenza A H1N1
pandemic (H1N1pdm09) virus. This virus spread rapidly, and
on 11 June 2009, the World Health Organization (WHO)
declared that an influenza pandemic was underway.
H1N1pdm09 caused a mild disease in most people it
infected, but by the time WHO announced that the
pandemic was over (10 August 2010), there had been
18,632 laboratory-confirmed deaths from H1N1pdm09.

Why Was This Study Done? The modest number of
laboratory-confirmed H1N1pdm09 deaths has caused com-
mentators to wonder whether the public health response to
H1N1pdm09 was excessive. However, as is the case with all
influenza epidemics, the true mortality (death) burden from
H1N1pdm09 is substantially higher than these figures
indicate because only a minority of influenza-related deaths
are definitively diagnosed by being confirmed in laboratory.
Many influenza-related deaths result from secondary bacte-
rial infections or from exacerbation of preexisting chronic
conditions, and are not recorded as related to influenza
infection. A more complete assessment of the impact of
H1N1pdm09 on mortality is essential for the optimization of
public health responses to future pandemics. In this
modeling study (the Global Pandemic Mortality [GLaMOR]
project), researchers use a two-stage statistical modeling
approach to estimate the global mortality burden of the
2009 influenza pandemic from mortality data obtained from
multiple countries.

What Did the Researchers Do and Find? The researchers
obtained weekly virology data from the World Health
Organization FluNet database and national influenza centers
to identify influenza active periods, and obtained weekly
national underlying cause-of-death time series for 2005–
2009 from collaborators in more than 20 countries (35% of
the world’s population). They used a multivariate linear
regression model to measure the numbers and rates of
pandemic influenza respiratory deaths in each of these
countries. Then, in the second stage of their analysis, they
used a multiple imputation model that took into account
country-specific geographical, economic, and health indica-
tors to project the single-country estimates to all world
countries. The researchers estimated that between 123,000
and 203,000 pandemic influenza respiratory deaths occurred
globally from 1 April through 31 December 2009. Most of
these deaths (62%–85%) occurred in people younger than 65

years old. There was a striking regional heterogeneity in
deaths, with up to 20-fold higher mortality in Central and
South American countries than in European countries.
Finally, the model attributed 148,000–249,000 respiratory
deaths to influenza in an average pre-pandemic season.
Notably, only 19% of these deaths occurred in people
younger than 65 years old.

What Do These Findings Mean? These findings suggest
that respiratory mortality from the 2009 influenza pandemic
was about 10-fold higher than laboratory-confirmed mortality.
The true total mortality burden is likely to be even higher
because deaths that occurred late in the winter of 2009–2010
and in later pandemic waves were missed in this analysis, and
only pandemic influenza deaths that were recorded as
respiratory deaths were included. The lack of single-country
estimates from low-income countries may also limit the
accuracy of these findings. Importantly, although the re-
searchers’ estimates of mortality from H1N1pdm09 and from
seasonal influenza were of similar magnitude, the shift
towards mortality among younger people means that more
life-years were lost during the 2009 influenza pandemic than
during an average pre-pandemic influenza season. Although
the methods developed by the GLaMOR project can be used
to make robust and comparable mortality estimates in future
influenza pandemics, the lack of timeliness of such estimates
needs to be remedied. One potential remedy, suggest the
researchers, would be to establish a collaborative network
that analyzes timely hospitalization and/or mortality data
provided by sentinel countries. Such a network should be able
to provide the rapid and reliable data about the severity of
pandemic threats that is needed to guide public health policy
decisions.

Additional Information. Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001558.

N The US Centers for Disease Control and Prevention
provides information about influenza for patients and
professionals, including archived information on
H1N1pdm09

N Flu.gov, a US government website, provides access to
information on seasonal and pandemic influenza and on
H1N1pdm09

N The World Health Organization provides information on
influenza and on the global response to H1N1pdm09,
including a publication on the evolution of H1N1pdm09
(some information in several languages). Information on
FluNet, a global tool for influenza surveillance, is also
available

N Public Health England provides information on pandemic
influenza and archived information on H1N1pdm09

N More information for patients about H1N1pdm09 is
available through Choices, an information resource pro-
vided by the UK National Health Service

N More information about the GLaMOR project is available
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